workqueue: record pool ID instead of CPU in work->data when off-queue
[linux-2.6/cjktty.git] / kernel / workqueue.c
bloba4d7e3f0a87415abee8a3727a102a0ef463b8922
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
46 #include "workqueue_internal.h"
48 enum {
50 * worker_pool flags
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
103 * Structure fields follow one of the following exclusion rules.
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
111 * L: gcwq->lock protected. Access with gcwq->lock held.
113 * X: During normal operation, modification requires gcwq->lock and
114 * should be done only from local cpu. Either disabling preemption
115 * on local cpu or grabbing gcwq->lock is enough for read access.
116 * If POOL_DISASSOCIATED is set, it's identical to L.
118 * F: wq->flush_mutex protected.
120 * W: workqueue_lock protected.
123 /* struct worker is defined in workqueue_internal.h */
125 struct worker_pool {
126 struct global_cwq *gcwq; /* I: the owning gcwq */
127 int id; /* I: pool ID */
128 unsigned int flags; /* X: flags */
130 struct list_head worklist; /* L: list of pending works */
131 int nr_workers; /* L: total number of workers */
133 /* nr_idle includes the ones off idle_list for rebinding */
134 int nr_idle; /* L: currently idle ones */
136 struct list_head idle_list; /* X: list of idle workers */
137 struct timer_list idle_timer; /* L: worker idle timeout */
138 struct timer_list mayday_timer; /* L: SOS timer for workers */
140 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
141 struct ida worker_ida; /* L: for worker IDs */
145 * Global per-cpu workqueue. There's one and only one for each cpu
146 * and all works are queued and processed here regardless of their
147 * target workqueues.
149 struct global_cwq {
150 spinlock_t lock; /* the gcwq lock */
151 unsigned int cpu; /* I: the associated cpu */
153 /* workers are chained either in busy_hash or pool idle_list */
154 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
155 /* L: hash of busy workers */
157 struct worker_pool pools[NR_STD_WORKER_POOLS];
158 /* normal and highpri pools */
159 } ____cacheline_aligned_in_smp;
162 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
163 * work_struct->data are used for flags and thus cwqs need to be
164 * aligned at two's power of the number of flag bits.
166 struct cpu_workqueue_struct {
167 struct worker_pool *pool; /* I: the associated pool */
168 struct workqueue_struct *wq; /* I: the owning workqueue */
169 int work_color; /* L: current color */
170 int flush_color; /* L: flushing color */
171 int nr_in_flight[WORK_NR_COLORS];
172 /* L: nr of in_flight works */
173 int nr_active; /* L: nr of active works */
174 int max_active; /* L: max active works */
175 struct list_head delayed_works; /* L: delayed works */
179 * Structure used to wait for workqueue flush.
181 struct wq_flusher {
182 struct list_head list; /* F: list of flushers */
183 int flush_color; /* F: flush color waiting for */
184 struct completion done; /* flush completion */
188 * All cpumasks are assumed to be always set on UP and thus can't be
189 * used to determine whether there's something to be done.
191 #ifdef CONFIG_SMP
192 typedef cpumask_var_t mayday_mask_t;
193 #define mayday_test_and_set_cpu(cpu, mask) \
194 cpumask_test_and_set_cpu((cpu), (mask))
195 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
196 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
197 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
198 #define free_mayday_mask(mask) free_cpumask_var((mask))
199 #else
200 typedef unsigned long mayday_mask_t;
201 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
202 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
203 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
204 #define alloc_mayday_mask(maskp, gfp) true
205 #define free_mayday_mask(mask) do { } while (0)
206 #endif
209 * The externally visible workqueue abstraction is an array of
210 * per-CPU workqueues:
212 struct workqueue_struct {
213 unsigned int flags; /* W: WQ_* flags */
214 union {
215 struct cpu_workqueue_struct __percpu *pcpu;
216 struct cpu_workqueue_struct *single;
217 unsigned long v;
218 } cpu_wq; /* I: cwq's */
219 struct list_head list; /* W: list of all workqueues */
221 struct mutex flush_mutex; /* protects wq flushing */
222 int work_color; /* F: current work color */
223 int flush_color; /* F: current flush color */
224 atomic_t nr_cwqs_to_flush; /* flush in progress */
225 struct wq_flusher *first_flusher; /* F: first flusher */
226 struct list_head flusher_queue; /* F: flush waiters */
227 struct list_head flusher_overflow; /* F: flush overflow list */
229 mayday_mask_t mayday_mask; /* cpus requesting rescue */
230 struct worker *rescuer; /* I: rescue worker */
232 int nr_drainers; /* W: drain in progress */
233 int saved_max_active; /* W: saved cwq max_active */
234 #ifdef CONFIG_LOCKDEP
235 struct lockdep_map lockdep_map;
236 #endif
237 char name[]; /* I: workqueue name */
240 struct workqueue_struct *system_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_wq);
242 struct workqueue_struct *system_highpri_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_highpri_wq);
244 struct workqueue_struct *system_long_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_long_wq);
246 struct workqueue_struct *system_unbound_wq __read_mostly;
247 EXPORT_SYMBOL_GPL(system_unbound_wq);
248 struct workqueue_struct *system_freezable_wq __read_mostly;
249 EXPORT_SYMBOL_GPL(system_freezable_wq);
251 #define CREATE_TRACE_POINTS
252 #include <trace/events/workqueue.h>
254 #define for_each_worker_pool(pool, gcwq) \
255 for ((pool) = &(gcwq)->pools[0]; \
256 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
258 #define for_each_busy_worker(worker, i, pos, gcwq) \
259 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
261 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
262 unsigned int sw)
264 if (cpu < nr_cpu_ids) {
265 if (sw & 1) {
266 cpu = cpumask_next(cpu, mask);
267 if (cpu < nr_cpu_ids)
268 return cpu;
270 if (sw & 2)
271 return WORK_CPU_UNBOUND;
273 return WORK_CPU_NONE;
276 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
277 struct workqueue_struct *wq)
279 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283 * CPU iterators
285 * An extra gcwq is defined for an invalid cpu number
286 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
287 * specific CPU. The following iterators are similar to
288 * for_each_*_cpu() iterators but also considers the unbound gcwq.
290 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
291 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
292 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
293 * WORK_CPU_UNBOUND for unbound workqueues
295 #define for_each_gcwq_cpu(cpu) \
296 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
297 (cpu) < WORK_CPU_NONE; \
298 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
300 #define for_each_online_gcwq_cpu(cpu) \
301 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
302 (cpu) < WORK_CPU_NONE; \
303 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
305 #define for_each_cwq_cpu(cpu, wq) \
306 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
310 #ifdef CONFIG_DEBUG_OBJECTS_WORK
312 static struct debug_obj_descr work_debug_descr;
314 static void *work_debug_hint(void *addr)
316 return ((struct work_struct *) addr)->func;
320 * fixup_init is called when:
321 * - an active object is initialized
323 static int work_fixup_init(void *addr, enum debug_obj_state state)
325 struct work_struct *work = addr;
327 switch (state) {
328 case ODEBUG_STATE_ACTIVE:
329 cancel_work_sync(work);
330 debug_object_init(work, &work_debug_descr);
331 return 1;
332 default:
333 return 0;
338 * fixup_activate is called when:
339 * - an active object is activated
340 * - an unknown object is activated (might be a statically initialized object)
342 static int work_fixup_activate(void *addr, enum debug_obj_state state)
344 struct work_struct *work = addr;
346 switch (state) {
348 case ODEBUG_STATE_NOTAVAILABLE:
350 * This is not really a fixup. The work struct was
351 * statically initialized. We just make sure that it
352 * is tracked in the object tracker.
354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
355 debug_object_init(work, &work_debug_descr);
356 debug_object_activate(work, &work_debug_descr);
357 return 0;
359 WARN_ON_ONCE(1);
360 return 0;
362 case ODEBUG_STATE_ACTIVE:
363 WARN_ON(1);
365 default:
366 return 0;
371 * fixup_free is called when:
372 * - an active object is freed
374 static int work_fixup_free(void *addr, enum debug_obj_state state)
376 struct work_struct *work = addr;
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 cancel_work_sync(work);
381 debug_object_free(work, &work_debug_descr);
382 return 1;
383 default:
384 return 0;
388 static struct debug_obj_descr work_debug_descr = {
389 .name = "work_struct",
390 .debug_hint = work_debug_hint,
391 .fixup_init = work_fixup_init,
392 .fixup_activate = work_fixup_activate,
393 .fixup_free = work_fixup_free,
396 static inline void debug_work_activate(struct work_struct *work)
398 debug_object_activate(work, &work_debug_descr);
401 static inline void debug_work_deactivate(struct work_struct *work)
403 debug_object_deactivate(work, &work_debug_descr);
406 void __init_work(struct work_struct *work, int onstack)
408 if (onstack)
409 debug_object_init_on_stack(work, &work_debug_descr);
410 else
411 debug_object_init(work, &work_debug_descr);
413 EXPORT_SYMBOL_GPL(__init_work);
415 void destroy_work_on_stack(struct work_struct *work)
417 debug_object_free(work, &work_debug_descr);
419 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
421 #else
422 static inline void debug_work_activate(struct work_struct *work) { }
423 static inline void debug_work_deactivate(struct work_struct *work) { }
424 #endif
426 /* Serializes the accesses to the list of workqueues. */
427 static DEFINE_SPINLOCK(workqueue_lock);
428 static LIST_HEAD(workqueues);
429 static bool workqueue_freezing; /* W: have wqs started freezing? */
432 * The almighty global cpu workqueues. nr_running is the only field
433 * which is expected to be used frequently by other cpus via
434 * try_to_wake_up(). Put it in a separate cacheline.
436 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
437 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
440 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
441 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
442 * WORKER_UNBOUND set.
444 static struct global_cwq unbound_global_cwq;
445 static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
446 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
449 /* idr of all pools */
450 static DEFINE_MUTEX(worker_pool_idr_mutex);
451 static DEFINE_IDR(worker_pool_idr);
453 static int worker_thread(void *__worker);
455 static int std_worker_pool_pri(struct worker_pool *pool)
457 return pool - pool->gcwq->pools;
460 static struct global_cwq *get_gcwq(unsigned int cpu)
462 if (cpu != WORK_CPU_UNBOUND)
463 return &per_cpu(global_cwq, cpu);
464 else
465 return &unbound_global_cwq;
468 /* allocate ID and assign it to @pool */
469 static int worker_pool_assign_id(struct worker_pool *pool)
471 int ret;
473 mutex_lock(&worker_pool_idr_mutex);
474 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
475 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
476 mutex_unlock(&worker_pool_idr_mutex);
478 return ret;
482 * Lookup worker_pool by id. The idr currently is built during boot and
483 * never modified. Don't worry about locking for now.
485 static struct worker_pool *worker_pool_by_id(int pool_id)
487 return idr_find(&worker_pool_idr, pool_id);
490 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
492 int cpu = pool->gcwq->cpu;
493 int idx = std_worker_pool_pri(pool);
495 if (cpu != WORK_CPU_UNBOUND)
496 return &per_cpu(pool_nr_running, cpu)[idx];
497 else
498 return &unbound_pool_nr_running[idx];
501 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
502 struct workqueue_struct *wq)
504 if (!(wq->flags & WQ_UNBOUND)) {
505 if (likely(cpu < nr_cpu_ids))
506 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
507 } else if (likely(cpu == WORK_CPU_UNBOUND))
508 return wq->cpu_wq.single;
509 return NULL;
512 static unsigned int work_color_to_flags(int color)
514 return color << WORK_STRUCT_COLOR_SHIFT;
517 static int get_work_color(struct work_struct *work)
519 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
520 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
523 static int work_next_color(int color)
525 return (color + 1) % WORK_NR_COLORS;
529 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
530 * contain the pointer to the queued cwq. Once execution starts, the flag
531 * is cleared and the high bits contain OFFQ flags and pool ID.
533 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
534 * and clear_work_data() can be used to set the cwq, pool or clear
535 * work->data. These functions should only be called while the work is
536 * owned - ie. while the PENDING bit is set.
538 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
539 * corresponding to a work. Pool is available once the work has been
540 * queued anywhere after initialization until it is sync canceled. cwq is
541 * available only while the work item is queued.
543 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
544 * canceled. While being canceled, a work item may have its PENDING set
545 * but stay off timer and worklist for arbitrarily long and nobody should
546 * try to steal the PENDING bit.
548 static inline void set_work_data(struct work_struct *work, unsigned long data,
549 unsigned long flags)
551 BUG_ON(!work_pending(work));
552 atomic_long_set(&work->data, data | flags | work_static(work));
555 static void set_work_cwq(struct work_struct *work,
556 struct cpu_workqueue_struct *cwq,
557 unsigned long extra_flags)
559 set_work_data(work, (unsigned long)cwq,
560 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
563 static void set_work_pool_and_clear_pending(struct work_struct *work,
564 int pool_id)
567 * The following wmb is paired with the implied mb in
568 * test_and_set_bit(PENDING) and ensures all updates to @work made
569 * here are visible to and precede any updates by the next PENDING
570 * owner.
572 smp_wmb();
573 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
576 static void clear_work_data(struct work_struct *work)
578 smp_wmb(); /* see set_work_pool_and_clear_pending() */
579 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
582 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
584 unsigned long data = atomic_long_read(&work->data);
586 if (data & WORK_STRUCT_CWQ)
587 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
588 else
589 return NULL;
593 * get_work_pool - return the worker_pool a given work was associated with
594 * @work: the work item of interest
596 * Return the worker_pool @work was last associated with. %NULL if none.
598 static struct worker_pool *get_work_pool(struct work_struct *work)
600 unsigned long data = atomic_long_read(&work->data);
601 struct worker_pool *pool;
602 int pool_id;
604 if (data & WORK_STRUCT_CWQ)
605 return ((struct cpu_workqueue_struct *)
606 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
608 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
609 if (pool_id == WORK_OFFQ_POOL_NONE)
610 return NULL;
612 pool = worker_pool_by_id(pool_id);
613 WARN_ON_ONCE(!pool);
614 return pool;
618 * get_work_pool_id - return the worker pool ID a given work is associated with
619 * @work: the work item of interest
621 * Return the worker_pool ID @work was last associated with.
622 * %WORK_OFFQ_POOL_NONE if none.
624 static int get_work_pool_id(struct work_struct *work)
626 struct worker_pool *pool = get_work_pool(work);
628 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
631 static struct global_cwq *get_work_gcwq(struct work_struct *work)
633 struct worker_pool *pool = get_work_pool(work);
635 return pool ? pool->gcwq : NULL;
638 static void mark_work_canceling(struct work_struct *work)
640 unsigned long pool_id = get_work_pool_id(work);
642 pool_id <<= WORK_OFFQ_POOL_SHIFT;
643 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
646 static bool work_is_canceling(struct work_struct *work)
648 unsigned long data = atomic_long_read(&work->data);
650 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
654 * Policy functions. These define the policies on how the global worker
655 * pools are managed. Unless noted otherwise, these functions assume that
656 * they're being called with gcwq->lock held.
659 static bool __need_more_worker(struct worker_pool *pool)
661 return !atomic_read(get_pool_nr_running(pool));
665 * Need to wake up a worker? Called from anything but currently
666 * running workers.
668 * Note that, because unbound workers never contribute to nr_running, this
669 * function will always return %true for unbound gcwq as long as the
670 * worklist isn't empty.
672 static bool need_more_worker(struct worker_pool *pool)
674 return !list_empty(&pool->worklist) && __need_more_worker(pool);
677 /* Can I start working? Called from busy but !running workers. */
678 static bool may_start_working(struct worker_pool *pool)
680 return pool->nr_idle;
683 /* Do I need to keep working? Called from currently running workers. */
684 static bool keep_working(struct worker_pool *pool)
686 atomic_t *nr_running = get_pool_nr_running(pool);
688 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
691 /* Do we need a new worker? Called from manager. */
692 static bool need_to_create_worker(struct worker_pool *pool)
694 return need_more_worker(pool) && !may_start_working(pool);
697 /* Do I need to be the manager? */
698 static bool need_to_manage_workers(struct worker_pool *pool)
700 return need_to_create_worker(pool) ||
701 (pool->flags & POOL_MANAGE_WORKERS);
704 /* Do we have too many workers and should some go away? */
705 static bool too_many_workers(struct worker_pool *pool)
707 bool managing = pool->flags & POOL_MANAGING_WORKERS;
708 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
709 int nr_busy = pool->nr_workers - nr_idle;
712 * nr_idle and idle_list may disagree if idle rebinding is in
713 * progress. Never return %true if idle_list is empty.
715 if (list_empty(&pool->idle_list))
716 return false;
718 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
722 * Wake up functions.
725 /* Return the first worker. Safe with preemption disabled */
726 static struct worker *first_worker(struct worker_pool *pool)
728 if (unlikely(list_empty(&pool->idle_list)))
729 return NULL;
731 return list_first_entry(&pool->idle_list, struct worker, entry);
735 * wake_up_worker - wake up an idle worker
736 * @pool: worker pool to wake worker from
738 * Wake up the first idle worker of @pool.
740 * CONTEXT:
741 * spin_lock_irq(gcwq->lock).
743 static void wake_up_worker(struct worker_pool *pool)
745 struct worker *worker = first_worker(pool);
747 if (likely(worker))
748 wake_up_process(worker->task);
752 * wq_worker_waking_up - a worker is waking up
753 * @task: task waking up
754 * @cpu: CPU @task is waking up to
756 * This function is called during try_to_wake_up() when a worker is
757 * being awoken.
759 * CONTEXT:
760 * spin_lock_irq(rq->lock)
762 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
764 struct worker *worker = kthread_data(task);
766 if (!(worker->flags & WORKER_NOT_RUNNING)) {
767 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
768 atomic_inc(get_pool_nr_running(worker->pool));
773 * wq_worker_sleeping - a worker is going to sleep
774 * @task: task going to sleep
775 * @cpu: CPU in question, must be the current CPU number
777 * This function is called during schedule() when a busy worker is
778 * going to sleep. Worker on the same cpu can be woken up by
779 * returning pointer to its task.
781 * CONTEXT:
782 * spin_lock_irq(rq->lock)
784 * RETURNS:
785 * Worker task on @cpu to wake up, %NULL if none.
787 struct task_struct *wq_worker_sleeping(struct task_struct *task,
788 unsigned int cpu)
790 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
791 struct worker_pool *pool;
792 atomic_t *nr_running;
795 * Rescuers, which may not have all the fields set up like normal
796 * workers, also reach here, let's not access anything before
797 * checking NOT_RUNNING.
799 if (worker->flags & WORKER_NOT_RUNNING)
800 return NULL;
802 pool = worker->pool;
803 nr_running = get_pool_nr_running(pool);
805 /* this can only happen on the local cpu */
806 BUG_ON(cpu != raw_smp_processor_id());
809 * The counterpart of the following dec_and_test, implied mb,
810 * worklist not empty test sequence is in insert_work().
811 * Please read comment there.
813 * NOT_RUNNING is clear. This means that we're bound to and
814 * running on the local cpu w/ rq lock held and preemption
815 * disabled, which in turn means that none else could be
816 * manipulating idle_list, so dereferencing idle_list without gcwq
817 * lock is safe.
819 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
820 to_wakeup = first_worker(pool);
821 return to_wakeup ? to_wakeup->task : NULL;
825 * worker_set_flags - set worker flags and adjust nr_running accordingly
826 * @worker: self
827 * @flags: flags to set
828 * @wakeup: wakeup an idle worker if necessary
830 * Set @flags in @worker->flags and adjust nr_running accordingly. If
831 * nr_running becomes zero and @wakeup is %true, an idle worker is
832 * woken up.
834 * CONTEXT:
835 * spin_lock_irq(gcwq->lock)
837 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
838 bool wakeup)
840 struct worker_pool *pool = worker->pool;
842 WARN_ON_ONCE(worker->task != current);
845 * If transitioning into NOT_RUNNING, adjust nr_running and
846 * wake up an idle worker as necessary if requested by
847 * @wakeup.
849 if ((flags & WORKER_NOT_RUNNING) &&
850 !(worker->flags & WORKER_NOT_RUNNING)) {
851 atomic_t *nr_running = get_pool_nr_running(pool);
853 if (wakeup) {
854 if (atomic_dec_and_test(nr_running) &&
855 !list_empty(&pool->worklist))
856 wake_up_worker(pool);
857 } else
858 atomic_dec(nr_running);
861 worker->flags |= flags;
865 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
866 * @worker: self
867 * @flags: flags to clear
869 * Clear @flags in @worker->flags and adjust nr_running accordingly.
871 * CONTEXT:
872 * spin_lock_irq(gcwq->lock)
874 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
876 struct worker_pool *pool = worker->pool;
877 unsigned int oflags = worker->flags;
879 WARN_ON_ONCE(worker->task != current);
881 worker->flags &= ~flags;
884 * If transitioning out of NOT_RUNNING, increment nr_running. Note
885 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
886 * of multiple flags, not a single flag.
888 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
889 if (!(worker->flags & WORKER_NOT_RUNNING))
890 atomic_inc(get_pool_nr_running(pool));
894 * find_worker_executing_work - find worker which is executing a work
895 * @gcwq: gcwq of interest
896 * @work: work to find worker for
898 * Find a worker which is executing @work on @gcwq by searching
899 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
900 * to match, its current execution should match the address of @work and
901 * its work function. This is to avoid unwanted dependency between
902 * unrelated work executions through a work item being recycled while still
903 * being executed.
905 * This is a bit tricky. A work item may be freed once its execution
906 * starts and nothing prevents the freed area from being recycled for
907 * another work item. If the same work item address ends up being reused
908 * before the original execution finishes, workqueue will identify the
909 * recycled work item as currently executing and make it wait until the
910 * current execution finishes, introducing an unwanted dependency.
912 * This function checks the work item address, work function and workqueue
913 * to avoid false positives. Note that this isn't complete as one may
914 * construct a work function which can introduce dependency onto itself
915 * through a recycled work item. Well, if somebody wants to shoot oneself
916 * in the foot that badly, there's only so much we can do, and if such
917 * deadlock actually occurs, it should be easy to locate the culprit work
918 * function.
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
923 * RETURNS:
924 * Pointer to worker which is executing @work if found, NULL
925 * otherwise.
927 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
928 struct work_struct *work)
930 struct worker *worker;
931 struct hlist_node *tmp;
933 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
934 (unsigned long)work)
935 if (worker->current_work == work &&
936 worker->current_func == work->func)
937 return worker;
939 return NULL;
943 * move_linked_works - move linked works to a list
944 * @work: start of series of works to be scheduled
945 * @head: target list to append @work to
946 * @nextp: out paramter for nested worklist walking
948 * Schedule linked works starting from @work to @head. Work series to
949 * be scheduled starts at @work and includes any consecutive work with
950 * WORK_STRUCT_LINKED set in its predecessor.
952 * If @nextp is not NULL, it's updated to point to the next work of
953 * the last scheduled work. This allows move_linked_works() to be
954 * nested inside outer list_for_each_entry_safe().
956 * CONTEXT:
957 * spin_lock_irq(gcwq->lock).
959 static void move_linked_works(struct work_struct *work, struct list_head *head,
960 struct work_struct **nextp)
962 struct work_struct *n;
965 * Linked worklist will always end before the end of the list,
966 * use NULL for list head.
968 list_for_each_entry_safe_from(work, n, NULL, entry) {
969 list_move_tail(&work->entry, head);
970 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
971 break;
975 * If we're already inside safe list traversal and have moved
976 * multiple works to the scheduled queue, the next position
977 * needs to be updated.
979 if (nextp)
980 *nextp = n;
983 static void cwq_activate_delayed_work(struct work_struct *work)
985 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
987 trace_workqueue_activate_work(work);
988 move_linked_works(work, &cwq->pool->worklist, NULL);
989 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
990 cwq->nr_active++;
993 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
995 struct work_struct *work = list_first_entry(&cwq->delayed_works,
996 struct work_struct, entry);
998 cwq_activate_delayed_work(work);
1002 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1003 * @cwq: cwq of interest
1004 * @color: color of work which left the queue
1006 * A work either has completed or is removed from pending queue,
1007 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1009 * CONTEXT:
1010 * spin_lock_irq(gcwq->lock).
1012 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1014 /* ignore uncolored works */
1015 if (color == WORK_NO_COLOR)
1016 return;
1018 cwq->nr_in_flight[color]--;
1020 cwq->nr_active--;
1021 if (!list_empty(&cwq->delayed_works)) {
1022 /* one down, submit a delayed one */
1023 if (cwq->nr_active < cwq->max_active)
1024 cwq_activate_first_delayed(cwq);
1027 /* is flush in progress and are we at the flushing tip? */
1028 if (likely(cwq->flush_color != color))
1029 return;
1031 /* are there still in-flight works? */
1032 if (cwq->nr_in_flight[color])
1033 return;
1035 /* this cwq is done, clear flush_color */
1036 cwq->flush_color = -1;
1039 * If this was the last cwq, wake up the first flusher. It
1040 * will handle the rest.
1042 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1043 complete(&cwq->wq->first_flusher->done);
1047 * try_to_grab_pending - steal work item from worklist and disable irq
1048 * @work: work item to steal
1049 * @is_dwork: @work is a delayed_work
1050 * @flags: place to store irq state
1052 * Try to grab PENDING bit of @work. This function can handle @work in any
1053 * stable state - idle, on timer or on worklist. Return values are
1055 * 1 if @work was pending and we successfully stole PENDING
1056 * 0 if @work was idle and we claimed PENDING
1057 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1058 * -ENOENT if someone else is canceling @work, this state may persist
1059 * for arbitrarily long
1061 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1062 * interrupted while holding PENDING and @work off queue, irq must be
1063 * disabled on entry. This, combined with delayed_work->timer being
1064 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1066 * On successful return, >= 0, irq is disabled and the caller is
1067 * responsible for releasing it using local_irq_restore(*@flags).
1069 * This function is safe to call from any context including IRQ handler.
1071 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1072 unsigned long *flags)
1074 struct global_cwq *gcwq;
1076 local_irq_save(*flags);
1078 /* try to steal the timer if it exists */
1079 if (is_dwork) {
1080 struct delayed_work *dwork = to_delayed_work(work);
1083 * dwork->timer is irqsafe. If del_timer() fails, it's
1084 * guaranteed that the timer is not queued anywhere and not
1085 * running on the local CPU.
1087 if (likely(del_timer(&dwork->timer)))
1088 return 1;
1091 /* try to claim PENDING the normal way */
1092 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1093 return 0;
1096 * The queueing is in progress, or it is already queued. Try to
1097 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1099 gcwq = get_work_gcwq(work);
1100 if (!gcwq)
1101 goto fail;
1103 spin_lock(&gcwq->lock);
1104 if (!list_empty(&work->entry)) {
1106 * This work is queued, but perhaps we locked the wrong gcwq.
1107 * In that case we must see the new value after rmb(), see
1108 * insert_work()->wmb().
1110 smp_rmb();
1111 if (gcwq == get_work_gcwq(work)) {
1112 debug_work_deactivate(work);
1115 * A delayed work item cannot be grabbed directly
1116 * because it might have linked NO_COLOR work items
1117 * which, if left on the delayed_list, will confuse
1118 * cwq->nr_active management later on and cause
1119 * stall. Make sure the work item is activated
1120 * before grabbing.
1122 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1123 cwq_activate_delayed_work(work);
1125 list_del_init(&work->entry);
1126 cwq_dec_nr_in_flight(get_work_cwq(work),
1127 get_work_color(work));
1129 spin_unlock(&gcwq->lock);
1130 return 1;
1133 spin_unlock(&gcwq->lock);
1134 fail:
1135 local_irq_restore(*flags);
1136 if (work_is_canceling(work))
1137 return -ENOENT;
1138 cpu_relax();
1139 return -EAGAIN;
1143 * insert_work - insert a work into gcwq
1144 * @cwq: cwq @work belongs to
1145 * @work: work to insert
1146 * @head: insertion point
1147 * @extra_flags: extra WORK_STRUCT_* flags to set
1149 * Insert @work which belongs to @cwq into @gcwq after @head.
1150 * @extra_flags is or'd to work_struct flags.
1152 * CONTEXT:
1153 * spin_lock_irq(gcwq->lock).
1155 static void insert_work(struct cpu_workqueue_struct *cwq,
1156 struct work_struct *work, struct list_head *head,
1157 unsigned int extra_flags)
1159 struct worker_pool *pool = cwq->pool;
1161 /* we own @work, set data and link */
1162 set_work_cwq(work, cwq, extra_flags);
1165 * Ensure that we get the right work->data if we see the
1166 * result of list_add() below, see try_to_grab_pending().
1168 smp_wmb();
1170 list_add_tail(&work->entry, head);
1173 * Ensure either worker_sched_deactivated() sees the above
1174 * list_add_tail() or we see zero nr_running to avoid workers
1175 * lying around lazily while there are works to be processed.
1177 smp_mb();
1179 if (__need_more_worker(pool))
1180 wake_up_worker(pool);
1184 * Test whether @work is being queued from another work executing on the
1185 * same workqueue. This is rather expensive and should only be used from
1186 * cold paths.
1188 static bool is_chained_work(struct workqueue_struct *wq)
1190 unsigned long flags;
1191 unsigned int cpu;
1193 for_each_gcwq_cpu(cpu) {
1194 struct global_cwq *gcwq = get_gcwq(cpu);
1195 struct worker *worker;
1196 struct hlist_node *pos;
1197 int i;
1199 spin_lock_irqsave(&gcwq->lock, flags);
1200 for_each_busy_worker(worker, i, pos, gcwq) {
1201 if (worker->task != current)
1202 continue;
1203 spin_unlock_irqrestore(&gcwq->lock, flags);
1205 * I'm @worker, no locking necessary. See if @work
1206 * is headed to the same workqueue.
1208 return worker->current_cwq->wq == wq;
1210 spin_unlock_irqrestore(&gcwq->lock, flags);
1212 return false;
1215 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1216 struct work_struct *work)
1218 struct global_cwq *gcwq;
1219 struct cpu_workqueue_struct *cwq;
1220 struct list_head *worklist;
1221 unsigned int work_flags;
1222 unsigned int req_cpu = cpu;
1225 * While a work item is PENDING && off queue, a task trying to
1226 * steal the PENDING will busy-loop waiting for it to either get
1227 * queued or lose PENDING. Grabbing PENDING and queueing should
1228 * happen with IRQ disabled.
1230 WARN_ON_ONCE(!irqs_disabled());
1232 debug_work_activate(work);
1234 /* if dying, only works from the same workqueue are allowed */
1235 if (unlikely(wq->flags & WQ_DRAINING) &&
1236 WARN_ON_ONCE(!is_chained_work(wq)))
1237 return;
1239 /* determine gcwq to use */
1240 if (!(wq->flags & WQ_UNBOUND)) {
1241 struct global_cwq *last_gcwq;
1243 if (cpu == WORK_CPU_UNBOUND)
1244 cpu = raw_smp_processor_id();
1247 * It's multi cpu. If @work was previously on a different
1248 * cpu, it might still be running there, in which case the
1249 * work needs to be queued on that cpu to guarantee
1250 * non-reentrancy.
1252 gcwq = get_gcwq(cpu);
1253 last_gcwq = get_work_gcwq(work);
1255 if (last_gcwq && last_gcwq != gcwq) {
1256 struct worker *worker;
1258 spin_lock(&last_gcwq->lock);
1260 worker = find_worker_executing_work(last_gcwq, work);
1262 if (worker && worker->current_cwq->wq == wq)
1263 gcwq = last_gcwq;
1264 else {
1265 /* meh... not running there, queue here */
1266 spin_unlock(&last_gcwq->lock);
1267 spin_lock(&gcwq->lock);
1269 } else {
1270 spin_lock(&gcwq->lock);
1272 } else {
1273 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1274 spin_lock(&gcwq->lock);
1277 /* gcwq determined, get cwq and queue */
1278 cwq = get_cwq(gcwq->cpu, wq);
1279 trace_workqueue_queue_work(req_cpu, cwq, work);
1281 if (WARN_ON(!list_empty(&work->entry))) {
1282 spin_unlock(&gcwq->lock);
1283 return;
1286 cwq->nr_in_flight[cwq->work_color]++;
1287 work_flags = work_color_to_flags(cwq->work_color);
1289 if (likely(cwq->nr_active < cwq->max_active)) {
1290 trace_workqueue_activate_work(work);
1291 cwq->nr_active++;
1292 worklist = &cwq->pool->worklist;
1293 } else {
1294 work_flags |= WORK_STRUCT_DELAYED;
1295 worklist = &cwq->delayed_works;
1298 insert_work(cwq, work, worklist, work_flags);
1300 spin_unlock(&gcwq->lock);
1304 * queue_work_on - queue work on specific cpu
1305 * @cpu: CPU number to execute work on
1306 * @wq: workqueue to use
1307 * @work: work to queue
1309 * Returns %false if @work was already on a queue, %true otherwise.
1311 * We queue the work to a specific CPU, the caller must ensure it
1312 * can't go away.
1314 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1315 struct work_struct *work)
1317 bool ret = false;
1318 unsigned long flags;
1320 local_irq_save(flags);
1322 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1323 __queue_work(cpu, wq, work);
1324 ret = true;
1327 local_irq_restore(flags);
1328 return ret;
1330 EXPORT_SYMBOL_GPL(queue_work_on);
1333 * queue_work - queue work on a workqueue
1334 * @wq: workqueue to use
1335 * @work: work to queue
1337 * Returns %false if @work was already on a queue, %true otherwise.
1339 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1340 * it can be processed by another CPU.
1342 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1344 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1346 EXPORT_SYMBOL_GPL(queue_work);
1348 void delayed_work_timer_fn(unsigned long __data)
1350 struct delayed_work *dwork = (struct delayed_work *)__data;
1351 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1353 /* should have been called from irqsafe timer with irq already off */
1354 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1356 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1358 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1359 struct delayed_work *dwork, unsigned long delay)
1361 struct timer_list *timer = &dwork->timer;
1362 struct work_struct *work = &dwork->work;
1363 unsigned int lcpu;
1365 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1366 timer->data != (unsigned long)dwork);
1367 WARN_ON_ONCE(timer_pending(timer));
1368 WARN_ON_ONCE(!list_empty(&work->entry));
1371 * If @delay is 0, queue @dwork->work immediately. This is for
1372 * both optimization and correctness. The earliest @timer can
1373 * expire is on the closest next tick and delayed_work users depend
1374 * on that there's no such delay when @delay is 0.
1376 if (!delay) {
1377 __queue_work(cpu, wq, &dwork->work);
1378 return;
1381 timer_stats_timer_set_start_info(&dwork->timer);
1384 * This stores cwq for the moment, for the timer_fn. Note that the
1385 * work's gcwq is preserved to allow reentrance detection for
1386 * delayed works.
1388 if (!(wq->flags & WQ_UNBOUND)) {
1389 struct global_cwq *gcwq = get_work_gcwq(work);
1392 * If we cannot get the last gcwq from @work directly,
1393 * select the last CPU such that it avoids unnecessarily
1394 * triggering non-reentrancy check in __queue_work().
1396 lcpu = cpu;
1397 if (gcwq)
1398 lcpu = gcwq->cpu;
1399 if (lcpu == WORK_CPU_UNBOUND)
1400 lcpu = raw_smp_processor_id();
1401 } else {
1402 lcpu = WORK_CPU_UNBOUND;
1405 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1407 dwork->cpu = cpu;
1408 timer->expires = jiffies + delay;
1410 if (unlikely(cpu != WORK_CPU_UNBOUND))
1411 add_timer_on(timer, cpu);
1412 else
1413 add_timer(timer);
1417 * queue_delayed_work_on - queue work on specific CPU after delay
1418 * @cpu: CPU number to execute work on
1419 * @wq: workqueue to use
1420 * @dwork: work to queue
1421 * @delay: number of jiffies to wait before queueing
1423 * Returns %false if @work was already on a queue, %true otherwise. If
1424 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1425 * execution.
1427 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1428 struct delayed_work *dwork, unsigned long delay)
1430 struct work_struct *work = &dwork->work;
1431 bool ret = false;
1432 unsigned long flags;
1434 /* read the comment in __queue_work() */
1435 local_irq_save(flags);
1437 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1438 __queue_delayed_work(cpu, wq, dwork, delay);
1439 ret = true;
1442 local_irq_restore(flags);
1443 return ret;
1445 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1448 * queue_delayed_work - queue work on a workqueue after delay
1449 * @wq: workqueue to use
1450 * @dwork: delayable work to queue
1451 * @delay: number of jiffies to wait before queueing
1453 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1455 bool queue_delayed_work(struct workqueue_struct *wq,
1456 struct delayed_work *dwork, unsigned long delay)
1458 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1460 EXPORT_SYMBOL_GPL(queue_delayed_work);
1463 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
1466 * @dwork: work to queue
1467 * @delay: number of jiffies to wait before queueing
1469 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1470 * modify @dwork's timer so that it expires after @delay. If @delay is
1471 * zero, @work is guaranteed to be scheduled immediately regardless of its
1472 * current state.
1474 * Returns %false if @dwork was idle and queued, %true if @dwork was
1475 * pending and its timer was modified.
1477 * This function is safe to call from any context including IRQ handler.
1478 * See try_to_grab_pending() for details.
1480 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1481 struct delayed_work *dwork, unsigned long delay)
1483 unsigned long flags;
1484 int ret;
1486 do {
1487 ret = try_to_grab_pending(&dwork->work, true, &flags);
1488 } while (unlikely(ret == -EAGAIN));
1490 if (likely(ret >= 0)) {
1491 __queue_delayed_work(cpu, wq, dwork, delay);
1492 local_irq_restore(flags);
1495 /* -ENOENT from try_to_grab_pending() becomes %true */
1496 return ret;
1498 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1501 * mod_delayed_work - modify delay of or queue a delayed work
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1506 * mod_delayed_work_on() on local CPU.
1508 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1509 unsigned long delay)
1511 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1513 EXPORT_SYMBOL_GPL(mod_delayed_work);
1516 * worker_enter_idle - enter idle state
1517 * @worker: worker which is entering idle state
1519 * @worker is entering idle state. Update stats and idle timer if
1520 * necessary.
1522 * LOCKING:
1523 * spin_lock_irq(gcwq->lock).
1525 static void worker_enter_idle(struct worker *worker)
1527 struct worker_pool *pool = worker->pool;
1529 BUG_ON(worker->flags & WORKER_IDLE);
1530 BUG_ON(!list_empty(&worker->entry) &&
1531 (worker->hentry.next || worker->hentry.pprev));
1533 /* can't use worker_set_flags(), also called from start_worker() */
1534 worker->flags |= WORKER_IDLE;
1535 pool->nr_idle++;
1536 worker->last_active = jiffies;
1538 /* idle_list is LIFO */
1539 list_add(&worker->entry, &pool->idle_list);
1541 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1542 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1545 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1546 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1547 * nr_running, the warning may trigger spuriously. Check iff
1548 * unbind is not in progress.
1550 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1551 pool->nr_workers == pool->nr_idle &&
1552 atomic_read(get_pool_nr_running(pool)));
1556 * worker_leave_idle - leave idle state
1557 * @worker: worker which is leaving idle state
1559 * @worker is leaving idle state. Update stats.
1561 * LOCKING:
1562 * spin_lock_irq(gcwq->lock).
1564 static void worker_leave_idle(struct worker *worker)
1566 struct worker_pool *pool = worker->pool;
1568 BUG_ON(!(worker->flags & WORKER_IDLE));
1569 worker_clr_flags(worker, WORKER_IDLE);
1570 pool->nr_idle--;
1571 list_del_init(&worker->entry);
1575 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1576 * @worker: self
1578 * Works which are scheduled while the cpu is online must at least be
1579 * scheduled to a worker which is bound to the cpu so that if they are
1580 * flushed from cpu callbacks while cpu is going down, they are
1581 * guaranteed to execute on the cpu.
1583 * This function is to be used by rogue workers and rescuers to bind
1584 * themselves to the target cpu and may race with cpu going down or
1585 * coming online. kthread_bind() can't be used because it may put the
1586 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1587 * verbatim as it's best effort and blocking and gcwq may be
1588 * [dis]associated in the meantime.
1590 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1591 * binding against %POOL_DISASSOCIATED which is set during
1592 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1593 * enters idle state or fetches works without dropping lock, it can
1594 * guarantee the scheduling requirement described in the first paragraph.
1596 * CONTEXT:
1597 * Might sleep. Called without any lock but returns with gcwq->lock
1598 * held.
1600 * RETURNS:
1601 * %true if the associated gcwq is online (@worker is successfully
1602 * bound), %false if offline.
1604 static bool worker_maybe_bind_and_lock(struct worker *worker)
1605 __acquires(&gcwq->lock)
1607 struct worker_pool *pool = worker->pool;
1608 struct global_cwq *gcwq = pool->gcwq;
1609 struct task_struct *task = worker->task;
1611 while (true) {
1613 * The following call may fail, succeed or succeed
1614 * without actually migrating the task to the cpu if
1615 * it races with cpu hotunplug operation. Verify
1616 * against POOL_DISASSOCIATED.
1618 if (!(pool->flags & POOL_DISASSOCIATED))
1619 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1621 spin_lock_irq(&gcwq->lock);
1622 if (pool->flags & POOL_DISASSOCIATED)
1623 return false;
1624 if (task_cpu(task) == gcwq->cpu &&
1625 cpumask_equal(&current->cpus_allowed,
1626 get_cpu_mask(gcwq->cpu)))
1627 return true;
1628 spin_unlock_irq(&gcwq->lock);
1631 * We've raced with CPU hot[un]plug. Give it a breather
1632 * and retry migration. cond_resched() is required here;
1633 * otherwise, we might deadlock against cpu_stop trying to
1634 * bring down the CPU on non-preemptive kernel.
1636 cpu_relax();
1637 cond_resched();
1642 * Rebind an idle @worker to its CPU. worker_thread() will test
1643 * list_empty(@worker->entry) before leaving idle and call this function.
1645 static void idle_worker_rebind(struct worker *worker)
1647 struct global_cwq *gcwq = worker->pool->gcwq;
1649 /* CPU may go down again inbetween, clear UNBOUND only on success */
1650 if (worker_maybe_bind_and_lock(worker))
1651 worker_clr_flags(worker, WORKER_UNBOUND);
1653 /* rebind complete, become available again */
1654 list_add(&worker->entry, &worker->pool->idle_list);
1655 spin_unlock_irq(&gcwq->lock);
1659 * Function for @worker->rebind.work used to rebind unbound busy workers to
1660 * the associated cpu which is coming back online. This is scheduled by
1661 * cpu up but can race with other cpu hotplug operations and may be
1662 * executed twice without intervening cpu down.
1664 static void busy_worker_rebind_fn(struct work_struct *work)
1666 struct worker *worker = container_of(work, struct worker, rebind_work);
1667 struct global_cwq *gcwq = worker->pool->gcwq;
1669 if (worker_maybe_bind_and_lock(worker))
1670 worker_clr_flags(worker, WORKER_UNBOUND);
1672 spin_unlock_irq(&gcwq->lock);
1676 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1677 * @gcwq: gcwq of interest
1679 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1680 * is different for idle and busy ones.
1682 * Idle ones will be removed from the idle_list and woken up. They will
1683 * add themselves back after completing rebind. This ensures that the
1684 * idle_list doesn't contain any unbound workers when re-bound busy workers
1685 * try to perform local wake-ups for concurrency management.
1687 * Busy workers can rebind after they finish their current work items.
1688 * Queueing the rebind work item at the head of the scheduled list is
1689 * enough. Note that nr_running will be properly bumped as busy workers
1690 * rebind.
1692 * On return, all non-manager workers are scheduled for rebind - see
1693 * manage_workers() for the manager special case. Any idle worker
1694 * including the manager will not appear on @idle_list until rebind is
1695 * complete, making local wake-ups safe.
1697 static void rebind_workers(struct global_cwq *gcwq)
1699 struct worker_pool *pool;
1700 struct worker *worker, *n;
1701 struct hlist_node *pos;
1702 int i;
1704 lockdep_assert_held(&gcwq->lock);
1706 for_each_worker_pool(pool, gcwq)
1707 lockdep_assert_held(&pool->assoc_mutex);
1709 /* dequeue and kick idle ones */
1710 for_each_worker_pool(pool, gcwq) {
1711 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1713 * idle workers should be off @pool->idle_list
1714 * until rebind is complete to avoid receiving
1715 * premature local wake-ups.
1717 list_del_init(&worker->entry);
1720 * worker_thread() will see the above dequeuing
1721 * and call idle_worker_rebind().
1723 wake_up_process(worker->task);
1727 /* rebind busy workers */
1728 for_each_busy_worker(worker, i, pos, gcwq) {
1729 struct work_struct *rebind_work = &worker->rebind_work;
1730 struct workqueue_struct *wq;
1732 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1733 work_data_bits(rebind_work)))
1734 continue;
1736 debug_work_activate(rebind_work);
1739 * wq doesn't really matter but let's keep @worker->pool
1740 * and @cwq->pool consistent for sanity.
1742 if (std_worker_pool_pri(worker->pool))
1743 wq = system_highpri_wq;
1744 else
1745 wq = system_wq;
1747 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1748 worker->scheduled.next,
1749 work_color_to_flags(WORK_NO_COLOR));
1753 static struct worker *alloc_worker(void)
1755 struct worker *worker;
1757 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1758 if (worker) {
1759 INIT_LIST_HEAD(&worker->entry);
1760 INIT_LIST_HEAD(&worker->scheduled);
1761 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1762 /* on creation a worker is in !idle && prep state */
1763 worker->flags = WORKER_PREP;
1765 return worker;
1769 * create_worker - create a new workqueue worker
1770 * @pool: pool the new worker will belong to
1772 * Create a new worker which is bound to @pool. The returned worker
1773 * can be started by calling start_worker() or destroyed using
1774 * destroy_worker().
1776 * CONTEXT:
1777 * Might sleep. Does GFP_KERNEL allocations.
1779 * RETURNS:
1780 * Pointer to the newly created worker.
1782 static struct worker *create_worker(struct worker_pool *pool)
1784 struct global_cwq *gcwq = pool->gcwq;
1785 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1786 struct worker *worker = NULL;
1787 int id = -1;
1789 spin_lock_irq(&gcwq->lock);
1790 while (ida_get_new(&pool->worker_ida, &id)) {
1791 spin_unlock_irq(&gcwq->lock);
1792 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1793 goto fail;
1794 spin_lock_irq(&gcwq->lock);
1796 spin_unlock_irq(&gcwq->lock);
1798 worker = alloc_worker();
1799 if (!worker)
1800 goto fail;
1802 worker->pool = pool;
1803 worker->id = id;
1805 if (gcwq->cpu != WORK_CPU_UNBOUND)
1806 worker->task = kthread_create_on_node(worker_thread,
1807 worker, cpu_to_node(gcwq->cpu),
1808 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1809 else
1810 worker->task = kthread_create(worker_thread, worker,
1811 "kworker/u:%d%s", id, pri);
1812 if (IS_ERR(worker->task))
1813 goto fail;
1815 if (std_worker_pool_pri(pool))
1816 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1819 * Determine CPU binding of the new worker depending on
1820 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1821 * flag remains stable across this function. See the comments
1822 * above the flag definition for details.
1824 * As an unbound worker may later become a regular one if CPU comes
1825 * online, make sure every worker has %PF_THREAD_BOUND set.
1827 if (!(pool->flags & POOL_DISASSOCIATED)) {
1828 kthread_bind(worker->task, gcwq->cpu);
1829 } else {
1830 worker->task->flags |= PF_THREAD_BOUND;
1831 worker->flags |= WORKER_UNBOUND;
1834 return worker;
1835 fail:
1836 if (id >= 0) {
1837 spin_lock_irq(&gcwq->lock);
1838 ida_remove(&pool->worker_ida, id);
1839 spin_unlock_irq(&gcwq->lock);
1841 kfree(worker);
1842 return NULL;
1846 * start_worker - start a newly created worker
1847 * @worker: worker to start
1849 * Make the gcwq aware of @worker and start it.
1851 * CONTEXT:
1852 * spin_lock_irq(gcwq->lock).
1854 static void start_worker(struct worker *worker)
1856 worker->flags |= WORKER_STARTED;
1857 worker->pool->nr_workers++;
1858 worker_enter_idle(worker);
1859 wake_up_process(worker->task);
1863 * destroy_worker - destroy a workqueue worker
1864 * @worker: worker to be destroyed
1866 * Destroy @worker and adjust @gcwq stats accordingly.
1868 * CONTEXT:
1869 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1871 static void destroy_worker(struct worker *worker)
1873 struct worker_pool *pool = worker->pool;
1874 struct global_cwq *gcwq = pool->gcwq;
1875 int id = worker->id;
1877 /* sanity check frenzy */
1878 BUG_ON(worker->current_work);
1879 BUG_ON(!list_empty(&worker->scheduled));
1881 if (worker->flags & WORKER_STARTED)
1882 pool->nr_workers--;
1883 if (worker->flags & WORKER_IDLE)
1884 pool->nr_idle--;
1886 list_del_init(&worker->entry);
1887 worker->flags |= WORKER_DIE;
1889 spin_unlock_irq(&gcwq->lock);
1891 kthread_stop(worker->task);
1892 kfree(worker);
1894 spin_lock_irq(&gcwq->lock);
1895 ida_remove(&pool->worker_ida, id);
1898 static void idle_worker_timeout(unsigned long __pool)
1900 struct worker_pool *pool = (void *)__pool;
1901 struct global_cwq *gcwq = pool->gcwq;
1903 spin_lock_irq(&gcwq->lock);
1905 if (too_many_workers(pool)) {
1906 struct worker *worker;
1907 unsigned long expires;
1909 /* idle_list is kept in LIFO order, check the last one */
1910 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1911 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1913 if (time_before(jiffies, expires))
1914 mod_timer(&pool->idle_timer, expires);
1915 else {
1916 /* it's been idle for too long, wake up manager */
1917 pool->flags |= POOL_MANAGE_WORKERS;
1918 wake_up_worker(pool);
1922 spin_unlock_irq(&gcwq->lock);
1925 static bool send_mayday(struct work_struct *work)
1927 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1928 struct workqueue_struct *wq = cwq->wq;
1929 unsigned int cpu;
1931 if (!(wq->flags & WQ_RESCUER))
1932 return false;
1934 /* mayday mayday mayday */
1935 cpu = cwq->pool->gcwq->cpu;
1936 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1937 if (cpu == WORK_CPU_UNBOUND)
1938 cpu = 0;
1939 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1940 wake_up_process(wq->rescuer->task);
1941 return true;
1944 static void gcwq_mayday_timeout(unsigned long __pool)
1946 struct worker_pool *pool = (void *)__pool;
1947 struct global_cwq *gcwq = pool->gcwq;
1948 struct work_struct *work;
1950 spin_lock_irq(&gcwq->lock);
1952 if (need_to_create_worker(pool)) {
1954 * We've been trying to create a new worker but
1955 * haven't been successful. We might be hitting an
1956 * allocation deadlock. Send distress signals to
1957 * rescuers.
1959 list_for_each_entry(work, &pool->worklist, entry)
1960 send_mayday(work);
1963 spin_unlock_irq(&gcwq->lock);
1965 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1969 * maybe_create_worker - create a new worker if necessary
1970 * @pool: pool to create a new worker for
1972 * Create a new worker for @pool if necessary. @pool is guaranteed to
1973 * have at least one idle worker on return from this function. If
1974 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1975 * sent to all rescuers with works scheduled on @pool to resolve
1976 * possible allocation deadlock.
1978 * On return, need_to_create_worker() is guaranteed to be false and
1979 * may_start_working() true.
1981 * LOCKING:
1982 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1983 * multiple times. Does GFP_KERNEL allocations. Called only from
1984 * manager.
1986 * RETURNS:
1987 * false if no action was taken and gcwq->lock stayed locked, true
1988 * otherwise.
1990 static bool maybe_create_worker(struct worker_pool *pool)
1991 __releases(&gcwq->lock)
1992 __acquires(&gcwq->lock)
1994 struct global_cwq *gcwq = pool->gcwq;
1996 if (!need_to_create_worker(pool))
1997 return false;
1998 restart:
1999 spin_unlock_irq(&gcwq->lock);
2001 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2002 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2004 while (true) {
2005 struct worker *worker;
2007 worker = create_worker(pool);
2008 if (worker) {
2009 del_timer_sync(&pool->mayday_timer);
2010 spin_lock_irq(&gcwq->lock);
2011 start_worker(worker);
2012 BUG_ON(need_to_create_worker(pool));
2013 return true;
2016 if (!need_to_create_worker(pool))
2017 break;
2019 __set_current_state(TASK_INTERRUPTIBLE);
2020 schedule_timeout(CREATE_COOLDOWN);
2022 if (!need_to_create_worker(pool))
2023 break;
2026 del_timer_sync(&pool->mayday_timer);
2027 spin_lock_irq(&gcwq->lock);
2028 if (need_to_create_worker(pool))
2029 goto restart;
2030 return true;
2034 * maybe_destroy_worker - destroy workers which have been idle for a while
2035 * @pool: pool to destroy workers for
2037 * Destroy @pool workers which have been idle for longer than
2038 * IDLE_WORKER_TIMEOUT.
2040 * LOCKING:
2041 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2042 * multiple times. Called only from manager.
2044 * RETURNS:
2045 * false if no action was taken and gcwq->lock stayed locked, true
2046 * otherwise.
2048 static bool maybe_destroy_workers(struct worker_pool *pool)
2050 bool ret = false;
2052 while (too_many_workers(pool)) {
2053 struct worker *worker;
2054 unsigned long expires;
2056 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2057 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2059 if (time_before(jiffies, expires)) {
2060 mod_timer(&pool->idle_timer, expires);
2061 break;
2064 destroy_worker(worker);
2065 ret = true;
2068 return ret;
2072 * manage_workers - manage worker pool
2073 * @worker: self
2075 * Assume the manager role and manage gcwq worker pool @worker belongs
2076 * to. At any given time, there can be only zero or one manager per
2077 * gcwq. The exclusion is handled automatically by this function.
2079 * The caller can safely start processing works on false return. On
2080 * true return, it's guaranteed that need_to_create_worker() is false
2081 * and may_start_working() is true.
2083 * CONTEXT:
2084 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2085 * multiple times. Does GFP_KERNEL allocations.
2087 * RETURNS:
2088 * false if no action was taken and gcwq->lock stayed locked, true if
2089 * some action was taken.
2091 static bool manage_workers(struct worker *worker)
2093 struct worker_pool *pool = worker->pool;
2094 bool ret = false;
2096 if (pool->flags & POOL_MANAGING_WORKERS)
2097 return ret;
2099 pool->flags |= POOL_MANAGING_WORKERS;
2102 * To simplify both worker management and CPU hotplug, hold off
2103 * management while hotplug is in progress. CPU hotplug path can't
2104 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2105 * lead to idle worker depletion (all become busy thinking someone
2106 * else is managing) which in turn can result in deadlock under
2107 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2108 * manager against CPU hotplug.
2110 * assoc_mutex would always be free unless CPU hotplug is in
2111 * progress. trylock first without dropping @gcwq->lock.
2113 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2114 spin_unlock_irq(&pool->gcwq->lock);
2115 mutex_lock(&pool->assoc_mutex);
2117 * CPU hotplug could have happened while we were waiting
2118 * for assoc_mutex. Hotplug itself can't handle us
2119 * because manager isn't either on idle or busy list, and
2120 * @gcwq's state and ours could have deviated.
2122 * As hotplug is now excluded via assoc_mutex, we can
2123 * simply try to bind. It will succeed or fail depending
2124 * on @gcwq's current state. Try it and adjust
2125 * %WORKER_UNBOUND accordingly.
2127 if (worker_maybe_bind_and_lock(worker))
2128 worker->flags &= ~WORKER_UNBOUND;
2129 else
2130 worker->flags |= WORKER_UNBOUND;
2132 ret = true;
2135 pool->flags &= ~POOL_MANAGE_WORKERS;
2138 * Destroy and then create so that may_start_working() is true
2139 * on return.
2141 ret |= maybe_destroy_workers(pool);
2142 ret |= maybe_create_worker(pool);
2144 pool->flags &= ~POOL_MANAGING_WORKERS;
2145 mutex_unlock(&pool->assoc_mutex);
2146 return ret;
2150 * process_one_work - process single work
2151 * @worker: self
2152 * @work: work to process
2154 * Process @work. This function contains all the logics necessary to
2155 * process a single work including synchronization against and
2156 * interaction with other workers on the same cpu, queueing and
2157 * flushing. As long as context requirement is met, any worker can
2158 * call this function to process a work.
2160 * CONTEXT:
2161 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2163 static void process_one_work(struct worker *worker, struct work_struct *work)
2164 __releases(&gcwq->lock)
2165 __acquires(&gcwq->lock)
2167 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2168 struct worker_pool *pool = worker->pool;
2169 struct global_cwq *gcwq = pool->gcwq;
2170 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2171 int work_color;
2172 struct worker *collision;
2173 #ifdef CONFIG_LOCKDEP
2175 * It is permissible to free the struct work_struct from
2176 * inside the function that is called from it, this we need to
2177 * take into account for lockdep too. To avoid bogus "held
2178 * lock freed" warnings as well as problems when looking into
2179 * work->lockdep_map, make a copy and use that here.
2181 struct lockdep_map lockdep_map;
2183 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2184 #endif
2186 * Ensure we're on the correct CPU. DISASSOCIATED test is
2187 * necessary to avoid spurious warnings from rescuers servicing the
2188 * unbound or a disassociated pool.
2190 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2191 !(pool->flags & POOL_DISASSOCIATED) &&
2192 raw_smp_processor_id() != gcwq->cpu);
2195 * A single work shouldn't be executed concurrently by
2196 * multiple workers on a single cpu. Check whether anyone is
2197 * already processing the work. If so, defer the work to the
2198 * currently executing one.
2200 collision = find_worker_executing_work(gcwq, work);
2201 if (unlikely(collision)) {
2202 move_linked_works(work, &collision->scheduled, NULL);
2203 return;
2206 /* claim and dequeue */
2207 debug_work_deactivate(work);
2208 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
2209 worker->current_work = work;
2210 worker->current_func = work->func;
2211 worker->current_cwq = cwq;
2212 work_color = get_work_color(work);
2214 list_del_init(&work->entry);
2217 * CPU intensive works don't participate in concurrency
2218 * management. They're the scheduler's responsibility.
2220 if (unlikely(cpu_intensive))
2221 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2224 * Unbound gcwq isn't concurrency managed and work items should be
2225 * executed ASAP. Wake up another worker if necessary.
2227 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2228 wake_up_worker(pool);
2231 * Record the last pool and clear PENDING which should be the last
2232 * update to @work. Also, do this inside @gcwq->lock so that
2233 * PENDING and queued state changes happen together while IRQ is
2234 * disabled.
2236 set_work_pool_and_clear_pending(work, pool->id);
2238 spin_unlock_irq(&gcwq->lock);
2240 lock_map_acquire_read(&cwq->wq->lockdep_map);
2241 lock_map_acquire(&lockdep_map);
2242 trace_workqueue_execute_start(work);
2243 worker->current_func(work);
2245 * While we must be careful to not use "work" after this, the trace
2246 * point will only record its address.
2248 trace_workqueue_execute_end(work);
2249 lock_map_release(&lockdep_map);
2250 lock_map_release(&cwq->wq->lockdep_map);
2252 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2253 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2254 " last function: %pf\n",
2255 current->comm, preempt_count(), task_pid_nr(current),
2256 worker->current_func);
2257 debug_show_held_locks(current);
2258 dump_stack();
2261 spin_lock_irq(&gcwq->lock);
2263 /* clear cpu intensive status */
2264 if (unlikely(cpu_intensive))
2265 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2267 /* we're done with it, release */
2268 hash_del(&worker->hentry);
2269 worker->current_work = NULL;
2270 worker->current_func = NULL;
2271 worker->current_cwq = NULL;
2272 cwq_dec_nr_in_flight(cwq, work_color);
2276 * process_scheduled_works - process scheduled works
2277 * @worker: self
2279 * Process all scheduled works. Please note that the scheduled list
2280 * may change while processing a work, so this function repeatedly
2281 * fetches a work from the top and executes it.
2283 * CONTEXT:
2284 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2285 * multiple times.
2287 static void process_scheduled_works(struct worker *worker)
2289 while (!list_empty(&worker->scheduled)) {
2290 struct work_struct *work = list_first_entry(&worker->scheduled,
2291 struct work_struct, entry);
2292 process_one_work(worker, work);
2297 * worker_thread - the worker thread function
2298 * @__worker: self
2300 * The gcwq worker thread function. There's a single dynamic pool of
2301 * these per each cpu. These workers process all works regardless of
2302 * their specific target workqueue. The only exception is works which
2303 * belong to workqueues with a rescuer which will be explained in
2304 * rescuer_thread().
2306 static int worker_thread(void *__worker)
2308 struct worker *worker = __worker;
2309 struct worker_pool *pool = worker->pool;
2310 struct global_cwq *gcwq = pool->gcwq;
2312 /* tell the scheduler that this is a workqueue worker */
2313 worker->task->flags |= PF_WQ_WORKER;
2314 woke_up:
2315 spin_lock_irq(&gcwq->lock);
2317 /* we are off idle list if destruction or rebind is requested */
2318 if (unlikely(list_empty(&worker->entry))) {
2319 spin_unlock_irq(&gcwq->lock);
2321 /* if DIE is set, destruction is requested */
2322 if (worker->flags & WORKER_DIE) {
2323 worker->task->flags &= ~PF_WQ_WORKER;
2324 return 0;
2327 /* otherwise, rebind */
2328 idle_worker_rebind(worker);
2329 goto woke_up;
2332 worker_leave_idle(worker);
2333 recheck:
2334 /* no more worker necessary? */
2335 if (!need_more_worker(pool))
2336 goto sleep;
2338 /* do we need to manage? */
2339 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2340 goto recheck;
2343 * ->scheduled list can only be filled while a worker is
2344 * preparing to process a work or actually processing it.
2345 * Make sure nobody diddled with it while I was sleeping.
2347 BUG_ON(!list_empty(&worker->scheduled));
2350 * When control reaches this point, we're guaranteed to have
2351 * at least one idle worker or that someone else has already
2352 * assumed the manager role.
2354 worker_clr_flags(worker, WORKER_PREP);
2356 do {
2357 struct work_struct *work =
2358 list_first_entry(&pool->worklist,
2359 struct work_struct, entry);
2361 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2362 /* optimization path, not strictly necessary */
2363 process_one_work(worker, work);
2364 if (unlikely(!list_empty(&worker->scheduled)))
2365 process_scheduled_works(worker);
2366 } else {
2367 move_linked_works(work, &worker->scheduled, NULL);
2368 process_scheduled_works(worker);
2370 } while (keep_working(pool));
2372 worker_set_flags(worker, WORKER_PREP, false);
2373 sleep:
2374 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2375 goto recheck;
2378 * gcwq->lock is held and there's no work to process and no
2379 * need to manage, sleep. Workers are woken up only while
2380 * holding gcwq->lock or from local cpu, so setting the
2381 * current state before releasing gcwq->lock is enough to
2382 * prevent losing any event.
2384 worker_enter_idle(worker);
2385 __set_current_state(TASK_INTERRUPTIBLE);
2386 spin_unlock_irq(&gcwq->lock);
2387 schedule();
2388 goto woke_up;
2392 * rescuer_thread - the rescuer thread function
2393 * @__rescuer: self
2395 * Workqueue rescuer thread function. There's one rescuer for each
2396 * workqueue which has WQ_RESCUER set.
2398 * Regular work processing on a gcwq may block trying to create a new
2399 * worker which uses GFP_KERNEL allocation which has slight chance of
2400 * developing into deadlock if some works currently on the same queue
2401 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2402 * the problem rescuer solves.
2404 * When such condition is possible, the gcwq summons rescuers of all
2405 * workqueues which have works queued on the gcwq and let them process
2406 * those works so that forward progress can be guaranteed.
2408 * This should happen rarely.
2410 static int rescuer_thread(void *__rescuer)
2412 struct worker *rescuer = __rescuer;
2413 struct workqueue_struct *wq = rescuer->rescue_wq;
2414 struct list_head *scheduled = &rescuer->scheduled;
2415 bool is_unbound = wq->flags & WQ_UNBOUND;
2416 unsigned int cpu;
2418 set_user_nice(current, RESCUER_NICE_LEVEL);
2421 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2422 * doesn't participate in concurrency management.
2424 rescuer->task->flags |= PF_WQ_WORKER;
2425 repeat:
2426 set_current_state(TASK_INTERRUPTIBLE);
2428 if (kthread_should_stop()) {
2429 __set_current_state(TASK_RUNNING);
2430 rescuer->task->flags &= ~PF_WQ_WORKER;
2431 return 0;
2435 * See whether any cpu is asking for help. Unbounded
2436 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2438 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2439 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2440 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2441 struct worker_pool *pool = cwq->pool;
2442 struct global_cwq *gcwq = pool->gcwq;
2443 struct work_struct *work, *n;
2445 __set_current_state(TASK_RUNNING);
2446 mayday_clear_cpu(cpu, wq->mayday_mask);
2448 /* migrate to the target cpu if possible */
2449 rescuer->pool = pool;
2450 worker_maybe_bind_and_lock(rescuer);
2453 * Slurp in all works issued via this workqueue and
2454 * process'em.
2456 BUG_ON(!list_empty(&rescuer->scheduled));
2457 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2458 if (get_work_cwq(work) == cwq)
2459 move_linked_works(work, scheduled, &n);
2461 process_scheduled_works(rescuer);
2464 * Leave this gcwq. If keep_working() is %true, notify a
2465 * regular worker; otherwise, we end up with 0 concurrency
2466 * and stalling the execution.
2468 if (keep_working(pool))
2469 wake_up_worker(pool);
2471 spin_unlock_irq(&gcwq->lock);
2474 /* rescuers should never participate in concurrency management */
2475 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2476 schedule();
2477 goto repeat;
2480 struct wq_barrier {
2481 struct work_struct work;
2482 struct completion done;
2485 static void wq_barrier_func(struct work_struct *work)
2487 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2488 complete(&barr->done);
2492 * insert_wq_barrier - insert a barrier work
2493 * @cwq: cwq to insert barrier into
2494 * @barr: wq_barrier to insert
2495 * @target: target work to attach @barr to
2496 * @worker: worker currently executing @target, NULL if @target is not executing
2498 * @barr is linked to @target such that @barr is completed only after
2499 * @target finishes execution. Please note that the ordering
2500 * guarantee is observed only with respect to @target and on the local
2501 * cpu.
2503 * Currently, a queued barrier can't be canceled. This is because
2504 * try_to_grab_pending() can't determine whether the work to be
2505 * grabbed is at the head of the queue and thus can't clear LINKED
2506 * flag of the previous work while there must be a valid next work
2507 * after a work with LINKED flag set.
2509 * Note that when @worker is non-NULL, @target may be modified
2510 * underneath us, so we can't reliably determine cwq from @target.
2512 * CONTEXT:
2513 * spin_lock_irq(gcwq->lock).
2515 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2516 struct wq_barrier *barr,
2517 struct work_struct *target, struct worker *worker)
2519 struct list_head *head;
2520 unsigned int linked = 0;
2523 * debugobject calls are safe here even with gcwq->lock locked
2524 * as we know for sure that this will not trigger any of the
2525 * checks and call back into the fixup functions where we
2526 * might deadlock.
2528 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2529 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2530 init_completion(&barr->done);
2533 * If @target is currently being executed, schedule the
2534 * barrier to the worker; otherwise, put it after @target.
2536 if (worker)
2537 head = worker->scheduled.next;
2538 else {
2539 unsigned long *bits = work_data_bits(target);
2541 head = target->entry.next;
2542 /* there can already be other linked works, inherit and set */
2543 linked = *bits & WORK_STRUCT_LINKED;
2544 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2547 debug_work_activate(&barr->work);
2548 insert_work(cwq, &barr->work, head,
2549 work_color_to_flags(WORK_NO_COLOR) | linked);
2553 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2554 * @wq: workqueue being flushed
2555 * @flush_color: new flush color, < 0 for no-op
2556 * @work_color: new work color, < 0 for no-op
2558 * Prepare cwqs for workqueue flushing.
2560 * If @flush_color is non-negative, flush_color on all cwqs should be
2561 * -1. If no cwq has in-flight commands at the specified color, all
2562 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2563 * has in flight commands, its cwq->flush_color is set to
2564 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2565 * wakeup logic is armed and %true is returned.
2567 * The caller should have initialized @wq->first_flusher prior to
2568 * calling this function with non-negative @flush_color. If
2569 * @flush_color is negative, no flush color update is done and %false
2570 * is returned.
2572 * If @work_color is non-negative, all cwqs should have the same
2573 * work_color which is previous to @work_color and all will be
2574 * advanced to @work_color.
2576 * CONTEXT:
2577 * mutex_lock(wq->flush_mutex).
2579 * RETURNS:
2580 * %true if @flush_color >= 0 and there's something to flush. %false
2581 * otherwise.
2583 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2584 int flush_color, int work_color)
2586 bool wait = false;
2587 unsigned int cpu;
2589 if (flush_color >= 0) {
2590 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2591 atomic_set(&wq->nr_cwqs_to_flush, 1);
2594 for_each_cwq_cpu(cpu, wq) {
2595 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2596 struct global_cwq *gcwq = cwq->pool->gcwq;
2598 spin_lock_irq(&gcwq->lock);
2600 if (flush_color >= 0) {
2601 BUG_ON(cwq->flush_color != -1);
2603 if (cwq->nr_in_flight[flush_color]) {
2604 cwq->flush_color = flush_color;
2605 atomic_inc(&wq->nr_cwqs_to_flush);
2606 wait = true;
2610 if (work_color >= 0) {
2611 BUG_ON(work_color != work_next_color(cwq->work_color));
2612 cwq->work_color = work_color;
2615 spin_unlock_irq(&gcwq->lock);
2618 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2619 complete(&wq->first_flusher->done);
2621 return wait;
2625 * flush_workqueue - ensure that any scheduled work has run to completion.
2626 * @wq: workqueue to flush
2628 * Forces execution of the workqueue and blocks until its completion.
2629 * This is typically used in driver shutdown handlers.
2631 * We sleep until all works which were queued on entry have been handled,
2632 * but we are not livelocked by new incoming ones.
2634 void flush_workqueue(struct workqueue_struct *wq)
2636 struct wq_flusher this_flusher = {
2637 .list = LIST_HEAD_INIT(this_flusher.list),
2638 .flush_color = -1,
2639 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2641 int next_color;
2643 lock_map_acquire(&wq->lockdep_map);
2644 lock_map_release(&wq->lockdep_map);
2646 mutex_lock(&wq->flush_mutex);
2649 * Start-to-wait phase
2651 next_color = work_next_color(wq->work_color);
2653 if (next_color != wq->flush_color) {
2655 * Color space is not full. The current work_color
2656 * becomes our flush_color and work_color is advanced
2657 * by one.
2659 BUG_ON(!list_empty(&wq->flusher_overflow));
2660 this_flusher.flush_color = wq->work_color;
2661 wq->work_color = next_color;
2663 if (!wq->first_flusher) {
2664 /* no flush in progress, become the first flusher */
2665 BUG_ON(wq->flush_color != this_flusher.flush_color);
2667 wq->first_flusher = &this_flusher;
2669 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2670 wq->work_color)) {
2671 /* nothing to flush, done */
2672 wq->flush_color = next_color;
2673 wq->first_flusher = NULL;
2674 goto out_unlock;
2676 } else {
2677 /* wait in queue */
2678 BUG_ON(wq->flush_color == this_flusher.flush_color);
2679 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2680 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2682 } else {
2684 * Oops, color space is full, wait on overflow queue.
2685 * The next flush completion will assign us
2686 * flush_color and transfer to flusher_queue.
2688 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2691 mutex_unlock(&wq->flush_mutex);
2693 wait_for_completion(&this_flusher.done);
2696 * Wake-up-and-cascade phase
2698 * First flushers are responsible for cascading flushes and
2699 * handling overflow. Non-first flushers can simply return.
2701 if (wq->first_flusher != &this_flusher)
2702 return;
2704 mutex_lock(&wq->flush_mutex);
2706 /* we might have raced, check again with mutex held */
2707 if (wq->first_flusher != &this_flusher)
2708 goto out_unlock;
2710 wq->first_flusher = NULL;
2712 BUG_ON(!list_empty(&this_flusher.list));
2713 BUG_ON(wq->flush_color != this_flusher.flush_color);
2715 while (true) {
2716 struct wq_flusher *next, *tmp;
2718 /* complete all the flushers sharing the current flush color */
2719 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2720 if (next->flush_color != wq->flush_color)
2721 break;
2722 list_del_init(&next->list);
2723 complete(&next->done);
2726 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2727 wq->flush_color != work_next_color(wq->work_color));
2729 /* this flush_color is finished, advance by one */
2730 wq->flush_color = work_next_color(wq->flush_color);
2732 /* one color has been freed, handle overflow queue */
2733 if (!list_empty(&wq->flusher_overflow)) {
2735 * Assign the same color to all overflowed
2736 * flushers, advance work_color and append to
2737 * flusher_queue. This is the start-to-wait
2738 * phase for these overflowed flushers.
2740 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2741 tmp->flush_color = wq->work_color;
2743 wq->work_color = work_next_color(wq->work_color);
2745 list_splice_tail_init(&wq->flusher_overflow,
2746 &wq->flusher_queue);
2747 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2750 if (list_empty(&wq->flusher_queue)) {
2751 BUG_ON(wq->flush_color != wq->work_color);
2752 break;
2756 * Need to flush more colors. Make the next flusher
2757 * the new first flusher and arm cwqs.
2759 BUG_ON(wq->flush_color == wq->work_color);
2760 BUG_ON(wq->flush_color != next->flush_color);
2762 list_del_init(&next->list);
2763 wq->first_flusher = next;
2765 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2766 break;
2769 * Meh... this color is already done, clear first
2770 * flusher and repeat cascading.
2772 wq->first_flusher = NULL;
2775 out_unlock:
2776 mutex_unlock(&wq->flush_mutex);
2778 EXPORT_SYMBOL_GPL(flush_workqueue);
2781 * drain_workqueue - drain a workqueue
2782 * @wq: workqueue to drain
2784 * Wait until the workqueue becomes empty. While draining is in progress,
2785 * only chain queueing is allowed. IOW, only currently pending or running
2786 * work items on @wq can queue further work items on it. @wq is flushed
2787 * repeatedly until it becomes empty. The number of flushing is detemined
2788 * by the depth of chaining and should be relatively short. Whine if it
2789 * takes too long.
2791 void drain_workqueue(struct workqueue_struct *wq)
2793 unsigned int flush_cnt = 0;
2794 unsigned int cpu;
2797 * __queue_work() needs to test whether there are drainers, is much
2798 * hotter than drain_workqueue() and already looks at @wq->flags.
2799 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2801 spin_lock(&workqueue_lock);
2802 if (!wq->nr_drainers++)
2803 wq->flags |= WQ_DRAINING;
2804 spin_unlock(&workqueue_lock);
2805 reflush:
2806 flush_workqueue(wq);
2808 for_each_cwq_cpu(cpu, wq) {
2809 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2810 bool drained;
2812 spin_lock_irq(&cwq->pool->gcwq->lock);
2813 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2814 spin_unlock_irq(&cwq->pool->gcwq->lock);
2816 if (drained)
2817 continue;
2819 if (++flush_cnt == 10 ||
2820 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2821 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2822 wq->name, flush_cnt);
2823 goto reflush;
2826 spin_lock(&workqueue_lock);
2827 if (!--wq->nr_drainers)
2828 wq->flags &= ~WQ_DRAINING;
2829 spin_unlock(&workqueue_lock);
2831 EXPORT_SYMBOL_GPL(drain_workqueue);
2833 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2835 struct worker *worker = NULL;
2836 struct global_cwq *gcwq;
2837 struct cpu_workqueue_struct *cwq;
2839 might_sleep();
2840 gcwq = get_work_gcwq(work);
2841 if (!gcwq)
2842 return false;
2844 spin_lock_irq(&gcwq->lock);
2845 if (!list_empty(&work->entry)) {
2847 * See the comment near try_to_grab_pending()->smp_rmb().
2848 * If it was re-queued to a different gcwq under us, we
2849 * are not going to wait.
2851 smp_rmb();
2852 cwq = get_work_cwq(work);
2853 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2854 goto already_gone;
2855 } else {
2856 worker = find_worker_executing_work(gcwq, work);
2857 if (!worker)
2858 goto already_gone;
2859 cwq = worker->current_cwq;
2862 insert_wq_barrier(cwq, barr, work, worker);
2863 spin_unlock_irq(&gcwq->lock);
2866 * If @max_active is 1 or rescuer is in use, flushing another work
2867 * item on the same workqueue may lead to deadlock. Make sure the
2868 * flusher is not running on the same workqueue by verifying write
2869 * access.
2871 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2872 lock_map_acquire(&cwq->wq->lockdep_map);
2873 else
2874 lock_map_acquire_read(&cwq->wq->lockdep_map);
2875 lock_map_release(&cwq->wq->lockdep_map);
2877 return true;
2878 already_gone:
2879 spin_unlock_irq(&gcwq->lock);
2880 return false;
2884 * flush_work - wait for a work to finish executing the last queueing instance
2885 * @work: the work to flush
2887 * Wait until @work has finished execution. @work is guaranteed to be idle
2888 * on return if it hasn't been requeued since flush started.
2890 * RETURNS:
2891 * %true if flush_work() waited for the work to finish execution,
2892 * %false if it was already idle.
2894 bool flush_work(struct work_struct *work)
2896 struct wq_barrier barr;
2898 lock_map_acquire(&work->lockdep_map);
2899 lock_map_release(&work->lockdep_map);
2901 if (start_flush_work(work, &barr)) {
2902 wait_for_completion(&barr.done);
2903 destroy_work_on_stack(&barr.work);
2904 return true;
2905 } else {
2906 return false;
2909 EXPORT_SYMBOL_GPL(flush_work);
2911 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2913 unsigned long flags;
2914 int ret;
2916 do {
2917 ret = try_to_grab_pending(work, is_dwork, &flags);
2919 * If someone else is canceling, wait for the same event it
2920 * would be waiting for before retrying.
2922 if (unlikely(ret == -ENOENT))
2923 flush_work(work);
2924 } while (unlikely(ret < 0));
2926 /* tell other tasks trying to grab @work to back off */
2927 mark_work_canceling(work);
2928 local_irq_restore(flags);
2930 flush_work(work);
2931 clear_work_data(work);
2932 return ret;
2936 * cancel_work_sync - cancel a work and wait for it to finish
2937 * @work: the work to cancel
2939 * Cancel @work and wait for its execution to finish. This function
2940 * can be used even if the work re-queues itself or migrates to
2941 * another workqueue. On return from this function, @work is
2942 * guaranteed to be not pending or executing on any CPU.
2944 * cancel_work_sync(&delayed_work->work) must not be used for
2945 * delayed_work's. Use cancel_delayed_work_sync() instead.
2947 * The caller must ensure that the workqueue on which @work was last
2948 * queued can't be destroyed before this function returns.
2950 * RETURNS:
2951 * %true if @work was pending, %false otherwise.
2953 bool cancel_work_sync(struct work_struct *work)
2955 return __cancel_work_timer(work, false);
2957 EXPORT_SYMBOL_GPL(cancel_work_sync);
2960 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2961 * @dwork: the delayed work to flush
2963 * Delayed timer is cancelled and the pending work is queued for
2964 * immediate execution. Like flush_work(), this function only
2965 * considers the last queueing instance of @dwork.
2967 * RETURNS:
2968 * %true if flush_work() waited for the work to finish execution,
2969 * %false if it was already idle.
2971 bool flush_delayed_work(struct delayed_work *dwork)
2973 local_irq_disable();
2974 if (del_timer_sync(&dwork->timer))
2975 __queue_work(dwork->cpu,
2976 get_work_cwq(&dwork->work)->wq, &dwork->work);
2977 local_irq_enable();
2978 return flush_work(&dwork->work);
2980 EXPORT_SYMBOL(flush_delayed_work);
2983 * cancel_delayed_work - cancel a delayed work
2984 * @dwork: delayed_work to cancel
2986 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2987 * and canceled; %false if wasn't pending. Note that the work callback
2988 * function may still be running on return, unless it returns %true and the
2989 * work doesn't re-arm itself. Explicitly flush or use
2990 * cancel_delayed_work_sync() to wait on it.
2992 * This function is safe to call from any context including IRQ handler.
2994 bool cancel_delayed_work(struct delayed_work *dwork)
2996 unsigned long flags;
2997 int ret;
2999 do {
3000 ret = try_to_grab_pending(&dwork->work, true, &flags);
3001 } while (unlikely(ret == -EAGAIN));
3003 if (unlikely(ret < 0))
3004 return false;
3006 set_work_pool_and_clear_pending(&dwork->work,
3007 get_work_pool_id(&dwork->work));
3008 local_irq_restore(flags);
3009 return ret;
3011 EXPORT_SYMBOL(cancel_delayed_work);
3014 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3015 * @dwork: the delayed work cancel
3017 * This is cancel_work_sync() for delayed works.
3019 * RETURNS:
3020 * %true if @dwork was pending, %false otherwise.
3022 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3024 return __cancel_work_timer(&dwork->work, true);
3026 EXPORT_SYMBOL(cancel_delayed_work_sync);
3029 * schedule_work_on - put work task on a specific cpu
3030 * @cpu: cpu to put the work task on
3031 * @work: job to be done
3033 * This puts a job on a specific cpu
3035 bool schedule_work_on(int cpu, struct work_struct *work)
3037 return queue_work_on(cpu, system_wq, work);
3039 EXPORT_SYMBOL(schedule_work_on);
3042 * schedule_work - put work task in global workqueue
3043 * @work: job to be done
3045 * Returns %false if @work was already on the kernel-global workqueue and
3046 * %true otherwise.
3048 * This puts a job in the kernel-global workqueue if it was not already
3049 * queued and leaves it in the same position on the kernel-global
3050 * workqueue otherwise.
3052 bool schedule_work(struct work_struct *work)
3054 return queue_work(system_wq, work);
3056 EXPORT_SYMBOL(schedule_work);
3059 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3060 * @cpu: cpu to use
3061 * @dwork: job to be done
3062 * @delay: number of jiffies to wait
3064 * After waiting for a given time this puts a job in the kernel-global
3065 * workqueue on the specified CPU.
3067 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3068 unsigned long delay)
3070 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3072 EXPORT_SYMBOL(schedule_delayed_work_on);
3075 * schedule_delayed_work - put work task in global workqueue after delay
3076 * @dwork: job to be done
3077 * @delay: number of jiffies to wait or 0 for immediate execution
3079 * After waiting for a given time this puts a job in the kernel-global
3080 * workqueue.
3082 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3084 return queue_delayed_work(system_wq, dwork, delay);
3086 EXPORT_SYMBOL(schedule_delayed_work);
3089 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3090 * @func: the function to call
3092 * schedule_on_each_cpu() executes @func on each online CPU using the
3093 * system workqueue and blocks until all CPUs have completed.
3094 * schedule_on_each_cpu() is very slow.
3096 * RETURNS:
3097 * 0 on success, -errno on failure.
3099 int schedule_on_each_cpu(work_func_t func)
3101 int cpu;
3102 struct work_struct __percpu *works;
3104 works = alloc_percpu(struct work_struct);
3105 if (!works)
3106 return -ENOMEM;
3108 get_online_cpus();
3110 for_each_online_cpu(cpu) {
3111 struct work_struct *work = per_cpu_ptr(works, cpu);
3113 INIT_WORK(work, func);
3114 schedule_work_on(cpu, work);
3117 for_each_online_cpu(cpu)
3118 flush_work(per_cpu_ptr(works, cpu));
3120 put_online_cpus();
3121 free_percpu(works);
3122 return 0;
3126 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3128 * Forces execution of the kernel-global workqueue and blocks until its
3129 * completion.
3131 * Think twice before calling this function! It's very easy to get into
3132 * trouble if you don't take great care. Either of the following situations
3133 * will lead to deadlock:
3135 * One of the work items currently on the workqueue needs to acquire
3136 * a lock held by your code or its caller.
3138 * Your code is running in the context of a work routine.
3140 * They will be detected by lockdep when they occur, but the first might not
3141 * occur very often. It depends on what work items are on the workqueue and
3142 * what locks they need, which you have no control over.
3144 * In most situations flushing the entire workqueue is overkill; you merely
3145 * need to know that a particular work item isn't queued and isn't running.
3146 * In such cases you should use cancel_delayed_work_sync() or
3147 * cancel_work_sync() instead.
3149 void flush_scheduled_work(void)
3151 flush_workqueue(system_wq);
3153 EXPORT_SYMBOL(flush_scheduled_work);
3156 * execute_in_process_context - reliably execute the routine with user context
3157 * @fn: the function to execute
3158 * @ew: guaranteed storage for the execute work structure (must
3159 * be available when the work executes)
3161 * Executes the function immediately if process context is available,
3162 * otherwise schedules the function for delayed execution.
3164 * Returns: 0 - function was executed
3165 * 1 - function was scheduled for execution
3167 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3169 if (!in_interrupt()) {
3170 fn(&ew->work);
3171 return 0;
3174 INIT_WORK(&ew->work, fn);
3175 schedule_work(&ew->work);
3177 return 1;
3179 EXPORT_SYMBOL_GPL(execute_in_process_context);
3181 int keventd_up(void)
3183 return system_wq != NULL;
3186 static int alloc_cwqs(struct workqueue_struct *wq)
3189 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3190 * Make sure that the alignment isn't lower than that of
3191 * unsigned long long.
3193 const size_t size = sizeof(struct cpu_workqueue_struct);
3194 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3195 __alignof__(unsigned long long));
3197 if (!(wq->flags & WQ_UNBOUND))
3198 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3199 else {
3200 void *ptr;
3203 * Allocate enough room to align cwq and put an extra
3204 * pointer at the end pointing back to the originally
3205 * allocated pointer which will be used for free.
3207 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3208 if (ptr) {
3209 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3210 *(void **)(wq->cpu_wq.single + 1) = ptr;
3214 /* just in case, make sure it's actually aligned */
3215 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3216 return wq->cpu_wq.v ? 0 : -ENOMEM;
3219 static void free_cwqs(struct workqueue_struct *wq)
3221 if (!(wq->flags & WQ_UNBOUND))
3222 free_percpu(wq->cpu_wq.pcpu);
3223 else if (wq->cpu_wq.single) {
3224 /* the pointer to free is stored right after the cwq */
3225 kfree(*(void **)(wq->cpu_wq.single + 1));
3229 static int wq_clamp_max_active(int max_active, unsigned int flags,
3230 const char *name)
3232 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3234 if (max_active < 1 || max_active > lim)
3235 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3236 max_active, name, 1, lim);
3238 return clamp_val(max_active, 1, lim);
3241 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3242 unsigned int flags,
3243 int max_active,
3244 struct lock_class_key *key,
3245 const char *lock_name, ...)
3247 va_list args, args1;
3248 struct workqueue_struct *wq;
3249 unsigned int cpu;
3250 size_t namelen;
3252 /* determine namelen, allocate wq and format name */
3253 va_start(args, lock_name);
3254 va_copy(args1, args);
3255 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3257 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3258 if (!wq)
3259 goto err;
3261 vsnprintf(wq->name, namelen, fmt, args1);
3262 va_end(args);
3263 va_end(args1);
3266 * Workqueues which may be used during memory reclaim should
3267 * have a rescuer to guarantee forward progress.
3269 if (flags & WQ_MEM_RECLAIM)
3270 flags |= WQ_RESCUER;
3272 max_active = max_active ?: WQ_DFL_ACTIVE;
3273 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3275 /* init wq */
3276 wq->flags = flags;
3277 wq->saved_max_active = max_active;
3278 mutex_init(&wq->flush_mutex);
3279 atomic_set(&wq->nr_cwqs_to_flush, 0);
3280 INIT_LIST_HEAD(&wq->flusher_queue);
3281 INIT_LIST_HEAD(&wq->flusher_overflow);
3283 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3284 INIT_LIST_HEAD(&wq->list);
3286 if (alloc_cwqs(wq) < 0)
3287 goto err;
3289 for_each_cwq_cpu(cpu, wq) {
3290 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3291 struct global_cwq *gcwq = get_gcwq(cpu);
3292 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3294 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3295 cwq->pool = &gcwq->pools[pool_idx];
3296 cwq->wq = wq;
3297 cwq->flush_color = -1;
3298 cwq->max_active = max_active;
3299 INIT_LIST_HEAD(&cwq->delayed_works);
3302 if (flags & WQ_RESCUER) {
3303 struct worker *rescuer;
3305 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3306 goto err;
3308 wq->rescuer = rescuer = alloc_worker();
3309 if (!rescuer)
3310 goto err;
3312 rescuer->rescue_wq = wq;
3313 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3314 wq->name);
3315 if (IS_ERR(rescuer->task))
3316 goto err;
3318 rescuer->task->flags |= PF_THREAD_BOUND;
3319 wake_up_process(rescuer->task);
3323 * workqueue_lock protects global freeze state and workqueues
3324 * list. Grab it, set max_active accordingly and add the new
3325 * workqueue to workqueues list.
3327 spin_lock(&workqueue_lock);
3329 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3330 for_each_cwq_cpu(cpu, wq)
3331 get_cwq(cpu, wq)->max_active = 0;
3333 list_add(&wq->list, &workqueues);
3335 spin_unlock(&workqueue_lock);
3337 return wq;
3338 err:
3339 if (wq) {
3340 free_cwqs(wq);
3341 free_mayday_mask(wq->mayday_mask);
3342 kfree(wq->rescuer);
3343 kfree(wq);
3345 return NULL;
3347 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3350 * destroy_workqueue - safely terminate a workqueue
3351 * @wq: target workqueue
3353 * Safely destroy a workqueue. All work currently pending will be done first.
3355 void destroy_workqueue(struct workqueue_struct *wq)
3357 unsigned int cpu;
3359 /* drain it before proceeding with destruction */
3360 drain_workqueue(wq);
3363 * wq list is used to freeze wq, remove from list after
3364 * flushing is complete in case freeze races us.
3366 spin_lock(&workqueue_lock);
3367 list_del(&wq->list);
3368 spin_unlock(&workqueue_lock);
3370 /* sanity check */
3371 for_each_cwq_cpu(cpu, wq) {
3372 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3373 int i;
3375 for (i = 0; i < WORK_NR_COLORS; i++)
3376 BUG_ON(cwq->nr_in_flight[i]);
3377 BUG_ON(cwq->nr_active);
3378 BUG_ON(!list_empty(&cwq->delayed_works));
3381 if (wq->flags & WQ_RESCUER) {
3382 kthread_stop(wq->rescuer->task);
3383 free_mayday_mask(wq->mayday_mask);
3384 kfree(wq->rescuer);
3387 free_cwqs(wq);
3388 kfree(wq);
3390 EXPORT_SYMBOL_GPL(destroy_workqueue);
3393 * cwq_set_max_active - adjust max_active of a cwq
3394 * @cwq: target cpu_workqueue_struct
3395 * @max_active: new max_active value.
3397 * Set @cwq->max_active to @max_active and activate delayed works if
3398 * increased.
3400 * CONTEXT:
3401 * spin_lock_irq(gcwq->lock).
3403 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3405 cwq->max_active = max_active;
3407 while (!list_empty(&cwq->delayed_works) &&
3408 cwq->nr_active < cwq->max_active)
3409 cwq_activate_first_delayed(cwq);
3413 * workqueue_set_max_active - adjust max_active of a workqueue
3414 * @wq: target workqueue
3415 * @max_active: new max_active value.
3417 * Set max_active of @wq to @max_active.
3419 * CONTEXT:
3420 * Don't call from IRQ context.
3422 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3424 unsigned int cpu;
3426 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3428 spin_lock(&workqueue_lock);
3430 wq->saved_max_active = max_active;
3432 for_each_cwq_cpu(cpu, wq) {
3433 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3434 struct worker_pool *pool = cwq->pool;
3435 struct global_cwq *gcwq = pool->gcwq;
3437 spin_lock_irq(&gcwq->lock);
3439 if (!(wq->flags & WQ_FREEZABLE) ||
3440 !(pool->flags & POOL_FREEZING))
3441 cwq_set_max_active(cwq, max_active);
3443 spin_unlock_irq(&gcwq->lock);
3446 spin_unlock(&workqueue_lock);
3448 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3451 * workqueue_congested - test whether a workqueue is congested
3452 * @cpu: CPU in question
3453 * @wq: target workqueue
3455 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3456 * no synchronization around this function and the test result is
3457 * unreliable and only useful as advisory hints or for debugging.
3459 * RETURNS:
3460 * %true if congested, %false otherwise.
3462 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3464 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3466 return !list_empty(&cwq->delayed_works);
3468 EXPORT_SYMBOL_GPL(workqueue_congested);
3471 * work_busy - test whether a work is currently pending or running
3472 * @work: the work to be tested
3474 * Test whether @work is currently pending or running. There is no
3475 * synchronization around this function and the test result is
3476 * unreliable and only useful as advisory hints or for debugging.
3477 * Especially for reentrant wqs, the pending state might hide the
3478 * running state.
3480 * RETURNS:
3481 * OR'd bitmask of WORK_BUSY_* bits.
3483 unsigned int work_busy(struct work_struct *work)
3485 struct global_cwq *gcwq = get_work_gcwq(work);
3486 unsigned long flags;
3487 unsigned int ret = 0;
3489 if (!gcwq)
3490 return 0;
3492 spin_lock_irqsave(&gcwq->lock, flags);
3494 if (work_pending(work))
3495 ret |= WORK_BUSY_PENDING;
3496 if (find_worker_executing_work(gcwq, work))
3497 ret |= WORK_BUSY_RUNNING;
3499 spin_unlock_irqrestore(&gcwq->lock, flags);
3501 return ret;
3503 EXPORT_SYMBOL_GPL(work_busy);
3506 * CPU hotplug.
3508 * There are two challenges in supporting CPU hotplug. Firstly, there
3509 * are a lot of assumptions on strong associations among work, cwq and
3510 * gcwq which make migrating pending and scheduled works very
3511 * difficult to implement without impacting hot paths. Secondly,
3512 * gcwqs serve mix of short, long and very long running works making
3513 * blocked draining impractical.
3515 * This is solved by allowing the pools to be disassociated from the CPU
3516 * running as an unbound one and allowing it to be reattached later if the
3517 * cpu comes back online.
3520 /* claim manager positions of all pools */
3521 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3523 struct worker_pool *pool;
3525 for_each_worker_pool(pool, gcwq)
3526 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3527 spin_lock_irq(&gcwq->lock);
3530 /* release manager positions */
3531 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3533 struct worker_pool *pool;
3535 spin_unlock_irq(&gcwq->lock);
3536 for_each_worker_pool(pool, gcwq)
3537 mutex_unlock(&pool->assoc_mutex);
3540 static void gcwq_unbind_fn(struct work_struct *work)
3542 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3543 struct worker_pool *pool;
3544 struct worker *worker;
3545 struct hlist_node *pos;
3546 int i;
3548 BUG_ON(gcwq->cpu != smp_processor_id());
3550 gcwq_claim_assoc_and_lock(gcwq);
3553 * We've claimed all manager positions. Make all workers unbound
3554 * and set DISASSOCIATED. Before this, all workers except for the
3555 * ones which are still executing works from before the last CPU
3556 * down must be on the cpu. After this, they may become diasporas.
3558 for_each_worker_pool(pool, gcwq)
3559 list_for_each_entry(worker, &pool->idle_list, entry)
3560 worker->flags |= WORKER_UNBOUND;
3562 for_each_busy_worker(worker, i, pos, gcwq)
3563 worker->flags |= WORKER_UNBOUND;
3565 for_each_worker_pool(pool, gcwq)
3566 pool->flags |= POOL_DISASSOCIATED;
3568 gcwq_release_assoc_and_unlock(gcwq);
3571 * Call schedule() so that we cross rq->lock and thus can guarantee
3572 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3573 * as scheduler callbacks may be invoked from other cpus.
3575 schedule();
3578 * Sched callbacks are disabled now. Zap nr_running. After this,
3579 * nr_running stays zero and need_more_worker() and keep_working()
3580 * are always true as long as the worklist is not empty. @gcwq now
3581 * behaves as unbound (in terms of concurrency management) gcwq
3582 * which is served by workers tied to the CPU.
3584 * On return from this function, the current worker would trigger
3585 * unbound chain execution of pending work items if other workers
3586 * didn't already.
3588 for_each_worker_pool(pool, gcwq)
3589 atomic_set(get_pool_nr_running(pool), 0);
3593 * Workqueues should be brought up before normal priority CPU notifiers.
3594 * This will be registered high priority CPU notifier.
3596 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3597 unsigned long action,
3598 void *hcpu)
3600 unsigned int cpu = (unsigned long)hcpu;
3601 struct global_cwq *gcwq = get_gcwq(cpu);
3602 struct worker_pool *pool;
3604 switch (action & ~CPU_TASKS_FROZEN) {
3605 case CPU_UP_PREPARE:
3606 for_each_worker_pool(pool, gcwq) {
3607 struct worker *worker;
3609 if (pool->nr_workers)
3610 continue;
3612 worker = create_worker(pool);
3613 if (!worker)
3614 return NOTIFY_BAD;
3616 spin_lock_irq(&gcwq->lock);
3617 start_worker(worker);
3618 spin_unlock_irq(&gcwq->lock);
3620 break;
3622 case CPU_DOWN_FAILED:
3623 case CPU_ONLINE:
3624 gcwq_claim_assoc_and_lock(gcwq);
3625 for_each_worker_pool(pool, gcwq)
3626 pool->flags &= ~POOL_DISASSOCIATED;
3627 rebind_workers(gcwq);
3628 gcwq_release_assoc_and_unlock(gcwq);
3629 break;
3631 return NOTIFY_OK;
3635 * Workqueues should be brought down after normal priority CPU notifiers.
3636 * This will be registered as low priority CPU notifier.
3638 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3639 unsigned long action,
3640 void *hcpu)
3642 unsigned int cpu = (unsigned long)hcpu;
3643 struct work_struct unbind_work;
3645 switch (action & ~CPU_TASKS_FROZEN) {
3646 case CPU_DOWN_PREPARE:
3647 /* unbinding should happen on the local CPU */
3648 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3649 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3650 flush_work(&unbind_work);
3651 break;
3653 return NOTIFY_OK;
3656 #ifdef CONFIG_SMP
3658 struct work_for_cpu {
3659 struct work_struct work;
3660 long (*fn)(void *);
3661 void *arg;
3662 long ret;
3665 static void work_for_cpu_fn(struct work_struct *work)
3667 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3669 wfc->ret = wfc->fn(wfc->arg);
3673 * work_on_cpu - run a function in user context on a particular cpu
3674 * @cpu: the cpu to run on
3675 * @fn: the function to run
3676 * @arg: the function arg
3678 * This will return the value @fn returns.
3679 * It is up to the caller to ensure that the cpu doesn't go offline.
3680 * The caller must not hold any locks which would prevent @fn from completing.
3682 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3684 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3686 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3687 schedule_work_on(cpu, &wfc.work);
3688 flush_work(&wfc.work);
3689 return wfc.ret;
3691 EXPORT_SYMBOL_GPL(work_on_cpu);
3692 #endif /* CONFIG_SMP */
3694 #ifdef CONFIG_FREEZER
3697 * freeze_workqueues_begin - begin freezing workqueues
3699 * Start freezing workqueues. After this function returns, all freezable
3700 * workqueues will queue new works to their frozen_works list instead of
3701 * gcwq->worklist.
3703 * CONTEXT:
3704 * Grabs and releases workqueue_lock and gcwq->lock's.
3706 void freeze_workqueues_begin(void)
3708 unsigned int cpu;
3710 spin_lock(&workqueue_lock);
3712 BUG_ON(workqueue_freezing);
3713 workqueue_freezing = true;
3715 for_each_gcwq_cpu(cpu) {
3716 struct global_cwq *gcwq = get_gcwq(cpu);
3717 struct worker_pool *pool;
3718 struct workqueue_struct *wq;
3720 spin_lock_irq(&gcwq->lock);
3722 for_each_worker_pool(pool, gcwq) {
3723 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3724 pool->flags |= POOL_FREEZING;
3727 list_for_each_entry(wq, &workqueues, list) {
3728 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3730 if (cwq && wq->flags & WQ_FREEZABLE)
3731 cwq->max_active = 0;
3734 spin_unlock_irq(&gcwq->lock);
3737 spin_unlock(&workqueue_lock);
3741 * freeze_workqueues_busy - are freezable workqueues still busy?
3743 * Check whether freezing is complete. This function must be called
3744 * between freeze_workqueues_begin() and thaw_workqueues().
3746 * CONTEXT:
3747 * Grabs and releases workqueue_lock.
3749 * RETURNS:
3750 * %true if some freezable workqueues are still busy. %false if freezing
3751 * is complete.
3753 bool freeze_workqueues_busy(void)
3755 unsigned int cpu;
3756 bool busy = false;
3758 spin_lock(&workqueue_lock);
3760 BUG_ON(!workqueue_freezing);
3762 for_each_gcwq_cpu(cpu) {
3763 struct workqueue_struct *wq;
3765 * nr_active is monotonically decreasing. It's safe
3766 * to peek without lock.
3768 list_for_each_entry(wq, &workqueues, list) {
3769 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3771 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3772 continue;
3774 BUG_ON(cwq->nr_active < 0);
3775 if (cwq->nr_active) {
3776 busy = true;
3777 goto out_unlock;
3781 out_unlock:
3782 spin_unlock(&workqueue_lock);
3783 return busy;
3787 * thaw_workqueues - thaw workqueues
3789 * Thaw workqueues. Normal queueing is restored and all collected
3790 * frozen works are transferred to their respective gcwq worklists.
3792 * CONTEXT:
3793 * Grabs and releases workqueue_lock and gcwq->lock's.
3795 void thaw_workqueues(void)
3797 unsigned int cpu;
3799 spin_lock(&workqueue_lock);
3801 if (!workqueue_freezing)
3802 goto out_unlock;
3804 for_each_gcwq_cpu(cpu) {
3805 struct global_cwq *gcwq = get_gcwq(cpu);
3806 struct worker_pool *pool;
3807 struct workqueue_struct *wq;
3809 spin_lock_irq(&gcwq->lock);
3811 for_each_worker_pool(pool, gcwq) {
3812 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3813 pool->flags &= ~POOL_FREEZING;
3816 list_for_each_entry(wq, &workqueues, list) {
3817 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3819 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3820 continue;
3822 /* restore max_active and repopulate worklist */
3823 cwq_set_max_active(cwq, wq->saved_max_active);
3826 for_each_worker_pool(pool, gcwq)
3827 wake_up_worker(pool);
3829 spin_unlock_irq(&gcwq->lock);
3832 workqueue_freezing = false;
3833 out_unlock:
3834 spin_unlock(&workqueue_lock);
3836 #endif /* CONFIG_FREEZER */
3838 static int __init init_workqueues(void)
3840 unsigned int cpu;
3842 /* make sure we have enough bits for OFFQ pool ID */
3843 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3844 WORK_CPU_LAST * NR_STD_WORKER_POOLS);
3846 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3847 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3849 /* initialize gcwqs */
3850 for_each_gcwq_cpu(cpu) {
3851 struct global_cwq *gcwq = get_gcwq(cpu);
3852 struct worker_pool *pool;
3854 spin_lock_init(&gcwq->lock);
3855 gcwq->cpu = cpu;
3857 hash_init(gcwq->busy_hash);
3859 for_each_worker_pool(pool, gcwq) {
3860 pool->gcwq = gcwq;
3861 pool->flags |= POOL_DISASSOCIATED;
3862 INIT_LIST_HEAD(&pool->worklist);
3863 INIT_LIST_HEAD(&pool->idle_list);
3865 init_timer_deferrable(&pool->idle_timer);
3866 pool->idle_timer.function = idle_worker_timeout;
3867 pool->idle_timer.data = (unsigned long)pool;
3869 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3870 (unsigned long)pool);
3872 mutex_init(&pool->assoc_mutex);
3873 ida_init(&pool->worker_ida);
3875 /* alloc pool ID */
3876 BUG_ON(worker_pool_assign_id(pool));
3880 /* create the initial worker */
3881 for_each_online_gcwq_cpu(cpu) {
3882 struct global_cwq *gcwq = get_gcwq(cpu);
3883 struct worker_pool *pool;
3885 for_each_worker_pool(pool, gcwq) {
3886 struct worker *worker;
3888 if (cpu != WORK_CPU_UNBOUND)
3889 pool->flags &= ~POOL_DISASSOCIATED;
3891 worker = create_worker(pool);
3892 BUG_ON(!worker);
3893 spin_lock_irq(&gcwq->lock);
3894 start_worker(worker);
3895 spin_unlock_irq(&gcwq->lock);
3899 system_wq = alloc_workqueue("events", 0, 0);
3900 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3901 system_long_wq = alloc_workqueue("events_long", 0, 0);
3902 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3903 WQ_UNBOUND_MAX_ACTIVE);
3904 system_freezable_wq = alloc_workqueue("events_freezable",
3905 WQ_FREEZABLE, 0);
3906 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3907 !system_unbound_wq || !system_freezable_wq);
3908 return 0;
3910 early_initcall(init_workqueues);