rndis_wlan: convert scan to cfg80211
[linux-2.6/cjktty.git] / drivers / char / ipmi / ipmi_msghandler.c
blobe93fc8d22fb2b839413dacd50fda823c060f7989
1 /*
2 * ipmi_msghandler.c
4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
48 #define PFX "IPMI message handler: "
50 #define IPMI_DRIVER_VERSION "39.2"
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
55 static int initialized;
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64 #define MAX_EVENTS_IN_QUEUE 25
67 * Don't let a message sit in a queue forever, always time it with at lest
68 * the max message timer. This is in milliseconds.
70 #define MAX_MSG_TIMEOUT 60000
73 * The main "user" data structure.
75 struct ipmi_user {
76 struct list_head link;
78 /* Set to "0" when the user is destroyed. */
79 int valid;
81 struct kref refcount;
83 /* The upper layer that handles receive messages. */
84 struct ipmi_user_hndl *handler;
85 void *handler_data;
87 /* The interface this user is bound to. */
88 ipmi_smi_t intf;
90 /* Does this interface receive IPMI events? */
91 int gets_events;
94 struct cmd_rcvr {
95 struct list_head link;
97 ipmi_user_t user;
98 unsigned char netfn;
99 unsigned char cmd;
100 unsigned int chans;
103 * This is used to form a linked lised during mass deletion.
104 * Since this is in an RCU list, we cannot use the link above
105 * or change any data until the RCU period completes. So we
106 * use this next variable during mass deletion so we can have
107 * a list and don't have to wait and restart the search on
108 * every individual deletion of a command.
110 struct cmd_rcvr *next;
113 struct seq_table {
114 unsigned int inuse : 1;
115 unsigned int broadcast : 1;
117 unsigned long timeout;
118 unsigned long orig_timeout;
119 unsigned int retries_left;
122 * To verify on an incoming send message response that this is
123 * the message that the response is for, we keep a sequence id
124 * and increment it every time we send a message.
126 long seqid;
129 * This is held so we can properly respond to the message on a
130 * timeout, and it is used to hold the temporary data for
131 * retransmission, too.
133 struct ipmi_recv_msg *recv_msg;
137 * Store the information in a msgid (long) to allow us to find a
138 * sequence table entry from the msgid.
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
143 do { \
144 seq = ((msgid >> 26) & 0x3f); \
145 seqid = (msgid & 0x3fffff); \
146 } while (0)
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150 struct ipmi_channel {
151 unsigned char medium;
152 unsigned char protocol;
155 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
156 * but may be changed by the user.
158 unsigned char address;
161 * My LUN. This should generally stay the SMS LUN, but just in
162 * case...
164 unsigned char lun;
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
169 char *name;
170 struct ipmi_proc_entry *next;
172 #endif
174 struct bmc_device {
175 struct platform_device *dev;
176 struct ipmi_device_id id;
177 unsigned char guid[16];
178 int guid_set;
180 struct kref refcount;
182 /* bmc device attributes */
183 struct device_attribute device_id_attr;
184 struct device_attribute provides_dev_sdrs_attr;
185 struct device_attribute revision_attr;
186 struct device_attribute firmware_rev_attr;
187 struct device_attribute version_attr;
188 struct device_attribute add_dev_support_attr;
189 struct device_attribute manufacturer_id_attr;
190 struct device_attribute product_id_attr;
191 struct device_attribute guid_attr;
192 struct device_attribute aux_firmware_rev_attr;
196 * Various statistics for IPMI, these index stats[] in the ipmi_smi
197 * structure.
199 enum ipmi_stat_indexes {
200 /* Commands we got from the user that were invalid. */
201 IPMI_STAT_sent_invalid_commands = 0,
203 /* Commands we sent to the MC. */
204 IPMI_STAT_sent_local_commands,
206 /* Responses from the MC that were delivered to a user. */
207 IPMI_STAT_handled_local_responses,
209 /* Responses from the MC that were not delivered to a user. */
210 IPMI_STAT_unhandled_local_responses,
212 /* Commands we sent out to the IPMB bus. */
213 IPMI_STAT_sent_ipmb_commands,
215 /* Commands sent on the IPMB that had errors on the SEND CMD */
216 IPMI_STAT_sent_ipmb_command_errs,
218 /* Each retransmit increments this count. */
219 IPMI_STAT_retransmitted_ipmb_commands,
222 * When a message times out (runs out of retransmits) this is
223 * incremented.
225 IPMI_STAT_timed_out_ipmb_commands,
228 * This is like above, but for broadcasts. Broadcasts are
229 * *not* included in the above count (they are expected to
230 * time out).
232 IPMI_STAT_timed_out_ipmb_broadcasts,
234 /* Responses I have sent to the IPMB bus. */
235 IPMI_STAT_sent_ipmb_responses,
237 /* The response was delivered to the user. */
238 IPMI_STAT_handled_ipmb_responses,
240 /* The response had invalid data in it. */
241 IPMI_STAT_invalid_ipmb_responses,
243 /* The response didn't have anyone waiting for it. */
244 IPMI_STAT_unhandled_ipmb_responses,
246 /* Commands we sent out to the IPMB bus. */
247 IPMI_STAT_sent_lan_commands,
249 /* Commands sent on the IPMB that had errors on the SEND CMD */
250 IPMI_STAT_sent_lan_command_errs,
252 /* Each retransmit increments this count. */
253 IPMI_STAT_retransmitted_lan_commands,
256 * When a message times out (runs out of retransmits) this is
257 * incremented.
259 IPMI_STAT_timed_out_lan_commands,
261 /* Responses I have sent to the IPMB bus. */
262 IPMI_STAT_sent_lan_responses,
264 /* The response was delivered to the user. */
265 IPMI_STAT_handled_lan_responses,
267 /* The response had invalid data in it. */
268 IPMI_STAT_invalid_lan_responses,
270 /* The response didn't have anyone waiting for it. */
271 IPMI_STAT_unhandled_lan_responses,
273 /* The command was delivered to the user. */
274 IPMI_STAT_handled_commands,
276 /* The command had invalid data in it. */
277 IPMI_STAT_invalid_commands,
279 /* The command didn't have anyone waiting for it. */
280 IPMI_STAT_unhandled_commands,
282 /* Invalid data in an event. */
283 IPMI_STAT_invalid_events,
285 /* Events that were received with the proper format. */
286 IPMI_STAT_events,
289 /* This *must* remain last, add new values above this. */
290 IPMI_NUM_STATS
294 #define IPMI_IPMB_NUM_SEQ 64
295 #define IPMI_MAX_CHANNELS 16
296 struct ipmi_smi {
297 /* What interface number are we? */
298 int intf_num;
300 struct kref refcount;
302 /* Used for a list of interfaces. */
303 struct list_head link;
306 * The list of upper layers that are using me. seq_lock
307 * protects this.
309 struct list_head users;
311 /* Information to supply to users. */
312 unsigned char ipmi_version_major;
313 unsigned char ipmi_version_minor;
315 /* Used for wake ups at startup. */
316 wait_queue_head_t waitq;
318 struct bmc_device *bmc;
319 char *my_dev_name;
320 char *sysfs_name;
323 * This is the lower-layer's sender routine. Note that you
324 * must either be holding the ipmi_interfaces_mutex or be in
325 * an umpreemptible region to use this. You must fetch the
326 * value into a local variable and make sure it is not NULL.
328 struct ipmi_smi_handlers *handlers;
329 void *send_info;
331 #ifdef CONFIG_PROC_FS
332 /* A list of proc entries for this interface. */
333 struct mutex proc_entry_lock;
334 struct ipmi_proc_entry *proc_entries;
335 #endif
337 /* Driver-model device for the system interface. */
338 struct device *si_dev;
341 * A table of sequence numbers for this interface. We use the
342 * sequence numbers for IPMB messages that go out of the
343 * interface to match them up with their responses. A routine
344 * is called periodically to time the items in this list.
346 spinlock_t seq_lock;
347 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
348 int curr_seq;
351 * Messages that were delayed for some reason (out of memory,
352 * for instance), will go in here to be processed later in a
353 * periodic timer interrupt.
355 spinlock_t waiting_msgs_lock;
356 struct list_head waiting_msgs;
359 * The list of command receivers that are registered for commands
360 * on this interface.
362 struct mutex cmd_rcvrs_mutex;
363 struct list_head cmd_rcvrs;
366 * Events that were queues because no one was there to receive
367 * them.
369 spinlock_t events_lock; /* For dealing with event stuff. */
370 struct list_head waiting_events;
371 unsigned int waiting_events_count; /* How many events in queue? */
372 char delivering_events;
373 char event_msg_printed;
376 * The event receiver for my BMC, only really used at panic
377 * shutdown as a place to store this.
379 unsigned char event_receiver;
380 unsigned char event_receiver_lun;
381 unsigned char local_sel_device;
382 unsigned char local_event_generator;
384 /* For handling of maintenance mode. */
385 int maintenance_mode;
386 int maintenance_mode_enable;
387 int auto_maintenance_timeout;
388 spinlock_t maintenance_mode_lock; /* Used in a timer... */
391 * A cheap hack, if this is non-null and a message to an
392 * interface comes in with a NULL user, call this routine with
393 * it. Note that the message will still be freed by the
394 * caller. This only works on the system interface.
396 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
399 * When we are scanning the channels for an SMI, this will
400 * tell which channel we are scanning.
402 int curr_channel;
404 /* Channel information */
405 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
407 /* Proc FS stuff. */
408 struct proc_dir_entry *proc_dir;
409 char proc_dir_name[10];
411 atomic_t stats[IPMI_NUM_STATS];
414 * run_to_completion duplicate of smb_info, smi_info
415 * and ipmi_serial_info structures. Used to decrease numbers of
416 * parameters passed by "low" level IPMI code.
418 int run_to_completion;
420 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
423 * The driver model view of the IPMI messaging driver.
425 static struct platform_driver ipmidriver = {
426 .driver = {
427 .name = "ipmi",
428 .bus = &platform_bus_type
431 static DEFINE_MUTEX(ipmidriver_mutex);
433 static LIST_HEAD(ipmi_interfaces);
434 static DEFINE_MUTEX(ipmi_interfaces_mutex);
437 * List of watchers that want to know when smi's are added and deleted.
439 static LIST_HEAD(smi_watchers);
440 static DEFINE_MUTEX(smi_watchers_mutex);
443 #define ipmi_inc_stat(intf, stat) \
444 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
445 #define ipmi_get_stat(intf, stat) \
446 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
449 static void free_recv_msg_list(struct list_head *q)
451 struct ipmi_recv_msg *msg, *msg2;
453 list_for_each_entry_safe(msg, msg2, q, link) {
454 list_del(&msg->link);
455 ipmi_free_recv_msg(msg);
459 static void free_smi_msg_list(struct list_head *q)
461 struct ipmi_smi_msg *msg, *msg2;
463 list_for_each_entry_safe(msg, msg2, q, link) {
464 list_del(&msg->link);
465 ipmi_free_smi_msg(msg);
469 static void clean_up_interface_data(ipmi_smi_t intf)
471 int i;
472 struct cmd_rcvr *rcvr, *rcvr2;
473 struct list_head list;
475 free_smi_msg_list(&intf->waiting_msgs);
476 free_recv_msg_list(&intf->waiting_events);
479 * Wholesale remove all the entries from the list in the
480 * interface and wait for RCU to know that none are in use.
482 mutex_lock(&intf->cmd_rcvrs_mutex);
483 INIT_LIST_HEAD(&list);
484 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
485 mutex_unlock(&intf->cmd_rcvrs_mutex);
487 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
488 kfree(rcvr);
490 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
491 if ((intf->seq_table[i].inuse)
492 && (intf->seq_table[i].recv_msg))
493 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
497 static void intf_free(struct kref *ref)
499 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
501 clean_up_interface_data(intf);
502 kfree(intf);
505 struct watcher_entry {
506 int intf_num;
507 ipmi_smi_t intf;
508 struct list_head link;
511 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
513 ipmi_smi_t intf;
514 LIST_HEAD(to_deliver);
515 struct watcher_entry *e, *e2;
517 mutex_lock(&smi_watchers_mutex);
519 mutex_lock(&ipmi_interfaces_mutex);
521 /* Build a list of things to deliver. */
522 list_for_each_entry(intf, &ipmi_interfaces, link) {
523 if (intf->intf_num == -1)
524 continue;
525 e = kmalloc(sizeof(*e), GFP_KERNEL);
526 if (!e)
527 goto out_err;
528 kref_get(&intf->refcount);
529 e->intf = intf;
530 e->intf_num = intf->intf_num;
531 list_add_tail(&e->link, &to_deliver);
534 /* We will succeed, so add it to the list. */
535 list_add(&watcher->link, &smi_watchers);
537 mutex_unlock(&ipmi_interfaces_mutex);
539 list_for_each_entry_safe(e, e2, &to_deliver, link) {
540 list_del(&e->link);
541 watcher->new_smi(e->intf_num, e->intf->si_dev);
542 kref_put(&e->intf->refcount, intf_free);
543 kfree(e);
546 mutex_unlock(&smi_watchers_mutex);
548 return 0;
550 out_err:
551 mutex_unlock(&ipmi_interfaces_mutex);
552 mutex_unlock(&smi_watchers_mutex);
553 list_for_each_entry_safe(e, e2, &to_deliver, link) {
554 list_del(&e->link);
555 kref_put(&e->intf->refcount, intf_free);
556 kfree(e);
558 return -ENOMEM;
560 EXPORT_SYMBOL(ipmi_smi_watcher_register);
562 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
564 mutex_lock(&smi_watchers_mutex);
565 list_del(&(watcher->link));
566 mutex_unlock(&smi_watchers_mutex);
567 return 0;
569 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
572 * Must be called with smi_watchers_mutex held.
574 static void
575 call_smi_watchers(int i, struct device *dev)
577 struct ipmi_smi_watcher *w;
579 list_for_each_entry(w, &smi_watchers, link) {
580 if (try_module_get(w->owner)) {
581 w->new_smi(i, dev);
582 module_put(w->owner);
587 static int
588 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
590 if (addr1->addr_type != addr2->addr_type)
591 return 0;
593 if (addr1->channel != addr2->channel)
594 return 0;
596 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
597 struct ipmi_system_interface_addr *smi_addr1
598 = (struct ipmi_system_interface_addr *) addr1;
599 struct ipmi_system_interface_addr *smi_addr2
600 = (struct ipmi_system_interface_addr *) addr2;
601 return (smi_addr1->lun == smi_addr2->lun);
604 if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
605 || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
606 struct ipmi_ipmb_addr *ipmb_addr1
607 = (struct ipmi_ipmb_addr *) addr1;
608 struct ipmi_ipmb_addr *ipmb_addr2
609 = (struct ipmi_ipmb_addr *) addr2;
611 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
612 && (ipmb_addr1->lun == ipmb_addr2->lun));
615 if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
616 struct ipmi_lan_addr *lan_addr1
617 = (struct ipmi_lan_addr *) addr1;
618 struct ipmi_lan_addr *lan_addr2
619 = (struct ipmi_lan_addr *) addr2;
621 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
622 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
623 && (lan_addr1->session_handle
624 == lan_addr2->session_handle)
625 && (lan_addr1->lun == lan_addr2->lun));
628 return 1;
631 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
633 if (len < sizeof(struct ipmi_system_interface_addr))
634 return -EINVAL;
636 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
637 if (addr->channel != IPMI_BMC_CHANNEL)
638 return -EINVAL;
639 return 0;
642 if ((addr->channel == IPMI_BMC_CHANNEL)
643 || (addr->channel >= IPMI_MAX_CHANNELS)
644 || (addr->channel < 0))
645 return -EINVAL;
647 if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
648 || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
649 if (len < sizeof(struct ipmi_ipmb_addr))
650 return -EINVAL;
651 return 0;
654 if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
655 if (len < sizeof(struct ipmi_lan_addr))
656 return -EINVAL;
657 return 0;
660 return -EINVAL;
662 EXPORT_SYMBOL(ipmi_validate_addr);
664 unsigned int ipmi_addr_length(int addr_type)
666 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
667 return sizeof(struct ipmi_system_interface_addr);
669 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
670 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
671 return sizeof(struct ipmi_ipmb_addr);
673 if (addr_type == IPMI_LAN_ADDR_TYPE)
674 return sizeof(struct ipmi_lan_addr);
676 return 0;
678 EXPORT_SYMBOL(ipmi_addr_length);
680 static void deliver_response(struct ipmi_recv_msg *msg)
682 if (!msg->user) {
683 ipmi_smi_t intf = msg->user_msg_data;
685 /* Special handling for NULL users. */
686 if (intf->null_user_handler) {
687 intf->null_user_handler(intf, msg);
688 ipmi_inc_stat(intf, handled_local_responses);
689 } else {
690 /* No handler, so give up. */
691 ipmi_inc_stat(intf, unhandled_local_responses);
693 ipmi_free_recv_msg(msg);
694 } else {
695 ipmi_user_t user = msg->user;
696 user->handler->ipmi_recv_hndl(msg, user->handler_data);
700 static void
701 deliver_err_response(struct ipmi_recv_msg *msg, int err)
703 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
704 msg->msg_data[0] = err;
705 msg->msg.netfn |= 1; /* Convert to a response. */
706 msg->msg.data_len = 1;
707 msg->msg.data = msg->msg_data;
708 deliver_response(msg);
712 * Find the next sequence number not being used and add the given
713 * message with the given timeout to the sequence table. This must be
714 * called with the interface's seq_lock held.
716 static int intf_next_seq(ipmi_smi_t intf,
717 struct ipmi_recv_msg *recv_msg,
718 unsigned long timeout,
719 int retries,
720 int broadcast,
721 unsigned char *seq,
722 long *seqid)
724 int rv = 0;
725 unsigned int i;
727 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
728 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
729 if (!intf->seq_table[i].inuse)
730 break;
733 if (!intf->seq_table[i].inuse) {
734 intf->seq_table[i].recv_msg = recv_msg;
737 * Start with the maximum timeout, when the send response
738 * comes in we will start the real timer.
740 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
741 intf->seq_table[i].orig_timeout = timeout;
742 intf->seq_table[i].retries_left = retries;
743 intf->seq_table[i].broadcast = broadcast;
744 intf->seq_table[i].inuse = 1;
745 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
746 *seq = i;
747 *seqid = intf->seq_table[i].seqid;
748 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
749 } else {
750 rv = -EAGAIN;
753 return rv;
757 * Return the receive message for the given sequence number and
758 * release the sequence number so it can be reused. Some other data
759 * is passed in to be sure the message matches up correctly (to help
760 * guard against message coming in after their timeout and the
761 * sequence number being reused).
763 static int intf_find_seq(ipmi_smi_t intf,
764 unsigned char seq,
765 short channel,
766 unsigned char cmd,
767 unsigned char netfn,
768 struct ipmi_addr *addr,
769 struct ipmi_recv_msg **recv_msg)
771 int rv = -ENODEV;
772 unsigned long flags;
774 if (seq >= IPMI_IPMB_NUM_SEQ)
775 return -EINVAL;
777 spin_lock_irqsave(&(intf->seq_lock), flags);
778 if (intf->seq_table[seq].inuse) {
779 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
781 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
782 && (msg->msg.netfn == netfn)
783 && (ipmi_addr_equal(addr, &(msg->addr)))) {
784 *recv_msg = msg;
785 intf->seq_table[seq].inuse = 0;
786 rv = 0;
789 spin_unlock_irqrestore(&(intf->seq_lock), flags);
791 return rv;
795 /* Start the timer for a specific sequence table entry. */
796 static int intf_start_seq_timer(ipmi_smi_t intf,
797 long msgid)
799 int rv = -ENODEV;
800 unsigned long flags;
801 unsigned char seq;
802 unsigned long seqid;
805 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
807 spin_lock_irqsave(&(intf->seq_lock), flags);
809 * We do this verification because the user can be deleted
810 * while a message is outstanding.
812 if ((intf->seq_table[seq].inuse)
813 && (intf->seq_table[seq].seqid == seqid)) {
814 struct seq_table *ent = &(intf->seq_table[seq]);
815 ent->timeout = ent->orig_timeout;
816 rv = 0;
818 spin_unlock_irqrestore(&(intf->seq_lock), flags);
820 return rv;
823 /* Got an error for the send message for a specific sequence number. */
824 static int intf_err_seq(ipmi_smi_t intf,
825 long msgid,
826 unsigned int err)
828 int rv = -ENODEV;
829 unsigned long flags;
830 unsigned char seq;
831 unsigned long seqid;
832 struct ipmi_recv_msg *msg = NULL;
835 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
837 spin_lock_irqsave(&(intf->seq_lock), flags);
839 * We do this verification because the user can be deleted
840 * while a message is outstanding.
842 if ((intf->seq_table[seq].inuse)
843 && (intf->seq_table[seq].seqid == seqid)) {
844 struct seq_table *ent = &(intf->seq_table[seq]);
846 ent->inuse = 0;
847 msg = ent->recv_msg;
848 rv = 0;
850 spin_unlock_irqrestore(&(intf->seq_lock), flags);
852 if (msg)
853 deliver_err_response(msg, err);
855 return rv;
859 int ipmi_create_user(unsigned int if_num,
860 struct ipmi_user_hndl *handler,
861 void *handler_data,
862 ipmi_user_t *user)
864 unsigned long flags;
865 ipmi_user_t new_user;
866 int rv = 0;
867 ipmi_smi_t intf;
870 * There is no module usecount here, because it's not
871 * required. Since this can only be used by and called from
872 * other modules, they will implicitly use this module, and
873 * thus this can't be removed unless the other modules are
874 * removed.
877 if (handler == NULL)
878 return -EINVAL;
881 * Make sure the driver is actually initialized, this handles
882 * problems with initialization order.
884 if (!initialized) {
885 rv = ipmi_init_msghandler();
886 if (rv)
887 return rv;
890 * The init code doesn't return an error if it was turned
891 * off, but it won't initialize. Check that.
893 if (!initialized)
894 return -ENODEV;
897 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
898 if (!new_user)
899 return -ENOMEM;
901 mutex_lock(&ipmi_interfaces_mutex);
902 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
903 if (intf->intf_num == if_num)
904 goto found;
906 /* Not found, return an error */
907 rv = -EINVAL;
908 goto out_kfree;
910 found:
911 /* Note that each existing user holds a refcount to the interface. */
912 kref_get(&intf->refcount);
914 kref_init(&new_user->refcount);
915 new_user->handler = handler;
916 new_user->handler_data = handler_data;
917 new_user->intf = intf;
918 new_user->gets_events = 0;
920 if (!try_module_get(intf->handlers->owner)) {
921 rv = -ENODEV;
922 goto out_kref;
925 if (intf->handlers->inc_usecount) {
926 rv = intf->handlers->inc_usecount(intf->send_info);
927 if (rv) {
928 module_put(intf->handlers->owner);
929 goto out_kref;
934 * Hold the lock so intf->handlers is guaranteed to be good
935 * until now
937 mutex_unlock(&ipmi_interfaces_mutex);
939 new_user->valid = 1;
940 spin_lock_irqsave(&intf->seq_lock, flags);
941 list_add_rcu(&new_user->link, &intf->users);
942 spin_unlock_irqrestore(&intf->seq_lock, flags);
943 *user = new_user;
944 return 0;
946 out_kref:
947 kref_put(&intf->refcount, intf_free);
948 out_kfree:
949 mutex_unlock(&ipmi_interfaces_mutex);
950 kfree(new_user);
951 return rv;
953 EXPORT_SYMBOL(ipmi_create_user);
955 static void free_user(struct kref *ref)
957 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
958 kfree(user);
961 int ipmi_destroy_user(ipmi_user_t user)
963 ipmi_smi_t intf = user->intf;
964 int i;
965 unsigned long flags;
966 struct cmd_rcvr *rcvr;
967 struct cmd_rcvr *rcvrs = NULL;
969 user->valid = 0;
971 /* Remove the user from the interface's sequence table. */
972 spin_lock_irqsave(&intf->seq_lock, flags);
973 list_del_rcu(&user->link);
975 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
976 if (intf->seq_table[i].inuse
977 && (intf->seq_table[i].recv_msg->user == user)) {
978 intf->seq_table[i].inuse = 0;
979 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
982 spin_unlock_irqrestore(&intf->seq_lock, flags);
985 * Remove the user from the command receiver's table. First
986 * we build a list of everything (not using the standard link,
987 * since other things may be using it till we do
988 * synchronize_rcu()) then free everything in that list.
990 mutex_lock(&intf->cmd_rcvrs_mutex);
991 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
992 if (rcvr->user == user) {
993 list_del_rcu(&rcvr->link);
994 rcvr->next = rcvrs;
995 rcvrs = rcvr;
998 mutex_unlock(&intf->cmd_rcvrs_mutex);
999 synchronize_rcu();
1000 while (rcvrs) {
1001 rcvr = rcvrs;
1002 rcvrs = rcvr->next;
1003 kfree(rcvr);
1006 mutex_lock(&ipmi_interfaces_mutex);
1007 if (intf->handlers) {
1008 module_put(intf->handlers->owner);
1009 if (intf->handlers->dec_usecount)
1010 intf->handlers->dec_usecount(intf->send_info);
1012 mutex_unlock(&ipmi_interfaces_mutex);
1014 kref_put(&intf->refcount, intf_free);
1016 kref_put(&user->refcount, free_user);
1018 return 0;
1020 EXPORT_SYMBOL(ipmi_destroy_user);
1022 void ipmi_get_version(ipmi_user_t user,
1023 unsigned char *major,
1024 unsigned char *minor)
1026 *major = user->intf->ipmi_version_major;
1027 *minor = user->intf->ipmi_version_minor;
1029 EXPORT_SYMBOL(ipmi_get_version);
1031 int ipmi_set_my_address(ipmi_user_t user,
1032 unsigned int channel,
1033 unsigned char address)
1035 if (channel >= IPMI_MAX_CHANNELS)
1036 return -EINVAL;
1037 user->intf->channels[channel].address = address;
1038 return 0;
1040 EXPORT_SYMBOL(ipmi_set_my_address);
1042 int ipmi_get_my_address(ipmi_user_t user,
1043 unsigned int channel,
1044 unsigned char *address)
1046 if (channel >= IPMI_MAX_CHANNELS)
1047 return -EINVAL;
1048 *address = user->intf->channels[channel].address;
1049 return 0;
1051 EXPORT_SYMBOL(ipmi_get_my_address);
1053 int ipmi_set_my_LUN(ipmi_user_t user,
1054 unsigned int channel,
1055 unsigned char LUN)
1057 if (channel >= IPMI_MAX_CHANNELS)
1058 return -EINVAL;
1059 user->intf->channels[channel].lun = LUN & 0x3;
1060 return 0;
1062 EXPORT_SYMBOL(ipmi_set_my_LUN);
1064 int ipmi_get_my_LUN(ipmi_user_t user,
1065 unsigned int channel,
1066 unsigned char *address)
1068 if (channel >= IPMI_MAX_CHANNELS)
1069 return -EINVAL;
1070 *address = user->intf->channels[channel].lun;
1071 return 0;
1073 EXPORT_SYMBOL(ipmi_get_my_LUN);
1075 int ipmi_get_maintenance_mode(ipmi_user_t user)
1077 int mode;
1078 unsigned long flags;
1080 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1081 mode = user->intf->maintenance_mode;
1082 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1084 return mode;
1086 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1088 static void maintenance_mode_update(ipmi_smi_t intf)
1090 if (intf->handlers->set_maintenance_mode)
1091 intf->handlers->set_maintenance_mode(
1092 intf->send_info, intf->maintenance_mode_enable);
1095 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1097 int rv = 0;
1098 unsigned long flags;
1099 ipmi_smi_t intf = user->intf;
1101 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1102 if (intf->maintenance_mode != mode) {
1103 switch (mode) {
1104 case IPMI_MAINTENANCE_MODE_AUTO:
1105 intf->maintenance_mode = mode;
1106 intf->maintenance_mode_enable
1107 = (intf->auto_maintenance_timeout > 0);
1108 break;
1110 case IPMI_MAINTENANCE_MODE_OFF:
1111 intf->maintenance_mode = mode;
1112 intf->maintenance_mode_enable = 0;
1113 break;
1115 case IPMI_MAINTENANCE_MODE_ON:
1116 intf->maintenance_mode = mode;
1117 intf->maintenance_mode_enable = 1;
1118 break;
1120 default:
1121 rv = -EINVAL;
1122 goto out_unlock;
1125 maintenance_mode_update(intf);
1127 out_unlock:
1128 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1130 return rv;
1132 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1134 int ipmi_set_gets_events(ipmi_user_t user, int val)
1136 unsigned long flags;
1137 ipmi_smi_t intf = user->intf;
1138 struct ipmi_recv_msg *msg, *msg2;
1139 struct list_head msgs;
1141 INIT_LIST_HEAD(&msgs);
1143 spin_lock_irqsave(&intf->events_lock, flags);
1144 user->gets_events = val;
1146 if (intf->delivering_events)
1148 * Another thread is delivering events for this, so
1149 * let it handle any new events.
1151 goto out;
1153 /* Deliver any queued events. */
1154 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1155 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1156 list_move_tail(&msg->link, &msgs);
1157 intf->waiting_events_count = 0;
1158 if (intf->event_msg_printed) {
1159 printk(KERN_WARNING PFX "Event queue no longer"
1160 " full\n");
1161 intf->event_msg_printed = 0;
1164 intf->delivering_events = 1;
1165 spin_unlock_irqrestore(&intf->events_lock, flags);
1167 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1168 msg->user = user;
1169 kref_get(&user->refcount);
1170 deliver_response(msg);
1173 spin_lock_irqsave(&intf->events_lock, flags);
1174 intf->delivering_events = 0;
1177 out:
1178 spin_unlock_irqrestore(&intf->events_lock, flags);
1180 return 0;
1182 EXPORT_SYMBOL(ipmi_set_gets_events);
1184 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1185 unsigned char netfn,
1186 unsigned char cmd,
1187 unsigned char chan)
1189 struct cmd_rcvr *rcvr;
1191 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1192 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1193 && (rcvr->chans & (1 << chan)))
1194 return rcvr;
1196 return NULL;
1199 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1200 unsigned char netfn,
1201 unsigned char cmd,
1202 unsigned int chans)
1204 struct cmd_rcvr *rcvr;
1206 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1207 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1208 && (rcvr->chans & chans))
1209 return 0;
1211 return 1;
1214 int ipmi_register_for_cmd(ipmi_user_t user,
1215 unsigned char netfn,
1216 unsigned char cmd,
1217 unsigned int chans)
1219 ipmi_smi_t intf = user->intf;
1220 struct cmd_rcvr *rcvr;
1221 int rv = 0;
1224 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1225 if (!rcvr)
1226 return -ENOMEM;
1227 rcvr->cmd = cmd;
1228 rcvr->netfn = netfn;
1229 rcvr->chans = chans;
1230 rcvr->user = user;
1232 mutex_lock(&intf->cmd_rcvrs_mutex);
1233 /* Make sure the command/netfn is not already registered. */
1234 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1235 rv = -EBUSY;
1236 goto out_unlock;
1239 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1241 out_unlock:
1242 mutex_unlock(&intf->cmd_rcvrs_mutex);
1243 if (rv)
1244 kfree(rcvr);
1246 return rv;
1248 EXPORT_SYMBOL(ipmi_register_for_cmd);
1250 int ipmi_unregister_for_cmd(ipmi_user_t user,
1251 unsigned char netfn,
1252 unsigned char cmd,
1253 unsigned int chans)
1255 ipmi_smi_t intf = user->intf;
1256 struct cmd_rcvr *rcvr;
1257 struct cmd_rcvr *rcvrs = NULL;
1258 int i, rv = -ENOENT;
1260 mutex_lock(&intf->cmd_rcvrs_mutex);
1261 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1262 if (((1 << i) & chans) == 0)
1263 continue;
1264 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1265 if (rcvr == NULL)
1266 continue;
1267 if (rcvr->user == user) {
1268 rv = 0;
1269 rcvr->chans &= ~chans;
1270 if (rcvr->chans == 0) {
1271 list_del_rcu(&rcvr->link);
1272 rcvr->next = rcvrs;
1273 rcvrs = rcvr;
1277 mutex_unlock(&intf->cmd_rcvrs_mutex);
1278 synchronize_rcu();
1279 while (rcvrs) {
1280 rcvr = rcvrs;
1281 rcvrs = rcvr->next;
1282 kfree(rcvr);
1284 return rv;
1286 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1288 static unsigned char
1289 ipmb_checksum(unsigned char *data, int size)
1291 unsigned char csum = 0;
1293 for (; size > 0; size--, data++)
1294 csum += *data;
1296 return -csum;
1299 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1300 struct kernel_ipmi_msg *msg,
1301 struct ipmi_ipmb_addr *ipmb_addr,
1302 long msgid,
1303 unsigned char ipmb_seq,
1304 int broadcast,
1305 unsigned char source_address,
1306 unsigned char source_lun)
1308 int i = broadcast;
1310 /* Format the IPMB header data. */
1311 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1312 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1313 smi_msg->data[2] = ipmb_addr->channel;
1314 if (broadcast)
1315 smi_msg->data[3] = 0;
1316 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1317 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1318 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1319 smi_msg->data[i+6] = source_address;
1320 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1321 smi_msg->data[i+8] = msg->cmd;
1323 /* Now tack on the data to the message. */
1324 if (msg->data_len > 0)
1325 memcpy(&(smi_msg->data[i+9]), msg->data,
1326 msg->data_len);
1327 smi_msg->data_size = msg->data_len + 9;
1329 /* Now calculate the checksum and tack it on. */
1330 smi_msg->data[i+smi_msg->data_size]
1331 = ipmb_checksum(&(smi_msg->data[i+6]),
1332 smi_msg->data_size-6);
1335 * Add on the checksum size and the offset from the
1336 * broadcast.
1338 smi_msg->data_size += 1 + i;
1340 smi_msg->msgid = msgid;
1343 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1344 struct kernel_ipmi_msg *msg,
1345 struct ipmi_lan_addr *lan_addr,
1346 long msgid,
1347 unsigned char ipmb_seq,
1348 unsigned char source_lun)
1350 /* Format the IPMB header data. */
1351 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1352 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1353 smi_msg->data[2] = lan_addr->channel;
1354 smi_msg->data[3] = lan_addr->session_handle;
1355 smi_msg->data[4] = lan_addr->remote_SWID;
1356 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1357 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1358 smi_msg->data[7] = lan_addr->local_SWID;
1359 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1360 smi_msg->data[9] = msg->cmd;
1362 /* Now tack on the data to the message. */
1363 if (msg->data_len > 0)
1364 memcpy(&(smi_msg->data[10]), msg->data,
1365 msg->data_len);
1366 smi_msg->data_size = msg->data_len + 10;
1368 /* Now calculate the checksum and tack it on. */
1369 smi_msg->data[smi_msg->data_size]
1370 = ipmb_checksum(&(smi_msg->data[7]),
1371 smi_msg->data_size-7);
1374 * Add on the checksum size and the offset from the
1375 * broadcast.
1377 smi_msg->data_size += 1;
1379 smi_msg->msgid = msgid;
1383 * Separate from ipmi_request so that the user does not have to be
1384 * supplied in certain circumstances (mainly at panic time). If
1385 * messages are supplied, they will be freed, even if an error
1386 * occurs.
1388 static int i_ipmi_request(ipmi_user_t user,
1389 ipmi_smi_t intf,
1390 struct ipmi_addr *addr,
1391 long msgid,
1392 struct kernel_ipmi_msg *msg,
1393 void *user_msg_data,
1394 void *supplied_smi,
1395 struct ipmi_recv_msg *supplied_recv,
1396 int priority,
1397 unsigned char source_address,
1398 unsigned char source_lun,
1399 int retries,
1400 unsigned int retry_time_ms)
1402 int rv = 0;
1403 struct ipmi_smi_msg *smi_msg;
1404 struct ipmi_recv_msg *recv_msg;
1405 unsigned long flags;
1406 struct ipmi_smi_handlers *handlers;
1409 if (supplied_recv)
1410 recv_msg = supplied_recv;
1411 else {
1412 recv_msg = ipmi_alloc_recv_msg();
1413 if (recv_msg == NULL)
1414 return -ENOMEM;
1416 recv_msg->user_msg_data = user_msg_data;
1418 if (supplied_smi)
1419 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1420 else {
1421 smi_msg = ipmi_alloc_smi_msg();
1422 if (smi_msg == NULL) {
1423 ipmi_free_recv_msg(recv_msg);
1424 return -ENOMEM;
1428 rcu_read_lock();
1429 handlers = intf->handlers;
1430 if (!handlers) {
1431 rv = -ENODEV;
1432 goto out_err;
1435 recv_msg->user = user;
1436 if (user)
1437 kref_get(&user->refcount);
1438 recv_msg->msgid = msgid;
1440 * Store the message to send in the receive message so timeout
1441 * responses can get the proper response data.
1443 recv_msg->msg = *msg;
1445 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1446 struct ipmi_system_interface_addr *smi_addr;
1448 if (msg->netfn & 1) {
1449 /* Responses are not allowed to the SMI. */
1450 rv = -EINVAL;
1451 goto out_err;
1454 smi_addr = (struct ipmi_system_interface_addr *) addr;
1455 if (smi_addr->lun > 3) {
1456 ipmi_inc_stat(intf, sent_invalid_commands);
1457 rv = -EINVAL;
1458 goto out_err;
1461 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1463 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1464 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1465 || (msg->cmd == IPMI_GET_MSG_CMD)
1466 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1468 * We don't let the user do these, since we manage
1469 * the sequence numbers.
1471 ipmi_inc_stat(intf, sent_invalid_commands);
1472 rv = -EINVAL;
1473 goto out_err;
1476 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1477 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1478 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1479 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1480 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1481 intf->auto_maintenance_timeout
1482 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1483 if (!intf->maintenance_mode
1484 && !intf->maintenance_mode_enable) {
1485 intf->maintenance_mode_enable = 1;
1486 maintenance_mode_update(intf);
1488 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1489 flags);
1492 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1493 ipmi_inc_stat(intf, sent_invalid_commands);
1494 rv = -EMSGSIZE;
1495 goto out_err;
1498 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1499 smi_msg->data[1] = msg->cmd;
1500 smi_msg->msgid = msgid;
1501 smi_msg->user_data = recv_msg;
1502 if (msg->data_len > 0)
1503 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1504 smi_msg->data_size = msg->data_len + 2;
1505 ipmi_inc_stat(intf, sent_local_commands);
1506 } else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1507 || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
1508 struct ipmi_ipmb_addr *ipmb_addr;
1509 unsigned char ipmb_seq;
1510 long seqid;
1511 int broadcast = 0;
1513 if (addr->channel >= IPMI_MAX_CHANNELS) {
1514 ipmi_inc_stat(intf, sent_invalid_commands);
1515 rv = -EINVAL;
1516 goto out_err;
1519 if (intf->channels[addr->channel].medium
1520 != IPMI_CHANNEL_MEDIUM_IPMB) {
1521 ipmi_inc_stat(intf, sent_invalid_commands);
1522 rv = -EINVAL;
1523 goto out_err;
1526 if (retries < 0) {
1527 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1528 retries = 0; /* Don't retry broadcasts. */
1529 else
1530 retries = 4;
1532 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1534 * Broadcasts add a zero at the beginning of the
1535 * message, but otherwise is the same as an IPMB
1536 * address.
1538 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1539 broadcast = 1;
1543 /* Default to 1 second retries. */
1544 if (retry_time_ms == 0)
1545 retry_time_ms = 1000;
1548 * 9 for the header and 1 for the checksum, plus
1549 * possibly one for the broadcast.
1551 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1552 ipmi_inc_stat(intf, sent_invalid_commands);
1553 rv = -EMSGSIZE;
1554 goto out_err;
1557 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1558 if (ipmb_addr->lun > 3) {
1559 ipmi_inc_stat(intf, sent_invalid_commands);
1560 rv = -EINVAL;
1561 goto out_err;
1564 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1566 if (recv_msg->msg.netfn & 0x1) {
1568 * It's a response, so use the user's sequence
1569 * from msgid.
1571 ipmi_inc_stat(intf, sent_ipmb_responses);
1572 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1573 msgid, broadcast,
1574 source_address, source_lun);
1577 * Save the receive message so we can use it
1578 * to deliver the response.
1580 smi_msg->user_data = recv_msg;
1581 } else {
1582 /* It's a command, so get a sequence for it. */
1584 spin_lock_irqsave(&(intf->seq_lock), flags);
1586 ipmi_inc_stat(intf, sent_ipmb_commands);
1589 * Create a sequence number with a 1 second
1590 * timeout and 4 retries.
1592 rv = intf_next_seq(intf,
1593 recv_msg,
1594 retry_time_ms,
1595 retries,
1596 broadcast,
1597 &ipmb_seq,
1598 &seqid);
1599 if (rv) {
1601 * We have used up all the sequence numbers,
1602 * probably, so abort.
1604 spin_unlock_irqrestore(&(intf->seq_lock),
1605 flags);
1606 goto out_err;
1610 * Store the sequence number in the message,
1611 * so that when the send message response
1612 * comes back we can start the timer.
1614 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1615 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1616 ipmb_seq, broadcast,
1617 source_address, source_lun);
1620 * Copy the message into the recv message data, so we
1621 * can retransmit it later if necessary.
1623 memcpy(recv_msg->msg_data, smi_msg->data,
1624 smi_msg->data_size);
1625 recv_msg->msg.data = recv_msg->msg_data;
1626 recv_msg->msg.data_len = smi_msg->data_size;
1629 * We don't unlock until here, because we need
1630 * to copy the completed message into the
1631 * recv_msg before we release the lock.
1632 * Otherwise, race conditions may bite us. I
1633 * know that's pretty paranoid, but I prefer
1634 * to be correct.
1636 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1638 } else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1639 struct ipmi_lan_addr *lan_addr;
1640 unsigned char ipmb_seq;
1641 long seqid;
1643 if (addr->channel >= IPMI_MAX_CHANNELS) {
1644 ipmi_inc_stat(intf, sent_invalid_commands);
1645 rv = -EINVAL;
1646 goto out_err;
1649 if ((intf->channels[addr->channel].medium
1650 != IPMI_CHANNEL_MEDIUM_8023LAN)
1651 && (intf->channels[addr->channel].medium
1652 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1653 ipmi_inc_stat(intf, sent_invalid_commands);
1654 rv = -EINVAL;
1655 goto out_err;
1658 retries = 4;
1660 /* Default to 1 second retries. */
1661 if (retry_time_ms == 0)
1662 retry_time_ms = 1000;
1664 /* 11 for the header and 1 for the checksum. */
1665 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1666 ipmi_inc_stat(intf, sent_invalid_commands);
1667 rv = -EMSGSIZE;
1668 goto out_err;
1671 lan_addr = (struct ipmi_lan_addr *) addr;
1672 if (lan_addr->lun > 3) {
1673 ipmi_inc_stat(intf, sent_invalid_commands);
1674 rv = -EINVAL;
1675 goto out_err;
1678 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1680 if (recv_msg->msg.netfn & 0x1) {
1682 * It's a response, so use the user's sequence
1683 * from msgid.
1685 ipmi_inc_stat(intf, sent_lan_responses);
1686 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1687 msgid, source_lun);
1690 * Save the receive message so we can use it
1691 * to deliver the response.
1693 smi_msg->user_data = recv_msg;
1694 } else {
1695 /* It's a command, so get a sequence for it. */
1697 spin_lock_irqsave(&(intf->seq_lock), flags);
1699 ipmi_inc_stat(intf, sent_lan_commands);
1702 * Create a sequence number with a 1 second
1703 * timeout and 4 retries.
1705 rv = intf_next_seq(intf,
1706 recv_msg,
1707 retry_time_ms,
1708 retries,
1710 &ipmb_seq,
1711 &seqid);
1712 if (rv) {
1714 * We have used up all the sequence numbers,
1715 * probably, so abort.
1717 spin_unlock_irqrestore(&(intf->seq_lock),
1718 flags);
1719 goto out_err;
1723 * Store the sequence number in the message,
1724 * so that when the send message response
1725 * comes back we can start the timer.
1727 format_lan_msg(smi_msg, msg, lan_addr,
1728 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1729 ipmb_seq, source_lun);
1732 * Copy the message into the recv message data, so we
1733 * can retransmit it later if necessary.
1735 memcpy(recv_msg->msg_data, smi_msg->data,
1736 smi_msg->data_size);
1737 recv_msg->msg.data = recv_msg->msg_data;
1738 recv_msg->msg.data_len = smi_msg->data_size;
1741 * We don't unlock until here, because we need
1742 * to copy the completed message into the
1743 * recv_msg before we release the lock.
1744 * Otherwise, race conditions may bite us. I
1745 * know that's pretty paranoid, but I prefer
1746 * to be correct.
1748 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1750 } else {
1751 /* Unknown address type. */
1752 ipmi_inc_stat(intf, sent_invalid_commands);
1753 rv = -EINVAL;
1754 goto out_err;
1757 #ifdef DEBUG_MSGING
1759 int m;
1760 for (m = 0; m < smi_msg->data_size; m++)
1761 printk(" %2.2x", smi_msg->data[m]);
1762 printk("\n");
1764 #endif
1766 handlers->sender(intf->send_info, smi_msg, priority);
1767 rcu_read_unlock();
1769 return 0;
1771 out_err:
1772 rcu_read_unlock();
1773 ipmi_free_smi_msg(smi_msg);
1774 ipmi_free_recv_msg(recv_msg);
1775 return rv;
1778 static int check_addr(ipmi_smi_t intf,
1779 struct ipmi_addr *addr,
1780 unsigned char *saddr,
1781 unsigned char *lun)
1783 if (addr->channel >= IPMI_MAX_CHANNELS)
1784 return -EINVAL;
1785 *lun = intf->channels[addr->channel].lun;
1786 *saddr = intf->channels[addr->channel].address;
1787 return 0;
1790 int ipmi_request_settime(ipmi_user_t user,
1791 struct ipmi_addr *addr,
1792 long msgid,
1793 struct kernel_ipmi_msg *msg,
1794 void *user_msg_data,
1795 int priority,
1796 int retries,
1797 unsigned int retry_time_ms)
1799 unsigned char saddr, lun;
1800 int rv;
1802 if (!user)
1803 return -EINVAL;
1804 rv = check_addr(user->intf, addr, &saddr, &lun);
1805 if (rv)
1806 return rv;
1807 return i_ipmi_request(user,
1808 user->intf,
1809 addr,
1810 msgid,
1811 msg,
1812 user_msg_data,
1813 NULL, NULL,
1814 priority,
1815 saddr,
1816 lun,
1817 retries,
1818 retry_time_ms);
1820 EXPORT_SYMBOL(ipmi_request_settime);
1822 int ipmi_request_supply_msgs(ipmi_user_t user,
1823 struct ipmi_addr *addr,
1824 long msgid,
1825 struct kernel_ipmi_msg *msg,
1826 void *user_msg_data,
1827 void *supplied_smi,
1828 struct ipmi_recv_msg *supplied_recv,
1829 int priority)
1831 unsigned char saddr, lun;
1832 int rv;
1834 if (!user)
1835 return -EINVAL;
1836 rv = check_addr(user->intf, addr, &saddr, &lun);
1837 if (rv)
1838 return rv;
1839 return i_ipmi_request(user,
1840 user->intf,
1841 addr,
1842 msgid,
1843 msg,
1844 user_msg_data,
1845 supplied_smi,
1846 supplied_recv,
1847 priority,
1848 saddr,
1849 lun,
1850 -1, 0);
1852 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1854 #ifdef CONFIG_PROC_FS
1855 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1856 int count, int *eof, void *data)
1858 char *out = (char *) page;
1859 ipmi_smi_t intf = data;
1860 int i;
1861 int rv = 0;
1863 for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1864 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1865 out[rv-1] = '\n'; /* Replace the final space with a newline */
1866 out[rv] = '\0';
1867 rv++;
1868 return rv;
1871 static int version_file_read_proc(char *page, char **start, off_t off,
1872 int count, int *eof, void *data)
1874 char *out = (char *) page;
1875 ipmi_smi_t intf = data;
1877 return sprintf(out, "%u.%u\n",
1878 ipmi_version_major(&intf->bmc->id),
1879 ipmi_version_minor(&intf->bmc->id));
1882 static int stat_file_read_proc(char *page, char **start, off_t off,
1883 int count, int *eof, void *data)
1885 char *out = (char *) page;
1886 ipmi_smi_t intf = data;
1888 out += sprintf(out, "sent_invalid_commands: %u\n",
1889 ipmi_get_stat(intf, sent_invalid_commands));
1890 out += sprintf(out, "sent_local_commands: %u\n",
1891 ipmi_get_stat(intf, sent_local_commands));
1892 out += sprintf(out, "handled_local_responses: %u\n",
1893 ipmi_get_stat(intf, handled_local_responses));
1894 out += sprintf(out, "unhandled_local_responses: %u\n",
1895 ipmi_get_stat(intf, unhandled_local_responses));
1896 out += sprintf(out, "sent_ipmb_commands: %u\n",
1897 ipmi_get_stat(intf, sent_ipmb_commands));
1898 out += sprintf(out, "sent_ipmb_command_errs: %u\n",
1899 ipmi_get_stat(intf, sent_ipmb_command_errs));
1900 out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1901 ipmi_get_stat(intf, retransmitted_ipmb_commands));
1902 out += sprintf(out, "timed_out_ipmb_commands: %u\n",
1903 ipmi_get_stat(intf, timed_out_ipmb_commands));
1904 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n",
1905 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1906 out += sprintf(out, "sent_ipmb_responses: %u\n",
1907 ipmi_get_stat(intf, sent_ipmb_responses));
1908 out += sprintf(out, "handled_ipmb_responses: %u\n",
1909 ipmi_get_stat(intf, handled_ipmb_responses));
1910 out += sprintf(out, "invalid_ipmb_responses: %u\n",
1911 ipmi_get_stat(intf, invalid_ipmb_responses));
1912 out += sprintf(out, "unhandled_ipmb_responses: %u\n",
1913 ipmi_get_stat(intf, unhandled_ipmb_responses));
1914 out += sprintf(out, "sent_lan_commands: %u\n",
1915 ipmi_get_stat(intf, sent_lan_commands));
1916 out += sprintf(out, "sent_lan_command_errs: %u\n",
1917 ipmi_get_stat(intf, sent_lan_command_errs));
1918 out += sprintf(out, "retransmitted_lan_commands: %u\n",
1919 ipmi_get_stat(intf, retransmitted_lan_commands));
1920 out += sprintf(out, "timed_out_lan_commands: %u\n",
1921 ipmi_get_stat(intf, timed_out_lan_commands));
1922 out += sprintf(out, "sent_lan_responses: %u\n",
1923 ipmi_get_stat(intf, sent_lan_responses));
1924 out += sprintf(out, "handled_lan_responses: %u\n",
1925 ipmi_get_stat(intf, handled_lan_responses));
1926 out += sprintf(out, "invalid_lan_responses: %u\n",
1927 ipmi_get_stat(intf, invalid_lan_responses));
1928 out += sprintf(out, "unhandled_lan_responses: %u\n",
1929 ipmi_get_stat(intf, unhandled_lan_responses));
1930 out += sprintf(out, "handled_commands: %u\n",
1931 ipmi_get_stat(intf, handled_commands));
1932 out += sprintf(out, "invalid_commands: %u\n",
1933 ipmi_get_stat(intf, invalid_commands));
1934 out += sprintf(out, "unhandled_commands: %u\n",
1935 ipmi_get_stat(intf, unhandled_commands));
1936 out += sprintf(out, "invalid_events: %u\n",
1937 ipmi_get_stat(intf, invalid_events));
1938 out += sprintf(out, "events: %u\n",
1939 ipmi_get_stat(intf, events));
1941 return (out - ((char *) page));
1943 #endif /* CONFIG_PROC_FS */
1945 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1946 read_proc_t *read_proc,
1947 void *data)
1949 int rv = 0;
1950 #ifdef CONFIG_PROC_FS
1951 struct proc_dir_entry *file;
1952 struct ipmi_proc_entry *entry;
1954 /* Create a list element. */
1955 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1956 if (!entry)
1957 return -ENOMEM;
1958 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1959 if (!entry->name) {
1960 kfree(entry);
1961 return -ENOMEM;
1963 strcpy(entry->name, name);
1965 file = create_proc_entry(name, 0, smi->proc_dir);
1966 if (!file) {
1967 kfree(entry->name);
1968 kfree(entry);
1969 rv = -ENOMEM;
1970 } else {
1971 file->data = data;
1972 file->read_proc = read_proc;
1974 mutex_lock(&smi->proc_entry_lock);
1975 /* Stick it on the list. */
1976 entry->next = smi->proc_entries;
1977 smi->proc_entries = entry;
1978 mutex_unlock(&smi->proc_entry_lock);
1980 #endif /* CONFIG_PROC_FS */
1982 return rv;
1984 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
1986 static int add_proc_entries(ipmi_smi_t smi, int num)
1988 int rv = 0;
1990 #ifdef CONFIG_PROC_FS
1991 sprintf(smi->proc_dir_name, "%d", num);
1992 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1993 if (!smi->proc_dir)
1994 rv = -ENOMEM;
1996 if (rv == 0)
1997 rv = ipmi_smi_add_proc_entry(smi, "stats",
1998 stat_file_read_proc,
1999 smi);
2001 if (rv == 0)
2002 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2003 ipmb_file_read_proc,
2004 smi);
2006 if (rv == 0)
2007 rv = ipmi_smi_add_proc_entry(smi, "version",
2008 version_file_read_proc,
2009 smi);
2010 #endif /* CONFIG_PROC_FS */
2012 return rv;
2015 static void remove_proc_entries(ipmi_smi_t smi)
2017 #ifdef CONFIG_PROC_FS
2018 struct ipmi_proc_entry *entry;
2020 mutex_lock(&smi->proc_entry_lock);
2021 while (smi->proc_entries) {
2022 entry = smi->proc_entries;
2023 smi->proc_entries = entry->next;
2025 remove_proc_entry(entry->name, smi->proc_dir);
2026 kfree(entry->name);
2027 kfree(entry);
2029 mutex_unlock(&smi->proc_entry_lock);
2030 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2031 #endif /* CONFIG_PROC_FS */
2034 static int __find_bmc_guid(struct device *dev, void *data)
2036 unsigned char *id = data;
2037 struct bmc_device *bmc = dev_get_drvdata(dev);
2038 return memcmp(bmc->guid, id, 16) == 0;
2041 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2042 unsigned char *guid)
2044 struct device *dev;
2046 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2047 if (dev)
2048 return dev_get_drvdata(dev);
2049 else
2050 return NULL;
2053 struct prod_dev_id {
2054 unsigned int product_id;
2055 unsigned char device_id;
2058 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2060 struct prod_dev_id *id = data;
2061 struct bmc_device *bmc = dev_get_drvdata(dev);
2063 return (bmc->id.product_id == id->product_id
2064 && bmc->id.device_id == id->device_id);
2067 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2068 struct device_driver *drv,
2069 unsigned int product_id, unsigned char device_id)
2071 struct prod_dev_id id = {
2072 .product_id = product_id,
2073 .device_id = device_id,
2075 struct device *dev;
2077 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2078 if (dev)
2079 return dev_get_drvdata(dev);
2080 else
2081 return NULL;
2084 static ssize_t device_id_show(struct device *dev,
2085 struct device_attribute *attr,
2086 char *buf)
2088 struct bmc_device *bmc = dev_get_drvdata(dev);
2090 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2093 static ssize_t provides_dev_sdrs_show(struct device *dev,
2094 struct device_attribute *attr,
2095 char *buf)
2097 struct bmc_device *bmc = dev_get_drvdata(dev);
2099 return snprintf(buf, 10, "%u\n",
2100 (bmc->id.device_revision & 0x80) >> 7);
2103 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2104 char *buf)
2106 struct bmc_device *bmc = dev_get_drvdata(dev);
2108 return snprintf(buf, 20, "%u\n",
2109 bmc->id.device_revision & 0x0F);
2112 static ssize_t firmware_rev_show(struct device *dev,
2113 struct device_attribute *attr,
2114 char *buf)
2116 struct bmc_device *bmc = dev_get_drvdata(dev);
2118 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2119 bmc->id.firmware_revision_2);
2122 static ssize_t ipmi_version_show(struct device *dev,
2123 struct device_attribute *attr,
2124 char *buf)
2126 struct bmc_device *bmc = dev_get_drvdata(dev);
2128 return snprintf(buf, 20, "%u.%u\n",
2129 ipmi_version_major(&bmc->id),
2130 ipmi_version_minor(&bmc->id));
2133 static ssize_t add_dev_support_show(struct device *dev,
2134 struct device_attribute *attr,
2135 char *buf)
2137 struct bmc_device *bmc = dev_get_drvdata(dev);
2139 return snprintf(buf, 10, "0x%02x\n",
2140 bmc->id.additional_device_support);
2143 static ssize_t manufacturer_id_show(struct device *dev,
2144 struct device_attribute *attr,
2145 char *buf)
2147 struct bmc_device *bmc = dev_get_drvdata(dev);
2149 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2152 static ssize_t product_id_show(struct device *dev,
2153 struct device_attribute *attr,
2154 char *buf)
2156 struct bmc_device *bmc = dev_get_drvdata(dev);
2158 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2161 static ssize_t aux_firmware_rev_show(struct device *dev,
2162 struct device_attribute *attr,
2163 char *buf)
2165 struct bmc_device *bmc = dev_get_drvdata(dev);
2167 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2168 bmc->id.aux_firmware_revision[3],
2169 bmc->id.aux_firmware_revision[2],
2170 bmc->id.aux_firmware_revision[1],
2171 bmc->id.aux_firmware_revision[0]);
2174 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2175 char *buf)
2177 struct bmc_device *bmc = dev_get_drvdata(dev);
2179 return snprintf(buf, 100, "%Lx%Lx\n",
2180 (long long) bmc->guid[0],
2181 (long long) bmc->guid[8]);
2184 static void remove_files(struct bmc_device *bmc)
2186 if (!bmc->dev)
2187 return;
2189 device_remove_file(&bmc->dev->dev,
2190 &bmc->device_id_attr);
2191 device_remove_file(&bmc->dev->dev,
2192 &bmc->provides_dev_sdrs_attr);
2193 device_remove_file(&bmc->dev->dev,
2194 &bmc->revision_attr);
2195 device_remove_file(&bmc->dev->dev,
2196 &bmc->firmware_rev_attr);
2197 device_remove_file(&bmc->dev->dev,
2198 &bmc->version_attr);
2199 device_remove_file(&bmc->dev->dev,
2200 &bmc->add_dev_support_attr);
2201 device_remove_file(&bmc->dev->dev,
2202 &bmc->manufacturer_id_attr);
2203 device_remove_file(&bmc->dev->dev,
2204 &bmc->product_id_attr);
2206 if (bmc->id.aux_firmware_revision_set)
2207 device_remove_file(&bmc->dev->dev,
2208 &bmc->aux_firmware_rev_attr);
2209 if (bmc->guid_set)
2210 device_remove_file(&bmc->dev->dev,
2211 &bmc->guid_attr);
2214 static void
2215 cleanup_bmc_device(struct kref *ref)
2217 struct bmc_device *bmc;
2219 bmc = container_of(ref, struct bmc_device, refcount);
2221 remove_files(bmc);
2222 platform_device_unregister(bmc->dev);
2223 kfree(bmc);
2226 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2228 struct bmc_device *bmc = intf->bmc;
2230 if (intf->sysfs_name) {
2231 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2232 kfree(intf->sysfs_name);
2233 intf->sysfs_name = NULL;
2235 if (intf->my_dev_name) {
2236 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2237 kfree(intf->my_dev_name);
2238 intf->my_dev_name = NULL;
2241 mutex_lock(&ipmidriver_mutex);
2242 kref_put(&bmc->refcount, cleanup_bmc_device);
2243 intf->bmc = NULL;
2244 mutex_unlock(&ipmidriver_mutex);
2247 static int create_files(struct bmc_device *bmc)
2249 int err;
2251 bmc->device_id_attr.attr.name = "device_id";
2252 bmc->device_id_attr.attr.mode = S_IRUGO;
2253 bmc->device_id_attr.show = device_id_show;
2255 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2256 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2257 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2259 bmc->revision_attr.attr.name = "revision";
2260 bmc->revision_attr.attr.mode = S_IRUGO;
2261 bmc->revision_attr.show = revision_show;
2263 bmc->firmware_rev_attr.attr.name = "firmware_revision";
2264 bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2265 bmc->firmware_rev_attr.show = firmware_rev_show;
2267 bmc->version_attr.attr.name = "ipmi_version";
2268 bmc->version_attr.attr.mode = S_IRUGO;
2269 bmc->version_attr.show = ipmi_version_show;
2271 bmc->add_dev_support_attr.attr.name = "additional_device_support";
2272 bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2273 bmc->add_dev_support_attr.show = add_dev_support_show;
2275 bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2276 bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2277 bmc->manufacturer_id_attr.show = manufacturer_id_show;
2279 bmc->product_id_attr.attr.name = "product_id";
2280 bmc->product_id_attr.attr.mode = S_IRUGO;
2281 bmc->product_id_attr.show = product_id_show;
2283 bmc->guid_attr.attr.name = "guid";
2284 bmc->guid_attr.attr.mode = S_IRUGO;
2285 bmc->guid_attr.show = guid_show;
2287 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2288 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2289 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2291 err = device_create_file(&bmc->dev->dev,
2292 &bmc->device_id_attr);
2293 if (err)
2294 goto out;
2295 err = device_create_file(&bmc->dev->dev,
2296 &bmc->provides_dev_sdrs_attr);
2297 if (err)
2298 goto out_devid;
2299 err = device_create_file(&bmc->dev->dev,
2300 &bmc->revision_attr);
2301 if (err)
2302 goto out_sdrs;
2303 err = device_create_file(&bmc->dev->dev,
2304 &bmc->firmware_rev_attr);
2305 if (err)
2306 goto out_rev;
2307 err = device_create_file(&bmc->dev->dev,
2308 &bmc->version_attr);
2309 if (err)
2310 goto out_firm;
2311 err = device_create_file(&bmc->dev->dev,
2312 &bmc->add_dev_support_attr);
2313 if (err)
2314 goto out_version;
2315 err = device_create_file(&bmc->dev->dev,
2316 &bmc->manufacturer_id_attr);
2317 if (err)
2318 goto out_add_dev;
2319 err = device_create_file(&bmc->dev->dev,
2320 &bmc->product_id_attr);
2321 if (err)
2322 goto out_manu;
2323 if (bmc->id.aux_firmware_revision_set) {
2324 err = device_create_file(&bmc->dev->dev,
2325 &bmc->aux_firmware_rev_attr);
2326 if (err)
2327 goto out_prod_id;
2329 if (bmc->guid_set) {
2330 err = device_create_file(&bmc->dev->dev,
2331 &bmc->guid_attr);
2332 if (err)
2333 goto out_aux_firm;
2336 return 0;
2338 out_aux_firm:
2339 if (bmc->id.aux_firmware_revision_set)
2340 device_remove_file(&bmc->dev->dev,
2341 &bmc->aux_firmware_rev_attr);
2342 out_prod_id:
2343 device_remove_file(&bmc->dev->dev,
2344 &bmc->product_id_attr);
2345 out_manu:
2346 device_remove_file(&bmc->dev->dev,
2347 &bmc->manufacturer_id_attr);
2348 out_add_dev:
2349 device_remove_file(&bmc->dev->dev,
2350 &bmc->add_dev_support_attr);
2351 out_version:
2352 device_remove_file(&bmc->dev->dev,
2353 &bmc->version_attr);
2354 out_firm:
2355 device_remove_file(&bmc->dev->dev,
2356 &bmc->firmware_rev_attr);
2357 out_rev:
2358 device_remove_file(&bmc->dev->dev,
2359 &bmc->revision_attr);
2360 out_sdrs:
2361 device_remove_file(&bmc->dev->dev,
2362 &bmc->provides_dev_sdrs_attr);
2363 out_devid:
2364 device_remove_file(&bmc->dev->dev,
2365 &bmc->device_id_attr);
2366 out:
2367 return err;
2370 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2371 const char *sysfs_name)
2373 int rv;
2374 struct bmc_device *bmc = intf->bmc;
2375 struct bmc_device *old_bmc;
2376 int size;
2377 char dummy[1];
2379 mutex_lock(&ipmidriver_mutex);
2382 * Try to find if there is an bmc_device struct
2383 * representing the interfaced BMC already
2385 if (bmc->guid_set)
2386 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2387 else
2388 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2389 bmc->id.product_id,
2390 bmc->id.device_id);
2393 * If there is already an bmc_device, free the new one,
2394 * otherwise register the new BMC device
2396 if (old_bmc) {
2397 kfree(bmc);
2398 intf->bmc = old_bmc;
2399 bmc = old_bmc;
2401 kref_get(&bmc->refcount);
2402 mutex_unlock(&ipmidriver_mutex);
2404 printk(KERN_INFO
2405 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2406 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2407 bmc->id.manufacturer_id,
2408 bmc->id.product_id,
2409 bmc->id.device_id);
2410 } else {
2411 char name[14];
2412 unsigned char orig_dev_id = bmc->id.device_id;
2413 int warn_printed = 0;
2415 snprintf(name, sizeof(name),
2416 "ipmi_bmc.%4.4x", bmc->id.product_id);
2418 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2419 bmc->id.product_id,
2420 bmc->id.device_id)) {
2421 if (!warn_printed) {
2422 printk(KERN_WARNING PFX
2423 "This machine has two different BMCs"
2424 " with the same product id and device"
2425 " id. This is an error in the"
2426 " firmware, but incrementing the"
2427 " device id to work around the problem."
2428 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2429 bmc->id.product_id, bmc->id.device_id);
2430 warn_printed = 1;
2432 bmc->id.device_id++; /* Wraps at 255 */
2433 if (bmc->id.device_id == orig_dev_id) {
2434 printk(KERN_ERR PFX
2435 "Out of device ids!\n");
2436 break;
2440 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2441 if (!bmc->dev) {
2442 mutex_unlock(&ipmidriver_mutex);
2443 printk(KERN_ERR
2444 "ipmi_msghandler:"
2445 " Unable to allocate platform device\n");
2446 return -ENOMEM;
2448 bmc->dev->dev.driver = &ipmidriver.driver;
2449 dev_set_drvdata(&bmc->dev->dev, bmc);
2450 kref_init(&bmc->refcount);
2452 rv = platform_device_add(bmc->dev);
2453 mutex_unlock(&ipmidriver_mutex);
2454 if (rv) {
2455 platform_device_put(bmc->dev);
2456 bmc->dev = NULL;
2457 printk(KERN_ERR
2458 "ipmi_msghandler:"
2459 " Unable to register bmc device: %d\n",
2460 rv);
2462 * Don't go to out_err, you can only do that if
2463 * the device is registered already.
2465 return rv;
2468 rv = create_files(bmc);
2469 if (rv) {
2470 mutex_lock(&ipmidriver_mutex);
2471 platform_device_unregister(bmc->dev);
2472 mutex_unlock(&ipmidriver_mutex);
2474 return rv;
2477 printk(KERN_INFO
2478 "ipmi: Found new BMC (man_id: 0x%6.6x, "
2479 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2480 bmc->id.manufacturer_id,
2481 bmc->id.product_id,
2482 bmc->id.device_id);
2486 * create symlink from system interface device to bmc device
2487 * and back.
2489 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2490 if (!intf->sysfs_name) {
2491 rv = -ENOMEM;
2492 printk(KERN_ERR
2493 "ipmi_msghandler: allocate link to BMC: %d\n",
2494 rv);
2495 goto out_err;
2498 rv = sysfs_create_link(&intf->si_dev->kobj,
2499 &bmc->dev->dev.kobj, intf->sysfs_name);
2500 if (rv) {
2501 kfree(intf->sysfs_name);
2502 intf->sysfs_name = NULL;
2503 printk(KERN_ERR
2504 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2505 rv);
2506 goto out_err;
2509 size = snprintf(dummy, 0, "ipmi%d", ifnum);
2510 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2511 if (!intf->my_dev_name) {
2512 kfree(intf->sysfs_name);
2513 intf->sysfs_name = NULL;
2514 rv = -ENOMEM;
2515 printk(KERN_ERR
2516 "ipmi_msghandler: allocate link from BMC: %d\n",
2517 rv);
2518 goto out_err;
2520 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2522 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2523 intf->my_dev_name);
2524 if (rv) {
2525 kfree(intf->sysfs_name);
2526 intf->sysfs_name = NULL;
2527 kfree(intf->my_dev_name);
2528 intf->my_dev_name = NULL;
2529 printk(KERN_ERR
2530 "ipmi_msghandler:"
2531 " Unable to create symlink to bmc: %d\n",
2532 rv);
2533 goto out_err;
2536 return 0;
2538 out_err:
2539 ipmi_bmc_unregister(intf);
2540 return rv;
2543 static int
2544 send_guid_cmd(ipmi_smi_t intf, int chan)
2546 struct kernel_ipmi_msg msg;
2547 struct ipmi_system_interface_addr si;
2549 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2550 si.channel = IPMI_BMC_CHANNEL;
2551 si.lun = 0;
2553 msg.netfn = IPMI_NETFN_APP_REQUEST;
2554 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2555 msg.data = NULL;
2556 msg.data_len = 0;
2557 return i_ipmi_request(NULL,
2558 intf,
2559 (struct ipmi_addr *) &si,
2561 &msg,
2562 intf,
2563 NULL,
2564 NULL,
2566 intf->channels[0].address,
2567 intf->channels[0].lun,
2568 -1, 0);
2571 static void
2572 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2574 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2575 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2576 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2577 /* Not for me */
2578 return;
2580 if (msg->msg.data[0] != 0) {
2581 /* Error from getting the GUID, the BMC doesn't have one. */
2582 intf->bmc->guid_set = 0;
2583 goto out;
2586 if (msg->msg.data_len < 17) {
2587 intf->bmc->guid_set = 0;
2588 printk(KERN_WARNING PFX
2589 "guid_handler: The GUID response from the BMC was too"
2590 " short, it was %d but should have been 17. Assuming"
2591 " GUID is not available.\n",
2592 msg->msg.data_len);
2593 goto out;
2596 memcpy(intf->bmc->guid, msg->msg.data, 16);
2597 intf->bmc->guid_set = 1;
2598 out:
2599 wake_up(&intf->waitq);
2602 static void
2603 get_guid(ipmi_smi_t intf)
2605 int rv;
2607 intf->bmc->guid_set = 0x2;
2608 intf->null_user_handler = guid_handler;
2609 rv = send_guid_cmd(intf, 0);
2610 if (rv)
2611 /* Send failed, no GUID available. */
2612 intf->bmc->guid_set = 0;
2613 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2614 intf->null_user_handler = NULL;
2617 static int
2618 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2620 struct kernel_ipmi_msg msg;
2621 unsigned char data[1];
2622 struct ipmi_system_interface_addr si;
2624 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2625 si.channel = IPMI_BMC_CHANNEL;
2626 si.lun = 0;
2628 msg.netfn = IPMI_NETFN_APP_REQUEST;
2629 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2630 msg.data = data;
2631 msg.data_len = 1;
2632 data[0] = chan;
2633 return i_ipmi_request(NULL,
2634 intf,
2635 (struct ipmi_addr *) &si,
2637 &msg,
2638 intf,
2639 NULL,
2640 NULL,
2642 intf->channels[0].address,
2643 intf->channels[0].lun,
2644 -1, 0);
2647 static void
2648 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2650 int rv = 0;
2651 int chan;
2653 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2654 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2655 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2656 /* It's the one we want */
2657 if (msg->msg.data[0] != 0) {
2658 /* Got an error from the channel, just go on. */
2660 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2662 * If the MC does not support this
2663 * command, that is legal. We just
2664 * assume it has one IPMB at channel
2665 * zero.
2667 intf->channels[0].medium
2668 = IPMI_CHANNEL_MEDIUM_IPMB;
2669 intf->channels[0].protocol
2670 = IPMI_CHANNEL_PROTOCOL_IPMB;
2671 rv = -ENOSYS;
2673 intf->curr_channel = IPMI_MAX_CHANNELS;
2674 wake_up(&intf->waitq);
2675 goto out;
2677 goto next_channel;
2679 if (msg->msg.data_len < 4) {
2680 /* Message not big enough, just go on. */
2681 goto next_channel;
2683 chan = intf->curr_channel;
2684 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2685 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2687 next_channel:
2688 intf->curr_channel++;
2689 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2690 wake_up(&intf->waitq);
2691 else
2692 rv = send_channel_info_cmd(intf, intf->curr_channel);
2694 if (rv) {
2695 /* Got an error somehow, just give up. */
2696 intf->curr_channel = IPMI_MAX_CHANNELS;
2697 wake_up(&intf->waitq);
2699 printk(KERN_WARNING PFX
2700 "Error sending channel information: %d\n",
2701 rv);
2704 out:
2705 return;
2708 void ipmi_poll_interface(ipmi_user_t user)
2710 ipmi_smi_t intf = user->intf;
2712 if (intf->handlers->poll)
2713 intf->handlers->poll(intf->send_info);
2715 EXPORT_SYMBOL(ipmi_poll_interface);
2717 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2718 void *send_info,
2719 struct ipmi_device_id *device_id,
2720 struct device *si_dev,
2721 const char *sysfs_name,
2722 unsigned char slave_addr)
2724 int i, j;
2725 int rv;
2726 ipmi_smi_t intf;
2727 ipmi_smi_t tintf;
2728 struct list_head *link;
2731 * Make sure the driver is actually initialized, this handles
2732 * problems with initialization order.
2734 if (!initialized) {
2735 rv = ipmi_init_msghandler();
2736 if (rv)
2737 return rv;
2739 * The init code doesn't return an error if it was turned
2740 * off, but it won't initialize. Check that.
2742 if (!initialized)
2743 return -ENODEV;
2746 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2747 if (!intf)
2748 return -ENOMEM;
2750 intf->ipmi_version_major = ipmi_version_major(device_id);
2751 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2753 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2754 if (!intf->bmc) {
2755 kfree(intf);
2756 return -ENOMEM;
2758 intf->intf_num = -1; /* Mark it invalid for now. */
2759 kref_init(&intf->refcount);
2760 intf->bmc->id = *device_id;
2761 intf->si_dev = si_dev;
2762 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2763 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2764 intf->channels[j].lun = 2;
2766 if (slave_addr != 0)
2767 intf->channels[0].address = slave_addr;
2768 INIT_LIST_HEAD(&intf->users);
2769 intf->handlers = handlers;
2770 intf->send_info = send_info;
2771 spin_lock_init(&intf->seq_lock);
2772 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2773 intf->seq_table[j].inuse = 0;
2774 intf->seq_table[j].seqid = 0;
2776 intf->curr_seq = 0;
2777 #ifdef CONFIG_PROC_FS
2778 mutex_init(&intf->proc_entry_lock);
2779 #endif
2780 spin_lock_init(&intf->waiting_msgs_lock);
2781 INIT_LIST_HEAD(&intf->waiting_msgs);
2782 spin_lock_init(&intf->events_lock);
2783 INIT_LIST_HEAD(&intf->waiting_events);
2784 intf->waiting_events_count = 0;
2785 mutex_init(&intf->cmd_rcvrs_mutex);
2786 spin_lock_init(&intf->maintenance_mode_lock);
2787 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2788 init_waitqueue_head(&intf->waitq);
2789 for (i = 0; i < IPMI_NUM_STATS; i++)
2790 atomic_set(&intf->stats[i], 0);
2792 intf->proc_dir = NULL;
2794 mutex_lock(&smi_watchers_mutex);
2795 mutex_lock(&ipmi_interfaces_mutex);
2796 /* Look for a hole in the numbers. */
2797 i = 0;
2798 link = &ipmi_interfaces;
2799 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2800 if (tintf->intf_num != i) {
2801 link = &tintf->link;
2802 break;
2804 i++;
2806 /* Add the new interface in numeric order. */
2807 if (i == 0)
2808 list_add_rcu(&intf->link, &ipmi_interfaces);
2809 else
2810 list_add_tail_rcu(&intf->link, link);
2812 rv = handlers->start_processing(send_info, intf);
2813 if (rv)
2814 goto out;
2816 get_guid(intf);
2818 if ((intf->ipmi_version_major > 1)
2819 || ((intf->ipmi_version_major == 1)
2820 && (intf->ipmi_version_minor >= 5))) {
2822 * Start scanning the channels to see what is
2823 * available.
2825 intf->null_user_handler = channel_handler;
2826 intf->curr_channel = 0;
2827 rv = send_channel_info_cmd(intf, 0);
2828 if (rv)
2829 goto out;
2831 /* Wait for the channel info to be read. */
2832 wait_event(intf->waitq,
2833 intf->curr_channel >= IPMI_MAX_CHANNELS);
2834 intf->null_user_handler = NULL;
2835 } else {
2836 /* Assume a single IPMB channel at zero. */
2837 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2838 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2841 if (rv == 0)
2842 rv = add_proc_entries(intf, i);
2844 rv = ipmi_bmc_register(intf, i, sysfs_name);
2846 out:
2847 if (rv) {
2848 if (intf->proc_dir)
2849 remove_proc_entries(intf);
2850 intf->handlers = NULL;
2851 list_del_rcu(&intf->link);
2852 mutex_unlock(&ipmi_interfaces_mutex);
2853 mutex_unlock(&smi_watchers_mutex);
2854 synchronize_rcu();
2855 kref_put(&intf->refcount, intf_free);
2856 } else {
2858 * Keep memory order straight for RCU readers. Make
2859 * sure everything else is committed to memory before
2860 * setting intf_num to mark the interface valid.
2862 smp_wmb();
2863 intf->intf_num = i;
2864 mutex_unlock(&ipmi_interfaces_mutex);
2865 /* After this point the interface is legal to use. */
2866 call_smi_watchers(i, intf->si_dev);
2867 mutex_unlock(&smi_watchers_mutex);
2870 return rv;
2872 EXPORT_SYMBOL(ipmi_register_smi);
2874 static void cleanup_smi_msgs(ipmi_smi_t intf)
2876 int i;
2877 struct seq_table *ent;
2879 /* No need for locks, the interface is down. */
2880 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2881 ent = &(intf->seq_table[i]);
2882 if (!ent->inuse)
2883 continue;
2884 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2888 int ipmi_unregister_smi(ipmi_smi_t intf)
2890 struct ipmi_smi_watcher *w;
2891 int intf_num = intf->intf_num;
2893 ipmi_bmc_unregister(intf);
2895 mutex_lock(&smi_watchers_mutex);
2896 mutex_lock(&ipmi_interfaces_mutex);
2897 intf->intf_num = -1;
2898 intf->handlers = NULL;
2899 list_del_rcu(&intf->link);
2900 mutex_unlock(&ipmi_interfaces_mutex);
2901 synchronize_rcu();
2903 cleanup_smi_msgs(intf);
2905 remove_proc_entries(intf);
2908 * Call all the watcher interfaces to tell them that
2909 * an interface is gone.
2911 list_for_each_entry(w, &smi_watchers, link)
2912 w->smi_gone(intf_num);
2913 mutex_unlock(&smi_watchers_mutex);
2915 kref_put(&intf->refcount, intf_free);
2916 return 0;
2918 EXPORT_SYMBOL(ipmi_unregister_smi);
2920 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
2921 struct ipmi_smi_msg *msg)
2923 struct ipmi_ipmb_addr ipmb_addr;
2924 struct ipmi_recv_msg *recv_msg;
2927 * This is 11, not 10, because the response must contain a
2928 * completion code.
2930 if (msg->rsp_size < 11) {
2931 /* Message not big enough, just ignore it. */
2932 ipmi_inc_stat(intf, invalid_ipmb_responses);
2933 return 0;
2936 if (msg->rsp[2] != 0) {
2937 /* An error getting the response, just ignore it. */
2938 return 0;
2941 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2942 ipmb_addr.slave_addr = msg->rsp[6];
2943 ipmb_addr.channel = msg->rsp[3] & 0x0f;
2944 ipmb_addr.lun = msg->rsp[7] & 3;
2947 * It's a response from a remote entity. Look up the sequence
2948 * number and handle the response.
2950 if (intf_find_seq(intf,
2951 msg->rsp[7] >> 2,
2952 msg->rsp[3] & 0x0f,
2953 msg->rsp[8],
2954 (msg->rsp[4] >> 2) & (~1),
2955 (struct ipmi_addr *) &(ipmb_addr),
2956 &recv_msg)) {
2958 * We were unable to find the sequence number,
2959 * so just nuke the message.
2961 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2962 return 0;
2965 memcpy(recv_msg->msg_data,
2966 &(msg->rsp[9]),
2967 msg->rsp_size - 9);
2969 * The other fields matched, so no need to set them, except
2970 * for netfn, which needs to be the response that was
2971 * returned, not the request value.
2973 recv_msg->msg.netfn = msg->rsp[4] >> 2;
2974 recv_msg->msg.data = recv_msg->msg_data;
2975 recv_msg->msg.data_len = msg->rsp_size - 10;
2976 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2977 ipmi_inc_stat(intf, handled_ipmb_responses);
2978 deliver_response(recv_msg);
2980 return 0;
2983 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
2984 struct ipmi_smi_msg *msg)
2986 struct cmd_rcvr *rcvr;
2987 int rv = 0;
2988 unsigned char netfn;
2989 unsigned char cmd;
2990 unsigned char chan;
2991 ipmi_user_t user = NULL;
2992 struct ipmi_ipmb_addr *ipmb_addr;
2993 struct ipmi_recv_msg *recv_msg;
2994 struct ipmi_smi_handlers *handlers;
2996 if (msg->rsp_size < 10) {
2997 /* Message not big enough, just ignore it. */
2998 ipmi_inc_stat(intf, invalid_commands);
2999 return 0;
3002 if (msg->rsp[2] != 0) {
3003 /* An error getting the response, just ignore it. */
3004 return 0;
3007 netfn = msg->rsp[4] >> 2;
3008 cmd = msg->rsp[8];
3009 chan = msg->rsp[3] & 0xf;
3011 rcu_read_lock();
3012 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3013 if (rcvr) {
3014 user = rcvr->user;
3015 kref_get(&user->refcount);
3016 } else
3017 user = NULL;
3018 rcu_read_unlock();
3020 if (user == NULL) {
3021 /* We didn't find a user, deliver an error response. */
3022 ipmi_inc_stat(intf, unhandled_commands);
3024 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3025 msg->data[1] = IPMI_SEND_MSG_CMD;
3026 msg->data[2] = msg->rsp[3];
3027 msg->data[3] = msg->rsp[6];
3028 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3029 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3030 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3031 /* rqseq/lun */
3032 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3033 msg->data[8] = msg->rsp[8]; /* cmd */
3034 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3035 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3036 msg->data_size = 11;
3038 #ifdef DEBUG_MSGING
3040 int m;
3041 printk("Invalid command:");
3042 for (m = 0; m < msg->data_size; m++)
3043 printk(" %2.2x", msg->data[m]);
3044 printk("\n");
3046 #endif
3047 rcu_read_lock();
3048 handlers = intf->handlers;
3049 if (handlers) {
3050 handlers->sender(intf->send_info, msg, 0);
3052 * We used the message, so return the value
3053 * that causes it to not be freed or
3054 * queued.
3056 rv = -1;
3058 rcu_read_unlock();
3059 } else {
3060 /* Deliver the message to the user. */
3061 ipmi_inc_stat(intf, handled_commands);
3063 recv_msg = ipmi_alloc_recv_msg();
3064 if (!recv_msg) {
3066 * We couldn't allocate memory for the
3067 * message, so requeue it for handling
3068 * later.
3070 rv = 1;
3071 kref_put(&user->refcount, free_user);
3072 } else {
3073 /* Extract the source address from the data. */
3074 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3075 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3076 ipmb_addr->slave_addr = msg->rsp[6];
3077 ipmb_addr->lun = msg->rsp[7] & 3;
3078 ipmb_addr->channel = msg->rsp[3] & 0xf;
3081 * Extract the rest of the message information
3082 * from the IPMB header.
3084 recv_msg->user = user;
3085 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3086 recv_msg->msgid = msg->rsp[7] >> 2;
3087 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3088 recv_msg->msg.cmd = msg->rsp[8];
3089 recv_msg->msg.data = recv_msg->msg_data;
3092 * We chop off 10, not 9 bytes because the checksum
3093 * at the end also needs to be removed.
3095 recv_msg->msg.data_len = msg->rsp_size - 10;
3096 memcpy(recv_msg->msg_data,
3097 &(msg->rsp[9]),
3098 msg->rsp_size - 10);
3099 deliver_response(recv_msg);
3103 return rv;
3106 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3107 struct ipmi_smi_msg *msg)
3109 struct ipmi_lan_addr lan_addr;
3110 struct ipmi_recv_msg *recv_msg;
3114 * This is 13, not 12, because the response must contain a
3115 * completion code.
3117 if (msg->rsp_size < 13) {
3118 /* Message not big enough, just ignore it. */
3119 ipmi_inc_stat(intf, invalid_lan_responses);
3120 return 0;
3123 if (msg->rsp[2] != 0) {
3124 /* An error getting the response, just ignore it. */
3125 return 0;
3128 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3129 lan_addr.session_handle = msg->rsp[4];
3130 lan_addr.remote_SWID = msg->rsp[8];
3131 lan_addr.local_SWID = msg->rsp[5];
3132 lan_addr.channel = msg->rsp[3] & 0x0f;
3133 lan_addr.privilege = msg->rsp[3] >> 4;
3134 lan_addr.lun = msg->rsp[9] & 3;
3137 * It's a response from a remote entity. Look up the sequence
3138 * number and handle the response.
3140 if (intf_find_seq(intf,
3141 msg->rsp[9] >> 2,
3142 msg->rsp[3] & 0x0f,
3143 msg->rsp[10],
3144 (msg->rsp[6] >> 2) & (~1),
3145 (struct ipmi_addr *) &(lan_addr),
3146 &recv_msg)) {
3148 * We were unable to find the sequence number,
3149 * so just nuke the message.
3151 ipmi_inc_stat(intf, unhandled_lan_responses);
3152 return 0;
3155 memcpy(recv_msg->msg_data,
3156 &(msg->rsp[11]),
3157 msg->rsp_size - 11);
3159 * The other fields matched, so no need to set them, except
3160 * for netfn, which needs to be the response that was
3161 * returned, not the request value.
3163 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3164 recv_msg->msg.data = recv_msg->msg_data;
3165 recv_msg->msg.data_len = msg->rsp_size - 12;
3166 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3167 ipmi_inc_stat(intf, handled_lan_responses);
3168 deliver_response(recv_msg);
3170 return 0;
3173 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3174 struct ipmi_smi_msg *msg)
3176 struct cmd_rcvr *rcvr;
3177 int rv = 0;
3178 unsigned char netfn;
3179 unsigned char cmd;
3180 unsigned char chan;
3181 ipmi_user_t user = NULL;
3182 struct ipmi_lan_addr *lan_addr;
3183 struct ipmi_recv_msg *recv_msg;
3185 if (msg->rsp_size < 12) {
3186 /* Message not big enough, just ignore it. */
3187 ipmi_inc_stat(intf, invalid_commands);
3188 return 0;
3191 if (msg->rsp[2] != 0) {
3192 /* An error getting the response, just ignore it. */
3193 return 0;
3196 netfn = msg->rsp[6] >> 2;
3197 cmd = msg->rsp[10];
3198 chan = msg->rsp[3] & 0xf;
3200 rcu_read_lock();
3201 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3202 if (rcvr) {
3203 user = rcvr->user;
3204 kref_get(&user->refcount);
3205 } else
3206 user = NULL;
3207 rcu_read_unlock();
3209 if (user == NULL) {
3210 /* We didn't find a user, just give up. */
3211 ipmi_inc_stat(intf, unhandled_commands);
3214 * Don't do anything with these messages, just allow
3215 * them to be freed.
3217 rv = 0;
3218 } else {
3219 /* Deliver the message to the user. */
3220 ipmi_inc_stat(intf, handled_commands);
3222 recv_msg = ipmi_alloc_recv_msg();
3223 if (!recv_msg) {
3225 * We couldn't allocate memory for the
3226 * message, so requeue it for handling later.
3228 rv = 1;
3229 kref_put(&user->refcount, free_user);
3230 } else {
3231 /* Extract the source address from the data. */
3232 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3233 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3234 lan_addr->session_handle = msg->rsp[4];
3235 lan_addr->remote_SWID = msg->rsp[8];
3236 lan_addr->local_SWID = msg->rsp[5];
3237 lan_addr->lun = msg->rsp[9] & 3;
3238 lan_addr->channel = msg->rsp[3] & 0xf;
3239 lan_addr->privilege = msg->rsp[3] >> 4;
3242 * Extract the rest of the message information
3243 * from the IPMB header.
3245 recv_msg->user = user;
3246 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3247 recv_msg->msgid = msg->rsp[9] >> 2;
3248 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3249 recv_msg->msg.cmd = msg->rsp[10];
3250 recv_msg->msg.data = recv_msg->msg_data;
3253 * We chop off 12, not 11 bytes because the checksum
3254 * at the end also needs to be removed.
3256 recv_msg->msg.data_len = msg->rsp_size - 12;
3257 memcpy(recv_msg->msg_data,
3258 &(msg->rsp[11]),
3259 msg->rsp_size - 12);
3260 deliver_response(recv_msg);
3264 return rv;
3267 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3268 struct ipmi_smi_msg *msg)
3270 struct ipmi_system_interface_addr *smi_addr;
3272 recv_msg->msgid = 0;
3273 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3274 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3275 smi_addr->channel = IPMI_BMC_CHANNEL;
3276 smi_addr->lun = msg->rsp[0] & 3;
3277 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3278 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3279 recv_msg->msg.cmd = msg->rsp[1];
3280 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3281 recv_msg->msg.data = recv_msg->msg_data;
3282 recv_msg->msg.data_len = msg->rsp_size - 3;
3285 static int handle_read_event_rsp(ipmi_smi_t intf,
3286 struct ipmi_smi_msg *msg)
3288 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3289 struct list_head msgs;
3290 ipmi_user_t user;
3291 int rv = 0;
3292 int deliver_count = 0;
3293 unsigned long flags;
3295 if (msg->rsp_size < 19) {
3296 /* Message is too small to be an IPMB event. */
3297 ipmi_inc_stat(intf, invalid_events);
3298 return 0;
3301 if (msg->rsp[2] != 0) {
3302 /* An error getting the event, just ignore it. */
3303 return 0;
3306 INIT_LIST_HEAD(&msgs);
3308 spin_lock_irqsave(&intf->events_lock, flags);
3310 ipmi_inc_stat(intf, events);
3313 * Allocate and fill in one message for every user that is
3314 * getting events.
3316 rcu_read_lock();
3317 list_for_each_entry_rcu(user, &intf->users, link) {
3318 if (!user->gets_events)
3319 continue;
3321 recv_msg = ipmi_alloc_recv_msg();
3322 if (!recv_msg) {
3323 rcu_read_unlock();
3324 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3325 link) {
3326 list_del(&recv_msg->link);
3327 ipmi_free_recv_msg(recv_msg);
3330 * We couldn't allocate memory for the
3331 * message, so requeue it for handling
3332 * later.
3334 rv = 1;
3335 goto out;
3338 deliver_count++;
3340 copy_event_into_recv_msg(recv_msg, msg);
3341 recv_msg->user = user;
3342 kref_get(&user->refcount);
3343 list_add_tail(&(recv_msg->link), &msgs);
3345 rcu_read_unlock();
3347 if (deliver_count) {
3348 /* Now deliver all the messages. */
3349 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3350 list_del(&recv_msg->link);
3351 deliver_response(recv_msg);
3353 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3355 * No one to receive the message, put it in queue if there's
3356 * not already too many things in the queue.
3358 recv_msg = ipmi_alloc_recv_msg();
3359 if (!recv_msg) {
3361 * We couldn't allocate memory for the
3362 * message, so requeue it for handling
3363 * later.
3365 rv = 1;
3366 goto out;
3369 copy_event_into_recv_msg(recv_msg, msg);
3370 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3371 intf->waiting_events_count++;
3372 } else if (!intf->event_msg_printed) {
3374 * There's too many things in the queue, discard this
3375 * message.
3377 printk(KERN_WARNING PFX "Event queue full, discarding"
3378 " incoming events\n");
3379 intf->event_msg_printed = 1;
3382 out:
3383 spin_unlock_irqrestore(&(intf->events_lock), flags);
3385 return rv;
3388 static int handle_bmc_rsp(ipmi_smi_t intf,
3389 struct ipmi_smi_msg *msg)
3391 struct ipmi_recv_msg *recv_msg;
3392 struct ipmi_user *user;
3394 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3395 if (recv_msg == NULL) {
3396 printk(KERN_WARNING
3397 "IPMI message received with no owner. This\n"
3398 "could be because of a malformed message, or\n"
3399 "because of a hardware error. Contact your\n"
3400 "hardware vender for assistance\n");
3401 return 0;
3404 user = recv_msg->user;
3405 /* Make sure the user still exists. */
3406 if (user && !user->valid) {
3407 /* The user for the message went away, so give up. */
3408 ipmi_inc_stat(intf, unhandled_local_responses);
3409 ipmi_free_recv_msg(recv_msg);
3410 } else {
3411 struct ipmi_system_interface_addr *smi_addr;
3413 ipmi_inc_stat(intf, handled_local_responses);
3414 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3415 recv_msg->msgid = msg->msgid;
3416 smi_addr = ((struct ipmi_system_interface_addr *)
3417 &(recv_msg->addr));
3418 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3419 smi_addr->channel = IPMI_BMC_CHANNEL;
3420 smi_addr->lun = msg->rsp[0] & 3;
3421 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3422 recv_msg->msg.cmd = msg->rsp[1];
3423 memcpy(recv_msg->msg_data,
3424 &(msg->rsp[2]),
3425 msg->rsp_size - 2);
3426 recv_msg->msg.data = recv_msg->msg_data;
3427 recv_msg->msg.data_len = msg->rsp_size - 2;
3428 deliver_response(recv_msg);
3431 return 0;
3435 * Handle a new message. Return 1 if the message should be requeued,
3436 * 0 if the message should be freed, or -1 if the message should not
3437 * be freed or requeued.
3439 static int handle_new_recv_msg(ipmi_smi_t intf,
3440 struct ipmi_smi_msg *msg)
3442 int requeue;
3443 int chan;
3445 #ifdef DEBUG_MSGING
3446 int m;
3447 printk("Recv:");
3448 for (m = 0; m < msg->rsp_size; m++)
3449 printk(" %2.2x", msg->rsp[m]);
3450 printk("\n");
3451 #endif
3452 if (msg->rsp_size < 2) {
3453 /* Message is too small to be correct. */
3454 printk(KERN_WARNING PFX "BMC returned to small a message"
3455 " for netfn %x cmd %x, got %d bytes\n",
3456 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3458 /* Generate an error response for the message. */
3459 msg->rsp[0] = msg->data[0] | (1 << 2);
3460 msg->rsp[1] = msg->data[1];
3461 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3462 msg->rsp_size = 3;
3463 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3464 || (msg->rsp[1] != msg->data[1])) {
3466 * The NetFN and Command in the response is not even
3467 * marginally correct.
3469 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3470 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3471 (msg->data[0] >> 2) | 1, msg->data[1],
3472 msg->rsp[0] >> 2, msg->rsp[1]);
3474 /* Generate an error response for the message. */
3475 msg->rsp[0] = msg->data[0] | (1 << 2);
3476 msg->rsp[1] = msg->data[1];
3477 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3478 msg->rsp_size = 3;
3481 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3482 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3483 && (msg->user_data != NULL)) {
3485 * It's a response to a response we sent. For this we
3486 * deliver a send message response to the user.
3488 struct ipmi_recv_msg *recv_msg = msg->user_data;
3490 requeue = 0;
3491 if (msg->rsp_size < 2)
3492 /* Message is too small to be correct. */
3493 goto out;
3495 chan = msg->data[2] & 0x0f;
3496 if (chan >= IPMI_MAX_CHANNELS)
3497 /* Invalid channel number */
3498 goto out;
3500 if (!recv_msg)
3501 goto out;
3503 /* Make sure the user still exists. */
3504 if (!recv_msg->user || !recv_msg->user->valid)
3505 goto out;
3507 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3508 recv_msg->msg.data = recv_msg->msg_data;
3509 recv_msg->msg.data_len = 1;
3510 recv_msg->msg_data[0] = msg->rsp[2];
3511 deliver_response(recv_msg);
3512 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3513 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3514 /* It's from the receive queue. */
3515 chan = msg->rsp[3] & 0xf;
3516 if (chan >= IPMI_MAX_CHANNELS) {
3517 /* Invalid channel number */
3518 requeue = 0;
3519 goto out;
3522 switch (intf->channels[chan].medium) {
3523 case IPMI_CHANNEL_MEDIUM_IPMB:
3524 if (msg->rsp[4] & 0x04) {
3526 * It's a response, so find the
3527 * requesting message and send it up.
3529 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3530 } else {
3532 * It's a command to the SMS from some other
3533 * entity. Handle that.
3535 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3537 break;
3539 case IPMI_CHANNEL_MEDIUM_8023LAN:
3540 case IPMI_CHANNEL_MEDIUM_ASYNC:
3541 if (msg->rsp[6] & 0x04) {
3543 * It's a response, so find the
3544 * requesting message and send it up.
3546 requeue = handle_lan_get_msg_rsp(intf, msg);
3547 } else {
3549 * It's a command to the SMS from some other
3550 * entity. Handle that.
3552 requeue = handle_lan_get_msg_cmd(intf, msg);
3554 break;
3556 default:
3558 * We don't handle the channel type, so just
3559 * free the message.
3561 requeue = 0;
3564 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3565 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3566 /* It's an asyncronous event. */
3567 requeue = handle_read_event_rsp(intf, msg);
3568 } else {
3569 /* It's a response from the local BMC. */
3570 requeue = handle_bmc_rsp(intf, msg);
3573 out:
3574 return requeue;
3577 /* Handle a new message from the lower layer. */
3578 void ipmi_smi_msg_received(ipmi_smi_t intf,
3579 struct ipmi_smi_msg *msg)
3581 unsigned long flags = 0; /* keep us warning-free. */
3582 int rv;
3583 int run_to_completion;
3586 if ((msg->data_size >= 2)
3587 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3588 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3589 && (msg->user_data == NULL)) {
3591 * This is the local response to a command send, start
3592 * the timer for these. The user_data will not be
3593 * NULL if this is a response send, and we will let
3594 * response sends just go through.
3598 * Check for errors, if we get certain errors (ones
3599 * that mean basically we can try again later), we
3600 * ignore them and start the timer. Otherwise we
3601 * report the error immediately.
3603 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3604 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3605 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3606 && (msg->rsp[2] != IPMI_BUS_ERR)
3607 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3608 int chan = msg->rsp[3] & 0xf;
3610 /* Got an error sending the message, handle it. */
3611 if (chan >= IPMI_MAX_CHANNELS)
3612 ; /* This shouldn't happen */
3613 else if ((intf->channels[chan].medium
3614 == IPMI_CHANNEL_MEDIUM_8023LAN)
3615 || (intf->channels[chan].medium
3616 == IPMI_CHANNEL_MEDIUM_ASYNC))
3617 ipmi_inc_stat(intf, sent_lan_command_errs);
3618 else
3619 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3620 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3621 } else
3622 /* The message was sent, start the timer. */
3623 intf_start_seq_timer(intf, msg->msgid);
3625 ipmi_free_smi_msg(msg);
3626 goto out;
3630 * To preserve message order, if the list is not empty, we
3631 * tack this message onto the end of the list.
3633 run_to_completion = intf->run_to_completion;
3634 if (!run_to_completion)
3635 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3636 if (!list_empty(&intf->waiting_msgs)) {
3637 list_add_tail(&msg->link, &intf->waiting_msgs);
3638 if (!run_to_completion)
3639 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3640 goto out;
3642 if (!run_to_completion)
3643 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3645 rv = handle_new_recv_msg(intf, msg);
3646 if (rv > 0) {
3648 * Could not handle the message now, just add it to a
3649 * list to handle later.
3651 run_to_completion = intf->run_to_completion;
3652 if (!run_to_completion)
3653 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3654 list_add_tail(&msg->link, &intf->waiting_msgs);
3655 if (!run_to_completion)
3656 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3657 } else if (rv == 0) {
3658 ipmi_free_smi_msg(msg);
3661 out:
3662 return;
3664 EXPORT_SYMBOL(ipmi_smi_msg_received);
3666 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3668 ipmi_user_t user;
3670 rcu_read_lock();
3671 list_for_each_entry_rcu(user, &intf->users, link) {
3672 if (!user->handler->ipmi_watchdog_pretimeout)
3673 continue;
3675 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3677 rcu_read_unlock();
3679 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3681 static struct ipmi_smi_msg *
3682 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3683 unsigned char seq, long seqid)
3685 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3686 if (!smi_msg)
3688 * If we can't allocate the message, then just return, we
3689 * get 4 retries, so this should be ok.
3691 return NULL;
3693 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3694 smi_msg->data_size = recv_msg->msg.data_len;
3695 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3697 #ifdef DEBUG_MSGING
3699 int m;
3700 printk("Resend: ");
3701 for (m = 0; m < smi_msg->data_size; m++)
3702 printk(" %2.2x", smi_msg->data[m]);
3703 printk("\n");
3705 #endif
3706 return smi_msg;
3709 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3710 struct list_head *timeouts, long timeout_period,
3711 int slot, unsigned long *flags)
3713 struct ipmi_recv_msg *msg;
3714 struct ipmi_smi_handlers *handlers;
3716 if (intf->intf_num == -1)
3717 return;
3719 if (!ent->inuse)
3720 return;
3722 ent->timeout -= timeout_period;
3723 if (ent->timeout > 0)
3724 return;
3726 if (ent->retries_left == 0) {
3727 /* The message has used all its retries. */
3728 ent->inuse = 0;
3729 msg = ent->recv_msg;
3730 list_add_tail(&msg->link, timeouts);
3731 if (ent->broadcast)
3732 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3733 else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3734 ipmi_inc_stat(intf, timed_out_lan_commands);
3735 else
3736 ipmi_inc_stat(intf, timed_out_ipmb_commands);
3737 } else {
3738 struct ipmi_smi_msg *smi_msg;
3739 /* More retries, send again. */
3742 * Start with the max timer, set to normal timer after
3743 * the message is sent.
3745 ent->timeout = MAX_MSG_TIMEOUT;
3746 ent->retries_left--;
3747 if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3748 ipmi_inc_stat(intf, retransmitted_lan_commands);
3749 else
3750 ipmi_inc_stat(intf, retransmitted_ipmb_commands);
3752 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3753 ent->seqid);
3754 if (!smi_msg)
3755 return;
3757 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3760 * Send the new message. We send with a zero
3761 * priority. It timed out, I doubt time is that
3762 * critical now, and high priority messages are really
3763 * only for messages to the local MC, which don't get
3764 * resent.
3766 handlers = intf->handlers;
3767 if (handlers)
3768 intf->handlers->sender(intf->send_info,
3769 smi_msg, 0);
3770 else
3771 ipmi_free_smi_msg(smi_msg);
3773 spin_lock_irqsave(&intf->seq_lock, *flags);
3777 static void ipmi_timeout_handler(long timeout_period)
3779 ipmi_smi_t intf;
3780 struct list_head timeouts;
3781 struct ipmi_recv_msg *msg, *msg2;
3782 struct ipmi_smi_msg *smi_msg, *smi_msg2;
3783 unsigned long flags;
3784 int i;
3786 rcu_read_lock();
3787 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3788 /* See if any waiting messages need to be processed. */
3789 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3790 list_for_each_entry_safe(smi_msg, smi_msg2,
3791 &intf->waiting_msgs, link) {
3792 if (!handle_new_recv_msg(intf, smi_msg)) {
3793 list_del(&smi_msg->link);
3794 ipmi_free_smi_msg(smi_msg);
3795 } else {
3797 * To preserve message order, quit if we
3798 * can't handle a message.
3800 break;
3803 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3806 * Go through the seq table and find any messages that
3807 * have timed out, putting them in the timeouts
3808 * list.
3810 INIT_LIST_HEAD(&timeouts);
3811 spin_lock_irqsave(&intf->seq_lock, flags);
3812 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3813 check_msg_timeout(intf, &(intf->seq_table[i]),
3814 &timeouts, timeout_period, i,
3815 &flags);
3816 spin_unlock_irqrestore(&intf->seq_lock, flags);
3818 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3819 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3822 * Maintenance mode handling. Check the timeout
3823 * optimistically before we claim the lock. It may
3824 * mean a timeout gets missed occasionally, but that
3825 * only means the timeout gets extended by one period
3826 * in that case. No big deal, and it avoids the lock
3827 * most of the time.
3829 if (intf->auto_maintenance_timeout > 0) {
3830 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3831 if (intf->auto_maintenance_timeout > 0) {
3832 intf->auto_maintenance_timeout
3833 -= timeout_period;
3834 if (!intf->maintenance_mode
3835 && (intf->auto_maintenance_timeout <= 0)) {
3836 intf->maintenance_mode_enable = 0;
3837 maintenance_mode_update(intf);
3840 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3841 flags);
3844 rcu_read_unlock();
3847 static void ipmi_request_event(void)
3849 ipmi_smi_t intf;
3850 struct ipmi_smi_handlers *handlers;
3852 rcu_read_lock();
3854 * Called from the timer, no need to check if handlers is
3855 * valid.
3857 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3858 /* No event requests when in maintenance mode. */
3859 if (intf->maintenance_mode_enable)
3860 continue;
3862 handlers = intf->handlers;
3863 if (handlers)
3864 handlers->request_events(intf->send_info);
3866 rcu_read_unlock();
3869 static struct timer_list ipmi_timer;
3871 /* Call every ~100 ms. */
3872 #define IPMI_TIMEOUT_TIME 100
3874 /* How many jiffies does it take to get to the timeout time. */
3875 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
3878 * Request events from the queue every second (this is the number of
3879 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
3880 * future, IPMI will add a way to know immediately if an event is in
3881 * the queue and this silliness can go away.
3883 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
3885 static atomic_t stop_operation;
3886 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3888 static void ipmi_timeout(unsigned long data)
3890 if (atomic_read(&stop_operation))
3891 return;
3893 ticks_to_req_ev--;
3894 if (ticks_to_req_ev == 0) {
3895 ipmi_request_event();
3896 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3899 ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3901 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3905 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3906 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3908 /* FIXME - convert these to slabs. */
3909 static void free_smi_msg(struct ipmi_smi_msg *msg)
3911 atomic_dec(&smi_msg_inuse_count);
3912 kfree(msg);
3915 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3917 struct ipmi_smi_msg *rv;
3918 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3919 if (rv) {
3920 rv->done = free_smi_msg;
3921 rv->user_data = NULL;
3922 atomic_inc(&smi_msg_inuse_count);
3924 return rv;
3926 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
3928 static void free_recv_msg(struct ipmi_recv_msg *msg)
3930 atomic_dec(&recv_msg_inuse_count);
3931 kfree(msg);
3934 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3936 struct ipmi_recv_msg *rv;
3938 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3939 if (rv) {
3940 rv->user = NULL;
3941 rv->done = free_recv_msg;
3942 atomic_inc(&recv_msg_inuse_count);
3944 return rv;
3947 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3949 if (msg->user)
3950 kref_put(&msg->user->refcount, free_user);
3951 msg->done(msg);
3953 EXPORT_SYMBOL(ipmi_free_recv_msg);
3955 #ifdef CONFIG_IPMI_PANIC_EVENT
3957 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3961 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3965 #ifdef CONFIG_IPMI_PANIC_STRING
3966 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3968 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3969 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3970 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3971 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3972 /* A get event receiver command, save it. */
3973 intf->event_receiver = msg->msg.data[1];
3974 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3978 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3980 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3981 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3982 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3983 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3985 * A get device id command, save if we are an event
3986 * receiver or generator.
3988 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3989 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3992 #endif
3994 static void send_panic_events(char *str)
3996 struct kernel_ipmi_msg msg;
3997 ipmi_smi_t intf;
3998 unsigned char data[16];
3999 struct ipmi_system_interface_addr *si;
4000 struct ipmi_addr addr;
4001 struct ipmi_smi_msg smi_msg;
4002 struct ipmi_recv_msg recv_msg;
4004 si = (struct ipmi_system_interface_addr *) &addr;
4005 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4006 si->channel = IPMI_BMC_CHANNEL;
4007 si->lun = 0;
4009 /* Fill in an event telling that we have failed. */
4010 msg.netfn = 0x04; /* Sensor or Event. */
4011 msg.cmd = 2; /* Platform event command. */
4012 msg.data = data;
4013 msg.data_len = 8;
4014 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4015 data[1] = 0x03; /* This is for IPMI 1.0. */
4016 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4017 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4018 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4021 * Put a few breadcrumbs in. Hopefully later we can add more things
4022 * to make the panic events more useful.
4024 if (str) {
4025 data[3] = str[0];
4026 data[6] = str[1];
4027 data[7] = str[2];
4030 smi_msg.done = dummy_smi_done_handler;
4031 recv_msg.done = dummy_recv_done_handler;
4033 /* For every registered interface, send the event. */
4034 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4035 if (!intf->handlers)
4036 /* Interface is not ready. */
4037 continue;
4039 intf->run_to_completion = 1;
4040 /* Send the event announcing the panic. */
4041 intf->handlers->set_run_to_completion(intf->send_info, 1);
4042 i_ipmi_request(NULL,
4043 intf,
4044 &addr,
4046 &msg,
4047 intf,
4048 &smi_msg,
4049 &recv_msg,
4051 intf->channels[0].address,
4052 intf->channels[0].lun,
4053 0, 1); /* Don't retry, and don't wait. */
4056 #ifdef CONFIG_IPMI_PANIC_STRING
4058 * On every interface, dump a bunch of OEM event holding the
4059 * string.
4061 if (!str)
4062 return;
4064 /* For every registered interface, send the event. */
4065 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4066 char *p = str;
4067 struct ipmi_ipmb_addr *ipmb;
4068 int j;
4070 if (intf->intf_num == -1)
4071 /* Interface was not ready yet. */
4072 continue;
4075 * intf_num is used as an marker to tell if the
4076 * interface is valid. Thus we need a read barrier to
4077 * make sure data fetched before checking intf_num
4078 * won't be used.
4080 smp_rmb();
4083 * First job here is to figure out where to send the
4084 * OEM events. There's no way in IPMI to send OEM
4085 * events using an event send command, so we have to
4086 * find the SEL to put them in and stick them in
4087 * there.
4090 /* Get capabilities from the get device id. */
4091 intf->local_sel_device = 0;
4092 intf->local_event_generator = 0;
4093 intf->event_receiver = 0;
4095 /* Request the device info from the local MC. */
4096 msg.netfn = IPMI_NETFN_APP_REQUEST;
4097 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4098 msg.data = NULL;
4099 msg.data_len = 0;
4100 intf->null_user_handler = device_id_fetcher;
4101 i_ipmi_request(NULL,
4102 intf,
4103 &addr,
4105 &msg,
4106 intf,
4107 &smi_msg,
4108 &recv_msg,
4110 intf->channels[0].address,
4111 intf->channels[0].lun,
4112 0, 1); /* Don't retry, and don't wait. */
4114 if (intf->local_event_generator) {
4115 /* Request the event receiver from the local MC. */
4116 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4117 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4118 msg.data = NULL;
4119 msg.data_len = 0;
4120 intf->null_user_handler = event_receiver_fetcher;
4121 i_ipmi_request(NULL,
4122 intf,
4123 &addr,
4125 &msg,
4126 intf,
4127 &smi_msg,
4128 &recv_msg,
4130 intf->channels[0].address,
4131 intf->channels[0].lun,
4132 0, 1); /* no retry, and no wait. */
4134 intf->null_user_handler = NULL;
4137 * Validate the event receiver. The low bit must not
4138 * be 1 (it must be a valid IPMB address), it cannot
4139 * be zero, and it must not be my address.
4141 if (((intf->event_receiver & 1) == 0)
4142 && (intf->event_receiver != 0)
4143 && (intf->event_receiver != intf->channels[0].address)) {
4145 * The event receiver is valid, send an IPMB
4146 * message.
4148 ipmb = (struct ipmi_ipmb_addr *) &addr;
4149 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4150 ipmb->channel = 0; /* FIXME - is this right? */
4151 ipmb->lun = intf->event_receiver_lun;
4152 ipmb->slave_addr = intf->event_receiver;
4153 } else if (intf->local_sel_device) {
4155 * The event receiver was not valid (or was
4156 * me), but I am an SEL device, just dump it
4157 * in my SEL.
4159 si = (struct ipmi_system_interface_addr *) &addr;
4160 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4161 si->channel = IPMI_BMC_CHANNEL;
4162 si->lun = 0;
4163 } else
4164 continue; /* No where to send the event. */
4166 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4167 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4168 msg.data = data;
4169 msg.data_len = 16;
4171 j = 0;
4172 while (*p) {
4173 int size = strlen(p);
4175 if (size > 11)
4176 size = 11;
4177 data[0] = 0;
4178 data[1] = 0;
4179 data[2] = 0xf0; /* OEM event without timestamp. */
4180 data[3] = intf->channels[0].address;
4181 data[4] = j++; /* sequence # */
4183 * Always give 11 bytes, so strncpy will fill
4184 * it with zeroes for me.
4186 strncpy(data+5, p, 11);
4187 p += size;
4189 i_ipmi_request(NULL,
4190 intf,
4191 &addr,
4193 &msg,
4194 intf,
4195 &smi_msg,
4196 &recv_msg,
4198 intf->channels[0].address,
4199 intf->channels[0].lun,
4200 0, 1); /* no retry, and no wait. */
4203 #endif /* CONFIG_IPMI_PANIC_STRING */
4205 #endif /* CONFIG_IPMI_PANIC_EVENT */
4207 static int has_panicked;
4209 static int panic_event(struct notifier_block *this,
4210 unsigned long event,
4211 void *ptr)
4213 ipmi_smi_t intf;
4215 if (has_panicked)
4216 return NOTIFY_DONE;
4217 has_panicked = 1;
4219 /* For every registered interface, set it to run to completion. */
4220 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4221 if (!intf->handlers)
4222 /* Interface is not ready. */
4223 continue;
4225 intf->run_to_completion = 1;
4226 intf->handlers->set_run_to_completion(intf->send_info, 1);
4229 #ifdef CONFIG_IPMI_PANIC_EVENT
4230 send_panic_events(ptr);
4231 #endif
4233 return NOTIFY_DONE;
4236 static struct notifier_block panic_block = {
4237 .notifier_call = panic_event,
4238 .next = NULL,
4239 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4242 static int ipmi_init_msghandler(void)
4244 int rv;
4246 if (initialized)
4247 return 0;
4249 rv = driver_register(&ipmidriver.driver);
4250 if (rv) {
4251 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4252 return rv;
4255 printk(KERN_INFO "ipmi message handler version "
4256 IPMI_DRIVER_VERSION "\n");
4258 #ifdef CONFIG_PROC_FS
4259 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4260 if (!proc_ipmi_root) {
4261 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4262 return -ENOMEM;
4265 #endif /* CONFIG_PROC_FS */
4267 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4268 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4270 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4272 initialized = 1;
4274 return 0;
4277 static __init int ipmi_init_msghandler_mod(void)
4279 ipmi_init_msghandler();
4280 return 0;
4283 static __exit void cleanup_ipmi(void)
4285 int count;
4287 if (!initialized)
4288 return;
4290 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4293 * This can't be called if any interfaces exist, so no worry
4294 * about shutting down the interfaces.
4298 * Tell the timer to stop, then wait for it to stop. This
4299 * avoids problems with race conditions removing the timer
4300 * here.
4302 atomic_inc(&stop_operation);
4303 del_timer_sync(&ipmi_timer);
4305 #ifdef CONFIG_PROC_FS
4306 remove_proc_entry(proc_ipmi_root->name, NULL);
4307 #endif /* CONFIG_PROC_FS */
4309 driver_unregister(&ipmidriver.driver);
4311 initialized = 0;
4313 /* Check for buffer leaks. */
4314 count = atomic_read(&smi_msg_inuse_count);
4315 if (count != 0)
4316 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4317 count);
4318 count = atomic_read(&recv_msg_inuse_count);
4319 if (count != 0)
4320 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4321 count);
4323 module_exit(cleanup_ipmi);
4325 module_init(ipmi_init_msghandler_mod);
4326 MODULE_LICENSE("GPL");
4327 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4328 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4329 " interface.");
4330 MODULE_VERSION(IPMI_DRIVER_VERSION);