e1000e: cleanup - remove unnecessary variable
[linux-2.6/cjktty.git] / mm / hugetlb.c
blobbc727122dd44de6c4ae9307c618e58ddf4da3c87
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 __initdata LIST_HEAD(huge_boot_pages);
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
451 * private mappings.
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
475 static void copy_gigantic_page(struct page *dst, struct page *src)
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
494 int i;
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_move(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 struct page *page;
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_move(&page->lru, &h->hugepage_activelist);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
582 static void update_and_free_page(struct hstate *h, struct page *page)
584 int i;
586 VM_BUG_ON(h->order >= MAX_ORDER);
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
596 VM_BUG_ON(hugetlb_cgroup_from_page(page));
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
599 arch_release_hugepage(page);
600 __free_pages(page, huge_page_order(h));
603 struct hstate *size_to_hstate(unsigned long size)
605 struct hstate *h;
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
611 return NULL;
614 static void free_huge_page(struct page *page)
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
620 struct hstate *h = page_hstate(page);
621 int nid = page_to_nid(page);
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
625 set_page_private(page, 0);
626 page->mapping = NULL;
627 BUG_ON(page_count(page));
628 BUG_ON(page_mapcount(page));
630 spin_lock(&hugetlb_lock);
631 hugetlb_cgroup_uncharge_page(hstate_index(h),
632 pages_per_huge_page(h), page);
633 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 /* remove the page from active list */
635 list_del(&page->lru);
636 update_and_free_page(h, page);
637 h->surplus_huge_pages--;
638 h->surplus_huge_pages_node[nid]--;
639 } else {
640 enqueue_huge_page(h, page);
642 spin_unlock(&hugetlb_lock);
643 hugepage_subpool_put_pages(spool, 1);
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648 INIT_LIST_HEAD(&page->lru);
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
651 set_hugetlb_cgroup(page, NULL);
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
669 set_page_count(p, 0);
670 p->first_page = page;
674 int PageHuge(struct page *page)
676 compound_page_dtor *dtor;
678 if (!PageCompound(page))
679 return 0;
681 page = compound_head(page);
682 dtor = get_compound_page_dtor(page);
684 return dtor == free_huge_page;
686 EXPORT_SYMBOL_GPL(PageHuge);
688 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
690 struct page *page;
692 if (h->order >= MAX_ORDER)
693 return NULL;
695 page = alloc_pages_exact_node(nid,
696 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697 __GFP_REPEAT|__GFP_NOWARN,
698 huge_page_order(h));
699 if (page) {
700 if (arch_prepare_hugepage(page)) {
701 __free_pages(page, huge_page_order(h));
702 return NULL;
704 prep_new_huge_page(h, page, nid);
707 return page;
711 * common helper functions for hstate_next_node_to_{alloc|free}.
712 * We may have allocated or freed a huge page based on a different
713 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714 * be outside of *nodes_allowed. Ensure that we use an allowed
715 * node for alloc or free.
717 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
719 nid = next_node(nid, *nodes_allowed);
720 if (nid == MAX_NUMNODES)
721 nid = first_node(*nodes_allowed);
722 VM_BUG_ON(nid >= MAX_NUMNODES);
724 return nid;
727 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
729 if (!node_isset(nid, *nodes_allowed))
730 nid = next_node_allowed(nid, nodes_allowed);
731 return nid;
735 * returns the previously saved node ["this node"] from which to
736 * allocate a persistent huge page for the pool and advance the
737 * next node from which to allocate, handling wrap at end of node
738 * mask.
740 static int hstate_next_node_to_alloc(struct hstate *h,
741 nodemask_t *nodes_allowed)
743 int nid;
745 VM_BUG_ON(!nodes_allowed);
747 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
750 return nid;
753 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
755 struct page *page;
756 int start_nid;
757 int next_nid;
758 int ret = 0;
760 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761 next_nid = start_nid;
763 do {
764 page = alloc_fresh_huge_page_node(h, next_nid);
765 if (page) {
766 ret = 1;
767 break;
769 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770 } while (next_nid != start_nid);
772 if (ret)
773 count_vm_event(HTLB_BUDDY_PGALLOC);
774 else
775 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
777 return ret;
781 * helper for free_pool_huge_page() - return the previously saved
782 * node ["this node"] from which to free a huge page. Advance the
783 * next node id whether or not we find a free huge page to free so
784 * that the next attempt to free addresses the next node.
786 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
788 int nid;
790 VM_BUG_ON(!nodes_allowed);
792 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
795 return nid;
799 * Free huge page from pool from next node to free.
800 * Attempt to keep persistent huge pages more or less
801 * balanced over allowed nodes.
802 * Called with hugetlb_lock locked.
804 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805 bool acct_surplus)
807 int start_nid;
808 int next_nid;
809 int ret = 0;
811 start_nid = hstate_next_node_to_free(h, nodes_allowed);
812 next_nid = start_nid;
814 do {
816 * If we're returning unused surplus pages, only examine
817 * nodes with surplus pages.
819 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820 !list_empty(&h->hugepage_freelists[next_nid])) {
821 struct page *page =
822 list_entry(h->hugepage_freelists[next_nid].next,
823 struct page, lru);
824 list_del(&page->lru);
825 h->free_huge_pages--;
826 h->free_huge_pages_node[next_nid]--;
827 if (acct_surplus) {
828 h->surplus_huge_pages--;
829 h->surplus_huge_pages_node[next_nid]--;
831 update_and_free_page(h, page);
832 ret = 1;
833 break;
835 next_nid = hstate_next_node_to_free(h, nodes_allowed);
836 } while (next_nid != start_nid);
838 return ret;
841 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
843 struct page *page;
844 unsigned int r_nid;
846 if (h->order >= MAX_ORDER)
847 return NULL;
850 * Assume we will successfully allocate the surplus page to
851 * prevent racing processes from causing the surplus to exceed
852 * overcommit
854 * This however introduces a different race, where a process B
855 * tries to grow the static hugepage pool while alloc_pages() is
856 * called by process A. B will only examine the per-node
857 * counters in determining if surplus huge pages can be
858 * converted to normal huge pages in adjust_pool_surplus(). A
859 * won't be able to increment the per-node counter, until the
860 * lock is dropped by B, but B doesn't drop hugetlb_lock until
861 * no more huge pages can be converted from surplus to normal
862 * state (and doesn't try to convert again). Thus, we have a
863 * case where a surplus huge page exists, the pool is grown, and
864 * the surplus huge page still exists after, even though it
865 * should just have been converted to a normal huge page. This
866 * does not leak memory, though, as the hugepage will be freed
867 * once it is out of use. It also does not allow the counters to
868 * go out of whack in adjust_pool_surplus() as we don't modify
869 * the node values until we've gotten the hugepage and only the
870 * per-node value is checked there.
872 spin_lock(&hugetlb_lock);
873 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874 spin_unlock(&hugetlb_lock);
875 return NULL;
876 } else {
877 h->nr_huge_pages++;
878 h->surplus_huge_pages++;
880 spin_unlock(&hugetlb_lock);
882 if (nid == NUMA_NO_NODE)
883 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884 __GFP_REPEAT|__GFP_NOWARN,
885 huge_page_order(h));
886 else
887 page = alloc_pages_exact_node(nid,
888 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
891 if (page && arch_prepare_hugepage(page)) {
892 __free_pages(page, huge_page_order(h));
893 page = NULL;
896 spin_lock(&hugetlb_lock);
897 if (page) {
898 INIT_LIST_HEAD(&page->lru);
899 r_nid = page_to_nid(page);
900 set_compound_page_dtor(page, free_huge_page);
901 set_hugetlb_cgroup(page, NULL);
903 * We incremented the global counters already
905 h->nr_huge_pages_node[r_nid]++;
906 h->surplus_huge_pages_node[r_nid]++;
907 __count_vm_event(HTLB_BUDDY_PGALLOC);
908 } else {
909 h->nr_huge_pages--;
910 h->surplus_huge_pages--;
911 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
913 spin_unlock(&hugetlb_lock);
915 return page;
919 * This allocation function is useful in the context where vma is irrelevant.
920 * E.g. soft-offlining uses this function because it only cares physical
921 * address of error page.
923 struct page *alloc_huge_page_node(struct hstate *h, int nid)
925 struct page *page;
927 spin_lock(&hugetlb_lock);
928 page = dequeue_huge_page_node(h, nid);
929 spin_unlock(&hugetlb_lock);
931 if (!page)
932 page = alloc_buddy_huge_page(h, nid);
934 return page;
938 * Increase the hugetlb pool such that it can accommodate a reservation
939 * of size 'delta'.
941 static int gather_surplus_pages(struct hstate *h, int delta)
943 struct list_head surplus_list;
944 struct page *page, *tmp;
945 int ret, i;
946 int needed, allocated;
947 bool alloc_ok = true;
949 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
950 if (needed <= 0) {
951 h->resv_huge_pages += delta;
952 return 0;
955 allocated = 0;
956 INIT_LIST_HEAD(&surplus_list);
958 ret = -ENOMEM;
959 retry:
960 spin_unlock(&hugetlb_lock);
961 for (i = 0; i < needed; i++) {
962 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
963 if (!page) {
964 alloc_ok = false;
965 break;
967 list_add(&page->lru, &surplus_list);
969 allocated += i;
972 * After retaking hugetlb_lock, we need to recalculate 'needed'
973 * because either resv_huge_pages or free_huge_pages may have changed.
975 spin_lock(&hugetlb_lock);
976 needed = (h->resv_huge_pages + delta) -
977 (h->free_huge_pages + allocated);
978 if (needed > 0) {
979 if (alloc_ok)
980 goto retry;
982 * We were not able to allocate enough pages to
983 * satisfy the entire reservation so we free what
984 * we've allocated so far.
986 goto free;
989 * The surplus_list now contains _at_least_ the number of extra pages
990 * needed to accommodate the reservation. Add the appropriate number
991 * of pages to the hugetlb pool and free the extras back to the buddy
992 * allocator. Commit the entire reservation here to prevent another
993 * process from stealing the pages as they are added to the pool but
994 * before they are reserved.
996 needed += allocated;
997 h->resv_huge_pages += delta;
998 ret = 0;
1000 /* Free the needed pages to the hugetlb pool */
1001 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1002 if ((--needed) < 0)
1003 break;
1005 * This page is now managed by the hugetlb allocator and has
1006 * no users -- drop the buddy allocator's reference.
1008 put_page_testzero(page);
1009 VM_BUG_ON(page_count(page));
1010 enqueue_huge_page(h, page);
1012 free:
1013 spin_unlock(&hugetlb_lock);
1015 /* Free unnecessary surplus pages to the buddy allocator */
1016 if (!list_empty(&surplus_list)) {
1017 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1018 put_page(page);
1021 spin_lock(&hugetlb_lock);
1023 return ret;
1027 * When releasing a hugetlb pool reservation, any surplus pages that were
1028 * allocated to satisfy the reservation must be explicitly freed if they were
1029 * never used.
1030 * Called with hugetlb_lock held.
1032 static void return_unused_surplus_pages(struct hstate *h,
1033 unsigned long unused_resv_pages)
1035 unsigned long nr_pages;
1037 /* Uncommit the reservation */
1038 h->resv_huge_pages -= unused_resv_pages;
1040 /* Cannot return gigantic pages currently */
1041 if (h->order >= MAX_ORDER)
1042 return;
1044 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1047 * We want to release as many surplus pages as possible, spread
1048 * evenly across all nodes with memory. Iterate across these nodes
1049 * until we can no longer free unreserved surplus pages. This occurs
1050 * when the nodes with surplus pages have no free pages.
1051 * free_pool_huge_page() will balance the the freed pages across the
1052 * on-line nodes with memory and will handle the hstate accounting.
1054 while (nr_pages--) {
1055 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1056 break;
1061 * Determine if the huge page at addr within the vma has an associated
1062 * reservation. Where it does not we will need to logically increase
1063 * reservation and actually increase subpool usage before an allocation
1064 * can occur. Where any new reservation would be required the
1065 * reservation change is prepared, but not committed. Once the page
1066 * has been allocated from the subpool and instantiated the change should
1067 * be committed via vma_commit_reservation. No action is required on
1068 * failure.
1070 static long vma_needs_reservation(struct hstate *h,
1071 struct vm_area_struct *vma, unsigned long addr)
1073 struct address_space *mapping = vma->vm_file->f_mapping;
1074 struct inode *inode = mapping->host;
1076 if (vma->vm_flags & VM_MAYSHARE) {
1077 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078 return region_chg(&inode->i_mapping->private_list,
1079 idx, idx + 1);
1081 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1082 return 1;
1084 } else {
1085 long err;
1086 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087 struct resv_map *reservations = vma_resv_map(vma);
1089 err = region_chg(&reservations->regions, idx, idx + 1);
1090 if (err < 0)
1091 return err;
1092 return 0;
1095 static void vma_commit_reservation(struct hstate *h,
1096 struct vm_area_struct *vma, unsigned long addr)
1098 struct address_space *mapping = vma->vm_file->f_mapping;
1099 struct inode *inode = mapping->host;
1101 if (vma->vm_flags & VM_MAYSHARE) {
1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1105 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 struct resv_map *reservations = vma_resv_map(vma);
1109 /* Mark this page used in the map. */
1110 region_add(&reservations->regions, idx, idx + 1);
1114 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115 unsigned long addr, int avoid_reserve)
1117 struct hugepage_subpool *spool = subpool_vma(vma);
1118 struct hstate *h = hstate_vma(vma);
1119 struct page *page;
1120 long chg;
1121 int ret, idx;
1122 struct hugetlb_cgroup *h_cg;
1124 idx = hstate_index(h);
1126 * Processes that did not create the mapping will have no
1127 * reserves and will not have accounted against subpool
1128 * limit. Check that the subpool limit can be made before
1129 * satisfying the allocation MAP_NORESERVE mappings may also
1130 * need pages and subpool limit allocated allocated if no reserve
1131 * mapping overlaps.
1133 chg = vma_needs_reservation(h, vma, addr);
1134 if (chg < 0)
1135 return ERR_PTR(-ENOMEM);
1136 if (chg)
1137 if (hugepage_subpool_get_pages(spool, chg))
1138 return ERR_PTR(-ENOSPC);
1140 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1141 if (ret) {
1142 hugepage_subpool_put_pages(spool, chg);
1143 return ERR_PTR(-ENOSPC);
1145 spin_lock(&hugetlb_lock);
1146 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147 if (page) {
1148 /* update page cgroup details */
1149 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1150 h_cg, page);
1151 spin_unlock(&hugetlb_lock);
1152 } else {
1153 spin_unlock(&hugetlb_lock);
1154 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1155 if (!page) {
1156 hugetlb_cgroup_uncharge_cgroup(idx,
1157 pages_per_huge_page(h),
1158 h_cg);
1159 hugepage_subpool_put_pages(spool, chg);
1160 return ERR_PTR(-ENOSPC);
1162 spin_lock(&hugetlb_lock);
1163 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1164 h_cg, page);
1165 list_move(&page->lru, &h->hugepage_activelist);
1166 spin_unlock(&hugetlb_lock);
1169 set_page_private(page, (unsigned long)spool);
1171 vma_commit_reservation(h, vma, addr);
1172 return page;
1175 int __weak alloc_bootmem_huge_page(struct hstate *h)
1177 struct huge_bootmem_page *m;
1178 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1180 while (nr_nodes) {
1181 void *addr;
1183 addr = __alloc_bootmem_node_nopanic(
1184 NODE_DATA(hstate_next_node_to_alloc(h,
1185 &node_states[N_HIGH_MEMORY])),
1186 huge_page_size(h), huge_page_size(h), 0);
1188 if (addr) {
1190 * Use the beginning of the huge page to store the
1191 * huge_bootmem_page struct (until gather_bootmem
1192 * puts them into the mem_map).
1194 m = addr;
1195 goto found;
1197 nr_nodes--;
1199 return 0;
1201 found:
1202 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1203 /* Put them into a private list first because mem_map is not up yet */
1204 list_add(&m->list, &huge_boot_pages);
1205 m->hstate = h;
1206 return 1;
1209 static void prep_compound_huge_page(struct page *page, int order)
1211 if (unlikely(order > (MAX_ORDER - 1)))
1212 prep_compound_gigantic_page(page, order);
1213 else
1214 prep_compound_page(page, order);
1217 /* Put bootmem huge pages into the standard lists after mem_map is up */
1218 static void __init gather_bootmem_prealloc(void)
1220 struct huge_bootmem_page *m;
1222 list_for_each_entry(m, &huge_boot_pages, list) {
1223 struct hstate *h = m->hstate;
1224 struct page *page;
1226 #ifdef CONFIG_HIGHMEM
1227 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1228 free_bootmem_late((unsigned long)m,
1229 sizeof(struct huge_bootmem_page));
1230 #else
1231 page = virt_to_page(m);
1232 #endif
1233 __ClearPageReserved(page);
1234 WARN_ON(page_count(page) != 1);
1235 prep_compound_huge_page(page, h->order);
1236 prep_new_huge_page(h, page, page_to_nid(page));
1238 * If we had gigantic hugepages allocated at boot time, we need
1239 * to restore the 'stolen' pages to totalram_pages in order to
1240 * fix confusing memory reports from free(1) and another
1241 * side-effects, like CommitLimit going negative.
1243 if (h->order > (MAX_ORDER - 1))
1244 totalram_pages += 1 << h->order;
1248 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1250 unsigned long i;
1252 for (i = 0; i < h->max_huge_pages; ++i) {
1253 if (h->order >= MAX_ORDER) {
1254 if (!alloc_bootmem_huge_page(h))
1255 break;
1256 } else if (!alloc_fresh_huge_page(h,
1257 &node_states[N_HIGH_MEMORY]))
1258 break;
1260 h->max_huge_pages = i;
1263 static void __init hugetlb_init_hstates(void)
1265 struct hstate *h;
1267 for_each_hstate(h) {
1268 /* oversize hugepages were init'ed in early boot */
1269 if (h->order < MAX_ORDER)
1270 hugetlb_hstate_alloc_pages(h);
1274 static char * __init memfmt(char *buf, unsigned long n)
1276 if (n >= (1UL << 30))
1277 sprintf(buf, "%lu GB", n >> 30);
1278 else if (n >= (1UL << 20))
1279 sprintf(buf, "%lu MB", n >> 20);
1280 else
1281 sprintf(buf, "%lu KB", n >> 10);
1282 return buf;
1285 static void __init report_hugepages(void)
1287 struct hstate *h;
1289 for_each_hstate(h) {
1290 char buf[32];
1291 printk(KERN_INFO "HugeTLB registered %s page size, "
1292 "pre-allocated %ld pages\n",
1293 memfmt(buf, huge_page_size(h)),
1294 h->free_huge_pages);
1298 #ifdef CONFIG_HIGHMEM
1299 static void try_to_free_low(struct hstate *h, unsigned long count,
1300 nodemask_t *nodes_allowed)
1302 int i;
1304 if (h->order >= MAX_ORDER)
1305 return;
1307 for_each_node_mask(i, *nodes_allowed) {
1308 struct page *page, *next;
1309 struct list_head *freel = &h->hugepage_freelists[i];
1310 list_for_each_entry_safe(page, next, freel, lru) {
1311 if (count >= h->nr_huge_pages)
1312 return;
1313 if (PageHighMem(page))
1314 continue;
1315 list_del(&page->lru);
1316 update_and_free_page(h, page);
1317 h->free_huge_pages--;
1318 h->free_huge_pages_node[page_to_nid(page)]--;
1322 #else
1323 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1324 nodemask_t *nodes_allowed)
1327 #endif
1330 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1331 * balanced by operating on them in a round-robin fashion.
1332 * Returns 1 if an adjustment was made.
1334 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1335 int delta)
1337 int start_nid, next_nid;
1338 int ret = 0;
1340 VM_BUG_ON(delta != -1 && delta != 1);
1342 if (delta < 0)
1343 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1344 else
1345 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1346 next_nid = start_nid;
1348 do {
1349 int nid = next_nid;
1350 if (delta < 0) {
1352 * To shrink on this node, there must be a surplus page
1354 if (!h->surplus_huge_pages_node[nid]) {
1355 next_nid = hstate_next_node_to_alloc(h,
1356 nodes_allowed);
1357 continue;
1360 if (delta > 0) {
1362 * Surplus cannot exceed the total number of pages
1364 if (h->surplus_huge_pages_node[nid] >=
1365 h->nr_huge_pages_node[nid]) {
1366 next_nid = hstate_next_node_to_free(h,
1367 nodes_allowed);
1368 continue;
1372 h->surplus_huge_pages += delta;
1373 h->surplus_huge_pages_node[nid] += delta;
1374 ret = 1;
1375 break;
1376 } while (next_nid != start_nid);
1378 return ret;
1381 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1382 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1383 nodemask_t *nodes_allowed)
1385 unsigned long min_count, ret;
1387 if (h->order >= MAX_ORDER)
1388 return h->max_huge_pages;
1391 * Increase the pool size
1392 * First take pages out of surplus state. Then make up the
1393 * remaining difference by allocating fresh huge pages.
1395 * We might race with alloc_buddy_huge_page() here and be unable
1396 * to convert a surplus huge page to a normal huge page. That is
1397 * not critical, though, it just means the overall size of the
1398 * pool might be one hugepage larger than it needs to be, but
1399 * within all the constraints specified by the sysctls.
1401 spin_lock(&hugetlb_lock);
1402 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1403 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1404 break;
1407 while (count > persistent_huge_pages(h)) {
1409 * If this allocation races such that we no longer need the
1410 * page, free_huge_page will handle it by freeing the page
1411 * and reducing the surplus.
1413 spin_unlock(&hugetlb_lock);
1414 ret = alloc_fresh_huge_page(h, nodes_allowed);
1415 spin_lock(&hugetlb_lock);
1416 if (!ret)
1417 goto out;
1419 /* Bail for signals. Probably ctrl-c from user */
1420 if (signal_pending(current))
1421 goto out;
1425 * Decrease the pool size
1426 * First return free pages to the buddy allocator (being careful
1427 * to keep enough around to satisfy reservations). Then place
1428 * pages into surplus state as needed so the pool will shrink
1429 * to the desired size as pages become free.
1431 * By placing pages into the surplus state independent of the
1432 * overcommit value, we are allowing the surplus pool size to
1433 * exceed overcommit. There are few sane options here. Since
1434 * alloc_buddy_huge_page() is checking the global counter,
1435 * though, we'll note that we're not allowed to exceed surplus
1436 * and won't grow the pool anywhere else. Not until one of the
1437 * sysctls are changed, or the surplus pages go out of use.
1439 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1440 min_count = max(count, min_count);
1441 try_to_free_low(h, min_count, nodes_allowed);
1442 while (min_count < persistent_huge_pages(h)) {
1443 if (!free_pool_huge_page(h, nodes_allowed, 0))
1444 break;
1446 while (count < persistent_huge_pages(h)) {
1447 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1448 break;
1450 out:
1451 ret = persistent_huge_pages(h);
1452 spin_unlock(&hugetlb_lock);
1453 return ret;
1456 #define HSTATE_ATTR_RO(_name) \
1457 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1459 #define HSTATE_ATTR(_name) \
1460 static struct kobj_attribute _name##_attr = \
1461 __ATTR(_name, 0644, _name##_show, _name##_store)
1463 static struct kobject *hugepages_kobj;
1464 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1466 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1468 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470 int i;
1472 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1473 if (hstate_kobjs[i] == kobj) {
1474 if (nidp)
1475 *nidp = NUMA_NO_NODE;
1476 return &hstates[i];
1479 return kobj_to_node_hstate(kobj, nidp);
1482 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1483 struct kobj_attribute *attr, char *buf)
1485 struct hstate *h;
1486 unsigned long nr_huge_pages;
1487 int nid;
1489 h = kobj_to_hstate(kobj, &nid);
1490 if (nid == NUMA_NO_NODE)
1491 nr_huge_pages = h->nr_huge_pages;
1492 else
1493 nr_huge_pages = h->nr_huge_pages_node[nid];
1495 return sprintf(buf, "%lu\n", nr_huge_pages);
1498 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1499 struct kobject *kobj, struct kobj_attribute *attr,
1500 const char *buf, size_t len)
1502 int err;
1503 int nid;
1504 unsigned long count;
1505 struct hstate *h;
1506 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508 err = strict_strtoul(buf, 10, &count);
1509 if (err)
1510 goto out;
1512 h = kobj_to_hstate(kobj, &nid);
1513 if (h->order >= MAX_ORDER) {
1514 err = -EINVAL;
1515 goto out;
1518 if (nid == NUMA_NO_NODE) {
1520 * global hstate attribute
1522 if (!(obey_mempolicy &&
1523 init_nodemask_of_mempolicy(nodes_allowed))) {
1524 NODEMASK_FREE(nodes_allowed);
1525 nodes_allowed = &node_states[N_HIGH_MEMORY];
1527 } else if (nodes_allowed) {
1529 * per node hstate attribute: adjust count to global,
1530 * but restrict alloc/free to the specified node.
1532 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1533 init_nodemask_of_node(nodes_allowed, nid);
1534 } else
1535 nodes_allowed = &node_states[N_HIGH_MEMORY];
1537 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1540 NODEMASK_FREE(nodes_allowed);
1542 return len;
1543 out:
1544 NODEMASK_FREE(nodes_allowed);
1545 return err;
1548 static ssize_t nr_hugepages_show(struct kobject *kobj,
1549 struct kobj_attribute *attr, char *buf)
1551 return nr_hugepages_show_common(kobj, attr, buf);
1554 static ssize_t nr_hugepages_store(struct kobject *kobj,
1555 struct kobj_attribute *attr, const char *buf, size_t len)
1557 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559 HSTATE_ATTR(nr_hugepages);
1561 #ifdef CONFIG_NUMA
1564 * hstate attribute for optionally mempolicy-based constraint on persistent
1565 * huge page alloc/free.
1567 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1568 struct kobj_attribute *attr, char *buf)
1570 return nr_hugepages_show_common(kobj, attr, buf);
1573 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1574 struct kobj_attribute *attr, const char *buf, size_t len)
1576 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1578 HSTATE_ATTR(nr_hugepages_mempolicy);
1579 #endif
1582 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1583 struct kobj_attribute *attr, char *buf)
1585 struct hstate *h = kobj_to_hstate(kobj, NULL);
1586 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1589 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1590 struct kobj_attribute *attr, const char *buf, size_t count)
1592 int err;
1593 unsigned long input;
1594 struct hstate *h = kobj_to_hstate(kobj, NULL);
1596 if (h->order >= MAX_ORDER)
1597 return -EINVAL;
1599 err = strict_strtoul(buf, 10, &input);
1600 if (err)
1601 return err;
1603 spin_lock(&hugetlb_lock);
1604 h->nr_overcommit_huge_pages = input;
1605 spin_unlock(&hugetlb_lock);
1607 return count;
1609 HSTATE_ATTR(nr_overcommit_hugepages);
1611 static ssize_t free_hugepages_show(struct kobject *kobj,
1612 struct kobj_attribute *attr, char *buf)
1614 struct hstate *h;
1615 unsigned long free_huge_pages;
1616 int nid;
1618 h = kobj_to_hstate(kobj, &nid);
1619 if (nid == NUMA_NO_NODE)
1620 free_huge_pages = h->free_huge_pages;
1621 else
1622 free_huge_pages = h->free_huge_pages_node[nid];
1624 return sprintf(buf, "%lu\n", free_huge_pages);
1626 HSTATE_ATTR_RO(free_hugepages);
1628 static ssize_t resv_hugepages_show(struct kobject *kobj,
1629 struct kobj_attribute *attr, char *buf)
1631 struct hstate *h = kobj_to_hstate(kobj, NULL);
1632 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1634 HSTATE_ATTR_RO(resv_hugepages);
1636 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1639 struct hstate *h;
1640 unsigned long surplus_huge_pages;
1641 int nid;
1643 h = kobj_to_hstate(kobj, &nid);
1644 if (nid == NUMA_NO_NODE)
1645 surplus_huge_pages = h->surplus_huge_pages;
1646 else
1647 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1649 return sprintf(buf, "%lu\n", surplus_huge_pages);
1651 HSTATE_ATTR_RO(surplus_hugepages);
1653 static struct attribute *hstate_attrs[] = {
1654 &nr_hugepages_attr.attr,
1655 &nr_overcommit_hugepages_attr.attr,
1656 &free_hugepages_attr.attr,
1657 &resv_hugepages_attr.attr,
1658 &surplus_hugepages_attr.attr,
1659 #ifdef CONFIG_NUMA
1660 &nr_hugepages_mempolicy_attr.attr,
1661 #endif
1662 NULL,
1665 static struct attribute_group hstate_attr_group = {
1666 .attrs = hstate_attrs,
1669 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1670 struct kobject **hstate_kobjs,
1671 struct attribute_group *hstate_attr_group)
1673 int retval;
1674 int hi = hstate_index(h);
1676 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1677 if (!hstate_kobjs[hi])
1678 return -ENOMEM;
1680 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1681 if (retval)
1682 kobject_put(hstate_kobjs[hi]);
1684 return retval;
1687 static void __init hugetlb_sysfs_init(void)
1689 struct hstate *h;
1690 int err;
1692 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1693 if (!hugepages_kobj)
1694 return;
1696 for_each_hstate(h) {
1697 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1698 hstate_kobjs, &hstate_attr_group);
1699 if (err)
1700 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1701 h->name);
1705 #ifdef CONFIG_NUMA
1708 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1709 * with node devices in node_devices[] using a parallel array. The array
1710 * index of a node device or _hstate == node id.
1711 * This is here to avoid any static dependency of the node device driver, in
1712 * the base kernel, on the hugetlb module.
1714 struct node_hstate {
1715 struct kobject *hugepages_kobj;
1716 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1718 struct node_hstate node_hstates[MAX_NUMNODES];
1721 * A subset of global hstate attributes for node devices
1723 static struct attribute *per_node_hstate_attrs[] = {
1724 &nr_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &surplus_hugepages_attr.attr,
1727 NULL,
1730 static struct attribute_group per_node_hstate_attr_group = {
1731 .attrs = per_node_hstate_attrs,
1735 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1736 * Returns node id via non-NULL nidp.
1738 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740 int nid;
1742 for (nid = 0; nid < nr_node_ids; nid++) {
1743 struct node_hstate *nhs = &node_hstates[nid];
1744 int i;
1745 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1746 if (nhs->hstate_kobjs[i] == kobj) {
1747 if (nidp)
1748 *nidp = nid;
1749 return &hstates[i];
1753 BUG();
1754 return NULL;
1758 * Unregister hstate attributes from a single node device.
1759 * No-op if no hstate attributes attached.
1761 void hugetlb_unregister_node(struct node *node)
1763 struct hstate *h;
1764 struct node_hstate *nhs = &node_hstates[node->dev.id];
1766 if (!nhs->hugepages_kobj)
1767 return; /* no hstate attributes */
1769 for_each_hstate(h) {
1770 int idx = hstate_index(h);
1771 if (nhs->hstate_kobjs[idx]) {
1772 kobject_put(nhs->hstate_kobjs[idx]);
1773 nhs->hstate_kobjs[idx] = NULL;
1777 kobject_put(nhs->hugepages_kobj);
1778 nhs->hugepages_kobj = NULL;
1782 * hugetlb module exit: unregister hstate attributes from node devices
1783 * that have them.
1785 static void hugetlb_unregister_all_nodes(void)
1787 int nid;
1790 * disable node device registrations.
1792 register_hugetlbfs_with_node(NULL, NULL);
1795 * remove hstate attributes from any nodes that have them.
1797 for (nid = 0; nid < nr_node_ids; nid++)
1798 hugetlb_unregister_node(&node_devices[nid]);
1802 * Register hstate attributes for a single node device.
1803 * No-op if attributes already registered.
1805 void hugetlb_register_node(struct node *node)
1807 struct hstate *h;
1808 struct node_hstate *nhs = &node_hstates[node->dev.id];
1809 int err;
1811 if (nhs->hugepages_kobj)
1812 return; /* already allocated */
1814 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1815 &node->dev.kobj);
1816 if (!nhs->hugepages_kobj)
1817 return;
1819 for_each_hstate(h) {
1820 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1821 nhs->hstate_kobjs,
1822 &per_node_hstate_attr_group);
1823 if (err) {
1824 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1825 " for node %d\n",
1826 h->name, node->dev.id);
1827 hugetlb_unregister_node(node);
1828 break;
1834 * hugetlb init time: register hstate attributes for all registered node
1835 * devices of nodes that have memory. All on-line nodes should have
1836 * registered their associated device by this time.
1838 static void hugetlb_register_all_nodes(void)
1840 int nid;
1842 for_each_node_state(nid, N_HIGH_MEMORY) {
1843 struct node *node = &node_devices[nid];
1844 if (node->dev.id == nid)
1845 hugetlb_register_node(node);
1849 * Let the node device driver know we're here so it can
1850 * [un]register hstate attributes on node hotplug.
1852 register_hugetlbfs_with_node(hugetlb_register_node,
1853 hugetlb_unregister_node);
1855 #else /* !CONFIG_NUMA */
1857 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1859 BUG();
1860 if (nidp)
1861 *nidp = -1;
1862 return NULL;
1865 static void hugetlb_unregister_all_nodes(void) { }
1867 static void hugetlb_register_all_nodes(void) { }
1869 #endif
1871 static void __exit hugetlb_exit(void)
1873 struct hstate *h;
1875 hugetlb_unregister_all_nodes();
1877 for_each_hstate(h) {
1878 kobject_put(hstate_kobjs[hstate_index(h)]);
1881 kobject_put(hugepages_kobj);
1883 module_exit(hugetlb_exit);
1885 static int __init hugetlb_init(void)
1887 /* Some platform decide whether they support huge pages at boot
1888 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889 * there is no such support
1891 if (HPAGE_SHIFT == 0)
1892 return 0;
1894 if (!size_to_hstate(default_hstate_size)) {
1895 default_hstate_size = HPAGE_SIZE;
1896 if (!size_to_hstate(default_hstate_size))
1897 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1899 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1900 if (default_hstate_max_huge_pages)
1901 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1903 hugetlb_init_hstates();
1905 gather_bootmem_prealloc();
1907 report_hugepages();
1909 hugetlb_sysfs_init();
1911 hugetlb_register_all_nodes();
1913 return 0;
1915 module_init(hugetlb_init);
1917 /* Should be called on processing a hugepagesz=... option */
1918 void __init hugetlb_add_hstate(unsigned order)
1920 struct hstate *h;
1921 unsigned long i;
1923 if (size_to_hstate(PAGE_SIZE << order)) {
1924 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1925 return;
1927 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1928 BUG_ON(order == 0);
1929 h = &hstates[hugetlb_max_hstate++];
1930 h->order = order;
1931 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1932 h->nr_huge_pages = 0;
1933 h->free_huge_pages = 0;
1934 for (i = 0; i < MAX_NUMNODES; ++i)
1935 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1936 INIT_LIST_HEAD(&h->hugepage_activelist);
1937 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1938 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1939 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1940 huge_page_size(h)/1024);
1942 * Add cgroup control files only if the huge page consists
1943 * of more than two normal pages. This is because we use
1944 * page[2].lru.next for storing cgoup details.
1946 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1947 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1949 parsed_hstate = h;
1952 static int __init hugetlb_nrpages_setup(char *s)
1954 unsigned long *mhp;
1955 static unsigned long *last_mhp;
1958 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1959 * so this hugepages= parameter goes to the "default hstate".
1961 if (!hugetlb_max_hstate)
1962 mhp = &default_hstate_max_huge_pages;
1963 else
1964 mhp = &parsed_hstate->max_huge_pages;
1966 if (mhp == last_mhp) {
1967 printk(KERN_WARNING "hugepages= specified twice without "
1968 "interleaving hugepagesz=, ignoring\n");
1969 return 1;
1972 if (sscanf(s, "%lu", mhp) <= 0)
1973 *mhp = 0;
1976 * Global state is always initialized later in hugetlb_init.
1977 * But we need to allocate >= MAX_ORDER hstates here early to still
1978 * use the bootmem allocator.
1980 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1981 hugetlb_hstate_alloc_pages(parsed_hstate);
1983 last_mhp = mhp;
1985 return 1;
1987 __setup("hugepages=", hugetlb_nrpages_setup);
1989 static int __init hugetlb_default_setup(char *s)
1991 default_hstate_size = memparse(s, &s);
1992 return 1;
1994 __setup("default_hugepagesz=", hugetlb_default_setup);
1996 static unsigned int cpuset_mems_nr(unsigned int *array)
1998 int node;
1999 unsigned int nr = 0;
2001 for_each_node_mask(node, cpuset_current_mems_allowed)
2002 nr += array[node];
2004 return nr;
2007 #ifdef CONFIG_SYSCTL
2008 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2009 struct ctl_table *table, int write,
2010 void __user *buffer, size_t *length, loff_t *ppos)
2012 struct hstate *h = &default_hstate;
2013 unsigned long tmp;
2014 int ret;
2016 tmp = h->max_huge_pages;
2018 if (write && h->order >= MAX_ORDER)
2019 return -EINVAL;
2021 table->data = &tmp;
2022 table->maxlen = sizeof(unsigned long);
2023 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2024 if (ret)
2025 goto out;
2027 if (write) {
2028 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2029 GFP_KERNEL | __GFP_NORETRY);
2030 if (!(obey_mempolicy &&
2031 init_nodemask_of_mempolicy(nodes_allowed))) {
2032 NODEMASK_FREE(nodes_allowed);
2033 nodes_allowed = &node_states[N_HIGH_MEMORY];
2035 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2037 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2038 NODEMASK_FREE(nodes_allowed);
2040 out:
2041 return ret;
2044 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2045 void __user *buffer, size_t *length, loff_t *ppos)
2048 return hugetlb_sysctl_handler_common(false, table, write,
2049 buffer, length, ppos);
2052 #ifdef CONFIG_NUMA
2053 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2054 void __user *buffer, size_t *length, loff_t *ppos)
2056 return hugetlb_sysctl_handler_common(true, table, write,
2057 buffer, length, ppos);
2059 #endif /* CONFIG_NUMA */
2061 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062 void __user *buffer,
2063 size_t *length, loff_t *ppos)
2065 proc_dointvec(table, write, buffer, length, ppos);
2066 if (hugepages_treat_as_movable)
2067 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2068 else
2069 htlb_alloc_mask = GFP_HIGHUSER;
2070 return 0;
2073 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074 void __user *buffer,
2075 size_t *length, loff_t *ppos)
2077 struct hstate *h = &default_hstate;
2078 unsigned long tmp;
2079 int ret;
2081 tmp = h->nr_overcommit_huge_pages;
2083 if (write && h->order >= MAX_ORDER)
2084 return -EINVAL;
2086 table->data = &tmp;
2087 table->maxlen = sizeof(unsigned long);
2088 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089 if (ret)
2090 goto out;
2092 if (write) {
2093 spin_lock(&hugetlb_lock);
2094 h->nr_overcommit_huge_pages = tmp;
2095 spin_unlock(&hugetlb_lock);
2097 out:
2098 return ret;
2101 #endif /* CONFIG_SYSCTL */
2103 void hugetlb_report_meminfo(struct seq_file *m)
2105 struct hstate *h = &default_hstate;
2106 seq_printf(m,
2107 "HugePages_Total: %5lu\n"
2108 "HugePages_Free: %5lu\n"
2109 "HugePages_Rsvd: %5lu\n"
2110 "HugePages_Surp: %5lu\n"
2111 "Hugepagesize: %8lu kB\n",
2112 h->nr_huge_pages,
2113 h->free_huge_pages,
2114 h->resv_huge_pages,
2115 h->surplus_huge_pages,
2116 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2119 int hugetlb_report_node_meminfo(int nid, char *buf)
2121 struct hstate *h = &default_hstate;
2122 return sprintf(buf,
2123 "Node %d HugePages_Total: %5u\n"
2124 "Node %d HugePages_Free: %5u\n"
2125 "Node %d HugePages_Surp: %5u\n",
2126 nid, h->nr_huge_pages_node[nid],
2127 nid, h->free_huge_pages_node[nid],
2128 nid, h->surplus_huge_pages_node[nid]);
2131 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2132 unsigned long hugetlb_total_pages(void)
2134 struct hstate *h = &default_hstate;
2135 return h->nr_huge_pages * pages_per_huge_page(h);
2138 static int hugetlb_acct_memory(struct hstate *h, long delta)
2140 int ret = -ENOMEM;
2142 spin_lock(&hugetlb_lock);
2144 * When cpuset is configured, it breaks the strict hugetlb page
2145 * reservation as the accounting is done on a global variable. Such
2146 * reservation is completely rubbish in the presence of cpuset because
2147 * the reservation is not checked against page availability for the
2148 * current cpuset. Application can still potentially OOM'ed by kernel
2149 * with lack of free htlb page in cpuset that the task is in.
2150 * Attempt to enforce strict accounting with cpuset is almost
2151 * impossible (or too ugly) because cpuset is too fluid that
2152 * task or memory node can be dynamically moved between cpusets.
2154 * The change of semantics for shared hugetlb mapping with cpuset is
2155 * undesirable. However, in order to preserve some of the semantics,
2156 * we fall back to check against current free page availability as
2157 * a best attempt and hopefully to minimize the impact of changing
2158 * semantics that cpuset has.
2160 if (delta > 0) {
2161 if (gather_surplus_pages(h, delta) < 0)
2162 goto out;
2164 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2165 return_unused_surplus_pages(h, delta);
2166 goto out;
2170 ret = 0;
2171 if (delta < 0)
2172 return_unused_surplus_pages(h, (unsigned long) -delta);
2174 out:
2175 spin_unlock(&hugetlb_lock);
2176 return ret;
2179 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2181 struct resv_map *reservations = vma_resv_map(vma);
2184 * This new VMA should share its siblings reservation map if present.
2185 * The VMA will only ever have a valid reservation map pointer where
2186 * it is being copied for another still existing VMA. As that VMA
2187 * has a reference to the reservation map it cannot disappear until
2188 * after this open call completes. It is therefore safe to take a
2189 * new reference here without additional locking.
2191 if (reservations)
2192 kref_get(&reservations->refs);
2195 static void resv_map_put(struct vm_area_struct *vma)
2197 struct resv_map *reservations = vma_resv_map(vma);
2199 if (!reservations)
2200 return;
2201 kref_put(&reservations->refs, resv_map_release);
2204 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2206 struct hstate *h = hstate_vma(vma);
2207 struct resv_map *reservations = vma_resv_map(vma);
2208 struct hugepage_subpool *spool = subpool_vma(vma);
2209 unsigned long reserve;
2210 unsigned long start;
2211 unsigned long end;
2213 if (reservations) {
2214 start = vma_hugecache_offset(h, vma, vma->vm_start);
2215 end = vma_hugecache_offset(h, vma, vma->vm_end);
2217 reserve = (end - start) -
2218 region_count(&reservations->regions, start, end);
2220 resv_map_put(vma);
2222 if (reserve) {
2223 hugetlb_acct_memory(h, -reserve);
2224 hugepage_subpool_put_pages(spool, reserve);
2230 * We cannot handle pagefaults against hugetlb pages at all. They cause
2231 * handle_mm_fault() to try to instantiate regular-sized pages in the
2232 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2233 * this far.
2235 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2237 BUG();
2238 return 0;
2241 const struct vm_operations_struct hugetlb_vm_ops = {
2242 .fault = hugetlb_vm_op_fault,
2243 .open = hugetlb_vm_op_open,
2244 .close = hugetlb_vm_op_close,
2247 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2248 int writable)
2250 pte_t entry;
2252 if (writable) {
2253 entry =
2254 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2255 } else {
2256 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2258 entry = pte_mkyoung(entry);
2259 entry = pte_mkhuge(entry);
2260 entry = arch_make_huge_pte(entry, vma, page, writable);
2262 return entry;
2265 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2266 unsigned long address, pte_t *ptep)
2268 pte_t entry;
2270 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2271 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2272 update_mmu_cache(vma, address, ptep);
2276 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2277 struct vm_area_struct *vma)
2279 pte_t *src_pte, *dst_pte, entry;
2280 struct page *ptepage;
2281 unsigned long addr;
2282 int cow;
2283 struct hstate *h = hstate_vma(vma);
2284 unsigned long sz = huge_page_size(h);
2286 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2288 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2289 src_pte = huge_pte_offset(src, addr);
2290 if (!src_pte)
2291 continue;
2292 dst_pte = huge_pte_alloc(dst, addr, sz);
2293 if (!dst_pte)
2294 goto nomem;
2296 /* If the pagetables are shared don't copy or take references */
2297 if (dst_pte == src_pte)
2298 continue;
2300 spin_lock(&dst->page_table_lock);
2301 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2302 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2303 if (cow)
2304 huge_ptep_set_wrprotect(src, addr, src_pte);
2305 entry = huge_ptep_get(src_pte);
2306 ptepage = pte_page(entry);
2307 get_page(ptepage);
2308 page_dup_rmap(ptepage);
2309 set_huge_pte_at(dst, addr, dst_pte, entry);
2311 spin_unlock(&src->page_table_lock);
2312 spin_unlock(&dst->page_table_lock);
2314 return 0;
2316 nomem:
2317 return -ENOMEM;
2320 static int is_hugetlb_entry_migration(pte_t pte)
2322 swp_entry_t swp;
2324 if (huge_pte_none(pte) || pte_present(pte))
2325 return 0;
2326 swp = pte_to_swp_entry(pte);
2327 if (non_swap_entry(swp) && is_migration_entry(swp))
2328 return 1;
2329 else
2330 return 0;
2333 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2335 swp_entry_t swp;
2337 if (huge_pte_none(pte) || pte_present(pte))
2338 return 0;
2339 swp = pte_to_swp_entry(pte);
2340 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2341 return 1;
2342 else
2343 return 0;
2346 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2347 unsigned long start, unsigned long end,
2348 struct page *ref_page)
2350 int force_flush = 0;
2351 struct mm_struct *mm = vma->vm_mm;
2352 unsigned long address;
2353 pte_t *ptep;
2354 pte_t pte;
2355 struct page *page;
2356 struct hstate *h = hstate_vma(vma);
2357 unsigned long sz = huge_page_size(h);
2359 WARN_ON(!is_vm_hugetlb_page(vma));
2360 BUG_ON(start & ~huge_page_mask(h));
2361 BUG_ON(end & ~huge_page_mask(h));
2363 tlb_start_vma(tlb, vma);
2364 mmu_notifier_invalidate_range_start(mm, start, end);
2365 again:
2366 spin_lock(&mm->page_table_lock);
2367 for (address = start; address < end; address += sz) {
2368 ptep = huge_pte_offset(mm, address);
2369 if (!ptep)
2370 continue;
2372 if (huge_pmd_unshare(mm, &address, ptep))
2373 continue;
2375 pte = huge_ptep_get(ptep);
2376 if (huge_pte_none(pte))
2377 continue;
2380 * HWPoisoned hugepage is already unmapped and dropped reference
2382 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2383 continue;
2385 page = pte_page(pte);
2387 * If a reference page is supplied, it is because a specific
2388 * page is being unmapped, not a range. Ensure the page we
2389 * are about to unmap is the actual page of interest.
2391 if (ref_page) {
2392 if (page != ref_page)
2393 continue;
2396 * Mark the VMA as having unmapped its page so that
2397 * future faults in this VMA will fail rather than
2398 * looking like data was lost
2400 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2403 pte = huge_ptep_get_and_clear(mm, address, ptep);
2404 tlb_remove_tlb_entry(tlb, ptep, address);
2405 if (pte_dirty(pte))
2406 set_page_dirty(page);
2408 page_remove_rmap(page);
2409 force_flush = !__tlb_remove_page(tlb, page);
2410 if (force_flush)
2411 break;
2412 /* Bail out after unmapping reference page if supplied */
2413 if (ref_page)
2414 break;
2416 spin_unlock(&mm->page_table_lock);
2418 * mmu_gather ran out of room to batch pages, we break out of
2419 * the PTE lock to avoid doing the potential expensive TLB invalidate
2420 * and page-free while holding it.
2422 if (force_flush) {
2423 force_flush = 0;
2424 tlb_flush_mmu(tlb);
2425 if (address < end && !ref_page)
2426 goto again;
2428 mmu_notifier_invalidate_range_end(mm, start, end);
2429 tlb_end_vma(tlb, vma);
2432 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2433 struct vm_area_struct *vma, unsigned long start,
2434 unsigned long end, struct page *ref_page)
2436 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2439 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2440 * test will fail on a vma being torn down, and not grab a page table
2441 * on its way out. We're lucky that the flag has such an appropriate
2442 * name, and can in fact be safely cleared here. We could clear it
2443 * before the __unmap_hugepage_range above, but all that's necessary
2444 * is to clear it before releasing the i_mmap_mutex. This works
2445 * because in the context this is called, the VMA is about to be
2446 * destroyed and the i_mmap_mutex is held.
2448 vma->vm_flags &= ~VM_MAYSHARE;
2451 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2452 unsigned long end, struct page *ref_page)
2454 struct mm_struct *mm;
2455 struct mmu_gather tlb;
2457 mm = vma->vm_mm;
2459 tlb_gather_mmu(&tlb, mm, 0);
2460 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2461 tlb_finish_mmu(&tlb, start, end);
2465 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2466 * mappping it owns the reserve page for. The intention is to unmap the page
2467 * from other VMAs and let the children be SIGKILLed if they are faulting the
2468 * same region.
2470 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2471 struct page *page, unsigned long address)
2473 struct hstate *h = hstate_vma(vma);
2474 struct vm_area_struct *iter_vma;
2475 struct address_space *mapping;
2476 struct prio_tree_iter iter;
2477 pgoff_t pgoff;
2480 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2481 * from page cache lookup which is in HPAGE_SIZE units.
2483 address = address & huge_page_mask(h);
2484 pgoff = vma_hugecache_offset(h, vma, address);
2485 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2488 * Take the mapping lock for the duration of the table walk. As
2489 * this mapping should be shared between all the VMAs,
2490 * __unmap_hugepage_range() is called as the lock is already held
2492 mutex_lock(&mapping->i_mmap_mutex);
2493 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2494 /* Do not unmap the current VMA */
2495 if (iter_vma == vma)
2496 continue;
2499 * Unmap the page from other VMAs without their own reserves.
2500 * They get marked to be SIGKILLed if they fault in these
2501 * areas. This is because a future no-page fault on this VMA
2502 * could insert a zeroed page instead of the data existing
2503 * from the time of fork. This would look like data corruption
2505 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506 unmap_hugepage_range(iter_vma, address,
2507 address + huge_page_size(h), page);
2509 mutex_unlock(&mapping->i_mmap_mutex);
2511 return 1;
2515 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2517 * cannot race with other handlers or page migration.
2518 * Keep the pte_same checks anyway to make transition from the mutex easier.
2520 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521 unsigned long address, pte_t *ptep, pte_t pte,
2522 struct page *pagecache_page)
2524 struct hstate *h = hstate_vma(vma);
2525 struct page *old_page, *new_page;
2526 int avoidcopy;
2527 int outside_reserve = 0;
2529 old_page = pte_page(pte);
2531 retry_avoidcopy:
2532 /* If no-one else is actually using this page, avoid the copy
2533 * and just make the page writable */
2534 avoidcopy = (page_mapcount(old_page) == 1);
2535 if (avoidcopy) {
2536 if (PageAnon(old_page))
2537 page_move_anon_rmap(old_page, vma, address);
2538 set_huge_ptep_writable(vma, address, ptep);
2539 return 0;
2543 * If the process that created a MAP_PRIVATE mapping is about to
2544 * perform a COW due to a shared page count, attempt to satisfy
2545 * the allocation without using the existing reserves. The pagecache
2546 * page is used to determine if the reserve at this address was
2547 * consumed or not. If reserves were used, a partial faulted mapping
2548 * at the time of fork() could consume its reserves on COW instead
2549 * of the full address range.
2551 if (!(vma->vm_flags & VM_MAYSHARE) &&
2552 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2553 old_page != pagecache_page)
2554 outside_reserve = 1;
2556 page_cache_get(old_page);
2558 /* Drop page_table_lock as buddy allocator may be called */
2559 spin_unlock(&mm->page_table_lock);
2560 new_page = alloc_huge_page(vma, address, outside_reserve);
2562 if (IS_ERR(new_page)) {
2563 long err = PTR_ERR(new_page);
2564 page_cache_release(old_page);
2567 * If a process owning a MAP_PRIVATE mapping fails to COW,
2568 * it is due to references held by a child and an insufficient
2569 * huge page pool. To guarantee the original mappers
2570 * reliability, unmap the page from child processes. The child
2571 * may get SIGKILLed if it later faults.
2573 if (outside_reserve) {
2574 BUG_ON(huge_pte_none(pte));
2575 if (unmap_ref_private(mm, vma, old_page, address)) {
2576 BUG_ON(huge_pte_none(pte));
2577 spin_lock(&mm->page_table_lock);
2578 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2579 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2580 goto retry_avoidcopy;
2582 * race occurs while re-acquiring page_table_lock, and
2583 * our job is done.
2585 return 0;
2587 WARN_ON_ONCE(1);
2590 /* Caller expects lock to be held */
2591 spin_lock(&mm->page_table_lock);
2592 if (err == -ENOMEM)
2593 return VM_FAULT_OOM;
2594 else
2595 return VM_FAULT_SIGBUS;
2599 * When the original hugepage is shared one, it does not have
2600 * anon_vma prepared.
2602 if (unlikely(anon_vma_prepare(vma))) {
2603 page_cache_release(new_page);
2604 page_cache_release(old_page);
2605 /* Caller expects lock to be held */
2606 spin_lock(&mm->page_table_lock);
2607 return VM_FAULT_OOM;
2610 copy_user_huge_page(new_page, old_page, address, vma,
2611 pages_per_huge_page(h));
2612 __SetPageUptodate(new_page);
2615 * Retake the page_table_lock to check for racing updates
2616 * before the page tables are altered
2618 spin_lock(&mm->page_table_lock);
2619 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2620 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2621 /* Break COW */
2622 mmu_notifier_invalidate_range_start(mm,
2623 address & huge_page_mask(h),
2624 (address & huge_page_mask(h)) + huge_page_size(h));
2625 huge_ptep_clear_flush(vma, address, ptep);
2626 set_huge_pte_at(mm, address, ptep,
2627 make_huge_pte(vma, new_page, 1));
2628 page_remove_rmap(old_page);
2629 hugepage_add_new_anon_rmap(new_page, vma, address);
2630 /* Make the old page be freed below */
2631 new_page = old_page;
2632 mmu_notifier_invalidate_range_end(mm,
2633 address & huge_page_mask(h),
2634 (address & huge_page_mask(h)) + huge_page_size(h));
2636 page_cache_release(new_page);
2637 page_cache_release(old_page);
2638 return 0;
2641 /* Return the pagecache page at a given address within a VMA */
2642 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2643 struct vm_area_struct *vma, unsigned long address)
2645 struct address_space *mapping;
2646 pgoff_t idx;
2648 mapping = vma->vm_file->f_mapping;
2649 idx = vma_hugecache_offset(h, vma, address);
2651 return find_lock_page(mapping, idx);
2655 * Return whether there is a pagecache page to back given address within VMA.
2656 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2658 static bool hugetlbfs_pagecache_present(struct hstate *h,
2659 struct vm_area_struct *vma, unsigned long address)
2661 struct address_space *mapping;
2662 pgoff_t idx;
2663 struct page *page;
2665 mapping = vma->vm_file->f_mapping;
2666 idx = vma_hugecache_offset(h, vma, address);
2668 page = find_get_page(mapping, idx);
2669 if (page)
2670 put_page(page);
2671 return page != NULL;
2674 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2675 unsigned long address, pte_t *ptep, unsigned int flags)
2677 struct hstate *h = hstate_vma(vma);
2678 int ret = VM_FAULT_SIGBUS;
2679 int anon_rmap = 0;
2680 pgoff_t idx;
2681 unsigned long size;
2682 struct page *page;
2683 struct address_space *mapping;
2684 pte_t new_pte;
2687 * Currently, we are forced to kill the process in the event the
2688 * original mapper has unmapped pages from the child due to a failed
2689 * COW. Warn that such a situation has occurred as it may not be obvious
2691 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2692 printk(KERN_WARNING
2693 "PID %d killed due to inadequate hugepage pool\n",
2694 current->pid);
2695 return ret;
2698 mapping = vma->vm_file->f_mapping;
2699 idx = vma_hugecache_offset(h, vma, address);
2702 * Use page lock to guard against racing truncation
2703 * before we get page_table_lock.
2705 retry:
2706 page = find_lock_page(mapping, idx);
2707 if (!page) {
2708 size = i_size_read(mapping->host) >> huge_page_shift(h);
2709 if (idx >= size)
2710 goto out;
2711 page = alloc_huge_page(vma, address, 0);
2712 if (IS_ERR(page)) {
2713 ret = PTR_ERR(page);
2714 if (ret == -ENOMEM)
2715 ret = VM_FAULT_OOM;
2716 else
2717 ret = VM_FAULT_SIGBUS;
2718 goto out;
2720 clear_huge_page(page, address, pages_per_huge_page(h));
2721 __SetPageUptodate(page);
2723 if (vma->vm_flags & VM_MAYSHARE) {
2724 int err;
2725 struct inode *inode = mapping->host;
2727 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2728 if (err) {
2729 put_page(page);
2730 if (err == -EEXIST)
2731 goto retry;
2732 goto out;
2735 spin_lock(&inode->i_lock);
2736 inode->i_blocks += blocks_per_huge_page(h);
2737 spin_unlock(&inode->i_lock);
2738 } else {
2739 lock_page(page);
2740 if (unlikely(anon_vma_prepare(vma))) {
2741 ret = VM_FAULT_OOM;
2742 goto backout_unlocked;
2744 anon_rmap = 1;
2746 } else {
2748 * If memory error occurs between mmap() and fault, some process
2749 * don't have hwpoisoned swap entry for errored virtual address.
2750 * So we need to block hugepage fault by PG_hwpoison bit check.
2752 if (unlikely(PageHWPoison(page))) {
2753 ret = VM_FAULT_HWPOISON |
2754 VM_FAULT_SET_HINDEX(hstate_index(h));
2755 goto backout_unlocked;
2760 * If we are going to COW a private mapping later, we examine the
2761 * pending reservations for this page now. This will ensure that
2762 * any allocations necessary to record that reservation occur outside
2763 * the spinlock.
2765 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2766 if (vma_needs_reservation(h, vma, address) < 0) {
2767 ret = VM_FAULT_OOM;
2768 goto backout_unlocked;
2771 spin_lock(&mm->page_table_lock);
2772 size = i_size_read(mapping->host) >> huge_page_shift(h);
2773 if (idx >= size)
2774 goto backout;
2776 ret = 0;
2777 if (!huge_pte_none(huge_ptep_get(ptep)))
2778 goto backout;
2780 if (anon_rmap)
2781 hugepage_add_new_anon_rmap(page, vma, address);
2782 else
2783 page_dup_rmap(page);
2784 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2785 && (vma->vm_flags & VM_SHARED)));
2786 set_huge_pte_at(mm, address, ptep, new_pte);
2788 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2789 /* Optimization, do the COW without a second fault */
2790 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2793 spin_unlock(&mm->page_table_lock);
2794 unlock_page(page);
2795 out:
2796 return ret;
2798 backout:
2799 spin_unlock(&mm->page_table_lock);
2800 backout_unlocked:
2801 unlock_page(page);
2802 put_page(page);
2803 goto out;
2806 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807 unsigned long address, unsigned int flags)
2809 pte_t *ptep;
2810 pte_t entry;
2811 int ret;
2812 struct page *page = NULL;
2813 struct page *pagecache_page = NULL;
2814 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2815 struct hstate *h = hstate_vma(vma);
2817 address &= huge_page_mask(h);
2819 ptep = huge_pte_offset(mm, address);
2820 if (ptep) {
2821 entry = huge_ptep_get(ptep);
2822 if (unlikely(is_hugetlb_entry_migration(entry))) {
2823 migration_entry_wait(mm, (pmd_t *)ptep, address);
2824 return 0;
2825 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826 return VM_FAULT_HWPOISON_LARGE |
2827 VM_FAULT_SET_HINDEX(hstate_index(h));
2830 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2831 if (!ptep)
2832 return VM_FAULT_OOM;
2835 * Serialize hugepage allocation and instantiation, so that we don't
2836 * get spurious allocation failures if two CPUs race to instantiate
2837 * the same page in the page cache.
2839 mutex_lock(&hugetlb_instantiation_mutex);
2840 entry = huge_ptep_get(ptep);
2841 if (huge_pte_none(entry)) {
2842 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843 goto out_mutex;
2846 ret = 0;
2849 * If we are going to COW the mapping later, we examine the pending
2850 * reservations for this page now. This will ensure that any
2851 * allocations necessary to record that reservation occur outside the
2852 * spinlock. For private mappings, we also lookup the pagecache
2853 * page now as it is used to determine if a reservation has been
2854 * consumed.
2856 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2857 if (vma_needs_reservation(h, vma, address) < 0) {
2858 ret = VM_FAULT_OOM;
2859 goto out_mutex;
2862 if (!(vma->vm_flags & VM_MAYSHARE))
2863 pagecache_page = hugetlbfs_pagecache_page(h,
2864 vma, address);
2868 * hugetlb_cow() requires page locks of pte_page(entry) and
2869 * pagecache_page, so here we need take the former one
2870 * when page != pagecache_page or !pagecache_page.
2871 * Note that locking order is always pagecache_page -> page,
2872 * so no worry about deadlock.
2874 page = pte_page(entry);
2875 get_page(page);
2876 if (page != pagecache_page)
2877 lock_page(page);
2879 spin_lock(&mm->page_table_lock);
2880 /* Check for a racing update before calling hugetlb_cow */
2881 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2882 goto out_page_table_lock;
2885 if (flags & FAULT_FLAG_WRITE) {
2886 if (!pte_write(entry)) {
2887 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2888 pagecache_page);
2889 goto out_page_table_lock;
2891 entry = pte_mkdirty(entry);
2893 entry = pte_mkyoung(entry);
2894 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2895 flags & FAULT_FLAG_WRITE))
2896 update_mmu_cache(vma, address, ptep);
2898 out_page_table_lock:
2899 spin_unlock(&mm->page_table_lock);
2901 if (pagecache_page) {
2902 unlock_page(pagecache_page);
2903 put_page(pagecache_page);
2905 if (page != pagecache_page)
2906 unlock_page(page);
2907 put_page(page);
2909 out_mutex:
2910 mutex_unlock(&hugetlb_instantiation_mutex);
2912 return ret;
2915 /* Can be overriden by architectures */
2916 __attribute__((weak)) struct page *
2917 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2918 pud_t *pud, int write)
2920 BUG();
2921 return NULL;
2924 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925 struct page **pages, struct vm_area_struct **vmas,
2926 unsigned long *position, int *length, int i,
2927 unsigned int flags)
2929 unsigned long pfn_offset;
2930 unsigned long vaddr = *position;
2931 int remainder = *length;
2932 struct hstate *h = hstate_vma(vma);
2934 spin_lock(&mm->page_table_lock);
2935 while (vaddr < vma->vm_end && remainder) {
2936 pte_t *pte;
2937 int absent;
2938 struct page *page;
2941 * Some archs (sparc64, sh*) have multiple pte_ts to
2942 * each hugepage. We have to make sure we get the
2943 * first, for the page indexing below to work.
2945 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2946 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2949 * When coredumping, it suits get_dump_page if we just return
2950 * an error where there's an empty slot with no huge pagecache
2951 * to back it. This way, we avoid allocating a hugepage, and
2952 * the sparse dumpfile avoids allocating disk blocks, but its
2953 * huge holes still show up with zeroes where they need to be.
2955 if (absent && (flags & FOLL_DUMP) &&
2956 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2957 remainder = 0;
2958 break;
2961 if (absent ||
2962 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2963 int ret;
2965 spin_unlock(&mm->page_table_lock);
2966 ret = hugetlb_fault(mm, vma, vaddr,
2967 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2968 spin_lock(&mm->page_table_lock);
2969 if (!(ret & VM_FAULT_ERROR))
2970 continue;
2972 remainder = 0;
2973 break;
2976 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2977 page = pte_page(huge_ptep_get(pte));
2978 same_page:
2979 if (pages) {
2980 pages[i] = mem_map_offset(page, pfn_offset);
2981 get_page(pages[i]);
2984 if (vmas)
2985 vmas[i] = vma;
2987 vaddr += PAGE_SIZE;
2988 ++pfn_offset;
2989 --remainder;
2990 ++i;
2991 if (vaddr < vma->vm_end && remainder &&
2992 pfn_offset < pages_per_huge_page(h)) {
2994 * We use pfn_offset to avoid touching the pageframes
2995 * of this compound page.
2997 goto same_page;
3000 spin_unlock(&mm->page_table_lock);
3001 *length = remainder;
3002 *position = vaddr;
3004 return i ? i : -EFAULT;
3007 void hugetlb_change_protection(struct vm_area_struct *vma,
3008 unsigned long address, unsigned long end, pgprot_t newprot)
3010 struct mm_struct *mm = vma->vm_mm;
3011 unsigned long start = address;
3012 pte_t *ptep;
3013 pte_t pte;
3014 struct hstate *h = hstate_vma(vma);
3016 BUG_ON(address >= end);
3017 flush_cache_range(vma, address, end);
3019 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3020 spin_lock(&mm->page_table_lock);
3021 for (; address < end; address += huge_page_size(h)) {
3022 ptep = huge_pte_offset(mm, address);
3023 if (!ptep)
3024 continue;
3025 if (huge_pmd_unshare(mm, &address, ptep))
3026 continue;
3027 if (!huge_pte_none(huge_ptep_get(ptep))) {
3028 pte = huge_ptep_get_and_clear(mm, address, ptep);
3029 pte = pte_mkhuge(pte_modify(pte, newprot));
3030 set_huge_pte_at(mm, address, ptep, pte);
3033 spin_unlock(&mm->page_table_lock);
3035 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3036 * may have cleared our pud entry and done put_page on the page table:
3037 * once we release i_mmap_mutex, another task can do the final put_page
3038 * and that page table be reused and filled with junk.
3040 flush_tlb_range(vma, start, end);
3041 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3044 int hugetlb_reserve_pages(struct inode *inode,
3045 long from, long to,
3046 struct vm_area_struct *vma,
3047 vm_flags_t vm_flags)
3049 long ret, chg;
3050 struct hstate *h = hstate_inode(inode);
3051 struct hugepage_subpool *spool = subpool_inode(inode);
3054 * Only apply hugepage reservation if asked. At fault time, an
3055 * attempt will be made for VM_NORESERVE to allocate a page
3056 * without using reserves
3058 if (vm_flags & VM_NORESERVE)
3059 return 0;
3062 * Shared mappings base their reservation on the number of pages that
3063 * are already allocated on behalf of the file. Private mappings need
3064 * to reserve the full area even if read-only as mprotect() may be
3065 * called to make the mapping read-write. Assume !vma is a shm mapping
3067 if (!vma || vma->vm_flags & VM_MAYSHARE)
3068 chg = region_chg(&inode->i_mapping->private_list, from, to);
3069 else {
3070 struct resv_map *resv_map = resv_map_alloc();
3071 if (!resv_map)
3072 return -ENOMEM;
3074 chg = to - from;
3076 set_vma_resv_map(vma, resv_map);
3077 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3080 if (chg < 0) {
3081 ret = chg;
3082 goto out_err;
3085 /* There must be enough pages in the subpool for the mapping */
3086 if (hugepage_subpool_get_pages(spool, chg)) {
3087 ret = -ENOSPC;
3088 goto out_err;
3092 * Check enough hugepages are available for the reservation.
3093 * Hand the pages back to the subpool if there are not
3095 ret = hugetlb_acct_memory(h, chg);
3096 if (ret < 0) {
3097 hugepage_subpool_put_pages(spool, chg);
3098 goto out_err;
3102 * Account for the reservations made. Shared mappings record regions
3103 * that have reservations as they are shared by multiple VMAs.
3104 * When the last VMA disappears, the region map says how much
3105 * the reservation was and the page cache tells how much of
3106 * the reservation was consumed. Private mappings are per-VMA and
3107 * only the consumed reservations are tracked. When the VMA
3108 * disappears, the original reservation is the VMA size and the
3109 * consumed reservations are stored in the map. Hence, nothing
3110 * else has to be done for private mappings here
3112 if (!vma || vma->vm_flags & VM_MAYSHARE)
3113 region_add(&inode->i_mapping->private_list, from, to);
3114 return 0;
3115 out_err:
3116 if (vma)
3117 resv_map_put(vma);
3118 return ret;
3121 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3123 struct hstate *h = hstate_inode(inode);
3124 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3125 struct hugepage_subpool *spool = subpool_inode(inode);
3127 spin_lock(&inode->i_lock);
3128 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3129 spin_unlock(&inode->i_lock);
3131 hugepage_subpool_put_pages(spool, (chg - freed));
3132 hugetlb_acct_memory(h, -(chg - freed));
3135 #ifdef CONFIG_MEMORY_FAILURE
3137 /* Should be called in hugetlb_lock */
3138 static int is_hugepage_on_freelist(struct page *hpage)
3140 struct page *page;
3141 struct page *tmp;
3142 struct hstate *h = page_hstate(hpage);
3143 int nid = page_to_nid(hpage);
3145 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3146 if (page == hpage)
3147 return 1;
3148 return 0;
3152 * This function is called from memory failure code.
3153 * Assume the caller holds page lock of the head page.
3155 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3157 struct hstate *h = page_hstate(hpage);
3158 int nid = page_to_nid(hpage);
3159 int ret = -EBUSY;
3161 spin_lock(&hugetlb_lock);
3162 if (is_hugepage_on_freelist(hpage)) {
3163 list_del(&hpage->lru);
3164 set_page_refcounted(hpage);
3165 h->free_huge_pages--;
3166 h->free_huge_pages_node[nid]--;
3167 ret = 0;
3169 spin_unlock(&hugetlb_lock);
3170 return ret;
3172 #endif