2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
24 static unsigned long release_freepages(struct list_head
*freelist
)
26 struct page
*page
, *next
;
27 unsigned long count
= 0;
29 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
38 static void map_pages(struct list_head
*list
)
42 list_for_each_entry(page
, list
, lru
) {
43 arch_alloc_page(page
, 0);
44 kernel_map_pages(page
, 1, 1);
48 static inline bool migrate_async_suitable(int migratetype
)
50 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
54 * Compaction requires the taking of some coarse locks that are potentially
55 * very heavily contended. Check if the process needs to be scheduled or
56 * if the lock is contended. For async compaction, back out in the event
57 * if contention is severe. For sync compaction, schedule.
59 * Returns true if the lock is held.
60 * Returns false if the lock is released and compaction should abort
62 static bool compact_checklock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
63 bool locked
, struct compact_control
*cc
)
65 if (need_resched() || spin_is_contended(lock
)) {
67 spin_unlock_irqrestore(lock
, *flags
);
71 /* async aborts if taking too long or contended */
74 *cc
->contended
= true;
79 if (fatal_signal_pending(current
))
84 spin_lock_irqsave(lock
, *flags
);
88 static inline bool compact_trylock_irqsave(spinlock_t
*lock
,
89 unsigned long *flags
, struct compact_control
*cc
)
91 return compact_checklock_irqsave(lock
, flags
, false, cc
);
95 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
96 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
97 * pages inside of the pageblock (even though it may still end up isolating
100 static unsigned long isolate_freepages_block(unsigned long blockpfn
,
101 unsigned long end_pfn
,
102 struct list_head
*freelist
,
105 int nr_scanned
= 0, total_isolated
= 0;
108 cursor
= pfn_to_page(blockpfn
);
110 /* Isolate free pages. This assumes the block is valid */
111 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
113 struct page
*page
= cursor
;
115 if (!pfn_valid_within(blockpfn
)) {
122 if (!PageBuddy(page
)) {
128 /* Found a free page, break it into order-0 pages */
129 isolated
= split_free_page(page
);
130 if (!isolated
&& strict
)
132 total_isolated
+= isolated
;
133 for (i
= 0; i
< isolated
; i
++) {
134 list_add(&page
->lru
, freelist
);
138 /* If a page was split, advance to the end of it */
140 blockpfn
+= isolated
- 1;
141 cursor
+= isolated
- 1;
145 trace_mm_compaction_isolate_freepages(nr_scanned
, total_isolated
);
146 return total_isolated
;
150 * isolate_freepages_range() - isolate free pages.
151 * @start_pfn: The first PFN to start isolating.
152 * @end_pfn: The one-past-last PFN.
154 * Non-free pages, invalid PFNs, or zone boundaries within the
155 * [start_pfn, end_pfn) range are considered errors, cause function to
156 * undo its actions and return zero.
158 * Otherwise, function returns one-past-the-last PFN of isolated page
159 * (which may be greater then end_pfn if end fell in a middle of
163 isolate_freepages_range(unsigned long start_pfn
, unsigned long end_pfn
)
165 unsigned long isolated
, pfn
, block_end_pfn
, flags
;
166 struct zone
*zone
= NULL
;
169 if (pfn_valid(start_pfn
))
170 zone
= page_zone(pfn_to_page(start_pfn
));
172 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= isolated
) {
173 if (!pfn_valid(pfn
) || zone
!= page_zone(pfn_to_page(pfn
)))
177 * On subsequent iterations ALIGN() is actually not needed,
178 * but we keep it that we not to complicate the code.
180 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
181 block_end_pfn
= min(block_end_pfn
, end_pfn
);
183 spin_lock_irqsave(&zone
->lock
, flags
);
184 isolated
= isolate_freepages_block(pfn
, block_end_pfn
,
186 spin_unlock_irqrestore(&zone
->lock
, flags
);
189 * In strict mode, isolate_freepages_block() returns 0 if
190 * there are any holes in the block (ie. invalid PFNs or
197 * If we managed to isolate pages, it is always (1 << n) *
198 * pageblock_nr_pages for some non-negative n. (Max order
199 * page may span two pageblocks).
203 /* split_free_page does not map the pages */
204 map_pages(&freelist
);
207 /* Loop terminated early, cleanup. */
208 release_freepages(&freelist
);
212 /* We don't use freelists for anything. */
216 /* Update the number of anon and file isolated pages in the zone */
217 static void acct_isolated(struct zone
*zone
, bool locked
, struct compact_control
*cc
)
220 unsigned int count
[2] = { 0, };
222 list_for_each_entry(page
, &cc
->migratepages
, lru
)
223 count
[!!page_is_file_cache(page
)]++;
225 /* If locked we can use the interrupt unsafe versions */
227 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
228 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
230 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
231 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
235 /* Similar to reclaim, but different enough that they don't share logic */
236 static bool too_many_isolated(struct zone
*zone
)
238 unsigned long active
, inactive
, isolated
;
240 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
241 zone_page_state(zone
, NR_INACTIVE_ANON
);
242 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
243 zone_page_state(zone
, NR_ACTIVE_ANON
);
244 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
245 zone_page_state(zone
, NR_ISOLATED_ANON
);
247 return isolated
> (inactive
+ active
) / 2;
251 * isolate_migratepages_range() - isolate all migrate-able pages in range.
252 * @zone: Zone pages are in.
253 * @cc: Compaction control structure.
254 * @low_pfn: The first PFN of the range.
255 * @end_pfn: The one-past-the-last PFN of the range.
257 * Isolate all pages that can be migrated from the range specified by
258 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
259 * pending), otherwise PFN of the first page that was not scanned
260 * (which may be both less, equal to or more then end_pfn).
262 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
265 * Apart from cc->migratepages and cc->nr_migratetypes this function
266 * does not modify any cc's fields, in particular it does not modify
267 * (or read for that matter) cc->migrate_pfn.
270 isolate_migratepages_range(struct zone
*zone
, struct compact_control
*cc
,
271 unsigned long low_pfn
, unsigned long end_pfn
)
273 unsigned long last_pageblock_nr
= 0, pageblock_nr
;
274 unsigned long nr_scanned
= 0, nr_isolated
= 0;
275 struct list_head
*migratelist
= &cc
->migratepages
;
276 isolate_mode_t mode
= 0;
277 struct lruvec
*lruvec
;
282 * Ensure that there are not too many pages isolated from the LRU
283 * list by either parallel reclaimers or compaction. If there are,
284 * delay for some time until fewer pages are isolated
286 while (unlikely(too_many_isolated(zone
))) {
287 /* async migration should just abort */
291 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
293 if (fatal_signal_pending(current
))
297 /* Time to isolate some pages for migration */
299 spin_lock_irqsave(&zone
->lru_lock
, flags
);
301 for (; low_pfn
< end_pfn
; low_pfn
++) {
304 /* give a chance to irqs before checking need_resched() */
305 if (!((low_pfn
+1) % SWAP_CLUSTER_MAX
)) {
306 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
310 /* Check if it is ok to still hold the lock */
311 locked
= compact_checklock_irqsave(&zone
->lru_lock
, &flags
,
317 * migrate_pfn does not necessarily start aligned to a
318 * pageblock. Ensure that pfn_valid is called when moving
319 * into a new MAX_ORDER_NR_PAGES range in case of large
320 * memory holes within the zone
322 if ((low_pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
323 if (!pfn_valid(low_pfn
)) {
324 low_pfn
+= MAX_ORDER_NR_PAGES
- 1;
329 if (!pfn_valid_within(low_pfn
))
334 * Get the page and ensure the page is within the same zone.
335 * See the comment in isolate_freepages about overlapping
336 * nodes. It is deliberate that the new zone lock is not taken
337 * as memory compaction should not move pages between nodes.
339 page
= pfn_to_page(low_pfn
);
340 if (page_zone(page
) != zone
)
348 * For async migration, also only scan in MOVABLE blocks. Async
349 * migration is optimistic to see if the minimum amount of work
350 * satisfies the allocation
352 pageblock_nr
= low_pfn
>> pageblock_order
;
353 if (!cc
->sync
&& last_pageblock_nr
!= pageblock_nr
&&
354 !migrate_async_suitable(get_pageblock_migratetype(page
))) {
355 low_pfn
+= pageblock_nr_pages
;
356 low_pfn
= ALIGN(low_pfn
, pageblock_nr_pages
) - 1;
357 last_pageblock_nr
= pageblock_nr
;
365 * PageLRU is set, and lru_lock excludes isolation,
366 * splitting and collapsing (collapsing has already
367 * happened if PageLRU is set).
369 if (PageTransHuge(page
)) {
370 low_pfn
+= (1 << compound_order(page
)) - 1;
375 mode
|= ISOLATE_ASYNC_MIGRATE
;
377 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
379 /* Try isolate the page */
380 if (__isolate_lru_page(page
, mode
) != 0)
383 VM_BUG_ON(PageTransCompound(page
));
385 /* Successfully isolated */
386 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
387 list_add(&page
->lru
, migratelist
);
388 cc
->nr_migratepages
++;
391 /* Avoid isolating too much */
392 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
398 acct_isolated(zone
, locked
, cc
);
401 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
403 trace_mm_compaction_isolate_migratepages(nr_scanned
, nr_isolated
);
408 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
409 #ifdef CONFIG_COMPACTION
411 /* Returns true if the page is within a block suitable for migration to */
412 static bool suitable_migration_target(struct page
*page
)
415 int migratetype
= get_pageblock_migratetype(page
);
417 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
418 if (migratetype
== MIGRATE_ISOLATE
|| migratetype
== MIGRATE_RESERVE
)
421 /* If the page is a large free page, then allow migration */
422 if (PageBuddy(page
) && page_order(page
) >= pageblock_order
)
425 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
426 if (migrate_async_suitable(migratetype
))
429 /* Otherwise skip the block */
434 * Returns the start pfn of the last page block in a zone. This is the starting
435 * point for full compaction of a zone. Compaction searches for free pages from
436 * the end of each zone, while isolate_freepages_block scans forward inside each
439 static unsigned long start_free_pfn(struct zone
*zone
)
441 unsigned long free_pfn
;
442 free_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
443 free_pfn
&= ~(pageblock_nr_pages
-1);
448 * Based on information in the current compact_control, find blocks
449 * suitable for isolating free pages from and then isolate them.
451 static void isolate_freepages(struct zone
*zone
,
452 struct compact_control
*cc
)
455 unsigned long high_pfn
, low_pfn
, pfn
, zone_end_pfn
, end_pfn
;
457 int nr_freepages
= cc
->nr_freepages
;
458 struct list_head
*freelist
= &cc
->freepages
;
461 * Initialise the free scanner. The starting point is where we last
462 * scanned from (or the end of the zone if starting). The low point
463 * is the end of the pageblock the migration scanner is using.
466 low_pfn
= cc
->migrate_pfn
+ pageblock_nr_pages
;
469 * Take care that if the migration scanner is at the end of the zone
470 * that the free scanner does not accidentally move to the next zone
471 * in the next isolation cycle.
473 high_pfn
= min(low_pfn
, pfn
);
475 zone_end_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
478 * Isolate free pages until enough are available to migrate the
479 * pages on cc->migratepages. We stop searching if the migrate
480 * and free page scanners meet or enough free pages are isolated.
482 for (; pfn
> low_pfn
&& cc
->nr_migratepages
> nr_freepages
;
483 pfn
-= pageblock_nr_pages
) {
484 unsigned long isolated
;
490 * Check for overlapping nodes/zones. It's possible on some
491 * configurations to have a setup like
493 * i.e. it's possible that all pages within a zones range of
494 * pages do not belong to a single zone.
496 page
= pfn_to_page(pfn
);
497 if (page_zone(page
) != zone
)
500 /* Check the block is suitable for migration */
501 if (!suitable_migration_target(page
))
505 * Found a block suitable for isolating free pages from. Now
506 * we disabled interrupts, double check things are ok and
507 * isolate the pages. This is to minimise the time IRQs
513 * The zone lock must be held to isolate freepages. This
514 * unfortunately this is a very coarse lock and can be
515 * heavily contended if there are parallel allocations
516 * or parallel compactions. For async compaction do not
519 if (!compact_trylock_irqsave(&zone
->lock
, &flags
, cc
))
521 if (suitable_migration_target(page
)) {
522 end_pfn
= min(pfn
+ pageblock_nr_pages
, zone_end_pfn
);
523 isolated
= isolate_freepages_block(pfn
, end_pfn
,
525 nr_freepages
+= isolated
;
527 spin_unlock_irqrestore(&zone
->lock
, flags
);
530 * Record the highest PFN we isolated pages from. When next
531 * looking for free pages, the search will restart here as
532 * page migration may have returned some pages to the allocator
535 high_pfn
= max(high_pfn
, pfn
);
538 * If the free scanner has wrapped, update
539 * compact_cached_free_pfn to point to the highest
540 * pageblock with free pages. This reduces excessive
541 * scanning of full pageblocks near the end of the
544 if (cc
->order
> 0 && cc
->wrapped
)
545 zone
->compact_cached_free_pfn
= high_pfn
;
549 /* split_free_page does not map the pages */
552 cc
->free_pfn
= high_pfn
;
553 cc
->nr_freepages
= nr_freepages
;
555 /* If compact_cached_free_pfn is reset then set it now */
556 if (cc
->order
> 0 && !cc
->wrapped
&&
557 zone
->compact_cached_free_pfn
== start_free_pfn(zone
))
558 zone
->compact_cached_free_pfn
= high_pfn
;
562 * This is a migrate-callback that "allocates" freepages by taking pages
563 * from the isolated freelists in the block we are migrating to.
565 static struct page
*compaction_alloc(struct page
*migratepage
,
569 struct compact_control
*cc
= (struct compact_control
*)data
;
570 struct page
*freepage
;
572 /* Isolate free pages if necessary */
573 if (list_empty(&cc
->freepages
)) {
574 isolate_freepages(cc
->zone
, cc
);
576 if (list_empty(&cc
->freepages
))
580 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
581 list_del(&freepage
->lru
);
588 * We cannot control nr_migratepages and nr_freepages fully when migration is
589 * running as migrate_pages() has no knowledge of compact_control. When
590 * migration is complete, we count the number of pages on the lists by hand.
592 static void update_nr_listpages(struct compact_control
*cc
)
594 int nr_migratepages
= 0;
595 int nr_freepages
= 0;
598 list_for_each_entry(page
, &cc
->migratepages
, lru
)
600 list_for_each_entry(page
, &cc
->freepages
, lru
)
603 cc
->nr_migratepages
= nr_migratepages
;
604 cc
->nr_freepages
= nr_freepages
;
607 /* possible outcome of isolate_migratepages */
609 ISOLATE_ABORT
, /* Abort compaction now */
610 ISOLATE_NONE
, /* No pages isolated, continue scanning */
611 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
615 * Isolate all pages that can be migrated from the block pointed to by
616 * the migrate scanner within compact_control.
618 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
619 struct compact_control
*cc
)
621 unsigned long low_pfn
, end_pfn
;
623 /* Do not scan outside zone boundaries */
624 low_pfn
= max(cc
->migrate_pfn
, zone
->zone_start_pfn
);
626 /* Only scan within a pageblock boundary */
627 end_pfn
= ALIGN(low_pfn
+ pageblock_nr_pages
, pageblock_nr_pages
);
629 /* Do not cross the free scanner or scan within a memory hole */
630 if (end_pfn
> cc
->free_pfn
|| !pfn_valid(low_pfn
)) {
631 cc
->migrate_pfn
= end_pfn
;
635 /* Perform the isolation */
636 low_pfn
= isolate_migratepages_range(zone
, cc
, low_pfn
, end_pfn
);
638 return ISOLATE_ABORT
;
640 cc
->migrate_pfn
= low_pfn
;
642 return ISOLATE_SUCCESS
;
645 static int compact_finished(struct zone
*zone
,
646 struct compact_control
*cc
)
649 unsigned long watermark
;
651 if (fatal_signal_pending(current
))
652 return COMPACT_PARTIAL
;
655 * A full (order == -1) compaction run starts at the beginning and
656 * end of a zone; it completes when the migrate and free scanner meet.
657 * A partial (order > 0) compaction can start with the free scanner
658 * at a random point in the zone, and may have to restart.
660 if (cc
->free_pfn
<= cc
->migrate_pfn
) {
661 if (cc
->order
> 0 && !cc
->wrapped
) {
662 /* We started partway through; restart at the end. */
663 unsigned long free_pfn
= start_free_pfn(zone
);
664 zone
->compact_cached_free_pfn
= free_pfn
;
665 cc
->free_pfn
= free_pfn
;
667 return COMPACT_CONTINUE
;
669 return COMPACT_COMPLETE
;
672 /* We wrapped around and ended up where we started. */
673 if (cc
->wrapped
&& cc
->free_pfn
<= cc
->start_free_pfn
)
674 return COMPACT_COMPLETE
;
677 * order == -1 is expected when compacting via
678 * /proc/sys/vm/compact_memory
681 return COMPACT_CONTINUE
;
683 /* Compaction run is not finished if the watermark is not met */
684 watermark
= low_wmark_pages(zone
);
685 watermark
+= (1 << cc
->order
);
687 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, 0, 0))
688 return COMPACT_CONTINUE
;
690 /* Direct compactor: Is a suitable page free? */
691 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
692 /* Job done if page is free of the right migratetype */
693 if (!list_empty(&zone
->free_area
[order
].free_list
[cc
->migratetype
]))
694 return COMPACT_PARTIAL
;
696 /* Job done if allocation would set block type */
697 if (order
>= pageblock_order
&& zone
->free_area
[order
].nr_free
)
698 return COMPACT_PARTIAL
;
701 return COMPACT_CONTINUE
;
705 * compaction_suitable: Is this suitable to run compaction on this zone now?
707 * COMPACT_SKIPPED - If there are too few free pages for compaction
708 * COMPACT_PARTIAL - If the allocation would succeed without compaction
709 * COMPACT_CONTINUE - If compaction should run now
711 unsigned long compaction_suitable(struct zone
*zone
, int order
)
714 unsigned long watermark
;
717 * order == -1 is expected when compacting via
718 * /proc/sys/vm/compact_memory
721 return COMPACT_CONTINUE
;
724 * Watermarks for order-0 must be met for compaction. Note the 2UL.
725 * This is because during migration, copies of pages need to be
726 * allocated and for a short time, the footprint is higher
728 watermark
= low_wmark_pages(zone
) + (2UL << order
);
729 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
730 return COMPACT_SKIPPED
;
733 * fragmentation index determines if allocation failures are due to
734 * low memory or external fragmentation
736 * index of -1000 implies allocations might succeed depending on
738 * index towards 0 implies failure is due to lack of memory
739 * index towards 1000 implies failure is due to fragmentation
741 * Only compact if a failure would be due to fragmentation.
743 fragindex
= fragmentation_index(zone
, order
);
744 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
745 return COMPACT_SKIPPED
;
747 if (fragindex
== -1000 && zone_watermark_ok(zone
, order
, watermark
,
749 return COMPACT_PARTIAL
;
751 return COMPACT_CONTINUE
;
754 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
758 ret
= compaction_suitable(zone
, cc
->order
);
760 case COMPACT_PARTIAL
:
761 case COMPACT_SKIPPED
:
762 /* Compaction is likely to fail */
764 case COMPACT_CONTINUE
:
765 /* Fall through to compaction */
769 /* Setup to move all movable pages to the end of the zone */
770 cc
->migrate_pfn
= zone
->zone_start_pfn
;
773 /* Incremental compaction. Start where the last one stopped. */
774 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
775 cc
->start_free_pfn
= cc
->free_pfn
;
777 /* Order == -1 starts at the end of the zone. */
778 cc
->free_pfn
= start_free_pfn(zone
);
781 migrate_prep_local();
783 while ((ret
= compact_finished(zone
, cc
)) == COMPACT_CONTINUE
) {
784 unsigned long nr_migrate
, nr_remaining
;
787 switch (isolate_migratepages(zone
, cc
)) {
789 ret
= COMPACT_PARTIAL
;
793 case ISOLATE_SUCCESS
:
797 nr_migrate
= cc
->nr_migratepages
;
798 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
799 (unsigned long)cc
, false,
800 cc
->sync
? MIGRATE_SYNC_LIGHT
: MIGRATE_ASYNC
);
801 update_nr_listpages(cc
);
802 nr_remaining
= cc
->nr_migratepages
;
804 count_vm_event(COMPACTBLOCKS
);
805 count_vm_events(COMPACTPAGES
, nr_migrate
- nr_remaining
);
807 count_vm_events(COMPACTPAGEFAILED
, nr_remaining
);
808 trace_mm_compaction_migratepages(nr_migrate
- nr_remaining
,
811 /* Release LRU pages not migrated */
813 putback_lru_pages(&cc
->migratepages
);
814 cc
->nr_migratepages
= 0;
815 if (err
== -ENOMEM
) {
816 ret
= COMPACT_PARTIAL
;
823 /* Release free pages and check accounting */
824 cc
->nr_freepages
-= release_freepages(&cc
->freepages
);
825 VM_BUG_ON(cc
->nr_freepages
!= 0);
830 static unsigned long compact_zone_order(struct zone
*zone
,
831 int order
, gfp_t gfp_mask
,
832 bool sync
, bool *contended
)
834 struct compact_control cc
= {
836 .nr_migratepages
= 0,
838 .migratetype
= allocflags_to_migratetype(gfp_mask
),
841 .contended
= contended
,
843 INIT_LIST_HEAD(&cc
.freepages
);
844 INIT_LIST_HEAD(&cc
.migratepages
);
846 return compact_zone(zone
, &cc
);
849 int sysctl_extfrag_threshold
= 500;
852 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
853 * @zonelist: The zonelist used for the current allocation
854 * @order: The order of the current allocation
855 * @gfp_mask: The GFP mask of the current allocation
856 * @nodemask: The allowed nodes to allocate from
857 * @sync: Whether migration is synchronous or not
859 * This is the main entry point for direct page compaction.
861 unsigned long try_to_compact_pages(struct zonelist
*zonelist
,
862 int order
, gfp_t gfp_mask
, nodemask_t
*nodemask
,
863 bool sync
, bool *contended
)
865 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
866 int may_enter_fs
= gfp_mask
& __GFP_FS
;
867 int may_perform_io
= gfp_mask
& __GFP_IO
;
870 int rc
= COMPACT_SKIPPED
;
873 * Check whether it is worth even starting compaction. The order check is
874 * made because an assumption is made that the page allocator can satisfy
875 * the "cheaper" orders without taking special steps
877 if (!order
|| !may_enter_fs
|| !may_perform_io
)
880 count_vm_event(COMPACTSTALL
);
882 /* Compact each zone in the list */
883 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
887 status
= compact_zone_order(zone
, order
, gfp_mask
, sync
,
889 rc
= max(status
, rc
);
891 /* If a normal allocation would succeed, stop compacting */
892 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
900 /* Compact all zones within a node */
901 static int __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
906 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
908 zone
= &pgdat
->node_zones
[zoneid
];
909 if (!populated_zone(zone
))
912 cc
->nr_freepages
= 0;
913 cc
->nr_migratepages
= 0;
915 INIT_LIST_HEAD(&cc
->freepages
);
916 INIT_LIST_HEAD(&cc
->migratepages
);
918 if (cc
->order
== -1 || !compaction_deferred(zone
, cc
->order
))
919 compact_zone(zone
, cc
);
922 int ok
= zone_watermark_ok(zone
, cc
->order
,
923 low_wmark_pages(zone
), 0, 0);
924 if (ok
&& cc
->order
>= zone
->compact_order_failed
)
925 zone
->compact_order_failed
= cc
->order
+ 1;
926 /* Currently async compaction is never deferred. */
927 else if (!ok
&& cc
->sync
)
928 defer_compaction(zone
, cc
->order
);
931 VM_BUG_ON(!list_empty(&cc
->freepages
));
932 VM_BUG_ON(!list_empty(&cc
->migratepages
));
938 int compact_pgdat(pg_data_t
*pgdat
, int order
)
940 struct compact_control cc
= {
945 return __compact_pgdat(pgdat
, &cc
);
948 static int compact_node(int nid
)
950 struct compact_control cc
= {
955 return __compact_pgdat(NODE_DATA(nid
), &cc
);
958 /* Compact all nodes in the system */
959 static int compact_nodes(void)
963 /* Flush pending updates to the LRU lists */
966 for_each_online_node(nid
)
969 return COMPACT_COMPLETE
;
972 /* The written value is actually unused, all memory is compacted */
973 int sysctl_compact_memory
;
975 /* This is the entry point for compacting all nodes via /proc/sys/vm */
976 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
977 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
980 return compact_nodes();
985 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
986 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
988 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
993 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
994 ssize_t
sysfs_compact_node(struct device
*dev
,
995 struct device_attribute
*attr
,
996 const char *buf
, size_t count
)
1000 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1001 /* Flush pending updates to the LRU lists */
1002 lru_add_drain_all();
1009 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1011 int compaction_register_node(struct node
*node
)
1013 return device_create_file(&node
->dev
, &dev_attr_compact
);
1016 void compaction_unregister_node(struct node
*node
)
1018 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1020 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1022 #endif /* CONFIG_COMPACTION */