mm: goodbye remove_from_page_cache()
[linux-2.6/cjktty.git] / mm / filemap.c
blob1cfb8fd84b273251930fa3b5ffd41cb5ea5b40c6
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_lock
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 if (PageSwapBacked(page))
124 __dec_zone_page_state(page, NR_SHMEM);
125 BUG_ON(page_mapped(page));
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
141 * delete_from_page_cache - delete page from page cache
142 * @page: the page which the kernel is trying to remove from page cache
144 * This must be called only on pages that have been verified to be in the page
145 * cache and locked. It will never put the page into the free list, the caller
146 * has a reference on the page.
148 void delete_from_page_cache(struct page *page)
150 struct address_space *mapping = page->mapping;
151 void (*freepage)(struct page *);
153 BUG_ON(!PageLocked(page));
155 freepage = mapping->a_ops->freepage;
156 spin_lock_irq(&mapping->tree_lock);
157 __remove_from_page_cache(page);
158 spin_unlock_irq(&mapping->tree_lock);
159 mem_cgroup_uncharge_cache_page(page);
161 if (freepage)
162 freepage(page);
163 page_cache_release(page);
165 EXPORT_SYMBOL(delete_from_page_cache);
167 static int sync_page(void *word)
169 struct address_space *mapping;
170 struct page *page;
172 page = container_of((unsigned long *)word, struct page, flags);
175 * page_mapping() is being called without PG_locked held.
176 * Some knowledge of the state and use of the page is used to
177 * reduce the requirements down to a memory barrier.
178 * The danger here is of a stale page_mapping() return value
179 * indicating a struct address_space different from the one it's
180 * associated with when it is associated with one.
181 * After smp_mb(), it's either the correct page_mapping() for
182 * the page, or an old page_mapping() and the page's own
183 * page_mapping() has gone NULL.
184 * The ->sync_page() address_space operation must tolerate
185 * page_mapping() going NULL. By an amazing coincidence,
186 * this comes about because none of the users of the page
187 * in the ->sync_page() methods make essential use of the
188 * page_mapping(), merely passing the page down to the backing
189 * device's unplug functions when it's non-NULL, which in turn
190 * ignore it for all cases but swap, where only page_private(page) is
191 * of interest. When page_mapping() does go NULL, the entire
192 * call stack gracefully ignores the page and returns.
193 * -- wli
195 smp_mb();
196 mapping = page_mapping(page);
197 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
198 mapping->a_ops->sync_page(page);
199 io_schedule();
200 return 0;
203 static int sync_page_killable(void *word)
205 sync_page(word);
206 return fatal_signal_pending(current) ? -EINTR : 0;
210 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
211 * @mapping: address space structure to write
212 * @start: offset in bytes where the range starts
213 * @end: offset in bytes where the range ends (inclusive)
214 * @sync_mode: enable synchronous operation
216 * Start writeback against all of a mapping's dirty pages that lie
217 * within the byte offsets <start, end> inclusive.
219 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
220 * opposed to a regular memory cleansing writeback. The difference between
221 * these two operations is that if a dirty page/buffer is encountered, it must
222 * be waited upon, and not just skipped over.
224 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
225 loff_t end, int sync_mode)
227 int ret;
228 struct writeback_control wbc = {
229 .sync_mode = sync_mode,
230 .nr_to_write = LONG_MAX,
231 .range_start = start,
232 .range_end = end,
235 if (!mapping_cap_writeback_dirty(mapping))
236 return 0;
238 ret = do_writepages(mapping, &wbc);
239 return ret;
242 static inline int __filemap_fdatawrite(struct address_space *mapping,
243 int sync_mode)
245 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
248 int filemap_fdatawrite(struct address_space *mapping)
250 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
252 EXPORT_SYMBOL(filemap_fdatawrite);
254 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
255 loff_t end)
257 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
259 EXPORT_SYMBOL(filemap_fdatawrite_range);
262 * filemap_flush - mostly a non-blocking flush
263 * @mapping: target address_space
265 * This is a mostly non-blocking flush. Not suitable for data-integrity
266 * purposes - I/O may not be started against all dirty pages.
268 int filemap_flush(struct address_space *mapping)
270 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
272 EXPORT_SYMBOL(filemap_flush);
275 * filemap_fdatawait_range - wait for writeback to complete
276 * @mapping: address space structure to wait for
277 * @start_byte: offset in bytes where the range starts
278 * @end_byte: offset in bytes where the range ends (inclusive)
280 * Walk the list of under-writeback pages of the given address space
281 * in the given range and wait for all of them.
283 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
284 loff_t end_byte)
286 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
287 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
288 struct pagevec pvec;
289 int nr_pages;
290 int ret = 0;
292 if (end_byte < start_byte)
293 return 0;
295 pagevec_init(&pvec, 0);
296 while ((index <= end) &&
297 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
298 PAGECACHE_TAG_WRITEBACK,
299 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
300 unsigned i;
302 for (i = 0; i < nr_pages; i++) {
303 struct page *page = pvec.pages[i];
305 /* until radix tree lookup accepts end_index */
306 if (page->index > end)
307 continue;
309 wait_on_page_writeback(page);
310 if (TestClearPageError(page))
311 ret = -EIO;
313 pagevec_release(&pvec);
314 cond_resched();
317 /* Check for outstanding write errors */
318 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
319 ret = -ENOSPC;
320 if (test_and_clear_bit(AS_EIO, &mapping->flags))
321 ret = -EIO;
323 return ret;
325 EXPORT_SYMBOL(filemap_fdatawait_range);
328 * filemap_fdatawait - wait for all under-writeback pages to complete
329 * @mapping: address space structure to wait for
331 * Walk the list of under-writeback pages of the given address space
332 * and wait for all of them.
334 int filemap_fdatawait(struct address_space *mapping)
336 loff_t i_size = i_size_read(mapping->host);
338 if (i_size == 0)
339 return 0;
341 return filemap_fdatawait_range(mapping, 0, i_size - 1);
343 EXPORT_SYMBOL(filemap_fdatawait);
345 int filemap_write_and_wait(struct address_space *mapping)
347 int err = 0;
349 if (mapping->nrpages) {
350 err = filemap_fdatawrite(mapping);
352 * Even if the above returned error, the pages may be
353 * written partially (e.g. -ENOSPC), so we wait for it.
354 * But the -EIO is special case, it may indicate the worst
355 * thing (e.g. bug) happened, so we avoid waiting for it.
357 if (err != -EIO) {
358 int err2 = filemap_fdatawait(mapping);
359 if (!err)
360 err = err2;
363 return err;
365 EXPORT_SYMBOL(filemap_write_and_wait);
368 * filemap_write_and_wait_range - write out & wait on a file range
369 * @mapping: the address_space for the pages
370 * @lstart: offset in bytes where the range starts
371 * @lend: offset in bytes where the range ends (inclusive)
373 * Write out and wait upon file offsets lstart->lend, inclusive.
375 * Note that `lend' is inclusive (describes the last byte to be written) so
376 * that this function can be used to write to the very end-of-file (end = -1).
378 int filemap_write_and_wait_range(struct address_space *mapping,
379 loff_t lstart, loff_t lend)
381 int err = 0;
383 if (mapping->nrpages) {
384 err = __filemap_fdatawrite_range(mapping, lstart, lend,
385 WB_SYNC_ALL);
386 /* See comment of filemap_write_and_wait() */
387 if (err != -EIO) {
388 int err2 = filemap_fdatawait_range(mapping,
389 lstart, lend);
390 if (!err)
391 err = err2;
394 return err;
396 EXPORT_SYMBOL(filemap_write_and_wait_range);
399 * replace_page_cache_page - replace a pagecache page with a new one
400 * @old: page to be replaced
401 * @new: page to replace with
402 * @gfp_mask: allocation mode
404 * This function replaces a page in the pagecache with a new one. On
405 * success it acquires the pagecache reference for the new page and
406 * drops it for the old page. Both the old and new pages must be
407 * locked. This function does not add the new page to the LRU, the
408 * caller must do that.
410 * The remove + add is atomic. The only way this function can fail is
411 * memory allocation failure.
413 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
415 int error;
416 struct mem_cgroup *memcg = NULL;
418 VM_BUG_ON(!PageLocked(old));
419 VM_BUG_ON(!PageLocked(new));
420 VM_BUG_ON(new->mapping);
423 * This is not page migration, but prepare_migration and
424 * end_migration does enough work for charge replacement.
426 * In the longer term we probably want a specialized function
427 * for moving the charge from old to new in a more efficient
428 * manner.
430 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
431 if (error)
432 return error;
434 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
435 if (!error) {
436 struct address_space *mapping = old->mapping;
437 void (*freepage)(struct page *);
439 pgoff_t offset = old->index;
440 freepage = mapping->a_ops->freepage;
442 page_cache_get(new);
443 new->mapping = mapping;
444 new->index = offset;
446 spin_lock_irq(&mapping->tree_lock);
447 __remove_from_page_cache(old);
448 error = radix_tree_insert(&mapping->page_tree, offset, new);
449 BUG_ON(error);
450 mapping->nrpages++;
451 __inc_zone_page_state(new, NR_FILE_PAGES);
452 if (PageSwapBacked(new))
453 __inc_zone_page_state(new, NR_SHMEM);
454 spin_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
456 if (freepage)
457 freepage(old);
458 page_cache_release(old);
459 mem_cgroup_end_migration(memcg, old, new, true);
460 } else {
461 mem_cgroup_end_migration(memcg, old, new, false);
464 return error;
466 EXPORT_SYMBOL_GPL(replace_page_cache_page);
469 * add_to_page_cache_locked - add a locked page to the pagecache
470 * @page: page to add
471 * @mapping: the page's address_space
472 * @offset: page index
473 * @gfp_mask: page allocation mode
475 * This function is used to add a page to the pagecache. It must be locked.
476 * This function does not add the page to the LRU. The caller must do that.
478 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
479 pgoff_t offset, gfp_t gfp_mask)
481 int error;
483 VM_BUG_ON(!PageLocked(page));
485 error = mem_cgroup_cache_charge(page, current->mm,
486 gfp_mask & GFP_RECLAIM_MASK);
487 if (error)
488 goto out;
490 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
491 if (error == 0) {
492 page_cache_get(page);
493 page->mapping = mapping;
494 page->index = offset;
496 spin_lock_irq(&mapping->tree_lock);
497 error = radix_tree_insert(&mapping->page_tree, offset, page);
498 if (likely(!error)) {
499 mapping->nrpages++;
500 __inc_zone_page_state(page, NR_FILE_PAGES);
501 if (PageSwapBacked(page))
502 __inc_zone_page_state(page, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
504 } else {
505 page->mapping = NULL;
506 spin_unlock_irq(&mapping->tree_lock);
507 mem_cgroup_uncharge_cache_page(page);
508 page_cache_release(page);
510 radix_tree_preload_end();
511 } else
512 mem_cgroup_uncharge_cache_page(page);
513 out:
514 return error;
516 EXPORT_SYMBOL(add_to_page_cache_locked);
518 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
519 pgoff_t offset, gfp_t gfp_mask)
521 int ret;
524 * Splice_read and readahead add shmem/tmpfs pages into the page cache
525 * before shmem_readpage has a chance to mark them as SwapBacked: they
526 * need to go on the anon lru below, and mem_cgroup_cache_charge
527 * (called in add_to_page_cache) needs to know where they're going too.
529 if (mapping_cap_swap_backed(mapping))
530 SetPageSwapBacked(page);
532 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
533 if (ret == 0) {
534 if (page_is_file_cache(page))
535 lru_cache_add_file(page);
536 else
537 lru_cache_add_anon(page);
539 return ret;
541 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
543 #ifdef CONFIG_NUMA
544 struct page *__page_cache_alloc(gfp_t gfp)
546 int n;
547 struct page *page;
549 if (cpuset_do_page_mem_spread()) {
550 get_mems_allowed();
551 n = cpuset_mem_spread_node();
552 page = alloc_pages_exact_node(n, gfp, 0);
553 put_mems_allowed();
554 return page;
556 return alloc_pages(gfp, 0);
558 EXPORT_SYMBOL(__page_cache_alloc);
559 #endif
561 static int __sleep_on_page_lock(void *word)
563 io_schedule();
564 return 0;
568 * In order to wait for pages to become available there must be
569 * waitqueues associated with pages. By using a hash table of
570 * waitqueues where the bucket discipline is to maintain all
571 * waiters on the same queue and wake all when any of the pages
572 * become available, and for the woken contexts to check to be
573 * sure the appropriate page became available, this saves space
574 * at a cost of "thundering herd" phenomena during rare hash
575 * collisions.
577 static wait_queue_head_t *page_waitqueue(struct page *page)
579 const struct zone *zone = page_zone(page);
581 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
584 static inline void wake_up_page(struct page *page, int bit)
586 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
589 void wait_on_page_bit(struct page *page, int bit_nr)
591 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
593 if (test_bit(bit_nr, &page->flags))
594 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
595 TASK_UNINTERRUPTIBLE);
597 EXPORT_SYMBOL(wait_on_page_bit);
600 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
601 * @page: Page defining the wait queue of interest
602 * @waiter: Waiter to add to the queue
604 * Add an arbitrary @waiter to the wait queue for the nominated @page.
606 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
608 wait_queue_head_t *q = page_waitqueue(page);
609 unsigned long flags;
611 spin_lock_irqsave(&q->lock, flags);
612 __add_wait_queue(q, waiter);
613 spin_unlock_irqrestore(&q->lock, flags);
615 EXPORT_SYMBOL_GPL(add_page_wait_queue);
618 * unlock_page - unlock a locked page
619 * @page: the page
621 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
622 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
623 * mechananism between PageLocked pages and PageWriteback pages is shared.
624 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
626 * The mb is necessary to enforce ordering between the clear_bit and the read
627 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
629 void unlock_page(struct page *page)
631 VM_BUG_ON(!PageLocked(page));
632 clear_bit_unlock(PG_locked, &page->flags);
633 smp_mb__after_clear_bit();
634 wake_up_page(page, PG_locked);
636 EXPORT_SYMBOL(unlock_page);
639 * end_page_writeback - end writeback against a page
640 * @page: the page
642 void end_page_writeback(struct page *page)
644 if (TestClearPageReclaim(page))
645 rotate_reclaimable_page(page);
647 if (!test_clear_page_writeback(page))
648 BUG();
650 smp_mb__after_clear_bit();
651 wake_up_page(page, PG_writeback);
653 EXPORT_SYMBOL(end_page_writeback);
656 * __lock_page - get a lock on the page, assuming we need to sleep to get it
657 * @page: the page to lock
659 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
660 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
661 * chances are that on the second loop, the block layer's plug list is empty,
662 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
664 void __lock_page(struct page *page)
666 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
668 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
669 TASK_UNINTERRUPTIBLE);
671 EXPORT_SYMBOL(__lock_page);
673 int __lock_page_killable(struct page *page)
675 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
677 return __wait_on_bit_lock(page_waitqueue(page), &wait,
678 sync_page_killable, TASK_KILLABLE);
680 EXPORT_SYMBOL_GPL(__lock_page_killable);
683 * __lock_page_nosync - get a lock on the page, without calling sync_page()
684 * @page: the page to lock
686 * Variant of lock_page that does not require the caller to hold a reference
687 * on the page's mapping.
689 void __lock_page_nosync(struct page *page)
691 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
692 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
693 TASK_UNINTERRUPTIBLE);
696 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
697 unsigned int flags)
699 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
700 __lock_page(page);
701 return 1;
702 } else {
703 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
704 up_read(&mm->mmap_sem);
705 wait_on_page_locked(page);
707 return 0;
712 * find_get_page - find and get a page reference
713 * @mapping: the address_space to search
714 * @offset: the page index
716 * Is there a pagecache struct page at the given (mapping, offset) tuple?
717 * If yes, increment its refcount and return it; if no, return NULL.
719 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
721 void **pagep;
722 struct page *page;
724 rcu_read_lock();
725 repeat:
726 page = NULL;
727 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
728 if (pagep) {
729 page = radix_tree_deref_slot(pagep);
730 if (unlikely(!page))
731 goto out;
732 if (radix_tree_deref_retry(page))
733 goto repeat;
735 if (!page_cache_get_speculative(page))
736 goto repeat;
739 * Has the page moved?
740 * This is part of the lockless pagecache protocol. See
741 * include/linux/pagemap.h for details.
743 if (unlikely(page != *pagep)) {
744 page_cache_release(page);
745 goto repeat;
748 out:
749 rcu_read_unlock();
751 return page;
753 EXPORT_SYMBOL(find_get_page);
756 * find_lock_page - locate, pin and lock a pagecache page
757 * @mapping: the address_space to search
758 * @offset: the page index
760 * Locates the desired pagecache page, locks it, increments its reference
761 * count and returns its address.
763 * Returns zero if the page was not present. find_lock_page() may sleep.
765 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
767 struct page *page;
769 repeat:
770 page = find_get_page(mapping, offset);
771 if (page) {
772 lock_page(page);
773 /* Has the page been truncated? */
774 if (unlikely(page->mapping != mapping)) {
775 unlock_page(page);
776 page_cache_release(page);
777 goto repeat;
779 VM_BUG_ON(page->index != offset);
781 return page;
783 EXPORT_SYMBOL(find_lock_page);
786 * find_or_create_page - locate or add a pagecache page
787 * @mapping: the page's address_space
788 * @index: the page's index into the mapping
789 * @gfp_mask: page allocation mode
791 * Locates a page in the pagecache. If the page is not present, a new page
792 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
793 * LRU list. The returned page is locked and has its reference count
794 * incremented.
796 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
797 * allocation!
799 * find_or_create_page() returns the desired page's address, or zero on
800 * memory exhaustion.
802 struct page *find_or_create_page(struct address_space *mapping,
803 pgoff_t index, gfp_t gfp_mask)
805 struct page *page;
806 int err;
807 repeat:
808 page = find_lock_page(mapping, index);
809 if (!page) {
810 page = __page_cache_alloc(gfp_mask);
811 if (!page)
812 return NULL;
814 * We want a regular kernel memory (not highmem or DMA etc)
815 * allocation for the radix tree nodes, but we need to honour
816 * the context-specific requirements the caller has asked for.
817 * GFP_RECLAIM_MASK collects those requirements.
819 err = add_to_page_cache_lru(page, mapping, index,
820 (gfp_mask & GFP_RECLAIM_MASK));
821 if (unlikely(err)) {
822 page_cache_release(page);
823 page = NULL;
824 if (err == -EEXIST)
825 goto repeat;
828 return page;
830 EXPORT_SYMBOL(find_or_create_page);
833 * find_get_pages - gang pagecache lookup
834 * @mapping: The address_space to search
835 * @start: The starting page index
836 * @nr_pages: The maximum number of pages
837 * @pages: Where the resulting pages are placed
839 * find_get_pages() will search for and return a group of up to
840 * @nr_pages pages in the mapping. The pages are placed at @pages.
841 * find_get_pages() takes a reference against the returned pages.
843 * The search returns a group of mapping-contiguous pages with ascending
844 * indexes. There may be holes in the indices due to not-present pages.
846 * find_get_pages() returns the number of pages which were found.
848 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
849 unsigned int nr_pages, struct page **pages)
851 unsigned int i;
852 unsigned int ret;
853 unsigned int nr_found;
855 rcu_read_lock();
856 restart:
857 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
858 (void ***)pages, start, nr_pages);
859 ret = 0;
860 for (i = 0; i < nr_found; i++) {
861 struct page *page;
862 repeat:
863 page = radix_tree_deref_slot((void **)pages[i]);
864 if (unlikely(!page))
865 continue;
866 if (radix_tree_deref_retry(page)) {
867 if (ret)
868 start = pages[ret-1]->index;
869 goto restart;
872 if (!page_cache_get_speculative(page))
873 goto repeat;
875 /* Has the page moved? */
876 if (unlikely(page != *((void **)pages[i]))) {
877 page_cache_release(page);
878 goto repeat;
881 pages[ret] = page;
882 ret++;
884 rcu_read_unlock();
885 return ret;
889 * find_get_pages_contig - gang contiguous pagecache lookup
890 * @mapping: The address_space to search
891 * @index: The starting page index
892 * @nr_pages: The maximum number of pages
893 * @pages: Where the resulting pages are placed
895 * find_get_pages_contig() works exactly like find_get_pages(), except
896 * that the returned number of pages are guaranteed to be contiguous.
898 * find_get_pages_contig() returns the number of pages which were found.
900 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
901 unsigned int nr_pages, struct page **pages)
903 unsigned int i;
904 unsigned int ret;
905 unsigned int nr_found;
907 rcu_read_lock();
908 restart:
909 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
910 (void ***)pages, index, nr_pages);
911 ret = 0;
912 for (i = 0; i < nr_found; i++) {
913 struct page *page;
914 repeat:
915 page = radix_tree_deref_slot((void **)pages[i]);
916 if (unlikely(!page))
917 continue;
918 if (radix_tree_deref_retry(page))
919 goto restart;
921 if (!page_cache_get_speculative(page))
922 goto repeat;
924 /* Has the page moved? */
925 if (unlikely(page != *((void **)pages[i]))) {
926 page_cache_release(page);
927 goto repeat;
931 * must check mapping and index after taking the ref.
932 * otherwise we can get both false positives and false
933 * negatives, which is just confusing to the caller.
935 if (page->mapping == NULL || page->index != index) {
936 page_cache_release(page);
937 break;
940 pages[ret] = page;
941 ret++;
942 index++;
944 rcu_read_unlock();
945 return ret;
947 EXPORT_SYMBOL(find_get_pages_contig);
950 * find_get_pages_tag - find and return pages that match @tag
951 * @mapping: the address_space to search
952 * @index: the starting page index
953 * @tag: the tag index
954 * @nr_pages: the maximum number of pages
955 * @pages: where the resulting pages are placed
957 * Like find_get_pages, except we only return pages which are tagged with
958 * @tag. We update @index to index the next page for the traversal.
960 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
961 int tag, unsigned int nr_pages, struct page **pages)
963 unsigned int i;
964 unsigned int ret;
965 unsigned int nr_found;
967 rcu_read_lock();
968 restart:
969 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
970 (void ***)pages, *index, nr_pages, tag);
971 ret = 0;
972 for (i = 0; i < nr_found; i++) {
973 struct page *page;
974 repeat:
975 page = radix_tree_deref_slot((void **)pages[i]);
976 if (unlikely(!page))
977 continue;
978 if (radix_tree_deref_retry(page))
979 goto restart;
981 if (!page_cache_get_speculative(page))
982 goto repeat;
984 /* Has the page moved? */
985 if (unlikely(page != *((void **)pages[i]))) {
986 page_cache_release(page);
987 goto repeat;
990 pages[ret] = page;
991 ret++;
993 rcu_read_unlock();
995 if (ret)
996 *index = pages[ret - 1]->index + 1;
998 return ret;
1000 EXPORT_SYMBOL(find_get_pages_tag);
1003 * grab_cache_page_nowait - returns locked page at given index in given cache
1004 * @mapping: target address_space
1005 * @index: the page index
1007 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1008 * This is intended for speculative data generators, where the data can
1009 * be regenerated if the page couldn't be grabbed. This routine should
1010 * be safe to call while holding the lock for another page.
1012 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1013 * and deadlock against the caller's locked page.
1015 struct page *
1016 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1018 struct page *page = find_get_page(mapping, index);
1020 if (page) {
1021 if (trylock_page(page))
1022 return page;
1023 page_cache_release(page);
1024 return NULL;
1026 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1027 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1028 page_cache_release(page);
1029 page = NULL;
1031 return page;
1033 EXPORT_SYMBOL(grab_cache_page_nowait);
1036 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1037 * a _large_ part of the i/o request. Imagine the worst scenario:
1039 * ---R__________________________________________B__________
1040 * ^ reading here ^ bad block(assume 4k)
1042 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1043 * => failing the whole request => read(R) => read(R+1) =>
1044 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1045 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1046 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1048 * It is going insane. Fix it by quickly scaling down the readahead size.
1050 static void shrink_readahead_size_eio(struct file *filp,
1051 struct file_ra_state *ra)
1053 ra->ra_pages /= 4;
1057 * do_generic_file_read - generic file read routine
1058 * @filp: the file to read
1059 * @ppos: current file position
1060 * @desc: read_descriptor
1061 * @actor: read method
1063 * This is a generic file read routine, and uses the
1064 * mapping->a_ops->readpage() function for the actual low-level stuff.
1066 * This is really ugly. But the goto's actually try to clarify some
1067 * of the logic when it comes to error handling etc.
1069 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1070 read_descriptor_t *desc, read_actor_t actor)
1072 struct address_space *mapping = filp->f_mapping;
1073 struct inode *inode = mapping->host;
1074 struct file_ra_state *ra = &filp->f_ra;
1075 pgoff_t index;
1076 pgoff_t last_index;
1077 pgoff_t prev_index;
1078 unsigned long offset; /* offset into pagecache page */
1079 unsigned int prev_offset;
1080 int error;
1082 index = *ppos >> PAGE_CACHE_SHIFT;
1083 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1084 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1085 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1086 offset = *ppos & ~PAGE_CACHE_MASK;
1088 for (;;) {
1089 struct page *page;
1090 pgoff_t end_index;
1091 loff_t isize;
1092 unsigned long nr, ret;
1094 cond_resched();
1095 find_page:
1096 page = find_get_page(mapping, index);
1097 if (!page) {
1098 page_cache_sync_readahead(mapping,
1099 ra, filp,
1100 index, last_index - index);
1101 page = find_get_page(mapping, index);
1102 if (unlikely(page == NULL))
1103 goto no_cached_page;
1105 if (PageReadahead(page)) {
1106 page_cache_async_readahead(mapping,
1107 ra, filp, page,
1108 index, last_index - index);
1110 if (!PageUptodate(page)) {
1111 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1112 !mapping->a_ops->is_partially_uptodate)
1113 goto page_not_up_to_date;
1114 if (!trylock_page(page))
1115 goto page_not_up_to_date;
1116 /* Did it get truncated before we got the lock? */
1117 if (!page->mapping)
1118 goto page_not_up_to_date_locked;
1119 if (!mapping->a_ops->is_partially_uptodate(page,
1120 desc, offset))
1121 goto page_not_up_to_date_locked;
1122 unlock_page(page);
1124 page_ok:
1126 * i_size must be checked after we know the page is Uptodate.
1128 * Checking i_size after the check allows us to calculate
1129 * the correct value for "nr", which means the zero-filled
1130 * part of the page is not copied back to userspace (unless
1131 * another truncate extends the file - this is desired though).
1134 isize = i_size_read(inode);
1135 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1136 if (unlikely(!isize || index > end_index)) {
1137 page_cache_release(page);
1138 goto out;
1141 /* nr is the maximum number of bytes to copy from this page */
1142 nr = PAGE_CACHE_SIZE;
1143 if (index == end_index) {
1144 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1145 if (nr <= offset) {
1146 page_cache_release(page);
1147 goto out;
1150 nr = nr - offset;
1152 /* If users can be writing to this page using arbitrary
1153 * virtual addresses, take care about potential aliasing
1154 * before reading the page on the kernel side.
1156 if (mapping_writably_mapped(mapping))
1157 flush_dcache_page(page);
1160 * When a sequential read accesses a page several times,
1161 * only mark it as accessed the first time.
1163 if (prev_index != index || offset != prev_offset)
1164 mark_page_accessed(page);
1165 prev_index = index;
1168 * Ok, we have the page, and it's up-to-date, so
1169 * now we can copy it to user space...
1171 * The actor routine returns how many bytes were actually used..
1172 * NOTE! This may not be the same as how much of a user buffer
1173 * we filled up (we may be padding etc), so we can only update
1174 * "pos" here (the actor routine has to update the user buffer
1175 * pointers and the remaining count).
1177 ret = actor(desc, page, offset, nr);
1178 offset += ret;
1179 index += offset >> PAGE_CACHE_SHIFT;
1180 offset &= ~PAGE_CACHE_MASK;
1181 prev_offset = offset;
1183 page_cache_release(page);
1184 if (ret == nr && desc->count)
1185 continue;
1186 goto out;
1188 page_not_up_to_date:
1189 /* Get exclusive access to the page ... */
1190 error = lock_page_killable(page);
1191 if (unlikely(error))
1192 goto readpage_error;
1194 page_not_up_to_date_locked:
1195 /* Did it get truncated before we got the lock? */
1196 if (!page->mapping) {
1197 unlock_page(page);
1198 page_cache_release(page);
1199 continue;
1202 /* Did somebody else fill it already? */
1203 if (PageUptodate(page)) {
1204 unlock_page(page);
1205 goto page_ok;
1208 readpage:
1210 * A previous I/O error may have been due to temporary
1211 * failures, eg. multipath errors.
1212 * PG_error will be set again if readpage fails.
1214 ClearPageError(page);
1215 /* Start the actual read. The read will unlock the page. */
1216 error = mapping->a_ops->readpage(filp, page);
1218 if (unlikely(error)) {
1219 if (error == AOP_TRUNCATED_PAGE) {
1220 page_cache_release(page);
1221 goto find_page;
1223 goto readpage_error;
1226 if (!PageUptodate(page)) {
1227 error = lock_page_killable(page);
1228 if (unlikely(error))
1229 goto readpage_error;
1230 if (!PageUptodate(page)) {
1231 if (page->mapping == NULL) {
1233 * invalidate_mapping_pages got it
1235 unlock_page(page);
1236 page_cache_release(page);
1237 goto find_page;
1239 unlock_page(page);
1240 shrink_readahead_size_eio(filp, ra);
1241 error = -EIO;
1242 goto readpage_error;
1244 unlock_page(page);
1247 goto page_ok;
1249 readpage_error:
1250 /* UHHUH! A synchronous read error occurred. Report it */
1251 desc->error = error;
1252 page_cache_release(page);
1253 goto out;
1255 no_cached_page:
1257 * Ok, it wasn't cached, so we need to create a new
1258 * page..
1260 page = page_cache_alloc_cold(mapping);
1261 if (!page) {
1262 desc->error = -ENOMEM;
1263 goto out;
1265 error = add_to_page_cache_lru(page, mapping,
1266 index, GFP_KERNEL);
1267 if (error) {
1268 page_cache_release(page);
1269 if (error == -EEXIST)
1270 goto find_page;
1271 desc->error = error;
1272 goto out;
1274 goto readpage;
1277 out:
1278 ra->prev_pos = prev_index;
1279 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1280 ra->prev_pos |= prev_offset;
1282 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1283 file_accessed(filp);
1286 int file_read_actor(read_descriptor_t *desc, struct page *page,
1287 unsigned long offset, unsigned long size)
1289 char *kaddr;
1290 unsigned long left, count = desc->count;
1292 if (size > count)
1293 size = count;
1296 * Faults on the destination of a read are common, so do it before
1297 * taking the kmap.
1299 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1300 kaddr = kmap_atomic(page, KM_USER0);
1301 left = __copy_to_user_inatomic(desc->arg.buf,
1302 kaddr + offset, size);
1303 kunmap_atomic(kaddr, KM_USER0);
1304 if (left == 0)
1305 goto success;
1308 /* Do it the slow way */
1309 kaddr = kmap(page);
1310 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1311 kunmap(page);
1313 if (left) {
1314 size -= left;
1315 desc->error = -EFAULT;
1317 success:
1318 desc->count = count - size;
1319 desc->written += size;
1320 desc->arg.buf += size;
1321 return size;
1325 * Performs necessary checks before doing a write
1326 * @iov: io vector request
1327 * @nr_segs: number of segments in the iovec
1328 * @count: number of bytes to write
1329 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1331 * Adjust number of segments and amount of bytes to write (nr_segs should be
1332 * properly initialized first). Returns appropriate error code that caller
1333 * should return or zero in case that write should be allowed.
1335 int generic_segment_checks(const struct iovec *iov,
1336 unsigned long *nr_segs, size_t *count, int access_flags)
1338 unsigned long seg;
1339 size_t cnt = 0;
1340 for (seg = 0; seg < *nr_segs; seg++) {
1341 const struct iovec *iv = &iov[seg];
1344 * If any segment has a negative length, or the cumulative
1345 * length ever wraps negative then return -EINVAL.
1347 cnt += iv->iov_len;
1348 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1349 return -EINVAL;
1350 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1351 continue;
1352 if (seg == 0)
1353 return -EFAULT;
1354 *nr_segs = seg;
1355 cnt -= iv->iov_len; /* This segment is no good */
1356 break;
1358 *count = cnt;
1359 return 0;
1361 EXPORT_SYMBOL(generic_segment_checks);
1364 * generic_file_aio_read - generic filesystem read routine
1365 * @iocb: kernel I/O control block
1366 * @iov: io vector request
1367 * @nr_segs: number of segments in the iovec
1368 * @pos: current file position
1370 * This is the "read()" routine for all filesystems
1371 * that can use the page cache directly.
1373 ssize_t
1374 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1375 unsigned long nr_segs, loff_t pos)
1377 struct file *filp = iocb->ki_filp;
1378 ssize_t retval;
1379 unsigned long seg = 0;
1380 size_t count;
1381 loff_t *ppos = &iocb->ki_pos;
1383 count = 0;
1384 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1385 if (retval)
1386 return retval;
1388 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1389 if (filp->f_flags & O_DIRECT) {
1390 loff_t size;
1391 struct address_space *mapping;
1392 struct inode *inode;
1394 mapping = filp->f_mapping;
1395 inode = mapping->host;
1396 if (!count)
1397 goto out; /* skip atime */
1398 size = i_size_read(inode);
1399 if (pos < size) {
1400 retval = filemap_write_and_wait_range(mapping, pos,
1401 pos + iov_length(iov, nr_segs) - 1);
1402 if (!retval) {
1403 retval = mapping->a_ops->direct_IO(READ, iocb,
1404 iov, pos, nr_segs);
1406 if (retval > 0) {
1407 *ppos = pos + retval;
1408 count -= retval;
1412 * Btrfs can have a short DIO read if we encounter
1413 * compressed extents, so if there was an error, or if
1414 * we've already read everything we wanted to, or if
1415 * there was a short read because we hit EOF, go ahead
1416 * and return. Otherwise fallthrough to buffered io for
1417 * the rest of the read.
1419 if (retval < 0 || !count || *ppos >= size) {
1420 file_accessed(filp);
1421 goto out;
1426 count = retval;
1427 for (seg = 0; seg < nr_segs; seg++) {
1428 read_descriptor_t desc;
1429 loff_t offset = 0;
1432 * If we did a short DIO read we need to skip the section of the
1433 * iov that we've already read data into.
1435 if (count) {
1436 if (count > iov[seg].iov_len) {
1437 count -= iov[seg].iov_len;
1438 continue;
1440 offset = count;
1441 count = 0;
1444 desc.written = 0;
1445 desc.arg.buf = iov[seg].iov_base + offset;
1446 desc.count = iov[seg].iov_len - offset;
1447 if (desc.count == 0)
1448 continue;
1449 desc.error = 0;
1450 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1451 retval += desc.written;
1452 if (desc.error) {
1453 retval = retval ?: desc.error;
1454 break;
1456 if (desc.count > 0)
1457 break;
1459 out:
1460 return retval;
1462 EXPORT_SYMBOL(generic_file_aio_read);
1464 static ssize_t
1465 do_readahead(struct address_space *mapping, struct file *filp,
1466 pgoff_t index, unsigned long nr)
1468 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1469 return -EINVAL;
1471 force_page_cache_readahead(mapping, filp, index, nr);
1472 return 0;
1475 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1477 ssize_t ret;
1478 struct file *file;
1480 ret = -EBADF;
1481 file = fget(fd);
1482 if (file) {
1483 if (file->f_mode & FMODE_READ) {
1484 struct address_space *mapping = file->f_mapping;
1485 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1486 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1487 unsigned long len = end - start + 1;
1488 ret = do_readahead(mapping, file, start, len);
1490 fput(file);
1492 return ret;
1494 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1495 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1497 return SYSC_readahead((int) fd, offset, (size_t) count);
1499 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1500 #endif
1502 #ifdef CONFIG_MMU
1504 * page_cache_read - adds requested page to the page cache if not already there
1505 * @file: file to read
1506 * @offset: page index
1508 * This adds the requested page to the page cache if it isn't already there,
1509 * and schedules an I/O to read in its contents from disk.
1511 static int page_cache_read(struct file *file, pgoff_t offset)
1513 struct address_space *mapping = file->f_mapping;
1514 struct page *page;
1515 int ret;
1517 do {
1518 page = page_cache_alloc_cold(mapping);
1519 if (!page)
1520 return -ENOMEM;
1522 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1523 if (ret == 0)
1524 ret = mapping->a_ops->readpage(file, page);
1525 else if (ret == -EEXIST)
1526 ret = 0; /* losing race to add is OK */
1528 page_cache_release(page);
1530 } while (ret == AOP_TRUNCATED_PAGE);
1532 return ret;
1535 #define MMAP_LOTSAMISS (100)
1538 * Synchronous readahead happens when we don't even find
1539 * a page in the page cache at all.
1541 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1542 struct file_ra_state *ra,
1543 struct file *file,
1544 pgoff_t offset)
1546 unsigned long ra_pages;
1547 struct address_space *mapping = file->f_mapping;
1549 /* If we don't want any read-ahead, don't bother */
1550 if (VM_RandomReadHint(vma))
1551 return;
1553 if (VM_SequentialReadHint(vma) ||
1554 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1555 page_cache_sync_readahead(mapping, ra, file, offset,
1556 ra->ra_pages);
1557 return;
1560 if (ra->mmap_miss < INT_MAX)
1561 ra->mmap_miss++;
1564 * Do we miss much more than hit in this file? If so,
1565 * stop bothering with read-ahead. It will only hurt.
1567 if (ra->mmap_miss > MMAP_LOTSAMISS)
1568 return;
1571 * mmap read-around
1573 ra_pages = max_sane_readahead(ra->ra_pages);
1574 if (ra_pages) {
1575 ra->start = max_t(long, 0, offset - ra_pages/2);
1576 ra->size = ra_pages;
1577 ra->async_size = 0;
1578 ra_submit(ra, mapping, file);
1583 * Asynchronous readahead happens when we find the page and PG_readahead,
1584 * so we want to possibly extend the readahead further..
1586 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1587 struct file_ra_state *ra,
1588 struct file *file,
1589 struct page *page,
1590 pgoff_t offset)
1592 struct address_space *mapping = file->f_mapping;
1594 /* If we don't want any read-ahead, don't bother */
1595 if (VM_RandomReadHint(vma))
1596 return;
1597 if (ra->mmap_miss > 0)
1598 ra->mmap_miss--;
1599 if (PageReadahead(page))
1600 page_cache_async_readahead(mapping, ra, file,
1601 page, offset, ra->ra_pages);
1605 * filemap_fault - read in file data for page fault handling
1606 * @vma: vma in which the fault was taken
1607 * @vmf: struct vm_fault containing details of the fault
1609 * filemap_fault() is invoked via the vma operations vector for a
1610 * mapped memory region to read in file data during a page fault.
1612 * The goto's are kind of ugly, but this streamlines the normal case of having
1613 * it in the page cache, and handles the special cases reasonably without
1614 * having a lot of duplicated code.
1616 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1618 int error;
1619 struct file *file = vma->vm_file;
1620 struct address_space *mapping = file->f_mapping;
1621 struct file_ra_state *ra = &file->f_ra;
1622 struct inode *inode = mapping->host;
1623 pgoff_t offset = vmf->pgoff;
1624 struct page *page;
1625 pgoff_t size;
1626 int ret = 0;
1628 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1629 if (offset >= size)
1630 return VM_FAULT_SIGBUS;
1633 * Do we have something in the page cache already?
1635 page = find_get_page(mapping, offset);
1636 if (likely(page)) {
1638 * We found the page, so try async readahead before
1639 * waiting for the lock.
1641 do_async_mmap_readahead(vma, ra, file, page, offset);
1642 } else {
1643 /* No page in the page cache at all */
1644 do_sync_mmap_readahead(vma, ra, file, offset);
1645 count_vm_event(PGMAJFAULT);
1646 ret = VM_FAULT_MAJOR;
1647 retry_find:
1648 page = find_get_page(mapping, offset);
1649 if (!page)
1650 goto no_cached_page;
1653 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1654 page_cache_release(page);
1655 return ret | VM_FAULT_RETRY;
1658 /* Did it get truncated? */
1659 if (unlikely(page->mapping != mapping)) {
1660 unlock_page(page);
1661 put_page(page);
1662 goto retry_find;
1664 VM_BUG_ON(page->index != offset);
1667 * We have a locked page in the page cache, now we need to check
1668 * that it's up-to-date. If not, it is going to be due to an error.
1670 if (unlikely(!PageUptodate(page)))
1671 goto page_not_uptodate;
1674 * Found the page and have a reference on it.
1675 * We must recheck i_size under page lock.
1677 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1678 if (unlikely(offset >= size)) {
1679 unlock_page(page);
1680 page_cache_release(page);
1681 return VM_FAULT_SIGBUS;
1684 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1685 vmf->page = page;
1686 return ret | VM_FAULT_LOCKED;
1688 no_cached_page:
1690 * We're only likely to ever get here if MADV_RANDOM is in
1691 * effect.
1693 error = page_cache_read(file, offset);
1696 * The page we want has now been added to the page cache.
1697 * In the unlikely event that someone removed it in the
1698 * meantime, we'll just come back here and read it again.
1700 if (error >= 0)
1701 goto retry_find;
1704 * An error return from page_cache_read can result if the
1705 * system is low on memory, or a problem occurs while trying
1706 * to schedule I/O.
1708 if (error == -ENOMEM)
1709 return VM_FAULT_OOM;
1710 return VM_FAULT_SIGBUS;
1712 page_not_uptodate:
1714 * Umm, take care of errors if the page isn't up-to-date.
1715 * Try to re-read it _once_. We do this synchronously,
1716 * because there really aren't any performance issues here
1717 * and we need to check for errors.
1719 ClearPageError(page);
1720 error = mapping->a_ops->readpage(file, page);
1721 if (!error) {
1722 wait_on_page_locked(page);
1723 if (!PageUptodate(page))
1724 error = -EIO;
1726 page_cache_release(page);
1728 if (!error || error == AOP_TRUNCATED_PAGE)
1729 goto retry_find;
1731 /* Things didn't work out. Return zero to tell the mm layer so. */
1732 shrink_readahead_size_eio(file, ra);
1733 return VM_FAULT_SIGBUS;
1735 EXPORT_SYMBOL(filemap_fault);
1737 const struct vm_operations_struct generic_file_vm_ops = {
1738 .fault = filemap_fault,
1741 /* This is used for a general mmap of a disk file */
1743 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1745 struct address_space *mapping = file->f_mapping;
1747 if (!mapping->a_ops->readpage)
1748 return -ENOEXEC;
1749 file_accessed(file);
1750 vma->vm_ops = &generic_file_vm_ops;
1751 vma->vm_flags |= VM_CAN_NONLINEAR;
1752 return 0;
1756 * This is for filesystems which do not implement ->writepage.
1758 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1760 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1761 return -EINVAL;
1762 return generic_file_mmap(file, vma);
1764 #else
1765 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1767 return -ENOSYS;
1769 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1771 return -ENOSYS;
1773 #endif /* CONFIG_MMU */
1775 EXPORT_SYMBOL(generic_file_mmap);
1776 EXPORT_SYMBOL(generic_file_readonly_mmap);
1778 static struct page *__read_cache_page(struct address_space *mapping,
1779 pgoff_t index,
1780 int (*filler)(void *,struct page*),
1781 void *data,
1782 gfp_t gfp)
1784 struct page *page;
1785 int err;
1786 repeat:
1787 page = find_get_page(mapping, index);
1788 if (!page) {
1789 page = __page_cache_alloc(gfp | __GFP_COLD);
1790 if (!page)
1791 return ERR_PTR(-ENOMEM);
1792 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1793 if (unlikely(err)) {
1794 page_cache_release(page);
1795 if (err == -EEXIST)
1796 goto repeat;
1797 /* Presumably ENOMEM for radix tree node */
1798 return ERR_PTR(err);
1800 err = filler(data, page);
1801 if (err < 0) {
1802 page_cache_release(page);
1803 page = ERR_PTR(err);
1806 return page;
1809 static struct page *do_read_cache_page(struct address_space *mapping,
1810 pgoff_t index,
1811 int (*filler)(void *,struct page*),
1812 void *data,
1813 gfp_t gfp)
1816 struct page *page;
1817 int err;
1819 retry:
1820 page = __read_cache_page(mapping, index, filler, data, gfp);
1821 if (IS_ERR(page))
1822 return page;
1823 if (PageUptodate(page))
1824 goto out;
1826 lock_page(page);
1827 if (!page->mapping) {
1828 unlock_page(page);
1829 page_cache_release(page);
1830 goto retry;
1832 if (PageUptodate(page)) {
1833 unlock_page(page);
1834 goto out;
1836 err = filler(data, page);
1837 if (err < 0) {
1838 page_cache_release(page);
1839 return ERR_PTR(err);
1841 out:
1842 mark_page_accessed(page);
1843 return page;
1847 * read_cache_page_async - read into page cache, fill it if needed
1848 * @mapping: the page's address_space
1849 * @index: the page index
1850 * @filler: function to perform the read
1851 * @data: destination for read data
1853 * Same as read_cache_page, but don't wait for page to become unlocked
1854 * after submitting it to the filler.
1856 * Read into the page cache. If a page already exists, and PageUptodate() is
1857 * not set, try to fill the page but don't wait for it to become unlocked.
1859 * If the page does not get brought uptodate, return -EIO.
1861 struct page *read_cache_page_async(struct address_space *mapping,
1862 pgoff_t index,
1863 int (*filler)(void *,struct page*),
1864 void *data)
1866 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1868 EXPORT_SYMBOL(read_cache_page_async);
1870 static struct page *wait_on_page_read(struct page *page)
1872 if (!IS_ERR(page)) {
1873 wait_on_page_locked(page);
1874 if (!PageUptodate(page)) {
1875 page_cache_release(page);
1876 page = ERR_PTR(-EIO);
1879 return page;
1883 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1884 * @mapping: the page's address_space
1885 * @index: the page index
1886 * @gfp: the page allocator flags to use if allocating
1888 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1889 * any new page allocations done using the specified allocation flags. Note
1890 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1891 * expect to do this atomically or anything like that - but you can pass in
1892 * other page requirements.
1894 * If the page does not get brought uptodate, return -EIO.
1896 struct page *read_cache_page_gfp(struct address_space *mapping,
1897 pgoff_t index,
1898 gfp_t gfp)
1900 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1902 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1904 EXPORT_SYMBOL(read_cache_page_gfp);
1907 * read_cache_page - read into page cache, fill it if needed
1908 * @mapping: the page's address_space
1909 * @index: the page index
1910 * @filler: function to perform the read
1911 * @data: destination for read data
1913 * Read into the page cache. If a page already exists, and PageUptodate() is
1914 * not set, try to fill the page then wait for it to become unlocked.
1916 * If the page does not get brought uptodate, return -EIO.
1918 struct page *read_cache_page(struct address_space *mapping,
1919 pgoff_t index,
1920 int (*filler)(void *,struct page*),
1921 void *data)
1923 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1925 EXPORT_SYMBOL(read_cache_page);
1928 * The logic we want is
1930 * if suid or (sgid and xgrp)
1931 * remove privs
1933 int should_remove_suid(struct dentry *dentry)
1935 mode_t mode = dentry->d_inode->i_mode;
1936 int kill = 0;
1938 /* suid always must be killed */
1939 if (unlikely(mode & S_ISUID))
1940 kill = ATTR_KILL_SUID;
1943 * sgid without any exec bits is just a mandatory locking mark; leave
1944 * it alone. If some exec bits are set, it's a real sgid; kill it.
1946 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1947 kill |= ATTR_KILL_SGID;
1949 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1950 return kill;
1952 return 0;
1954 EXPORT_SYMBOL(should_remove_suid);
1956 static int __remove_suid(struct dentry *dentry, int kill)
1958 struct iattr newattrs;
1960 newattrs.ia_valid = ATTR_FORCE | kill;
1961 return notify_change(dentry, &newattrs);
1964 int file_remove_suid(struct file *file)
1966 struct dentry *dentry = file->f_path.dentry;
1967 int killsuid = should_remove_suid(dentry);
1968 int killpriv = security_inode_need_killpriv(dentry);
1969 int error = 0;
1971 if (killpriv < 0)
1972 return killpriv;
1973 if (killpriv)
1974 error = security_inode_killpriv(dentry);
1975 if (!error && killsuid)
1976 error = __remove_suid(dentry, killsuid);
1978 return error;
1980 EXPORT_SYMBOL(file_remove_suid);
1982 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1983 const struct iovec *iov, size_t base, size_t bytes)
1985 size_t copied = 0, left = 0;
1987 while (bytes) {
1988 char __user *buf = iov->iov_base + base;
1989 int copy = min(bytes, iov->iov_len - base);
1991 base = 0;
1992 left = __copy_from_user_inatomic(vaddr, buf, copy);
1993 copied += copy;
1994 bytes -= copy;
1995 vaddr += copy;
1996 iov++;
1998 if (unlikely(left))
1999 break;
2001 return copied - left;
2005 * Copy as much as we can into the page and return the number of bytes which
2006 * were successfully copied. If a fault is encountered then return the number of
2007 * bytes which were copied.
2009 size_t iov_iter_copy_from_user_atomic(struct page *page,
2010 struct iov_iter *i, unsigned long offset, size_t bytes)
2012 char *kaddr;
2013 size_t copied;
2015 BUG_ON(!in_atomic());
2016 kaddr = kmap_atomic(page, KM_USER0);
2017 if (likely(i->nr_segs == 1)) {
2018 int left;
2019 char __user *buf = i->iov->iov_base + i->iov_offset;
2020 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2021 copied = bytes - left;
2022 } else {
2023 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2024 i->iov, i->iov_offset, bytes);
2026 kunmap_atomic(kaddr, KM_USER0);
2028 return copied;
2030 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2033 * This has the same sideeffects and return value as
2034 * iov_iter_copy_from_user_atomic().
2035 * The difference is that it attempts to resolve faults.
2036 * Page must not be locked.
2038 size_t iov_iter_copy_from_user(struct page *page,
2039 struct iov_iter *i, unsigned long offset, size_t bytes)
2041 char *kaddr;
2042 size_t copied;
2044 kaddr = kmap(page);
2045 if (likely(i->nr_segs == 1)) {
2046 int left;
2047 char __user *buf = i->iov->iov_base + i->iov_offset;
2048 left = __copy_from_user(kaddr + offset, buf, bytes);
2049 copied = bytes - left;
2050 } else {
2051 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2052 i->iov, i->iov_offset, bytes);
2054 kunmap(page);
2055 return copied;
2057 EXPORT_SYMBOL(iov_iter_copy_from_user);
2059 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2061 BUG_ON(i->count < bytes);
2063 if (likely(i->nr_segs == 1)) {
2064 i->iov_offset += bytes;
2065 i->count -= bytes;
2066 } else {
2067 const struct iovec *iov = i->iov;
2068 size_t base = i->iov_offset;
2071 * The !iov->iov_len check ensures we skip over unlikely
2072 * zero-length segments (without overruning the iovec).
2074 while (bytes || unlikely(i->count && !iov->iov_len)) {
2075 int copy;
2077 copy = min(bytes, iov->iov_len - base);
2078 BUG_ON(!i->count || i->count < copy);
2079 i->count -= copy;
2080 bytes -= copy;
2081 base += copy;
2082 if (iov->iov_len == base) {
2083 iov++;
2084 base = 0;
2087 i->iov = iov;
2088 i->iov_offset = base;
2091 EXPORT_SYMBOL(iov_iter_advance);
2094 * Fault in the first iovec of the given iov_iter, to a maximum length
2095 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2096 * accessed (ie. because it is an invalid address).
2098 * writev-intensive code may want this to prefault several iovecs -- that
2099 * would be possible (callers must not rely on the fact that _only_ the
2100 * first iovec will be faulted with the current implementation).
2102 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2104 char __user *buf = i->iov->iov_base + i->iov_offset;
2105 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2106 return fault_in_pages_readable(buf, bytes);
2108 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2111 * Return the count of just the current iov_iter segment.
2113 size_t iov_iter_single_seg_count(struct iov_iter *i)
2115 const struct iovec *iov = i->iov;
2116 if (i->nr_segs == 1)
2117 return i->count;
2118 else
2119 return min(i->count, iov->iov_len - i->iov_offset);
2121 EXPORT_SYMBOL(iov_iter_single_seg_count);
2124 * Performs necessary checks before doing a write
2126 * Can adjust writing position or amount of bytes to write.
2127 * Returns appropriate error code that caller should return or
2128 * zero in case that write should be allowed.
2130 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2132 struct inode *inode = file->f_mapping->host;
2133 unsigned long limit = rlimit(RLIMIT_FSIZE);
2135 if (unlikely(*pos < 0))
2136 return -EINVAL;
2138 if (!isblk) {
2139 /* FIXME: this is for backwards compatibility with 2.4 */
2140 if (file->f_flags & O_APPEND)
2141 *pos = i_size_read(inode);
2143 if (limit != RLIM_INFINITY) {
2144 if (*pos >= limit) {
2145 send_sig(SIGXFSZ, current, 0);
2146 return -EFBIG;
2148 if (*count > limit - (typeof(limit))*pos) {
2149 *count = limit - (typeof(limit))*pos;
2155 * LFS rule
2157 if (unlikely(*pos + *count > MAX_NON_LFS &&
2158 !(file->f_flags & O_LARGEFILE))) {
2159 if (*pos >= MAX_NON_LFS) {
2160 return -EFBIG;
2162 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2163 *count = MAX_NON_LFS - (unsigned long)*pos;
2168 * Are we about to exceed the fs block limit ?
2170 * If we have written data it becomes a short write. If we have
2171 * exceeded without writing data we send a signal and return EFBIG.
2172 * Linus frestrict idea will clean these up nicely..
2174 if (likely(!isblk)) {
2175 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2176 if (*count || *pos > inode->i_sb->s_maxbytes) {
2177 return -EFBIG;
2179 /* zero-length writes at ->s_maxbytes are OK */
2182 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2183 *count = inode->i_sb->s_maxbytes - *pos;
2184 } else {
2185 #ifdef CONFIG_BLOCK
2186 loff_t isize;
2187 if (bdev_read_only(I_BDEV(inode)))
2188 return -EPERM;
2189 isize = i_size_read(inode);
2190 if (*pos >= isize) {
2191 if (*count || *pos > isize)
2192 return -ENOSPC;
2195 if (*pos + *count > isize)
2196 *count = isize - *pos;
2197 #else
2198 return -EPERM;
2199 #endif
2201 return 0;
2203 EXPORT_SYMBOL(generic_write_checks);
2205 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2206 loff_t pos, unsigned len, unsigned flags,
2207 struct page **pagep, void **fsdata)
2209 const struct address_space_operations *aops = mapping->a_ops;
2211 return aops->write_begin(file, mapping, pos, len, flags,
2212 pagep, fsdata);
2214 EXPORT_SYMBOL(pagecache_write_begin);
2216 int pagecache_write_end(struct file *file, struct address_space *mapping,
2217 loff_t pos, unsigned len, unsigned copied,
2218 struct page *page, void *fsdata)
2220 const struct address_space_operations *aops = mapping->a_ops;
2222 mark_page_accessed(page);
2223 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2225 EXPORT_SYMBOL(pagecache_write_end);
2227 ssize_t
2228 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2229 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2230 size_t count, size_t ocount)
2232 struct file *file = iocb->ki_filp;
2233 struct address_space *mapping = file->f_mapping;
2234 struct inode *inode = mapping->host;
2235 ssize_t written;
2236 size_t write_len;
2237 pgoff_t end;
2239 if (count != ocount)
2240 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2242 write_len = iov_length(iov, *nr_segs);
2243 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2245 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2246 if (written)
2247 goto out;
2250 * After a write we want buffered reads to be sure to go to disk to get
2251 * the new data. We invalidate clean cached page from the region we're
2252 * about to write. We do this *before* the write so that we can return
2253 * without clobbering -EIOCBQUEUED from ->direct_IO().
2255 if (mapping->nrpages) {
2256 written = invalidate_inode_pages2_range(mapping,
2257 pos >> PAGE_CACHE_SHIFT, end);
2259 * If a page can not be invalidated, return 0 to fall back
2260 * to buffered write.
2262 if (written) {
2263 if (written == -EBUSY)
2264 return 0;
2265 goto out;
2269 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2272 * Finally, try again to invalidate clean pages which might have been
2273 * cached by non-direct readahead, or faulted in by get_user_pages()
2274 * if the source of the write was an mmap'ed region of the file
2275 * we're writing. Either one is a pretty crazy thing to do,
2276 * so we don't support it 100%. If this invalidation
2277 * fails, tough, the write still worked...
2279 if (mapping->nrpages) {
2280 invalidate_inode_pages2_range(mapping,
2281 pos >> PAGE_CACHE_SHIFT, end);
2284 if (written > 0) {
2285 pos += written;
2286 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2287 i_size_write(inode, pos);
2288 mark_inode_dirty(inode);
2290 *ppos = pos;
2292 out:
2293 return written;
2295 EXPORT_SYMBOL(generic_file_direct_write);
2298 * Find or create a page at the given pagecache position. Return the locked
2299 * page. This function is specifically for buffered writes.
2301 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2302 pgoff_t index, unsigned flags)
2304 int status;
2305 struct page *page;
2306 gfp_t gfp_notmask = 0;
2307 if (flags & AOP_FLAG_NOFS)
2308 gfp_notmask = __GFP_FS;
2309 repeat:
2310 page = find_lock_page(mapping, index);
2311 if (page)
2312 return page;
2314 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2315 if (!page)
2316 return NULL;
2317 status = add_to_page_cache_lru(page, mapping, index,
2318 GFP_KERNEL & ~gfp_notmask);
2319 if (unlikely(status)) {
2320 page_cache_release(page);
2321 if (status == -EEXIST)
2322 goto repeat;
2323 return NULL;
2325 return page;
2327 EXPORT_SYMBOL(grab_cache_page_write_begin);
2329 static ssize_t generic_perform_write(struct file *file,
2330 struct iov_iter *i, loff_t pos)
2332 struct address_space *mapping = file->f_mapping;
2333 const struct address_space_operations *a_ops = mapping->a_ops;
2334 long status = 0;
2335 ssize_t written = 0;
2336 unsigned int flags = 0;
2339 * Copies from kernel address space cannot fail (NFSD is a big user).
2341 if (segment_eq(get_fs(), KERNEL_DS))
2342 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2344 do {
2345 struct page *page;
2346 unsigned long offset; /* Offset into pagecache page */
2347 unsigned long bytes; /* Bytes to write to page */
2348 size_t copied; /* Bytes copied from user */
2349 void *fsdata;
2351 offset = (pos & (PAGE_CACHE_SIZE - 1));
2352 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2353 iov_iter_count(i));
2355 again:
2358 * Bring in the user page that we will copy from _first_.
2359 * Otherwise there's a nasty deadlock on copying from the
2360 * same page as we're writing to, without it being marked
2361 * up-to-date.
2363 * Not only is this an optimisation, but it is also required
2364 * to check that the address is actually valid, when atomic
2365 * usercopies are used, below.
2367 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2368 status = -EFAULT;
2369 break;
2372 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2373 &page, &fsdata);
2374 if (unlikely(status))
2375 break;
2377 if (mapping_writably_mapped(mapping))
2378 flush_dcache_page(page);
2380 pagefault_disable();
2381 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2382 pagefault_enable();
2383 flush_dcache_page(page);
2385 mark_page_accessed(page);
2386 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2387 page, fsdata);
2388 if (unlikely(status < 0))
2389 break;
2390 copied = status;
2392 cond_resched();
2394 iov_iter_advance(i, copied);
2395 if (unlikely(copied == 0)) {
2397 * If we were unable to copy any data at all, we must
2398 * fall back to a single segment length write.
2400 * If we didn't fallback here, we could livelock
2401 * because not all segments in the iov can be copied at
2402 * once without a pagefault.
2404 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2405 iov_iter_single_seg_count(i));
2406 goto again;
2408 pos += copied;
2409 written += copied;
2411 balance_dirty_pages_ratelimited(mapping);
2413 } while (iov_iter_count(i));
2415 return written ? written : status;
2418 ssize_t
2419 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2420 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2421 size_t count, ssize_t written)
2423 struct file *file = iocb->ki_filp;
2424 ssize_t status;
2425 struct iov_iter i;
2427 iov_iter_init(&i, iov, nr_segs, count, written);
2428 status = generic_perform_write(file, &i, pos);
2430 if (likely(status >= 0)) {
2431 written += status;
2432 *ppos = pos + status;
2435 return written ? written : status;
2437 EXPORT_SYMBOL(generic_file_buffered_write);
2440 * __generic_file_aio_write - write data to a file
2441 * @iocb: IO state structure (file, offset, etc.)
2442 * @iov: vector with data to write
2443 * @nr_segs: number of segments in the vector
2444 * @ppos: position where to write
2446 * This function does all the work needed for actually writing data to a
2447 * file. It does all basic checks, removes SUID from the file, updates
2448 * modification times and calls proper subroutines depending on whether we
2449 * do direct IO or a standard buffered write.
2451 * It expects i_mutex to be grabbed unless we work on a block device or similar
2452 * object which does not need locking at all.
2454 * This function does *not* take care of syncing data in case of O_SYNC write.
2455 * A caller has to handle it. This is mainly due to the fact that we want to
2456 * avoid syncing under i_mutex.
2458 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2459 unsigned long nr_segs, loff_t *ppos)
2461 struct file *file = iocb->ki_filp;
2462 struct address_space * mapping = file->f_mapping;
2463 size_t ocount; /* original count */
2464 size_t count; /* after file limit checks */
2465 struct inode *inode = mapping->host;
2466 loff_t pos;
2467 ssize_t written;
2468 ssize_t err;
2470 ocount = 0;
2471 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2472 if (err)
2473 return err;
2475 count = ocount;
2476 pos = *ppos;
2478 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2480 /* We can write back this queue in page reclaim */
2481 current->backing_dev_info = mapping->backing_dev_info;
2482 written = 0;
2484 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2485 if (err)
2486 goto out;
2488 if (count == 0)
2489 goto out;
2491 err = file_remove_suid(file);
2492 if (err)
2493 goto out;
2495 file_update_time(file);
2497 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2498 if (unlikely(file->f_flags & O_DIRECT)) {
2499 loff_t endbyte;
2500 ssize_t written_buffered;
2502 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2503 ppos, count, ocount);
2504 if (written < 0 || written == count)
2505 goto out;
2507 * direct-io write to a hole: fall through to buffered I/O
2508 * for completing the rest of the request.
2510 pos += written;
2511 count -= written;
2512 written_buffered = generic_file_buffered_write(iocb, iov,
2513 nr_segs, pos, ppos, count,
2514 written);
2516 * If generic_file_buffered_write() retuned a synchronous error
2517 * then we want to return the number of bytes which were
2518 * direct-written, or the error code if that was zero. Note
2519 * that this differs from normal direct-io semantics, which
2520 * will return -EFOO even if some bytes were written.
2522 if (written_buffered < 0) {
2523 err = written_buffered;
2524 goto out;
2528 * We need to ensure that the page cache pages are written to
2529 * disk and invalidated to preserve the expected O_DIRECT
2530 * semantics.
2532 endbyte = pos + written_buffered - written - 1;
2533 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2534 if (err == 0) {
2535 written = written_buffered;
2536 invalidate_mapping_pages(mapping,
2537 pos >> PAGE_CACHE_SHIFT,
2538 endbyte >> PAGE_CACHE_SHIFT);
2539 } else {
2541 * We don't know how much we wrote, so just return
2542 * the number of bytes which were direct-written
2545 } else {
2546 written = generic_file_buffered_write(iocb, iov, nr_segs,
2547 pos, ppos, count, written);
2549 out:
2550 current->backing_dev_info = NULL;
2551 return written ? written : err;
2553 EXPORT_SYMBOL(__generic_file_aio_write);
2556 * generic_file_aio_write - write data to a file
2557 * @iocb: IO state structure
2558 * @iov: vector with data to write
2559 * @nr_segs: number of segments in the vector
2560 * @pos: position in file where to write
2562 * This is a wrapper around __generic_file_aio_write() to be used by most
2563 * filesystems. It takes care of syncing the file in case of O_SYNC file
2564 * and acquires i_mutex as needed.
2566 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2567 unsigned long nr_segs, loff_t pos)
2569 struct file *file = iocb->ki_filp;
2570 struct inode *inode = file->f_mapping->host;
2571 ssize_t ret;
2573 BUG_ON(iocb->ki_pos != pos);
2575 mutex_lock(&inode->i_mutex);
2576 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2577 mutex_unlock(&inode->i_mutex);
2579 if (ret > 0 || ret == -EIOCBQUEUED) {
2580 ssize_t err;
2582 err = generic_write_sync(file, pos, ret);
2583 if (err < 0 && ret > 0)
2584 ret = err;
2586 return ret;
2588 EXPORT_SYMBOL(generic_file_aio_write);
2591 * try_to_release_page() - release old fs-specific metadata on a page
2593 * @page: the page which the kernel is trying to free
2594 * @gfp_mask: memory allocation flags (and I/O mode)
2596 * The address_space is to try to release any data against the page
2597 * (presumably at page->private). If the release was successful, return `1'.
2598 * Otherwise return zero.
2600 * This may also be called if PG_fscache is set on a page, indicating that the
2601 * page is known to the local caching routines.
2603 * The @gfp_mask argument specifies whether I/O may be performed to release
2604 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2607 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2609 struct address_space * const mapping = page->mapping;
2611 BUG_ON(!PageLocked(page));
2612 if (PageWriteback(page))
2613 return 0;
2615 if (mapping && mapping->a_ops->releasepage)
2616 return mapping->a_ops->releasepage(page, gfp_mask);
2617 return try_to_free_buffers(page);
2620 EXPORT_SYMBOL(try_to_release_page);