3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 #ifdef CONFIG_DEBUG_SLAB
144 #define FORCED_DEBUG 1
148 #define FORCED_DEBUG 0
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 * true if a page was allocated from pfmemalloc reserves for network-based
163 static bool pfmemalloc_active __read_mostly
;
168 * Bufctl's are used for linking objs within a slab
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
184 typedef unsigned int kmem_bufctl_t
;
185 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
187 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
205 struct rcu_head head
;
206 struct kmem_cache
*cachep
;
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list
;
221 unsigned long colouroff
;
222 void *s_mem
; /* including colour offset */
223 unsigned int inuse
; /* num of objs active in slab */
225 unsigned short nodeid
;
227 struct slab_rcu __slab_cover_slab_rcu
;
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
239 * The limit is stored in the per-cpu structure to reduce the data cache
246 unsigned int batchcount
;
247 unsigned int touched
;
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
260 #define SLAB_OBJ_PFMEMALLOC 1
261 static inline bool is_obj_pfmemalloc(void *objp
)
263 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
266 static inline void set_obj_pfmemalloc(void **objp
)
268 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
272 static inline void clear_obj_pfmemalloc(void **objp
)
274 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 #include <linux/kmalloc_sizes.h>
344 static int slab_early_init
= 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3
*parent
)
351 INIT_LIST_HEAD(&parent
->slabs_full
);
352 INIT_LIST_HEAD(&parent
->slabs_partial
);
353 INIT_LIST_HEAD(&parent
->slabs_free
);
354 parent
->shared
= NULL
;
355 parent
->alien
= NULL
;
356 parent
->colour_next
= 0;
357 spin_lock_init(&parent
->list_lock
);
358 parent
->free_objects
= 0;
359 parent
->free_touched
= 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
375 #define CFLGS_OFF_SLAB (0x80000000UL)
376 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
378 #define BATCHREFILL_LIMIT 16
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
383 * OTOH the cpuarrays can contain lots of objects,
384 * which could lock up otherwise freeable slabs.
386 #define REAPTIMEOUT_CPUC (2*HZ)
387 #define REAPTIMEOUT_LIST3 (4*HZ)
390 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
391 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393 #define STATS_INC_GROWN(x) ((x)->grown++)
394 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
395 #define STATS_SET_HIGH(x) \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
400 #define STATS_INC_ERR(x) ((x)->errors++)
401 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
402 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
403 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
404 #define STATS_SET_FREEABLE(x, i) \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
409 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
414 #define STATS_INC_ACTIVE(x) do { } while (0)
415 #define STATS_DEC_ACTIVE(x) do { } while (0)
416 #define STATS_INC_ALLOCED(x) do { } while (0)
417 #define STATS_INC_GROWN(x) do { } while (0)
418 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
419 #define STATS_SET_HIGH(x) do { } while (0)
420 #define STATS_INC_ERR(x) do { } while (0)
421 #define STATS_INC_NODEALLOCS(x) do { } while (0)
422 #define STATS_INC_NODEFREES(x) do { } while (0)
423 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
424 #define STATS_SET_FREEABLE(x, i) do { } while (0)
425 #define STATS_INC_ALLOCHIT(x) do { } while (0)
426 #define STATS_INC_ALLOCMISS(x) do { } while (0)
427 #define STATS_INC_FREEHIT(x) do { } while (0)
428 #define STATS_INC_FREEMISS(x) do { } while (0)
434 * memory layout of objects:
436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
441 * cachep->obj_offset: The real object.
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
444 * [BYTES_PER_WORD long]
446 static int obj_offset(struct kmem_cache
*cachep
)
448 return cachep
->obj_offset
;
451 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
453 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
454 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
455 sizeof(unsigned long long));
458 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
460 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
461 if (cachep
->flags
& SLAB_STORE_USER
)
462 return (unsigned long long *)(objp
+ cachep
->size
-
463 sizeof(unsigned long long) -
465 return (unsigned long long *) (objp
+ cachep
->size
-
466 sizeof(unsigned long long));
469 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
471 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
472 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
477 #define obj_offset(x) 0
478 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
488 #define SLAB_MAX_ORDER_HI 1
489 #define SLAB_MAX_ORDER_LO 0
490 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
491 static bool slab_max_order_set __initdata
;
493 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
495 struct page
*page
= virt_to_head_page(obj
);
496 return page
->slab_cache
;
499 static inline struct slab
*virt_to_slab(const void *obj
)
501 struct page
*page
= virt_to_head_page(obj
);
503 VM_BUG_ON(!PageSlab(page
));
504 return page
->slab_page
;
507 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
510 return slab
->s_mem
+ cache
->size
* idx
;
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
520 const struct slab
*slab
, void *obj
)
522 u32 offset
= (obj
- slab
->s_mem
);
523 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 struct cache_sizes malloc_sizes
[] = {
530 #define CACHE(x) { .cs_size = (x) },
531 #include <linux/kmalloc_sizes.h>
535 EXPORT_SYMBOL(malloc_sizes
);
537 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
543 static struct cache_names __initdata cache_names
[] = {
544 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545 #include <linux/kmalloc_sizes.h>
550 static struct arraycache_init initarray_generic
=
551 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
553 /* internal cache of cache description objs */
554 static struct kmem_cache kmem_cache_boot
= {
556 .limit
= BOOT_CPUCACHE_ENTRIES
,
558 .size
= sizeof(struct kmem_cache
),
559 .name
= "kmem_cache",
562 #define BAD_ALIEN_MAGIC 0x01020304ul
564 #ifdef CONFIG_LOCKDEP
567 * Slab sometimes uses the kmalloc slabs to store the slab headers
568 * for other slabs "off slab".
569 * The locking for this is tricky in that it nests within the locks
570 * of all other slabs in a few places; to deal with this special
571 * locking we put on-slab caches into a separate lock-class.
573 * We set lock class for alien array caches which are up during init.
574 * The lock annotation will be lost if all cpus of a node goes down and
575 * then comes back up during hotplug
577 static struct lock_class_key on_slab_l3_key
;
578 static struct lock_class_key on_slab_alc_key
;
580 static struct lock_class_key debugobj_l3_key
;
581 static struct lock_class_key debugobj_alc_key
;
583 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
584 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
587 struct array_cache
**alc
;
588 struct kmem_list3
*l3
;
591 l3
= cachep
->nodelists
[q
];
595 lockdep_set_class(&l3
->list_lock
, l3_key
);
598 * FIXME: This check for BAD_ALIEN_MAGIC
599 * should go away when common slab code is taught to
600 * work even without alien caches.
601 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
602 * for alloc_alien_cache,
604 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
608 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
612 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
614 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
617 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
621 for_each_online_node(node
)
622 slab_set_debugobj_lock_classes_node(cachep
, node
);
625 static void init_node_lock_keys(int q
)
627 struct cache_sizes
*s
= malloc_sizes
;
632 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
633 struct kmem_list3
*l3
;
635 l3
= s
->cs_cachep
->nodelists
[q
];
636 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
639 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
640 &on_slab_alc_key
, q
);
644 static void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int q
)
646 struct kmem_list3
*l3
;
647 l3
= cachep
->nodelists
[q
];
651 slab_set_lock_classes(cachep
, &on_slab_l3_key
,
652 &on_slab_alc_key
, q
);
655 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
659 VM_BUG_ON(OFF_SLAB(cachep
));
661 on_slab_lock_classes_node(cachep
, node
);
664 static inline void init_lock_keys(void)
669 init_node_lock_keys(node
);
672 static void init_node_lock_keys(int q
)
676 static inline void init_lock_keys(void)
680 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
684 static inline void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int node
)
688 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
692 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
697 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
699 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
701 return cachep
->array
[smp_processor_id()];
704 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
707 struct cache_sizes
*csizep
= malloc_sizes
;
710 /* This happens if someone tries to call
711 * kmem_cache_create(), or __kmalloc(), before
712 * the generic caches are initialized.
714 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
717 return ZERO_SIZE_PTR
;
719 while (size
> csizep
->cs_size
)
723 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
724 * has cs_{dma,}cachep==NULL. Thus no special case
725 * for large kmalloc calls required.
727 #ifdef CONFIG_ZONE_DMA
728 if (unlikely(gfpflags
& GFP_DMA
))
729 return csizep
->cs_dmacachep
;
731 return csizep
->cs_cachep
;
734 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
736 return __find_general_cachep(size
, gfpflags
);
739 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
741 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
745 * Calculate the number of objects and left-over bytes for a given buffer size.
747 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
748 size_t align
, int flags
, size_t *left_over
,
753 size_t slab_size
= PAGE_SIZE
<< gfporder
;
756 * The slab management structure can be either off the slab or
757 * on it. For the latter case, the memory allocated for a
761 * - One kmem_bufctl_t for each object
762 * - Padding to respect alignment of @align
763 * - @buffer_size bytes for each object
765 * If the slab management structure is off the slab, then the
766 * alignment will already be calculated into the size. Because
767 * the slabs are all pages aligned, the objects will be at the
768 * correct alignment when allocated.
770 if (flags
& CFLGS_OFF_SLAB
) {
772 nr_objs
= slab_size
/ buffer_size
;
774 if (nr_objs
> SLAB_LIMIT
)
775 nr_objs
= SLAB_LIMIT
;
778 * Ignore padding for the initial guess. The padding
779 * is at most @align-1 bytes, and @buffer_size is at
780 * least @align. In the worst case, this result will
781 * be one greater than the number of objects that fit
782 * into the memory allocation when taking the padding
785 nr_objs
= (slab_size
- sizeof(struct slab
)) /
786 (buffer_size
+ sizeof(kmem_bufctl_t
));
789 * This calculated number will be either the right
790 * amount, or one greater than what we want.
792 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
796 if (nr_objs
> SLAB_LIMIT
)
797 nr_objs
= SLAB_LIMIT
;
799 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
802 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
806 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
808 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
811 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
812 function
, cachep
->name
, msg
);
814 add_taint(TAINT_BAD_PAGE
);
819 * By default on NUMA we use alien caches to stage the freeing of
820 * objects allocated from other nodes. This causes massive memory
821 * inefficiencies when using fake NUMA setup to split memory into a
822 * large number of small nodes, so it can be disabled on the command
826 static int use_alien_caches __read_mostly
= 1;
827 static int __init
noaliencache_setup(char *s
)
829 use_alien_caches
= 0;
832 __setup("noaliencache", noaliencache_setup
);
834 static int __init
slab_max_order_setup(char *str
)
836 get_option(&str
, &slab_max_order
);
837 slab_max_order
= slab_max_order
< 0 ? 0 :
838 min(slab_max_order
, MAX_ORDER
- 1);
839 slab_max_order_set
= true;
843 __setup("slab_max_order=", slab_max_order_setup
);
847 * Special reaping functions for NUMA systems called from cache_reap().
848 * These take care of doing round robin flushing of alien caches (containing
849 * objects freed on different nodes from which they were allocated) and the
850 * flushing of remote pcps by calling drain_node_pages.
852 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
854 static void init_reap_node(int cpu
)
858 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
859 if (node
== MAX_NUMNODES
)
860 node
= first_node(node_online_map
);
862 per_cpu(slab_reap_node
, cpu
) = node
;
865 static void next_reap_node(void)
867 int node
= __this_cpu_read(slab_reap_node
);
869 node
= next_node(node
, node_online_map
);
870 if (unlikely(node
>= MAX_NUMNODES
))
871 node
= first_node(node_online_map
);
872 __this_cpu_write(slab_reap_node
, node
);
876 #define init_reap_node(cpu) do { } while (0)
877 #define next_reap_node(void) do { } while (0)
881 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
882 * via the workqueue/eventd.
883 * Add the CPU number into the expiration time to minimize the possibility of
884 * the CPUs getting into lockstep and contending for the global cache chain
887 static void __cpuinit
start_cpu_timer(int cpu
)
889 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
892 * When this gets called from do_initcalls via cpucache_init(),
893 * init_workqueues() has already run, so keventd will be setup
896 if (keventd_up() && reap_work
->work
.func
== NULL
) {
898 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
899 schedule_delayed_work_on(cpu
, reap_work
,
900 __round_jiffies_relative(HZ
, cpu
));
904 static struct array_cache
*alloc_arraycache(int node
, int entries
,
905 int batchcount
, gfp_t gfp
)
907 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
908 struct array_cache
*nc
= NULL
;
910 nc
= kmalloc_node(memsize
, gfp
, node
);
912 * The array_cache structures contain pointers to free object.
913 * However, when such objects are allocated or transferred to another
914 * cache the pointers are not cleared and they could be counted as
915 * valid references during a kmemleak scan. Therefore, kmemleak must
916 * not scan such objects.
918 kmemleak_no_scan(nc
);
922 nc
->batchcount
= batchcount
;
924 spin_lock_init(&nc
->lock
);
929 static inline bool is_slab_pfmemalloc(struct slab
*slabp
)
931 struct page
*page
= virt_to_page(slabp
->s_mem
);
933 return PageSlabPfmemalloc(page
);
936 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
937 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
938 struct array_cache
*ac
)
940 struct kmem_list3
*l3
= cachep
->nodelists
[numa_mem_id()];
944 if (!pfmemalloc_active
)
947 spin_lock_irqsave(&l3
->list_lock
, flags
);
948 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
949 if (is_slab_pfmemalloc(slabp
))
952 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
953 if (is_slab_pfmemalloc(slabp
))
956 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
957 if (is_slab_pfmemalloc(slabp
))
960 pfmemalloc_active
= false;
962 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
965 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
966 gfp_t flags
, bool force_refill
)
969 void *objp
= ac
->entry
[--ac
->avail
];
971 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
972 if (unlikely(is_obj_pfmemalloc(objp
))) {
973 struct kmem_list3
*l3
;
975 if (gfp_pfmemalloc_allowed(flags
)) {
976 clear_obj_pfmemalloc(&objp
);
980 /* The caller cannot use PFMEMALLOC objects, find another one */
981 for (i
= 0; i
< ac
->avail
; i
++) {
982 /* If a !PFMEMALLOC object is found, swap them */
983 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
985 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
986 ac
->entry
[ac
->avail
] = objp
;
992 * If there are empty slabs on the slabs_free list and we are
993 * being forced to refill the cache, mark this one !pfmemalloc.
995 l3
= cachep
->nodelists
[numa_mem_id()];
996 if (!list_empty(&l3
->slabs_free
) && force_refill
) {
997 struct slab
*slabp
= virt_to_slab(objp
);
998 ClearPageSlabPfmemalloc(virt_to_head_page(slabp
->s_mem
));
999 clear_obj_pfmemalloc(&objp
);
1000 recheck_pfmemalloc_active(cachep
, ac
);
1004 /* No !PFMEMALLOC objects available */
1012 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
1013 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
1017 if (unlikely(sk_memalloc_socks()))
1018 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
1020 objp
= ac
->entry
[--ac
->avail
];
1025 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1028 if (unlikely(pfmemalloc_active
)) {
1029 /* Some pfmemalloc slabs exist, check if this is one */
1030 struct page
*page
= virt_to_head_page(objp
);
1031 if (PageSlabPfmemalloc(page
))
1032 set_obj_pfmemalloc(&objp
);
1038 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1041 if (unlikely(sk_memalloc_socks()))
1042 objp
= __ac_put_obj(cachep
, ac
, objp
);
1044 ac
->entry
[ac
->avail
++] = objp
;
1048 * Transfer objects in one arraycache to another.
1049 * Locking must be handled by the caller.
1051 * Return the number of entries transferred.
1053 static int transfer_objects(struct array_cache
*to
,
1054 struct array_cache
*from
, unsigned int max
)
1056 /* Figure out how many entries to transfer */
1057 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
1062 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1063 sizeof(void *) *nr
);
1072 #define drain_alien_cache(cachep, alien) do { } while (0)
1073 #define reap_alien(cachep, l3) do { } while (0)
1075 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1077 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1080 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1084 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1089 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1095 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1096 gfp_t flags
, int nodeid
)
1101 #else /* CONFIG_NUMA */
1103 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1104 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1106 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1108 struct array_cache
**ac_ptr
;
1109 int memsize
= sizeof(void *) * nr_node_ids
;
1114 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1117 if (i
== node
|| !node_online(i
))
1119 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1121 for (i
--; i
>= 0; i
--)
1131 static void free_alien_cache(struct array_cache
**ac_ptr
)
1142 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1143 struct array_cache
*ac
, int node
)
1145 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1148 spin_lock(&rl3
->list_lock
);
1150 * Stuff objects into the remote nodes shared array first.
1151 * That way we could avoid the overhead of putting the objects
1152 * into the free lists and getting them back later.
1155 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1157 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1159 spin_unlock(&rl3
->list_lock
);
1164 * Called from cache_reap() to regularly drain alien caches round robin.
1166 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1168 int node
= __this_cpu_read(slab_reap_node
);
1171 struct array_cache
*ac
= l3
->alien
[node
];
1173 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1174 __drain_alien_cache(cachep
, ac
, node
);
1175 spin_unlock_irq(&ac
->lock
);
1180 static void drain_alien_cache(struct kmem_cache
*cachep
,
1181 struct array_cache
**alien
)
1184 struct array_cache
*ac
;
1185 unsigned long flags
;
1187 for_each_online_node(i
) {
1190 spin_lock_irqsave(&ac
->lock
, flags
);
1191 __drain_alien_cache(cachep
, ac
, i
);
1192 spin_unlock_irqrestore(&ac
->lock
, flags
);
1197 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1199 struct slab
*slabp
= virt_to_slab(objp
);
1200 int nodeid
= slabp
->nodeid
;
1201 struct kmem_list3
*l3
;
1202 struct array_cache
*alien
= NULL
;
1205 node
= numa_mem_id();
1208 * Make sure we are not freeing a object from another node to the array
1209 * cache on this cpu.
1211 if (likely(slabp
->nodeid
== node
))
1214 l3
= cachep
->nodelists
[node
];
1215 STATS_INC_NODEFREES(cachep
);
1216 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1217 alien
= l3
->alien
[nodeid
];
1218 spin_lock(&alien
->lock
);
1219 if (unlikely(alien
->avail
== alien
->limit
)) {
1220 STATS_INC_ACOVERFLOW(cachep
);
1221 __drain_alien_cache(cachep
, alien
, nodeid
);
1223 ac_put_obj(cachep
, alien
, objp
);
1224 spin_unlock(&alien
->lock
);
1226 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1227 free_block(cachep
, &objp
, 1, nodeid
);
1228 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1235 * Allocates and initializes nodelists for a node on each slab cache, used for
1236 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1237 * will be allocated off-node since memory is not yet online for the new node.
1238 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1241 * Must hold slab_mutex.
1243 static int init_cache_nodelists_node(int node
)
1245 struct kmem_cache
*cachep
;
1246 struct kmem_list3
*l3
;
1247 const int memsize
= sizeof(struct kmem_list3
);
1249 list_for_each_entry(cachep
, &slab_caches
, list
) {
1251 * Set up the size64 kmemlist for cpu before we can
1252 * begin anything. Make sure some other cpu on this
1253 * node has not already allocated this
1255 if (!cachep
->nodelists
[node
]) {
1256 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1259 kmem_list3_init(l3
);
1260 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1261 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1264 * The l3s don't come and go as CPUs come and
1265 * go. slab_mutex is sufficient
1268 cachep
->nodelists
[node
] = l3
;
1271 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1272 cachep
->nodelists
[node
]->free_limit
=
1273 (1 + nr_cpus_node(node
)) *
1274 cachep
->batchcount
+ cachep
->num
;
1275 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1280 static void __cpuinit
cpuup_canceled(long cpu
)
1282 struct kmem_cache
*cachep
;
1283 struct kmem_list3
*l3
= NULL
;
1284 int node
= cpu_to_mem(cpu
);
1285 const struct cpumask
*mask
= cpumask_of_node(node
);
1287 list_for_each_entry(cachep
, &slab_caches
, list
) {
1288 struct array_cache
*nc
;
1289 struct array_cache
*shared
;
1290 struct array_cache
**alien
;
1292 /* cpu is dead; no one can alloc from it. */
1293 nc
= cachep
->array
[cpu
];
1294 cachep
->array
[cpu
] = NULL
;
1295 l3
= cachep
->nodelists
[node
];
1298 goto free_array_cache
;
1300 spin_lock_irq(&l3
->list_lock
);
1302 /* Free limit for this kmem_list3 */
1303 l3
->free_limit
-= cachep
->batchcount
;
1305 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1307 if (!cpumask_empty(mask
)) {
1308 spin_unlock_irq(&l3
->list_lock
);
1309 goto free_array_cache
;
1312 shared
= l3
->shared
;
1314 free_block(cachep
, shared
->entry
,
1315 shared
->avail
, node
);
1322 spin_unlock_irq(&l3
->list_lock
);
1326 drain_alien_cache(cachep
, alien
);
1327 free_alien_cache(alien
);
1333 * In the previous loop, all the objects were freed to
1334 * the respective cache's slabs, now we can go ahead and
1335 * shrink each nodelist to its limit.
1337 list_for_each_entry(cachep
, &slab_caches
, list
) {
1338 l3
= cachep
->nodelists
[node
];
1341 drain_freelist(cachep
, l3
, l3
->free_objects
);
1345 static int __cpuinit
cpuup_prepare(long cpu
)
1347 struct kmem_cache
*cachep
;
1348 struct kmem_list3
*l3
= NULL
;
1349 int node
= cpu_to_mem(cpu
);
1353 * We need to do this right in the beginning since
1354 * alloc_arraycache's are going to use this list.
1355 * kmalloc_node allows us to add the slab to the right
1356 * kmem_list3 and not this cpu's kmem_list3
1358 err
= init_cache_nodelists_node(node
);
1363 * Now we can go ahead with allocating the shared arrays and
1366 list_for_each_entry(cachep
, &slab_caches
, list
) {
1367 struct array_cache
*nc
;
1368 struct array_cache
*shared
= NULL
;
1369 struct array_cache
**alien
= NULL
;
1371 nc
= alloc_arraycache(node
, cachep
->limit
,
1372 cachep
->batchcount
, GFP_KERNEL
);
1375 if (cachep
->shared
) {
1376 shared
= alloc_arraycache(node
,
1377 cachep
->shared
* cachep
->batchcount
,
1378 0xbaadf00d, GFP_KERNEL
);
1384 if (use_alien_caches
) {
1385 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1392 cachep
->array
[cpu
] = nc
;
1393 l3
= cachep
->nodelists
[node
];
1396 spin_lock_irq(&l3
->list_lock
);
1399 * We are serialised from CPU_DEAD or
1400 * CPU_UP_CANCELLED by the cpucontrol lock
1402 l3
->shared
= shared
;
1411 spin_unlock_irq(&l3
->list_lock
);
1413 free_alien_cache(alien
);
1414 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1415 slab_set_debugobj_lock_classes_node(cachep
, node
);
1416 else if (!OFF_SLAB(cachep
) &&
1417 !(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1418 on_slab_lock_classes_node(cachep
, node
);
1420 init_node_lock_keys(node
);
1424 cpuup_canceled(cpu
);
1428 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1429 unsigned long action
, void *hcpu
)
1431 long cpu
= (long)hcpu
;
1435 case CPU_UP_PREPARE
:
1436 case CPU_UP_PREPARE_FROZEN
:
1437 mutex_lock(&slab_mutex
);
1438 err
= cpuup_prepare(cpu
);
1439 mutex_unlock(&slab_mutex
);
1442 case CPU_ONLINE_FROZEN
:
1443 start_cpu_timer(cpu
);
1445 #ifdef CONFIG_HOTPLUG_CPU
1446 case CPU_DOWN_PREPARE
:
1447 case CPU_DOWN_PREPARE_FROZEN
:
1449 * Shutdown cache reaper. Note that the slab_mutex is
1450 * held so that if cache_reap() is invoked it cannot do
1451 * anything expensive but will only modify reap_work
1452 * and reschedule the timer.
1454 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1455 /* Now the cache_reaper is guaranteed to be not running. */
1456 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1458 case CPU_DOWN_FAILED
:
1459 case CPU_DOWN_FAILED_FROZEN
:
1460 start_cpu_timer(cpu
);
1463 case CPU_DEAD_FROZEN
:
1465 * Even if all the cpus of a node are down, we don't free the
1466 * kmem_list3 of any cache. This to avoid a race between
1467 * cpu_down, and a kmalloc allocation from another cpu for
1468 * memory from the node of the cpu going down. The list3
1469 * structure is usually allocated from kmem_cache_create() and
1470 * gets destroyed at kmem_cache_destroy().
1474 case CPU_UP_CANCELED
:
1475 case CPU_UP_CANCELED_FROZEN
:
1476 mutex_lock(&slab_mutex
);
1477 cpuup_canceled(cpu
);
1478 mutex_unlock(&slab_mutex
);
1481 return notifier_from_errno(err
);
1484 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1485 &cpuup_callback
, NULL
, 0
1488 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1490 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1491 * Returns -EBUSY if all objects cannot be drained so that the node is not
1494 * Must hold slab_mutex.
1496 static int __meminit
drain_cache_nodelists_node(int node
)
1498 struct kmem_cache
*cachep
;
1501 list_for_each_entry(cachep
, &slab_caches
, list
) {
1502 struct kmem_list3
*l3
;
1504 l3
= cachep
->nodelists
[node
];
1508 drain_freelist(cachep
, l3
, l3
->free_objects
);
1510 if (!list_empty(&l3
->slabs_full
) ||
1511 !list_empty(&l3
->slabs_partial
)) {
1519 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1520 unsigned long action
, void *arg
)
1522 struct memory_notify
*mnb
= arg
;
1526 nid
= mnb
->status_change_nid
;
1531 case MEM_GOING_ONLINE
:
1532 mutex_lock(&slab_mutex
);
1533 ret
= init_cache_nodelists_node(nid
);
1534 mutex_unlock(&slab_mutex
);
1536 case MEM_GOING_OFFLINE
:
1537 mutex_lock(&slab_mutex
);
1538 ret
= drain_cache_nodelists_node(nid
);
1539 mutex_unlock(&slab_mutex
);
1543 case MEM_CANCEL_ONLINE
:
1544 case MEM_CANCEL_OFFLINE
:
1548 return notifier_from_errno(ret
);
1550 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1553 * swap the static kmem_list3 with kmalloced memory
1555 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1558 struct kmem_list3
*ptr
;
1560 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1563 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1565 * Do not assume that spinlocks can be initialized via memcpy:
1567 spin_lock_init(&ptr
->list_lock
);
1569 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1570 cachep
->nodelists
[nodeid
] = ptr
;
1574 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1575 * size of kmem_list3.
1577 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1581 for_each_online_node(node
) {
1582 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1583 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1585 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1590 * The memory after the last cpu cache pointer is used for the
1591 * the nodelists pointer.
1593 static void setup_nodelists_pointer(struct kmem_cache
*cachep
)
1595 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
1599 * Initialisation. Called after the page allocator have been initialised and
1600 * before smp_init().
1602 void __init
kmem_cache_init(void)
1604 struct cache_sizes
*sizes
;
1605 struct cache_names
*names
;
1608 kmem_cache
= &kmem_cache_boot
;
1609 setup_nodelists_pointer(kmem_cache
);
1611 if (num_possible_nodes() == 1)
1612 use_alien_caches
= 0;
1614 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1615 kmem_list3_init(&initkmem_list3
[i
]);
1617 set_up_list3s(kmem_cache
, CACHE_CACHE
);
1620 * Fragmentation resistance on low memory - only use bigger
1621 * page orders on machines with more than 32MB of memory if
1622 * not overridden on the command line.
1624 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1625 slab_max_order
= SLAB_MAX_ORDER_HI
;
1627 /* Bootstrap is tricky, because several objects are allocated
1628 * from caches that do not exist yet:
1629 * 1) initialize the kmem_cache cache: it contains the struct
1630 * kmem_cache structures of all caches, except kmem_cache itself:
1631 * kmem_cache is statically allocated.
1632 * Initially an __init data area is used for the head array and the
1633 * kmem_list3 structures, it's replaced with a kmalloc allocated
1634 * array at the end of the bootstrap.
1635 * 2) Create the first kmalloc cache.
1636 * The struct kmem_cache for the new cache is allocated normally.
1637 * An __init data area is used for the head array.
1638 * 3) Create the remaining kmalloc caches, with minimally sized
1640 * 4) Replace the __init data head arrays for kmem_cache and the first
1641 * kmalloc cache with kmalloc allocated arrays.
1642 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1643 * the other cache's with kmalloc allocated memory.
1644 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1647 /* 1) create the kmem_cache */
1650 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1652 create_boot_cache(kmem_cache
, "kmem_cache",
1653 offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1654 nr_node_ids
* sizeof(struct kmem_list3
*),
1655 SLAB_HWCACHE_ALIGN
);
1656 list_add(&kmem_cache
->list
, &slab_caches
);
1658 /* 2+3) create the kmalloc caches */
1659 sizes
= malloc_sizes
;
1660 names
= cache_names
;
1663 * Initialize the caches that provide memory for the array cache and the
1664 * kmem_list3 structures first. Without this, further allocations will
1668 sizes
[INDEX_AC
].cs_cachep
= create_kmalloc_cache(names
[INDEX_AC
].name
,
1669 sizes
[INDEX_AC
].cs_size
, ARCH_KMALLOC_FLAGS
);
1671 if (INDEX_AC
!= INDEX_L3
)
1672 sizes
[INDEX_L3
].cs_cachep
=
1673 create_kmalloc_cache(names
[INDEX_L3
].name
,
1674 sizes
[INDEX_L3
].cs_size
, ARCH_KMALLOC_FLAGS
);
1676 slab_early_init
= 0;
1678 while (sizes
->cs_size
!= ULONG_MAX
) {
1680 * For performance, all the general caches are L1 aligned.
1681 * This should be particularly beneficial on SMP boxes, as it
1682 * eliminates "false sharing".
1683 * Note for systems short on memory removing the alignment will
1684 * allow tighter packing of the smaller caches.
1686 if (!sizes
->cs_cachep
)
1687 sizes
->cs_cachep
= create_kmalloc_cache(names
->name
,
1688 sizes
->cs_size
, ARCH_KMALLOC_FLAGS
);
1690 #ifdef CONFIG_ZONE_DMA
1691 sizes
->cs_dmacachep
= create_kmalloc_cache(
1692 names
->name_dma
, sizes
->cs_size
,
1693 SLAB_CACHE_DMA
|ARCH_KMALLOC_FLAGS
);
1698 /* 4) Replace the bootstrap head arrays */
1700 struct array_cache
*ptr
;
1702 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1704 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1705 sizeof(struct arraycache_init
));
1707 * Do not assume that spinlocks can be initialized via memcpy:
1709 spin_lock_init(&ptr
->lock
);
1711 kmem_cache
->array
[smp_processor_id()] = ptr
;
1713 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1715 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1716 != &initarray_generic
.cache
);
1717 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1718 sizeof(struct arraycache_init
));
1720 * Do not assume that spinlocks can be initialized via memcpy:
1722 spin_lock_init(&ptr
->lock
);
1724 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1727 /* 5) Replace the bootstrap kmem_list3's */
1731 for_each_online_node(nid
) {
1732 init_list(kmem_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1734 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1735 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1737 if (INDEX_AC
!= INDEX_L3
) {
1738 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1739 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1747 void __init
kmem_cache_init_late(void)
1749 struct kmem_cache
*cachep
;
1753 /* 6) resize the head arrays to their final sizes */
1754 mutex_lock(&slab_mutex
);
1755 list_for_each_entry(cachep
, &slab_caches
, list
)
1756 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1758 mutex_unlock(&slab_mutex
);
1760 /* Annotate slab for lockdep -- annotate the malloc caches */
1767 * Register a cpu startup notifier callback that initializes
1768 * cpu_cache_get for all new cpus
1770 register_cpu_notifier(&cpucache_notifier
);
1774 * Register a memory hotplug callback that initializes and frees
1777 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1781 * The reap timers are started later, with a module init call: That part
1782 * of the kernel is not yet operational.
1786 static int __init
cpucache_init(void)
1791 * Register the timers that return unneeded pages to the page allocator
1793 for_each_online_cpu(cpu
)
1794 start_cpu_timer(cpu
);
1800 __initcall(cpucache_init
);
1802 static noinline
void
1803 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1805 struct kmem_list3
*l3
;
1807 unsigned long flags
;
1811 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1813 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1814 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1816 for_each_online_node(node
) {
1817 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1818 unsigned long active_slabs
= 0, num_slabs
= 0;
1820 l3
= cachep
->nodelists
[node
];
1824 spin_lock_irqsave(&l3
->list_lock
, flags
);
1825 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
1826 active_objs
+= cachep
->num
;
1829 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
1830 active_objs
+= slabp
->inuse
;
1833 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
1836 free_objects
+= l3
->free_objects
;
1837 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
1839 num_slabs
+= active_slabs
;
1840 num_objs
= num_slabs
* cachep
->num
;
1842 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1843 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1849 * Interface to system's page allocator. No need to hold the cache-lock.
1851 * If we requested dmaable memory, we will get it. Even if we
1852 * did not request dmaable memory, we might get it, but that
1853 * would be relatively rare and ignorable.
1855 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1863 * Nommu uses slab's for process anonymous memory allocations, and thus
1864 * requires __GFP_COMP to properly refcount higher order allocations
1866 flags
|= __GFP_COMP
;
1869 flags
|= cachep
->allocflags
;
1870 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1871 flags
|= __GFP_RECLAIMABLE
;
1873 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1875 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1876 slab_out_of_memory(cachep
, flags
, nodeid
);
1880 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1881 if (unlikely(page
->pfmemalloc
))
1882 pfmemalloc_active
= true;
1884 nr_pages
= (1 << cachep
->gfporder
);
1885 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1886 add_zone_page_state(page_zone(page
),
1887 NR_SLAB_RECLAIMABLE
, nr_pages
);
1889 add_zone_page_state(page_zone(page
),
1890 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1891 for (i
= 0; i
< nr_pages
; i
++) {
1892 __SetPageSlab(page
+ i
);
1894 if (page
->pfmemalloc
)
1895 SetPageSlabPfmemalloc(page
+ i
);
1898 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1899 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1902 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1904 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1907 return page_address(page
);
1911 * Interface to system's page release.
1913 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1915 unsigned long i
= (1 << cachep
->gfporder
);
1916 struct page
*page
= virt_to_page(addr
);
1917 const unsigned long nr_freed
= i
;
1919 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1921 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1922 sub_zone_page_state(page_zone(page
),
1923 NR_SLAB_RECLAIMABLE
, nr_freed
);
1925 sub_zone_page_state(page_zone(page
),
1926 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1928 BUG_ON(!PageSlab(page
));
1929 __ClearPageSlabPfmemalloc(page
);
1930 __ClearPageSlab(page
);
1933 if (current
->reclaim_state
)
1934 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1935 free_pages((unsigned long)addr
, cachep
->gfporder
);
1938 static void kmem_rcu_free(struct rcu_head
*head
)
1940 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1941 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1943 kmem_freepages(cachep
, slab_rcu
->addr
);
1944 if (OFF_SLAB(cachep
))
1945 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1950 #ifdef CONFIG_DEBUG_PAGEALLOC
1951 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1952 unsigned long caller
)
1954 int size
= cachep
->object_size
;
1956 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1958 if (size
< 5 * sizeof(unsigned long))
1961 *addr
++ = 0x12345678;
1963 *addr
++ = smp_processor_id();
1964 size
-= 3 * sizeof(unsigned long);
1966 unsigned long *sptr
= &caller
;
1967 unsigned long svalue
;
1969 while (!kstack_end(sptr
)) {
1971 if (kernel_text_address(svalue
)) {
1973 size
-= sizeof(unsigned long);
1974 if (size
<= sizeof(unsigned long))
1980 *addr
++ = 0x87654321;
1984 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1986 int size
= cachep
->object_size
;
1987 addr
= &((char *)addr
)[obj_offset(cachep
)];
1989 memset(addr
, val
, size
);
1990 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1993 static void dump_line(char *data
, int offset
, int limit
)
1996 unsigned char error
= 0;
1999 printk(KERN_ERR
"%03x: ", offset
);
2000 for (i
= 0; i
< limit
; i
++) {
2001 if (data
[offset
+ i
] != POISON_FREE
) {
2002 error
= data
[offset
+ i
];
2006 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
2007 &data
[offset
], limit
, 1);
2009 if (bad_count
== 1) {
2010 error
^= POISON_FREE
;
2011 if (!(error
& (error
- 1))) {
2012 printk(KERN_ERR
"Single bit error detected. Probably "
2015 printk(KERN_ERR
"Run memtest86+ or a similar memory "
2018 printk(KERN_ERR
"Run a memory test tool.\n");
2027 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
2032 if (cachep
->flags
& SLAB_RED_ZONE
) {
2033 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
2034 *dbg_redzone1(cachep
, objp
),
2035 *dbg_redzone2(cachep
, objp
));
2038 if (cachep
->flags
& SLAB_STORE_USER
) {
2039 printk(KERN_ERR
"Last user: [<%p>]",
2040 *dbg_userword(cachep
, objp
));
2041 print_symbol("(%s)",
2042 (unsigned long)*dbg_userword(cachep
, objp
));
2045 realobj
= (char *)objp
+ obj_offset(cachep
);
2046 size
= cachep
->object_size
;
2047 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
2050 if (i
+ limit
> size
)
2052 dump_line(realobj
, i
, limit
);
2056 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
2062 realobj
= (char *)objp
+ obj_offset(cachep
);
2063 size
= cachep
->object_size
;
2065 for (i
= 0; i
< size
; i
++) {
2066 char exp
= POISON_FREE
;
2069 if (realobj
[i
] != exp
) {
2075 "Slab corruption (%s): %s start=%p, len=%d\n",
2076 print_tainted(), cachep
->name
, realobj
, size
);
2077 print_objinfo(cachep
, objp
, 0);
2079 /* Hexdump the affected line */
2082 if (i
+ limit
> size
)
2084 dump_line(realobj
, i
, limit
);
2087 /* Limit to 5 lines */
2093 /* Print some data about the neighboring objects, if they
2096 struct slab
*slabp
= virt_to_slab(objp
);
2099 objnr
= obj_to_index(cachep
, slabp
, objp
);
2101 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
2102 realobj
= (char *)objp
+ obj_offset(cachep
);
2103 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
2105 print_objinfo(cachep
, objp
, 2);
2107 if (objnr
+ 1 < cachep
->num
) {
2108 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
2109 realobj
= (char *)objp
+ obj_offset(cachep
);
2110 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
2112 print_objinfo(cachep
, objp
, 2);
2119 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2122 for (i
= 0; i
< cachep
->num
; i
++) {
2123 void *objp
= index_to_obj(cachep
, slabp
, i
);
2125 if (cachep
->flags
& SLAB_POISON
) {
2126 #ifdef CONFIG_DEBUG_PAGEALLOC
2127 if (cachep
->size
% PAGE_SIZE
== 0 &&
2129 kernel_map_pages(virt_to_page(objp
),
2130 cachep
->size
/ PAGE_SIZE
, 1);
2132 check_poison_obj(cachep
, objp
);
2134 check_poison_obj(cachep
, objp
);
2137 if (cachep
->flags
& SLAB_RED_ZONE
) {
2138 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2139 slab_error(cachep
, "start of a freed object "
2141 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2142 slab_error(cachep
, "end of a freed object "
2148 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2154 * slab_destroy - destroy and release all objects in a slab
2155 * @cachep: cache pointer being destroyed
2156 * @slabp: slab pointer being destroyed
2158 * Destroy all the objs in a slab, and release the mem back to the system.
2159 * Before calling the slab must have been unlinked from the cache. The
2160 * cache-lock is not held/needed.
2162 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2164 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2166 slab_destroy_debugcheck(cachep
, slabp
);
2167 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2168 struct slab_rcu
*slab_rcu
;
2170 slab_rcu
= (struct slab_rcu
*)slabp
;
2171 slab_rcu
->cachep
= cachep
;
2172 slab_rcu
->addr
= addr
;
2173 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2175 kmem_freepages(cachep
, addr
);
2176 if (OFF_SLAB(cachep
))
2177 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2182 * calculate_slab_order - calculate size (page order) of slabs
2183 * @cachep: pointer to the cache that is being created
2184 * @size: size of objects to be created in this cache.
2185 * @align: required alignment for the objects.
2186 * @flags: slab allocation flags
2188 * Also calculates the number of objects per slab.
2190 * This could be made much more intelligent. For now, try to avoid using
2191 * high order pages for slabs. When the gfp() functions are more friendly
2192 * towards high-order requests, this should be changed.
2194 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2195 size_t size
, size_t align
, unsigned long flags
)
2197 unsigned long offslab_limit
;
2198 size_t left_over
= 0;
2201 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2205 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2209 if (flags
& CFLGS_OFF_SLAB
) {
2211 * Max number of objs-per-slab for caches which
2212 * use off-slab slabs. Needed to avoid a possible
2213 * looping condition in cache_grow().
2215 offslab_limit
= size
- sizeof(struct slab
);
2216 offslab_limit
/= sizeof(kmem_bufctl_t
);
2218 if (num
> offslab_limit
)
2222 /* Found something acceptable - save it away */
2224 cachep
->gfporder
= gfporder
;
2225 left_over
= remainder
;
2228 * A VFS-reclaimable slab tends to have most allocations
2229 * as GFP_NOFS and we really don't want to have to be allocating
2230 * higher-order pages when we are unable to shrink dcache.
2232 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2236 * Large number of objects is good, but very large slabs are
2237 * currently bad for the gfp()s.
2239 if (gfporder
>= slab_max_order
)
2243 * Acceptable internal fragmentation?
2245 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2251 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2253 if (slab_state
>= FULL
)
2254 return enable_cpucache(cachep
, gfp
);
2256 if (slab_state
== DOWN
) {
2258 * Note: Creation of first cache (kmem_cache).
2259 * The setup_list3s is taken care
2260 * of by the caller of __kmem_cache_create
2262 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2263 slab_state
= PARTIAL
;
2264 } else if (slab_state
== PARTIAL
) {
2266 * Note: the second kmem_cache_create must create the cache
2267 * that's used by kmalloc(24), otherwise the creation of
2268 * further caches will BUG().
2270 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2273 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2274 * the second cache, then we need to set up all its list3s,
2275 * otherwise the creation of further caches will BUG().
2277 set_up_list3s(cachep
, SIZE_AC
);
2278 if (INDEX_AC
== INDEX_L3
)
2279 slab_state
= PARTIAL_L3
;
2281 slab_state
= PARTIAL_ARRAYCACHE
;
2283 /* Remaining boot caches */
2284 cachep
->array
[smp_processor_id()] =
2285 kmalloc(sizeof(struct arraycache_init
), gfp
);
2287 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2288 set_up_list3s(cachep
, SIZE_L3
);
2289 slab_state
= PARTIAL_L3
;
2292 for_each_online_node(node
) {
2293 cachep
->nodelists
[node
] =
2294 kmalloc_node(sizeof(struct kmem_list3
),
2296 BUG_ON(!cachep
->nodelists
[node
]);
2297 kmem_list3_init(cachep
->nodelists
[node
]);
2301 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2302 jiffies
+ REAPTIMEOUT_LIST3
+
2303 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2305 cpu_cache_get(cachep
)->avail
= 0;
2306 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2307 cpu_cache_get(cachep
)->batchcount
= 1;
2308 cpu_cache_get(cachep
)->touched
= 0;
2309 cachep
->batchcount
= 1;
2310 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2315 * __kmem_cache_create - Create a cache.
2316 * @cachep: cache management descriptor
2317 * @flags: SLAB flags
2319 * Returns a ptr to the cache on success, NULL on failure.
2320 * Cannot be called within a int, but can be interrupted.
2321 * The @ctor is run when new pages are allocated by the cache.
2325 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2326 * to catch references to uninitialised memory.
2328 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2329 * for buffer overruns.
2331 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2332 * cacheline. This can be beneficial if you're counting cycles as closely
2336 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2338 size_t left_over
, slab_size
, ralign
;
2341 size_t size
= cachep
->size
;
2346 * Enable redzoning and last user accounting, except for caches with
2347 * large objects, if the increased size would increase the object size
2348 * above the next power of two: caches with object sizes just above a
2349 * power of two have a significant amount of internal fragmentation.
2351 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2352 2 * sizeof(unsigned long long)))
2353 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2354 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2355 flags
|= SLAB_POISON
;
2357 if (flags
& SLAB_DESTROY_BY_RCU
)
2358 BUG_ON(flags
& SLAB_POISON
);
2362 * Check that size is in terms of words. This is needed to avoid
2363 * unaligned accesses for some archs when redzoning is used, and makes
2364 * sure any on-slab bufctl's are also correctly aligned.
2366 if (size
& (BYTES_PER_WORD
- 1)) {
2367 size
+= (BYTES_PER_WORD
- 1);
2368 size
&= ~(BYTES_PER_WORD
- 1);
2372 * Redzoning and user store require word alignment or possibly larger.
2373 * Note this will be overridden by architecture or caller mandated
2374 * alignment if either is greater than BYTES_PER_WORD.
2376 if (flags
& SLAB_STORE_USER
)
2377 ralign
= BYTES_PER_WORD
;
2379 if (flags
& SLAB_RED_ZONE
) {
2380 ralign
= REDZONE_ALIGN
;
2381 /* If redzoning, ensure that the second redzone is suitably
2382 * aligned, by adjusting the object size accordingly. */
2383 size
+= REDZONE_ALIGN
- 1;
2384 size
&= ~(REDZONE_ALIGN
- 1);
2387 /* 3) caller mandated alignment */
2388 if (ralign
< cachep
->align
) {
2389 ralign
= cachep
->align
;
2391 /* disable debug if necessary */
2392 if (ralign
> __alignof__(unsigned long long))
2393 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2397 cachep
->align
= ralign
;
2399 if (slab_is_available())
2404 setup_nodelists_pointer(cachep
);
2408 * Both debugging options require word-alignment which is calculated
2411 if (flags
& SLAB_RED_ZONE
) {
2412 /* add space for red zone words */
2413 cachep
->obj_offset
+= sizeof(unsigned long long);
2414 size
+= 2 * sizeof(unsigned long long);
2416 if (flags
& SLAB_STORE_USER
) {
2417 /* user store requires one word storage behind the end of
2418 * the real object. But if the second red zone needs to be
2419 * aligned to 64 bits, we must allow that much space.
2421 if (flags
& SLAB_RED_ZONE
)
2422 size
+= REDZONE_ALIGN
;
2424 size
+= BYTES_PER_WORD
;
2426 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2427 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2428 && cachep
->object_size
> cache_line_size()
2429 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2430 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2437 * Determine if the slab management is 'on' or 'off' slab.
2438 * (bootstrapping cannot cope with offslab caches so don't do
2439 * it too early on. Always use on-slab management when
2440 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2442 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2443 !(flags
& SLAB_NOLEAKTRACE
))
2445 * Size is large, assume best to place the slab management obj
2446 * off-slab (should allow better packing of objs).
2448 flags
|= CFLGS_OFF_SLAB
;
2450 size
= ALIGN(size
, cachep
->align
);
2452 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2457 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2458 + sizeof(struct slab
), cachep
->align
);
2461 * If the slab has been placed off-slab, and we have enough space then
2462 * move it on-slab. This is at the expense of any extra colouring.
2464 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2465 flags
&= ~CFLGS_OFF_SLAB
;
2466 left_over
-= slab_size
;
2469 if (flags
& CFLGS_OFF_SLAB
) {
2470 /* really off slab. No need for manual alignment */
2472 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2474 #ifdef CONFIG_PAGE_POISONING
2475 /* If we're going to use the generic kernel_map_pages()
2476 * poisoning, then it's going to smash the contents of
2477 * the redzone and userword anyhow, so switch them off.
2479 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2480 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2484 cachep
->colour_off
= cache_line_size();
2485 /* Offset must be a multiple of the alignment. */
2486 if (cachep
->colour_off
< cachep
->align
)
2487 cachep
->colour_off
= cachep
->align
;
2488 cachep
->colour
= left_over
/ cachep
->colour_off
;
2489 cachep
->slab_size
= slab_size
;
2490 cachep
->flags
= flags
;
2491 cachep
->allocflags
= 0;
2492 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2493 cachep
->allocflags
|= GFP_DMA
;
2494 cachep
->size
= size
;
2495 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2497 if (flags
& CFLGS_OFF_SLAB
) {
2498 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2500 * This is a possibility for one of the malloc_sizes caches.
2501 * But since we go off slab only for object size greater than
2502 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2503 * this should not happen at all.
2504 * But leave a BUG_ON for some lucky dude.
2506 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2509 err
= setup_cpu_cache(cachep
, gfp
);
2511 __kmem_cache_shutdown(cachep
);
2515 if (flags
& SLAB_DEBUG_OBJECTS
) {
2517 * Would deadlock through slab_destroy()->call_rcu()->
2518 * debug_object_activate()->kmem_cache_alloc().
2520 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2522 slab_set_debugobj_lock_classes(cachep
);
2523 } else if (!OFF_SLAB(cachep
) && !(flags
& SLAB_DESTROY_BY_RCU
))
2524 on_slab_lock_classes(cachep
);
2530 static void check_irq_off(void)
2532 BUG_ON(!irqs_disabled());
2535 static void check_irq_on(void)
2537 BUG_ON(irqs_disabled());
2540 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2544 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2548 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2552 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2557 #define check_irq_off() do { } while(0)
2558 #define check_irq_on() do { } while(0)
2559 #define check_spinlock_acquired(x) do { } while(0)
2560 #define check_spinlock_acquired_node(x, y) do { } while(0)
2563 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2564 struct array_cache
*ac
,
2565 int force
, int node
);
2567 static void do_drain(void *arg
)
2569 struct kmem_cache
*cachep
= arg
;
2570 struct array_cache
*ac
;
2571 int node
= numa_mem_id();
2574 ac
= cpu_cache_get(cachep
);
2575 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2576 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2577 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2581 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2583 struct kmem_list3
*l3
;
2586 on_each_cpu(do_drain
, cachep
, 1);
2588 for_each_online_node(node
) {
2589 l3
= cachep
->nodelists
[node
];
2590 if (l3
&& l3
->alien
)
2591 drain_alien_cache(cachep
, l3
->alien
);
2594 for_each_online_node(node
) {
2595 l3
= cachep
->nodelists
[node
];
2597 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2602 * Remove slabs from the list of free slabs.
2603 * Specify the number of slabs to drain in tofree.
2605 * Returns the actual number of slabs released.
2607 static int drain_freelist(struct kmem_cache
*cache
,
2608 struct kmem_list3
*l3
, int tofree
)
2610 struct list_head
*p
;
2615 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2617 spin_lock_irq(&l3
->list_lock
);
2618 p
= l3
->slabs_free
.prev
;
2619 if (p
== &l3
->slabs_free
) {
2620 spin_unlock_irq(&l3
->list_lock
);
2624 slabp
= list_entry(p
, struct slab
, list
);
2626 BUG_ON(slabp
->inuse
);
2628 list_del(&slabp
->list
);
2630 * Safe to drop the lock. The slab is no longer linked
2633 l3
->free_objects
-= cache
->num
;
2634 spin_unlock_irq(&l3
->list_lock
);
2635 slab_destroy(cache
, slabp
);
2642 /* Called with slab_mutex held to protect against cpu hotplug */
2643 static int __cache_shrink(struct kmem_cache
*cachep
)
2646 struct kmem_list3
*l3
;
2648 drain_cpu_caches(cachep
);
2651 for_each_online_node(i
) {
2652 l3
= cachep
->nodelists
[i
];
2656 drain_freelist(cachep
, l3
, l3
->free_objects
);
2658 ret
+= !list_empty(&l3
->slabs_full
) ||
2659 !list_empty(&l3
->slabs_partial
);
2661 return (ret
? 1 : 0);
2665 * kmem_cache_shrink - Shrink a cache.
2666 * @cachep: The cache to shrink.
2668 * Releases as many slabs as possible for a cache.
2669 * To help debugging, a zero exit status indicates all slabs were released.
2671 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2674 BUG_ON(!cachep
|| in_interrupt());
2677 mutex_lock(&slab_mutex
);
2678 ret
= __cache_shrink(cachep
);
2679 mutex_unlock(&slab_mutex
);
2683 EXPORT_SYMBOL(kmem_cache_shrink
);
2685 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2688 struct kmem_list3
*l3
;
2689 int rc
= __cache_shrink(cachep
);
2694 for_each_online_cpu(i
)
2695 kfree(cachep
->array
[i
]);
2697 /* NUMA: free the list3 structures */
2698 for_each_online_node(i
) {
2699 l3
= cachep
->nodelists
[i
];
2702 free_alien_cache(l3
->alien
);
2710 * Get the memory for a slab management obj.
2711 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2712 * always come from malloc_sizes caches. The slab descriptor cannot
2713 * come from the same cache which is getting created because,
2714 * when we are searching for an appropriate cache for these
2715 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2716 * If we are creating a malloc_sizes cache here it would not be visible to
2717 * kmem_find_general_cachep till the initialization is complete.
2718 * Hence we cannot have slabp_cache same as the original cache.
2720 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2721 int colour_off
, gfp_t local_flags
,
2726 if (OFF_SLAB(cachep
)) {
2727 /* Slab management obj is off-slab. */
2728 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2729 local_flags
, nodeid
);
2731 * If the first object in the slab is leaked (it's allocated
2732 * but no one has a reference to it), we want to make sure
2733 * kmemleak does not treat the ->s_mem pointer as a reference
2734 * to the object. Otherwise we will not report the leak.
2736 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2741 slabp
= objp
+ colour_off
;
2742 colour_off
+= cachep
->slab_size
;
2745 slabp
->colouroff
= colour_off
;
2746 slabp
->s_mem
= objp
+ colour_off
;
2747 slabp
->nodeid
= nodeid
;
2752 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2754 return (kmem_bufctl_t
*) (slabp
+ 1);
2757 static void cache_init_objs(struct kmem_cache
*cachep
,
2762 for (i
= 0; i
< cachep
->num
; i
++) {
2763 void *objp
= index_to_obj(cachep
, slabp
, i
);
2765 /* need to poison the objs? */
2766 if (cachep
->flags
& SLAB_POISON
)
2767 poison_obj(cachep
, objp
, POISON_FREE
);
2768 if (cachep
->flags
& SLAB_STORE_USER
)
2769 *dbg_userword(cachep
, objp
) = NULL
;
2771 if (cachep
->flags
& SLAB_RED_ZONE
) {
2772 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2773 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2776 * Constructors are not allowed to allocate memory from the same
2777 * cache which they are a constructor for. Otherwise, deadlock.
2778 * They must also be threaded.
2780 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2781 cachep
->ctor(objp
+ obj_offset(cachep
));
2783 if (cachep
->flags
& SLAB_RED_ZONE
) {
2784 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2785 slab_error(cachep
, "constructor overwrote the"
2786 " end of an object");
2787 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2788 slab_error(cachep
, "constructor overwrote the"
2789 " start of an object");
2791 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2792 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2793 kernel_map_pages(virt_to_page(objp
),
2794 cachep
->size
/ PAGE_SIZE
, 0);
2799 slab_bufctl(slabp
)[i
] = i
+ 1;
2801 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2804 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2806 if (CONFIG_ZONE_DMA_FLAG
) {
2807 if (flags
& GFP_DMA
)
2808 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2810 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2814 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2817 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2821 next
= slab_bufctl(slabp
)[slabp
->free
];
2823 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2824 WARN_ON(slabp
->nodeid
!= nodeid
);
2831 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2832 void *objp
, int nodeid
)
2834 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2837 /* Verify that the slab belongs to the intended node */
2838 WARN_ON(slabp
->nodeid
!= nodeid
);
2840 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2841 printk(KERN_ERR
"slab: double free detected in cache "
2842 "'%s', objp %p\n", cachep
->name
, objp
);
2846 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2847 slabp
->free
= objnr
;
2852 * Map pages beginning at addr to the given cache and slab. This is required
2853 * for the slab allocator to be able to lookup the cache and slab of a
2854 * virtual address for kfree, ksize, and slab debugging.
2856 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2862 page
= virt_to_page(addr
);
2865 if (likely(!PageCompound(page
)))
2866 nr_pages
<<= cache
->gfporder
;
2869 page
->slab_cache
= cache
;
2870 page
->slab_page
= slab
;
2872 } while (--nr_pages
);
2876 * Grow (by 1) the number of slabs within a cache. This is called by
2877 * kmem_cache_alloc() when there are no active objs left in a cache.
2879 static int cache_grow(struct kmem_cache
*cachep
,
2880 gfp_t flags
, int nodeid
, void *objp
)
2885 struct kmem_list3
*l3
;
2888 * Be lazy and only check for valid flags here, keeping it out of the
2889 * critical path in kmem_cache_alloc().
2891 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2892 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2894 /* Take the l3 list lock to change the colour_next on this node */
2896 l3
= cachep
->nodelists
[nodeid
];
2897 spin_lock(&l3
->list_lock
);
2899 /* Get colour for the slab, and cal the next value. */
2900 offset
= l3
->colour_next
;
2902 if (l3
->colour_next
>= cachep
->colour
)
2903 l3
->colour_next
= 0;
2904 spin_unlock(&l3
->list_lock
);
2906 offset
*= cachep
->colour_off
;
2908 if (local_flags
& __GFP_WAIT
)
2912 * The test for missing atomic flag is performed here, rather than
2913 * the more obvious place, simply to reduce the critical path length
2914 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2915 * will eventually be caught here (where it matters).
2917 kmem_flagcheck(cachep
, flags
);
2920 * Get mem for the objs. Attempt to allocate a physical page from
2924 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2928 /* Get slab management. */
2929 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2930 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2934 slab_map_pages(cachep
, slabp
, objp
);
2936 cache_init_objs(cachep
, slabp
);
2938 if (local_flags
& __GFP_WAIT
)
2939 local_irq_disable();
2941 spin_lock(&l3
->list_lock
);
2943 /* Make slab active. */
2944 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2945 STATS_INC_GROWN(cachep
);
2946 l3
->free_objects
+= cachep
->num
;
2947 spin_unlock(&l3
->list_lock
);
2950 kmem_freepages(cachep
, objp
);
2952 if (local_flags
& __GFP_WAIT
)
2953 local_irq_disable();
2960 * Perform extra freeing checks:
2961 * - detect bad pointers.
2962 * - POISON/RED_ZONE checking
2964 static void kfree_debugcheck(const void *objp
)
2966 if (!virt_addr_valid(objp
)) {
2967 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2968 (unsigned long)objp
);
2973 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2975 unsigned long long redzone1
, redzone2
;
2977 redzone1
= *dbg_redzone1(cache
, obj
);
2978 redzone2
= *dbg_redzone2(cache
, obj
);
2983 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2986 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2987 slab_error(cache
, "double free detected");
2989 slab_error(cache
, "memory outside object was overwritten");
2991 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2992 obj
, redzone1
, redzone2
);
2995 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2996 unsigned long caller
)
3002 BUG_ON(virt_to_cache(objp
) != cachep
);
3004 objp
-= obj_offset(cachep
);
3005 kfree_debugcheck(objp
);
3006 page
= virt_to_head_page(objp
);
3008 slabp
= page
->slab_page
;
3010 if (cachep
->flags
& SLAB_RED_ZONE
) {
3011 verify_redzone_free(cachep
, objp
);
3012 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
3013 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
3015 if (cachep
->flags
& SLAB_STORE_USER
)
3016 *dbg_userword(cachep
, objp
) = (void *)caller
;
3018 objnr
= obj_to_index(cachep
, slabp
, objp
);
3020 BUG_ON(objnr
>= cachep
->num
);
3021 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3023 #ifdef CONFIG_DEBUG_SLAB_LEAK
3024 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3026 if (cachep
->flags
& SLAB_POISON
) {
3027 #ifdef CONFIG_DEBUG_PAGEALLOC
3028 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3029 store_stackinfo(cachep
, objp
, caller
);
3030 kernel_map_pages(virt_to_page(objp
),
3031 cachep
->size
/ PAGE_SIZE
, 0);
3033 poison_obj(cachep
, objp
, POISON_FREE
);
3036 poison_obj(cachep
, objp
, POISON_FREE
);
3042 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3047 /* Check slab's freelist to see if this obj is there. */
3048 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3050 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3053 if (entries
!= cachep
->num
- slabp
->inuse
) {
3055 printk(KERN_ERR
"slab: Internal list corruption detected in "
3056 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3057 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
,
3059 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, slabp
,
3060 sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
),
3066 #define kfree_debugcheck(x) do { } while(0)
3067 #define cache_free_debugcheck(x,objp,z) (objp)
3068 #define check_slabp(x,y) do { } while(0)
3071 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
3075 struct kmem_list3
*l3
;
3076 struct array_cache
*ac
;
3080 node
= numa_mem_id();
3081 if (unlikely(force_refill
))
3084 ac
= cpu_cache_get(cachep
);
3085 batchcount
= ac
->batchcount
;
3086 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3088 * If there was little recent activity on this cache, then
3089 * perform only a partial refill. Otherwise we could generate
3092 batchcount
= BATCHREFILL_LIMIT
;
3094 l3
= cachep
->nodelists
[node
];
3096 BUG_ON(ac
->avail
> 0 || !l3
);
3097 spin_lock(&l3
->list_lock
);
3099 /* See if we can refill from the shared array */
3100 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3101 l3
->shared
->touched
= 1;
3105 while (batchcount
> 0) {
3106 struct list_head
*entry
;
3108 /* Get slab alloc is to come from. */
3109 entry
= l3
->slabs_partial
.next
;
3110 if (entry
== &l3
->slabs_partial
) {
3111 l3
->free_touched
= 1;
3112 entry
= l3
->slabs_free
.next
;
3113 if (entry
== &l3
->slabs_free
)
3117 slabp
= list_entry(entry
, struct slab
, list
);
3118 check_slabp(cachep
, slabp
);
3119 check_spinlock_acquired(cachep
);
3122 * The slab was either on partial or free list so
3123 * there must be at least one object available for
3126 BUG_ON(slabp
->inuse
>= cachep
->num
);
3128 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3129 STATS_INC_ALLOCED(cachep
);
3130 STATS_INC_ACTIVE(cachep
);
3131 STATS_SET_HIGH(cachep
);
3133 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, slabp
,
3136 check_slabp(cachep
, slabp
);
3138 /* move slabp to correct slabp list: */
3139 list_del(&slabp
->list
);
3140 if (slabp
->free
== BUFCTL_END
)
3141 list_add(&slabp
->list
, &l3
->slabs_full
);
3143 list_add(&slabp
->list
, &l3
->slabs_partial
);
3147 l3
->free_objects
-= ac
->avail
;
3149 spin_unlock(&l3
->list_lock
);
3151 if (unlikely(!ac
->avail
)) {
3154 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3156 /* cache_grow can reenable interrupts, then ac could change. */
3157 ac
= cpu_cache_get(cachep
);
3158 node
= numa_mem_id();
3160 /* no objects in sight? abort */
3161 if (!x
&& (ac
->avail
== 0 || force_refill
))
3164 if (!ac
->avail
) /* objects refilled by interrupt? */
3169 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
3172 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3175 might_sleep_if(flags
& __GFP_WAIT
);
3177 kmem_flagcheck(cachep
, flags
);
3182 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3183 gfp_t flags
, void *objp
, unsigned long caller
)
3187 if (cachep
->flags
& SLAB_POISON
) {
3188 #ifdef CONFIG_DEBUG_PAGEALLOC
3189 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3190 kernel_map_pages(virt_to_page(objp
),
3191 cachep
->size
/ PAGE_SIZE
, 1);
3193 check_poison_obj(cachep
, objp
);
3195 check_poison_obj(cachep
, objp
);
3197 poison_obj(cachep
, objp
, POISON_INUSE
);
3199 if (cachep
->flags
& SLAB_STORE_USER
)
3200 *dbg_userword(cachep
, objp
) = (void *)caller
;
3202 if (cachep
->flags
& SLAB_RED_ZONE
) {
3203 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3204 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3205 slab_error(cachep
, "double free, or memory outside"
3206 " object was overwritten");
3208 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3209 objp
, *dbg_redzone1(cachep
, objp
),
3210 *dbg_redzone2(cachep
, objp
));
3212 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3213 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3215 #ifdef CONFIG_DEBUG_SLAB_LEAK
3220 slabp
= virt_to_head_page(objp
)->slab_page
;
3221 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->size
;
3222 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3225 objp
+= obj_offset(cachep
);
3226 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3228 if (ARCH_SLAB_MINALIGN
&&
3229 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3230 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3231 objp
, (int)ARCH_SLAB_MINALIGN
);
3236 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3239 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3241 if (cachep
== kmem_cache
)
3244 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
3247 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3250 struct array_cache
*ac
;
3251 bool force_refill
= false;
3255 ac
= cpu_cache_get(cachep
);
3256 if (likely(ac
->avail
)) {
3258 objp
= ac_get_obj(cachep
, ac
, flags
, false);
3261 * Allow for the possibility all avail objects are not allowed
3262 * by the current flags
3265 STATS_INC_ALLOCHIT(cachep
);
3268 force_refill
= true;
3271 STATS_INC_ALLOCMISS(cachep
);
3272 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3274 * the 'ac' may be updated by cache_alloc_refill(),
3275 * and kmemleak_erase() requires its correct value.
3277 ac
= cpu_cache_get(cachep
);
3281 * To avoid a false negative, if an object that is in one of the
3282 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3283 * treat the array pointers as a reference to the object.
3286 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3292 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3294 * If we are in_interrupt, then process context, including cpusets and
3295 * mempolicy, may not apply and should not be used for allocation policy.
3297 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3299 int nid_alloc
, nid_here
;
3301 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3303 nid_alloc
= nid_here
= numa_mem_id();
3304 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3305 nid_alloc
= cpuset_slab_spread_node();
3306 else if (current
->mempolicy
)
3307 nid_alloc
= slab_node();
3308 if (nid_alloc
!= nid_here
)
3309 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3314 * Fallback function if there was no memory available and no objects on a
3315 * certain node and fall back is permitted. First we scan all the
3316 * available nodelists for available objects. If that fails then we
3317 * perform an allocation without specifying a node. This allows the page
3318 * allocator to do its reclaim / fallback magic. We then insert the
3319 * slab into the proper nodelist and then allocate from it.
3321 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3323 struct zonelist
*zonelist
;
3327 enum zone_type high_zoneidx
= gfp_zone(flags
);
3330 unsigned int cpuset_mems_cookie
;
3332 if (flags
& __GFP_THISNODE
)
3335 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3338 cpuset_mems_cookie
= get_mems_allowed();
3339 zonelist
= node_zonelist(slab_node(), flags
);
3343 * Look through allowed nodes for objects available
3344 * from existing per node queues.
3346 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3347 nid
= zone_to_nid(zone
);
3349 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3350 cache
->nodelists
[nid
] &&
3351 cache
->nodelists
[nid
]->free_objects
) {
3352 obj
= ____cache_alloc_node(cache
,
3353 flags
| GFP_THISNODE
, nid
);
3361 * This allocation will be performed within the constraints
3362 * of the current cpuset / memory policy requirements.
3363 * We may trigger various forms of reclaim on the allowed
3364 * set and go into memory reserves if necessary.
3366 if (local_flags
& __GFP_WAIT
)
3368 kmem_flagcheck(cache
, flags
);
3369 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3370 if (local_flags
& __GFP_WAIT
)
3371 local_irq_disable();
3374 * Insert into the appropriate per node queues
3376 nid
= page_to_nid(virt_to_page(obj
));
3377 if (cache_grow(cache
, flags
, nid
, obj
)) {
3378 obj
= ____cache_alloc_node(cache
,
3379 flags
| GFP_THISNODE
, nid
);
3382 * Another processor may allocate the
3383 * objects in the slab since we are
3384 * not holding any locks.
3388 /* cache_grow already freed obj */
3394 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !obj
))
3400 * A interface to enable slab creation on nodeid
3402 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3405 struct list_head
*entry
;
3407 struct kmem_list3
*l3
;
3411 l3
= cachep
->nodelists
[nodeid
];
3416 spin_lock(&l3
->list_lock
);
3417 entry
= l3
->slabs_partial
.next
;
3418 if (entry
== &l3
->slabs_partial
) {
3419 l3
->free_touched
= 1;
3420 entry
= l3
->slabs_free
.next
;
3421 if (entry
== &l3
->slabs_free
)
3425 slabp
= list_entry(entry
, struct slab
, list
);
3426 check_spinlock_acquired_node(cachep
, nodeid
);
3427 check_slabp(cachep
, slabp
);
3429 STATS_INC_NODEALLOCS(cachep
);
3430 STATS_INC_ACTIVE(cachep
);
3431 STATS_SET_HIGH(cachep
);
3433 BUG_ON(slabp
->inuse
== cachep
->num
);
3435 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3436 check_slabp(cachep
, slabp
);
3438 /* move slabp to correct slabp list: */
3439 list_del(&slabp
->list
);
3441 if (slabp
->free
== BUFCTL_END
)
3442 list_add(&slabp
->list
, &l3
->slabs_full
);
3444 list_add(&slabp
->list
, &l3
->slabs_partial
);
3446 spin_unlock(&l3
->list_lock
);
3450 spin_unlock(&l3
->list_lock
);
3451 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3455 return fallback_alloc(cachep
, flags
);
3462 * kmem_cache_alloc_node - Allocate an object on the specified node
3463 * @cachep: The cache to allocate from.
3464 * @flags: See kmalloc().
3465 * @nodeid: node number of the target node.
3466 * @caller: return address of caller, used for debug information
3468 * Identical to kmem_cache_alloc but it will allocate memory on the given
3469 * node, which can improve the performance for cpu bound structures.
3471 * Fallback to other node is possible if __GFP_THISNODE is not set.
3473 static __always_inline
void *
3474 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3475 unsigned long caller
)
3477 unsigned long save_flags
;
3479 int slab_node
= numa_mem_id();
3481 flags
&= gfp_allowed_mask
;
3483 lockdep_trace_alloc(flags
);
3485 if (slab_should_failslab(cachep
, flags
))
3488 cache_alloc_debugcheck_before(cachep
, flags
);
3489 local_irq_save(save_flags
);
3491 if (nodeid
== NUMA_NO_NODE
)
3494 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3495 /* Node not bootstrapped yet */
3496 ptr
= fallback_alloc(cachep
, flags
);
3500 if (nodeid
== slab_node
) {
3502 * Use the locally cached objects if possible.
3503 * However ____cache_alloc does not allow fallback
3504 * to other nodes. It may fail while we still have
3505 * objects on other nodes available.
3507 ptr
= ____cache_alloc(cachep
, flags
);
3511 /* ___cache_alloc_node can fall back to other nodes */
3512 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3514 local_irq_restore(save_flags
);
3515 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3516 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3520 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3522 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3523 memset(ptr
, 0, cachep
->object_size
);
3528 static __always_inline
void *
3529 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3533 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3534 objp
= alternate_node_alloc(cache
, flags
);
3538 objp
= ____cache_alloc(cache
, flags
);
3541 * We may just have run out of memory on the local node.
3542 * ____cache_alloc_node() knows how to locate memory on other nodes
3545 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3552 static __always_inline
void *
3553 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3555 return ____cache_alloc(cachep
, flags
);
3558 #endif /* CONFIG_NUMA */
3560 static __always_inline
void *
3561 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3563 unsigned long save_flags
;
3566 flags
&= gfp_allowed_mask
;
3568 lockdep_trace_alloc(flags
);
3570 if (slab_should_failslab(cachep
, flags
))
3573 cache_alloc_debugcheck_before(cachep
, flags
);
3574 local_irq_save(save_flags
);
3575 objp
= __do_cache_alloc(cachep
, flags
);
3576 local_irq_restore(save_flags
);
3577 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3578 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3583 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3585 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3586 memset(objp
, 0, cachep
->object_size
);
3592 * Caller needs to acquire correct kmem_list's list_lock
3594 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3598 struct kmem_list3
*l3
;
3600 for (i
= 0; i
< nr_objects
; i
++) {
3604 clear_obj_pfmemalloc(&objpp
[i
]);
3607 slabp
= virt_to_slab(objp
);
3608 l3
= cachep
->nodelists
[node
];
3609 list_del(&slabp
->list
);
3610 check_spinlock_acquired_node(cachep
, node
);
3611 check_slabp(cachep
, slabp
);
3612 slab_put_obj(cachep
, slabp
, objp
, node
);
3613 STATS_DEC_ACTIVE(cachep
);
3615 check_slabp(cachep
, slabp
);
3617 /* fixup slab chains */
3618 if (slabp
->inuse
== 0) {
3619 if (l3
->free_objects
> l3
->free_limit
) {
3620 l3
->free_objects
-= cachep
->num
;
3621 /* No need to drop any previously held
3622 * lock here, even if we have a off-slab slab
3623 * descriptor it is guaranteed to come from
3624 * a different cache, refer to comments before
3627 slab_destroy(cachep
, slabp
);
3629 list_add(&slabp
->list
, &l3
->slabs_free
);
3632 /* Unconditionally move a slab to the end of the
3633 * partial list on free - maximum time for the
3634 * other objects to be freed, too.
3636 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3641 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3644 struct kmem_list3
*l3
;
3645 int node
= numa_mem_id();
3647 batchcount
= ac
->batchcount
;
3649 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3652 l3
= cachep
->nodelists
[node
];
3653 spin_lock(&l3
->list_lock
);
3655 struct array_cache
*shared_array
= l3
->shared
;
3656 int max
= shared_array
->limit
- shared_array
->avail
;
3658 if (batchcount
> max
)
3660 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3661 ac
->entry
, sizeof(void *) * batchcount
);
3662 shared_array
->avail
+= batchcount
;
3667 free_block(cachep
, ac
->entry
, batchcount
, node
);
3672 struct list_head
*p
;
3674 p
= l3
->slabs_free
.next
;
3675 while (p
!= &(l3
->slabs_free
)) {
3678 slabp
= list_entry(p
, struct slab
, list
);
3679 BUG_ON(slabp
->inuse
);
3684 STATS_SET_FREEABLE(cachep
, i
);
3687 spin_unlock(&l3
->list_lock
);
3688 ac
->avail
-= batchcount
;
3689 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3693 * Release an obj back to its cache. If the obj has a constructed state, it must
3694 * be in this state _before_ it is released. Called with disabled ints.
3696 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3697 unsigned long caller
)
3699 struct array_cache
*ac
= cpu_cache_get(cachep
);
3702 kmemleak_free_recursive(objp
, cachep
->flags
);
3703 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3705 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3708 * Skip calling cache_free_alien() when the platform is not numa.
3709 * This will avoid cache misses that happen while accessing slabp (which
3710 * is per page memory reference) to get nodeid. Instead use a global
3711 * variable to skip the call, which is mostly likely to be present in
3714 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3717 if (likely(ac
->avail
< ac
->limit
)) {
3718 STATS_INC_FREEHIT(cachep
);
3720 STATS_INC_FREEMISS(cachep
);
3721 cache_flusharray(cachep
, ac
);
3724 ac_put_obj(cachep
, ac
, objp
);
3728 * kmem_cache_alloc - Allocate an object
3729 * @cachep: The cache to allocate from.
3730 * @flags: See kmalloc().
3732 * Allocate an object from this cache. The flags are only relevant
3733 * if the cache has no available objects.
3735 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3737 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3739 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3740 cachep
->object_size
, cachep
->size
, flags
);
3744 EXPORT_SYMBOL(kmem_cache_alloc
);
3746 #ifdef CONFIG_TRACING
3748 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3752 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3754 trace_kmalloc(_RET_IP_
, ret
,
3755 size
, cachep
->size
, flags
);
3758 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3762 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3764 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3766 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3767 cachep
->object_size
, cachep
->size
,
3772 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3774 #ifdef CONFIG_TRACING
3775 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3782 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3784 trace_kmalloc_node(_RET_IP_
, ret
,
3789 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3792 static __always_inline
void *
3793 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3795 struct kmem_cache
*cachep
;
3797 cachep
= kmem_find_general_cachep(size
, flags
);
3798 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3800 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3803 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3804 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3806 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3808 EXPORT_SYMBOL(__kmalloc_node
);
3810 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3811 int node
, unsigned long caller
)
3813 return __do_kmalloc_node(size
, flags
, node
, caller
);
3815 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3817 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3819 return __do_kmalloc_node(size
, flags
, node
, 0);
3821 EXPORT_SYMBOL(__kmalloc_node
);
3822 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3823 #endif /* CONFIG_NUMA */
3826 * __do_kmalloc - allocate memory
3827 * @size: how many bytes of memory are required.
3828 * @flags: the type of memory to allocate (see kmalloc).
3829 * @caller: function caller for debug tracking of the caller
3831 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3832 unsigned long caller
)
3834 struct kmem_cache
*cachep
;
3837 /* If you want to save a few bytes .text space: replace
3839 * Then kmalloc uses the uninlined functions instead of the inline
3842 cachep
= __find_general_cachep(size
, flags
);
3843 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3845 ret
= slab_alloc(cachep
, flags
, caller
);
3847 trace_kmalloc(caller
, ret
,
3848 size
, cachep
->size
, flags
);
3854 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3855 void *__kmalloc(size_t size
, gfp_t flags
)
3857 return __do_kmalloc(size
, flags
, _RET_IP_
);
3859 EXPORT_SYMBOL(__kmalloc
);
3861 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3863 return __do_kmalloc(size
, flags
, caller
);
3865 EXPORT_SYMBOL(__kmalloc_track_caller
);
3868 void *__kmalloc(size_t size
, gfp_t flags
)
3870 return __do_kmalloc(size
, flags
, 0);
3872 EXPORT_SYMBOL(__kmalloc
);
3876 * kmem_cache_free - Deallocate an object
3877 * @cachep: The cache the allocation was from.
3878 * @objp: The previously allocated object.
3880 * Free an object which was previously allocated from this
3883 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3885 unsigned long flags
;
3887 local_irq_save(flags
);
3888 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3889 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3890 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3891 __cache_free(cachep
, objp
, _RET_IP_
);
3892 local_irq_restore(flags
);
3894 trace_kmem_cache_free(_RET_IP_
, objp
);
3896 EXPORT_SYMBOL(kmem_cache_free
);
3899 * kfree - free previously allocated memory
3900 * @objp: pointer returned by kmalloc.
3902 * If @objp is NULL, no operation is performed.
3904 * Don't free memory not originally allocated by kmalloc()
3905 * or you will run into trouble.
3907 void kfree(const void *objp
)
3909 struct kmem_cache
*c
;
3910 unsigned long flags
;
3912 trace_kfree(_RET_IP_
, objp
);
3914 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3916 local_irq_save(flags
);
3917 kfree_debugcheck(objp
);
3918 c
= virt_to_cache(objp
);
3919 debug_check_no_locks_freed(objp
, c
->object_size
);
3921 debug_check_no_obj_freed(objp
, c
->object_size
);
3922 __cache_free(c
, (void *)objp
, _RET_IP_
);
3923 local_irq_restore(flags
);
3925 EXPORT_SYMBOL(kfree
);
3928 * This initializes kmem_list3 or resizes various caches for all nodes.
3930 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3933 struct kmem_list3
*l3
;
3934 struct array_cache
*new_shared
;
3935 struct array_cache
**new_alien
= NULL
;
3937 for_each_online_node(node
) {
3939 if (use_alien_caches
) {
3940 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3946 if (cachep
->shared
) {
3947 new_shared
= alloc_arraycache(node
,
3948 cachep
->shared
*cachep
->batchcount
,
3951 free_alien_cache(new_alien
);
3956 l3
= cachep
->nodelists
[node
];
3958 struct array_cache
*shared
= l3
->shared
;
3960 spin_lock_irq(&l3
->list_lock
);
3963 free_block(cachep
, shared
->entry
,
3964 shared
->avail
, node
);
3966 l3
->shared
= new_shared
;
3968 l3
->alien
= new_alien
;
3971 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3972 cachep
->batchcount
+ cachep
->num
;
3973 spin_unlock_irq(&l3
->list_lock
);
3975 free_alien_cache(new_alien
);
3978 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3980 free_alien_cache(new_alien
);
3985 kmem_list3_init(l3
);
3986 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3987 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3988 l3
->shared
= new_shared
;
3989 l3
->alien
= new_alien
;
3990 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3991 cachep
->batchcount
+ cachep
->num
;
3992 cachep
->nodelists
[node
] = l3
;
3997 if (!cachep
->list
.next
) {
3998 /* Cache is not active yet. Roll back what we did */
4001 if (cachep
->nodelists
[node
]) {
4002 l3
= cachep
->nodelists
[node
];
4005 free_alien_cache(l3
->alien
);
4007 cachep
->nodelists
[node
] = NULL
;
4015 struct ccupdate_struct
{
4016 struct kmem_cache
*cachep
;
4017 struct array_cache
*new[0];
4020 static void do_ccupdate_local(void *info
)
4022 struct ccupdate_struct
*new = info
;
4023 struct array_cache
*old
;
4026 old
= cpu_cache_get(new->cachep
);
4028 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
4029 new->new[smp_processor_id()] = old
;
4032 /* Always called with the slab_mutex held */
4033 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4034 int batchcount
, int shared
, gfp_t gfp
)
4036 struct ccupdate_struct
*new;
4039 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4044 for_each_online_cpu(i
) {
4045 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4048 for (i
--; i
>= 0; i
--)
4054 new->cachep
= cachep
;
4056 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4059 cachep
->batchcount
= batchcount
;
4060 cachep
->limit
= limit
;
4061 cachep
->shared
= shared
;
4063 for_each_online_cpu(i
) {
4064 struct array_cache
*ccold
= new->new[i
];
4067 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4068 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4069 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4073 return alloc_kmemlist(cachep
, gfp
);
4076 /* Called with slab_mutex held always */
4077 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4083 * The head array serves three purposes:
4084 * - create a LIFO ordering, i.e. return objects that are cache-warm
4085 * - reduce the number of spinlock operations.
4086 * - reduce the number of linked list operations on the slab and
4087 * bufctl chains: array operations are cheaper.
4088 * The numbers are guessed, we should auto-tune as described by
4091 if (cachep
->size
> 131072)
4093 else if (cachep
->size
> PAGE_SIZE
)
4095 else if (cachep
->size
> 1024)
4097 else if (cachep
->size
> 256)
4103 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4104 * allocation behaviour: Most allocs on one cpu, most free operations
4105 * on another cpu. For these cases, an efficient object passing between
4106 * cpus is necessary. This is provided by a shared array. The array
4107 * replaces Bonwick's magazine layer.
4108 * On uniprocessor, it's functionally equivalent (but less efficient)
4109 * to a larger limit. Thus disabled by default.
4112 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4117 * With debugging enabled, large batchcount lead to excessively long
4118 * periods with disabled local interrupts. Limit the batchcount
4123 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4125 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4126 cachep
->name
, -err
);
4131 * Drain an array if it contains any elements taking the l3 lock only if
4132 * necessary. Note that the l3 listlock also protects the array_cache
4133 * if drain_array() is used on the shared array.
4135 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4136 struct array_cache
*ac
, int force
, int node
)
4140 if (!ac
|| !ac
->avail
)
4142 if (ac
->touched
&& !force
) {
4145 spin_lock_irq(&l3
->list_lock
);
4147 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4148 if (tofree
> ac
->avail
)
4149 tofree
= (ac
->avail
+ 1) / 2;
4150 free_block(cachep
, ac
->entry
, tofree
, node
);
4151 ac
->avail
-= tofree
;
4152 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4153 sizeof(void *) * ac
->avail
);
4155 spin_unlock_irq(&l3
->list_lock
);
4160 * cache_reap - Reclaim memory from caches.
4161 * @w: work descriptor
4163 * Called from workqueue/eventd every few seconds.
4165 * - clear the per-cpu caches for this CPU.
4166 * - return freeable pages to the main free memory pool.
4168 * If we cannot acquire the cache chain mutex then just give up - we'll try
4169 * again on the next iteration.
4171 static void cache_reap(struct work_struct
*w
)
4173 struct kmem_cache
*searchp
;
4174 struct kmem_list3
*l3
;
4175 int node
= numa_mem_id();
4176 struct delayed_work
*work
= to_delayed_work(w
);
4178 if (!mutex_trylock(&slab_mutex
))
4179 /* Give up. Setup the next iteration. */
4182 list_for_each_entry(searchp
, &slab_caches
, list
) {
4186 * We only take the l3 lock if absolutely necessary and we
4187 * have established with reasonable certainty that
4188 * we can do some work if the lock was obtained.
4190 l3
= searchp
->nodelists
[node
];
4192 reap_alien(searchp
, l3
);
4194 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4197 * These are racy checks but it does not matter
4198 * if we skip one check or scan twice.
4200 if (time_after(l3
->next_reap
, jiffies
))
4203 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4205 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4207 if (l3
->free_touched
)
4208 l3
->free_touched
= 0;
4212 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4213 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4214 STATS_ADD_REAPED(searchp
, freed
);
4220 mutex_unlock(&slab_mutex
);
4223 /* Set up the next iteration */
4224 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4227 #ifdef CONFIG_SLABINFO
4228 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4231 unsigned long active_objs
;
4232 unsigned long num_objs
;
4233 unsigned long active_slabs
= 0;
4234 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4238 struct kmem_list3
*l3
;
4242 for_each_online_node(node
) {
4243 l3
= cachep
->nodelists
[node
];
4248 spin_lock_irq(&l3
->list_lock
);
4250 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4251 if (slabp
->inuse
!= cachep
->num
&& !error
)
4252 error
= "slabs_full accounting error";
4253 active_objs
+= cachep
->num
;
4256 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4257 if (slabp
->inuse
== cachep
->num
&& !error
)
4258 error
= "slabs_partial inuse accounting error";
4259 if (!slabp
->inuse
&& !error
)
4260 error
= "slabs_partial/inuse accounting error";
4261 active_objs
+= slabp
->inuse
;
4264 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4265 if (slabp
->inuse
&& !error
)
4266 error
= "slabs_free/inuse accounting error";
4269 free_objects
+= l3
->free_objects
;
4271 shared_avail
+= l3
->shared
->avail
;
4273 spin_unlock_irq(&l3
->list_lock
);
4275 num_slabs
+= active_slabs
;
4276 num_objs
= num_slabs
* cachep
->num
;
4277 if (num_objs
- active_objs
!= free_objects
&& !error
)
4278 error
= "free_objects accounting error";
4280 name
= cachep
->name
;
4282 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4284 sinfo
->active_objs
= active_objs
;
4285 sinfo
->num_objs
= num_objs
;
4286 sinfo
->active_slabs
= active_slabs
;
4287 sinfo
->num_slabs
= num_slabs
;
4288 sinfo
->shared_avail
= shared_avail
;
4289 sinfo
->limit
= cachep
->limit
;
4290 sinfo
->batchcount
= cachep
->batchcount
;
4291 sinfo
->shared
= cachep
->shared
;
4292 sinfo
->objects_per_slab
= cachep
->num
;
4293 sinfo
->cache_order
= cachep
->gfporder
;
4296 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4300 unsigned long high
= cachep
->high_mark
;
4301 unsigned long allocs
= cachep
->num_allocations
;
4302 unsigned long grown
= cachep
->grown
;
4303 unsigned long reaped
= cachep
->reaped
;
4304 unsigned long errors
= cachep
->errors
;
4305 unsigned long max_freeable
= cachep
->max_freeable
;
4306 unsigned long node_allocs
= cachep
->node_allocs
;
4307 unsigned long node_frees
= cachep
->node_frees
;
4308 unsigned long overflows
= cachep
->node_overflow
;
4310 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4311 "%4lu %4lu %4lu %4lu %4lu",
4312 allocs
, high
, grown
,
4313 reaped
, errors
, max_freeable
, node_allocs
,
4314 node_frees
, overflows
);
4318 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4319 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4320 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4321 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4323 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4324 allochit
, allocmiss
, freehit
, freemiss
);
4329 #define MAX_SLABINFO_WRITE 128
4331 * slabinfo_write - Tuning for the slab allocator
4333 * @buffer: user buffer
4334 * @count: data length
4337 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4338 size_t count
, loff_t
*ppos
)
4340 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4341 int limit
, batchcount
, shared
, res
;
4342 struct kmem_cache
*cachep
;
4344 if (count
> MAX_SLABINFO_WRITE
)
4346 if (copy_from_user(&kbuf
, buffer
, count
))
4348 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4350 tmp
= strchr(kbuf
, ' ');
4355 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4358 /* Find the cache in the chain of caches. */
4359 mutex_lock(&slab_mutex
);
4361 list_for_each_entry(cachep
, &slab_caches
, list
) {
4362 if (!strcmp(cachep
->name
, kbuf
)) {
4363 if (limit
< 1 || batchcount
< 1 ||
4364 batchcount
> limit
|| shared
< 0) {
4367 res
= do_tune_cpucache(cachep
, limit
,
4374 mutex_unlock(&slab_mutex
);
4380 #ifdef CONFIG_DEBUG_SLAB_LEAK
4382 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4384 mutex_lock(&slab_mutex
);
4385 return seq_list_start(&slab_caches
, *pos
);
4388 static inline int add_caller(unsigned long *n
, unsigned long v
)
4398 unsigned long *q
= p
+ 2 * i
;
4412 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4418 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4424 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4425 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4427 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4432 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4434 #ifdef CONFIG_KALLSYMS
4435 unsigned long offset
, size
;
4436 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4438 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4439 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4441 seq_printf(m
, " [%s]", modname
);
4445 seq_printf(m
, "%p", (void *)address
);
4448 static int leaks_show(struct seq_file
*m
, void *p
)
4450 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4452 struct kmem_list3
*l3
;
4454 unsigned long *n
= m
->private;
4458 if (!(cachep
->flags
& SLAB_STORE_USER
))
4460 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4463 /* OK, we can do it */
4467 for_each_online_node(node
) {
4468 l3
= cachep
->nodelists
[node
];
4473 spin_lock_irq(&l3
->list_lock
);
4475 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4476 handle_slab(n
, cachep
, slabp
);
4477 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4478 handle_slab(n
, cachep
, slabp
);
4479 spin_unlock_irq(&l3
->list_lock
);
4481 name
= cachep
->name
;
4483 /* Increase the buffer size */
4484 mutex_unlock(&slab_mutex
);
4485 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4487 /* Too bad, we are really out */
4489 mutex_lock(&slab_mutex
);
4492 *(unsigned long *)m
->private = n
[0] * 2;
4494 mutex_lock(&slab_mutex
);
4495 /* Now make sure this entry will be retried */
4499 for (i
= 0; i
< n
[1]; i
++) {
4500 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4501 show_symbol(m
, n
[2*i
+2]);
4508 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4510 return seq_list_next(p
, &slab_caches
, pos
);
4513 static void s_stop(struct seq_file
*m
, void *p
)
4515 mutex_unlock(&slab_mutex
);
4518 static const struct seq_operations slabstats_op
= {
4519 .start
= leaks_start
,
4525 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4527 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4530 ret
= seq_open(file
, &slabstats_op
);
4532 struct seq_file
*m
= file
->private_data
;
4533 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4542 static const struct file_operations proc_slabstats_operations
= {
4543 .open
= slabstats_open
,
4545 .llseek
= seq_lseek
,
4546 .release
= seq_release_private
,
4550 static int __init
slab_proc_init(void)
4552 #ifdef CONFIG_DEBUG_SLAB_LEAK
4553 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4557 module_init(slab_proc_init
);
4561 * ksize - get the actual amount of memory allocated for a given object
4562 * @objp: Pointer to the object
4564 * kmalloc may internally round up allocations and return more memory
4565 * than requested. ksize() can be used to determine the actual amount of
4566 * memory allocated. The caller may use this additional memory, even though
4567 * a smaller amount of memory was initially specified with the kmalloc call.
4568 * The caller must guarantee that objp points to a valid object previously
4569 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4570 * must not be freed during the duration of the call.
4572 size_t ksize(const void *objp
)
4575 if (unlikely(objp
== ZERO_SIZE_PTR
))
4578 return virt_to_cache(objp
)->object_size
;
4580 EXPORT_SYMBOL(ksize
);