slab: annotate on-slab caches nodelist locks
[linux-2.6/cjktty.git] / mm / slab.c
blobc26ab9fbe1f58cb32bf9f3c7a39f427afdb02482
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 #ifdef CONFIG_DEBUG_SLAB
142 #define DEBUG 1
143 #define STATS 1
144 #define FORCED_DEBUG 1
145 #else
146 #define DEBUG 0
147 #define STATS 0
148 #define FORCED_DEBUG 0
149 #endif
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 #endif
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
163 static bool pfmemalloc_active __read_mostly;
166 * kmem_bufctl_t:
168 * Bufctl's are used for linking objs within a slab
169 * linked offsets.
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
184 typedef unsigned int kmem_bufctl_t;
185 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
187 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
191 * struct slab_rcu
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
204 struct slab_rcu {
205 struct rcu_head head;
206 struct kmem_cache *cachep;
207 void *addr;
211 * struct slab
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 struct slab {
218 union {
219 struct {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
227 struct slab_rcu __slab_cover_slab_rcu;
232 * struct array_cache
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
243 struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
248 spinlock_t lock;
249 void *entry[]; /*
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
260 #define SLAB_OBJ_PFMEMALLOC 1
261 static inline bool is_obj_pfmemalloc(void *objp)
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
266 static inline void set_obj_pfmemalloc(void **objp)
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
269 return;
272 static inline void clear_obj_pfmemalloc(void **objp)
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
318 static void cache_reap(struct work_struct *unused);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline int index_of(const size_t size)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size)) {
329 int i = 0;
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include <linux/kmalloc_sizes.h>
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
344 static int slab_early_init = 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3 *parent)
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
375 #define CFLGS_OFF_SLAB (0x80000000UL)
376 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
378 #define BATCHREFILL_LIMIT 16
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
383 * OTOH the cpuarrays can contain lots of objects,
384 * which could lock up otherwise freeable slabs.
386 #define REAPTIMEOUT_CPUC (2*HZ)
387 #define REAPTIMEOUT_LIST3 (4*HZ)
389 #if STATS
390 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
391 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393 #define STATS_INC_GROWN(x) ((x)->grown++)
394 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
395 #define STATS_SET_HIGH(x) \
396 do { \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
399 } while (0)
400 #define STATS_INC_ERR(x) ((x)->errors++)
401 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
402 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
403 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
404 #define STATS_SET_FREEABLE(x, i) \
405 do { \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
408 } while (0)
409 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
413 #else
414 #define STATS_INC_ACTIVE(x) do { } while (0)
415 #define STATS_DEC_ACTIVE(x) do { } while (0)
416 #define STATS_INC_ALLOCED(x) do { } while (0)
417 #define STATS_INC_GROWN(x) do { } while (0)
418 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
419 #define STATS_SET_HIGH(x) do { } while (0)
420 #define STATS_INC_ERR(x) do { } while (0)
421 #define STATS_INC_NODEALLOCS(x) do { } while (0)
422 #define STATS_INC_NODEFREES(x) do { } while (0)
423 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
424 #define STATS_SET_FREEABLE(x, i) do { } while (0)
425 #define STATS_INC_ALLOCHIT(x) do { } while (0)
426 #define STATS_INC_ALLOCMISS(x) do { } while (0)
427 #define STATS_INC_FREEHIT(x) do { } while (0)
428 #define STATS_INC_FREEMISS(x) do { } while (0)
429 #endif
431 #if DEBUG
434 * memory layout of objects:
435 * 0 : objp
436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
440 * redzone word.
441 * cachep->obj_offset: The real object.
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
444 * [BYTES_PER_WORD long]
446 static int obj_offset(struct kmem_cache *cachep)
448 return cachep->obj_offset;
451 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
453 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
454 return (unsigned long long*) (objp + obj_offset(cachep) -
455 sizeof(unsigned long long));
458 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
461 if (cachep->flags & SLAB_STORE_USER)
462 return (unsigned long long *)(objp + cachep->size -
463 sizeof(unsigned long long) -
464 REDZONE_ALIGN);
465 return (unsigned long long *) (objp + cachep->size -
466 sizeof(unsigned long long));
469 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
471 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
472 return (void **)(objp + cachep->size - BYTES_PER_WORD);
475 #else
477 #define obj_offset(x) 0
478 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
482 #endif
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
488 #define SLAB_MAX_ORDER_HI 1
489 #define SLAB_MAX_ORDER_LO 0
490 static int slab_max_order = SLAB_MAX_ORDER_LO;
491 static bool slab_max_order_set __initdata;
493 static inline struct kmem_cache *virt_to_cache(const void *obj)
495 struct page *page = virt_to_head_page(obj);
496 return page->slab_cache;
499 static inline struct slab *virt_to_slab(const void *obj)
501 struct page *page = virt_to_head_page(obj);
503 VM_BUG_ON(!PageSlab(page));
504 return page->slab_page;
507 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
508 unsigned int idx)
510 return slab->s_mem + cache->size * idx;
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
520 const struct slab *slab, void *obj)
522 u32 offset = (obj - slab->s_mem);
523 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 struct cache_sizes malloc_sizes[] = {
530 #define CACHE(x) { .cs_size = (x) },
531 #include <linux/kmalloc_sizes.h>
532 CACHE(ULONG_MAX)
533 #undef CACHE
535 EXPORT_SYMBOL(malloc_sizes);
537 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
538 struct cache_names {
539 char *name;
540 char *name_dma;
543 static struct cache_names __initdata cache_names[] = {
544 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545 #include <linux/kmalloc_sizes.h>
546 {NULL,}
547 #undef CACHE
550 static struct arraycache_init initarray_generic =
551 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
553 /* internal cache of cache description objs */
554 static struct kmem_cache kmem_cache_boot = {
555 .batchcount = 1,
556 .limit = BOOT_CPUCACHE_ENTRIES,
557 .shared = 1,
558 .size = sizeof(struct kmem_cache),
559 .name = "kmem_cache",
562 #define BAD_ALIEN_MAGIC 0x01020304ul
564 #ifdef CONFIG_LOCKDEP
567 * Slab sometimes uses the kmalloc slabs to store the slab headers
568 * for other slabs "off slab".
569 * The locking for this is tricky in that it nests within the locks
570 * of all other slabs in a few places; to deal with this special
571 * locking we put on-slab caches into a separate lock-class.
573 * We set lock class for alien array caches which are up during init.
574 * The lock annotation will be lost if all cpus of a node goes down and
575 * then comes back up during hotplug
577 static struct lock_class_key on_slab_l3_key;
578 static struct lock_class_key on_slab_alc_key;
580 static struct lock_class_key debugobj_l3_key;
581 static struct lock_class_key debugobj_alc_key;
583 static void slab_set_lock_classes(struct kmem_cache *cachep,
584 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
585 int q)
587 struct array_cache **alc;
588 struct kmem_list3 *l3;
589 int r;
591 l3 = cachep->nodelists[q];
592 if (!l3)
593 return;
595 lockdep_set_class(&l3->list_lock, l3_key);
596 alc = l3->alien;
598 * FIXME: This check for BAD_ALIEN_MAGIC
599 * should go away when common slab code is taught to
600 * work even without alien caches.
601 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
602 * for alloc_alien_cache,
604 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
605 return;
606 for_each_node(r) {
607 if (alc[r])
608 lockdep_set_class(&alc[r]->lock, alc_key);
612 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
614 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
617 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
619 int node;
621 for_each_online_node(node)
622 slab_set_debugobj_lock_classes_node(cachep, node);
625 static void init_node_lock_keys(int q)
627 struct cache_sizes *s = malloc_sizes;
629 if (slab_state < UP)
630 return;
632 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
633 struct kmem_list3 *l3;
635 l3 = s->cs_cachep->nodelists[q];
636 if (!l3 || OFF_SLAB(s->cs_cachep))
637 continue;
639 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
640 &on_slab_alc_key, q);
644 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
646 struct kmem_list3 *l3;
647 l3 = cachep->nodelists[q];
648 if (!l3)
649 return;
651 slab_set_lock_classes(cachep, &on_slab_l3_key,
652 &on_slab_alc_key, q);
655 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
657 int node;
659 VM_BUG_ON(OFF_SLAB(cachep));
660 for_each_node(node)
661 on_slab_lock_classes_node(cachep, node);
664 static inline void init_lock_keys(void)
666 int node;
668 for_each_node(node)
669 init_node_lock_keys(node);
671 #else
672 static void init_node_lock_keys(int q)
676 static inline void init_lock_keys(void)
680 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
684 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
688 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
692 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
695 #endif
697 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 return cachep->array[smp_processor_id()];
704 static inline struct kmem_cache *__find_general_cachep(size_t size,
705 gfp_t gfpflags)
707 struct cache_sizes *csizep = malloc_sizes;
709 #if DEBUG
710 /* This happens if someone tries to call
711 * kmem_cache_create(), or __kmalloc(), before
712 * the generic caches are initialized.
714 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
715 #endif
716 if (!size)
717 return ZERO_SIZE_PTR;
719 while (size > csizep->cs_size)
720 csizep++;
723 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
724 * has cs_{dma,}cachep==NULL. Thus no special case
725 * for large kmalloc calls required.
727 #ifdef CONFIG_ZONE_DMA
728 if (unlikely(gfpflags & GFP_DMA))
729 return csizep->cs_dmacachep;
730 #endif
731 return csizep->cs_cachep;
734 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 return __find_general_cachep(size, gfpflags);
739 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745 * Calculate the number of objects and left-over bytes for a given buffer size.
747 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
748 size_t align, int flags, size_t *left_over,
749 unsigned int *num)
751 int nr_objs;
752 size_t mgmt_size;
753 size_t slab_size = PAGE_SIZE << gfporder;
756 * The slab management structure can be either off the slab or
757 * on it. For the latter case, the memory allocated for a
758 * slab is used for:
760 * - The struct slab
761 * - One kmem_bufctl_t for each object
762 * - Padding to respect alignment of @align
763 * - @buffer_size bytes for each object
765 * If the slab management structure is off the slab, then the
766 * alignment will already be calculated into the size. Because
767 * the slabs are all pages aligned, the objects will be at the
768 * correct alignment when allocated.
770 if (flags & CFLGS_OFF_SLAB) {
771 mgmt_size = 0;
772 nr_objs = slab_size / buffer_size;
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
776 } else {
778 * Ignore padding for the initial guess. The padding
779 * is at most @align-1 bytes, and @buffer_size is at
780 * least @align. In the worst case, this result will
781 * be one greater than the number of objects that fit
782 * into the memory allocation when taking the padding
783 * into account.
785 nr_objs = (slab_size - sizeof(struct slab)) /
786 (buffer_size + sizeof(kmem_bufctl_t));
789 * This calculated number will be either the right
790 * amount, or one greater than what we want.
792 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
793 > slab_size)
794 nr_objs--;
796 if (nr_objs > SLAB_LIMIT)
797 nr_objs = SLAB_LIMIT;
799 mgmt_size = slab_mgmt_size(nr_objs, align);
801 *num = nr_objs;
802 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
805 #if DEBUG
806 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
808 static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
812 function, cachep->name, msg);
813 dump_stack();
814 add_taint(TAINT_BAD_PAGE);
816 #endif
819 * By default on NUMA we use alien caches to stage the freeing of
820 * objects allocated from other nodes. This causes massive memory
821 * inefficiencies when using fake NUMA setup to split memory into a
822 * large number of small nodes, so it can be disabled on the command
823 * line
826 static int use_alien_caches __read_mostly = 1;
827 static int __init noaliencache_setup(char *s)
829 use_alien_caches = 0;
830 return 1;
832 __setup("noaliencache", noaliencache_setup);
834 static int __init slab_max_order_setup(char *str)
836 get_option(&str, &slab_max_order);
837 slab_max_order = slab_max_order < 0 ? 0 :
838 min(slab_max_order, MAX_ORDER - 1);
839 slab_max_order_set = true;
841 return 1;
843 __setup("slab_max_order=", slab_max_order_setup);
845 #ifdef CONFIG_NUMA
847 * Special reaping functions for NUMA systems called from cache_reap().
848 * These take care of doing round robin flushing of alien caches (containing
849 * objects freed on different nodes from which they were allocated) and the
850 * flushing of remote pcps by calling drain_node_pages.
852 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
854 static void init_reap_node(int cpu)
856 int node;
858 node = next_node(cpu_to_mem(cpu), node_online_map);
859 if (node == MAX_NUMNODES)
860 node = first_node(node_online_map);
862 per_cpu(slab_reap_node, cpu) = node;
865 static void next_reap_node(void)
867 int node = __this_cpu_read(slab_reap_node);
869 node = next_node(node, node_online_map);
870 if (unlikely(node >= MAX_NUMNODES))
871 node = first_node(node_online_map);
872 __this_cpu_write(slab_reap_node, node);
875 #else
876 #define init_reap_node(cpu) do { } while (0)
877 #define next_reap_node(void) do { } while (0)
878 #endif
881 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
882 * via the workqueue/eventd.
883 * Add the CPU number into the expiration time to minimize the possibility of
884 * the CPUs getting into lockstep and contending for the global cache chain
885 * lock.
887 static void __cpuinit start_cpu_timer(int cpu)
889 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
892 * When this gets called from do_initcalls via cpucache_init(),
893 * init_workqueues() has already run, so keventd will be setup
894 * at that time.
896 if (keventd_up() && reap_work->work.func == NULL) {
897 init_reap_node(cpu);
898 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
899 schedule_delayed_work_on(cpu, reap_work,
900 __round_jiffies_relative(HZ, cpu));
904 static struct array_cache *alloc_arraycache(int node, int entries,
905 int batchcount, gfp_t gfp)
907 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
908 struct array_cache *nc = NULL;
910 nc = kmalloc_node(memsize, gfp, node);
912 * The array_cache structures contain pointers to free object.
913 * However, when such objects are allocated or transferred to another
914 * cache the pointers are not cleared and they could be counted as
915 * valid references during a kmemleak scan. Therefore, kmemleak must
916 * not scan such objects.
918 kmemleak_no_scan(nc);
919 if (nc) {
920 nc->avail = 0;
921 nc->limit = entries;
922 nc->batchcount = batchcount;
923 nc->touched = 0;
924 spin_lock_init(&nc->lock);
926 return nc;
929 static inline bool is_slab_pfmemalloc(struct slab *slabp)
931 struct page *page = virt_to_page(slabp->s_mem);
933 return PageSlabPfmemalloc(page);
936 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
937 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
938 struct array_cache *ac)
940 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
941 struct slab *slabp;
942 unsigned long flags;
944 if (!pfmemalloc_active)
945 return;
947 spin_lock_irqsave(&l3->list_lock, flags);
948 list_for_each_entry(slabp, &l3->slabs_full, list)
949 if (is_slab_pfmemalloc(slabp))
950 goto out;
952 list_for_each_entry(slabp, &l3->slabs_partial, list)
953 if (is_slab_pfmemalloc(slabp))
954 goto out;
956 list_for_each_entry(slabp, &l3->slabs_free, list)
957 if (is_slab_pfmemalloc(slabp))
958 goto out;
960 pfmemalloc_active = false;
961 out:
962 spin_unlock_irqrestore(&l3->list_lock, flags);
965 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
966 gfp_t flags, bool force_refill)
968 int i;
969 void *objp = ac->entry[--ac->avail];
971 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
972 if (unlikely(is_obj_pfmemalloc(objp))) {
973 struct kmem_list3 *l3;
975 if (gfp_pfmemalloc_allowed(flags)) {
976 clear_obj_pfmemalloc(&objp);
977 return objp;
980 /* The caller cannot use PFMEMALLOC objects, find another one */
981 for (i = 0; i < ac->avail; i++) {
982 /* If a !PFMEMALLOC object is found, swap them */
983 if (!is_obj_pfmemalloc(ac->entry[i])) {
984 objp = ac->entry[i];
985 ac->entry[i] = ac->entry[ac->avail];
986 ac->entry[ac->avail] = objp;
987 return objp;
992 * If there are empty slabs on the slabs_free list and we are
993 * being forced to refill the cache, mark this one !pfmemalloc.
995 l3 = cachep->nodelists[numa_mem_id()];
996 if (!list_empty(&l3->slabs_free) && force_refill) {
997 struct slab *slabp = virt_to_slab(objp);
998 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
999 clear_obj_pfmemalloc(&objp);
1000 recheck_pfmemalloc_active(cachep, ac);
1001 return objp;
1004 /* No !PFMEMALLOC objects available */
1005 ac->avail++;
1006 objp = NULL;
1009 return objp;
1012 static inline void *ac_get_obj(struct kmem_cache *cachep,
1013 struct array_cache *ac, gfp_t flags, bool force_refill)
1015 void *objp;
1017 if (unlikely(sk_memalloc_socks()))
1018 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1019 else
1020 objp = ac->entry[--ac->avail];
1022 return objp;
1025 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1026 void *objp)
1028 if (unlikely(pfmemalloc_active)) {
1029 /* Some pfmemalloc slabs exist, check if this is one */
1030 struct page *page = virt_to_head_page(objp);
1031 if (PageSlabPfmemalloc(page))
1032 set_obj_pfmemalloc(&objp);
1035 return objp;
1038 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1039 void *objp)
1041 if (unlikely(sk_memalloc_socks()))
1042 objp = __ac_put_obj(cachep, ac, objp);
1044 ac->entry[ac->avail++] = objp;
1048 * Transfer objects in one arraycache to another.
1049 * Locking must be handled by the caller.
1051 * Return the number of entries transferred.
1053 static int transfer_objects(struct array_cache *to,
1054 struct array_cache *from, unsigned int max)
1056 /* Figure out how many entries to transfer */
1057 int nr = min3(from->avail, max, to->limit - to->avail);
1059 if (!nr)
1060 return 0;
1062 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1063 sizeof(void *) *nr);
1065 from->avail -= nr;
1066 to->avail += nr;
1067 return nr;
1070 #ifndef CONFIG_NUMA
1072 #define drain_alien_cache(cachep, alien) do { } while (0)
1073 #define reap_alien(cachep, l3) do { } while (0)
1075 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1077 return (struct array_cache **)BAD_ALIEN_MAGIC;
1080 static inline void free_alien_cache(struct array_cache **ac_ptr)
1084 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1086 return 0;
1089 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1090 gfp_t flags)
1092 return NULL;
1095 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1096 gfp_t flags, int nodeid)
1098 return NULL;
1101 #else /* CONFIG_NUMA */
1103 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1104 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1106 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1108 struct array_cache **ac_ptr;
1109 int memsize = sizeof(void *) * nr_node_ids;
1110 int i;
1112 if (limit > 1)
1113 limit = 12;
1114 ac_ptr = kzalloc_node(memsize, gfp, node);
1115 if (ac_ptr) {
1116 for_each_node(i) {
1117 if (i == node || !node_online(i))
1118 continue;
1119 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1120 if (!ac_ptr[i]) {
1121 for (i--; i >= 0; i--)
1122 kfree(ac_ptr[i]);
1123 kfree(ac_ptr);
1124 return NULL;
1128 return ac_ptr;
1131 static void free_alien_cache(struct array_cache **ac_ptr)
1133 int i;
1135 if (!ac_ptr)
1136 return;
1137 for_each_node(i)
1138 kfree(ac_ptr[i]);
1139 kfree(ac_ptr);
1142 static void __drain_alien_cache(struct kmem_cache *cachep,
1143 struct array_cache *ac, int node)
1145 struct kmem_list3 *rl3 = cachep->nodelists[node];
1147 if (ac->avail) {
1148 spin_lock(&rl3->list_lock);
1150 * Stuff objects into the remote nodes shared array first.
1151 * That way we could avoid the overhead of putting the objects
1152 * into the free lists and getting them back later.
1154 if (rl3->shared)
1155 transfer_objects(rl3->shared, ac, ac->limit);
1157 free_block(cachep, ac->entry, ac->avail, node);
1158 ac->avail = 0;
1159 spin_unlock(&rl3->list_lock);
1164 * Called from cache_reap() to regularly drain alien caches round robin.
1166 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1168 int node = __this_cpu_read(slab_reap_node);
1170 if (l3->alien) {
1171 struct array_cache *ac = l3->alien[node];
1173 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1174 __drain_alien_cache(cachep, ac, node);
1175 spin_unlock_irq(&ac->lock);
1180 static void drain_alien_cache(struct kmem_cache *cachep,
1181 struct array_cache **alien)
1183 int i = 0;
1184 struct array_cache *ac;
1185 unsigned long flags;
1187 for_each_online_node(i) {
1188 ac = alien[i];
1189 if (ac) {
1190 spin_lock_irqsave(&ac->lock, flags);
1191 __drain_alien_cache(cachep, ac, i);
1192 spin_unlock_irqrestore(&ac->lock, flags);
1197 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1199 struct slab *slabp = virt_to_slab(objp);
1200 int nodeid = slabp->nodeid;
1201 struct kmem_list3 *l3;
1202 struct array_cache *alien = NULL;
1203 int node;
1205 node = numa_mem_id();
1208 * Make sure we are not freeing a object from another node to the array
1209 * cache on this cpu.
1211 if (likely(slabp->nodeid == node))
1212 return 0;
1214 l3 = cachep->nodelists[node];
1215 STATS_INC_NODEFREES(cachep);
1216 if (l3->alien && l3->alien[nodeid]) {
1217 alien = l3->alien[nodeid];
1218 spin_lock(&alien->lock);
1219 if (unlikely(alien->avail == alien->limit)) {
1220 STATS_INC_ACOVERFLOW(cachep);
1221 __drain_alien_cache(cachep, alien, nodeid);
1223 ac_put_obj(cachep, alien, objp);
1224 spin_unlock(&alien->lock);
1225 } else {
1226 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1227 free_block(cachep, &objp, 1, nodeid);
1228 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1230 return 1;
1232 #endif
1235 * Allocates and initializes nodelists for a node on each slab cache, used for
1236 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1237 * will be allocated off-node since memory is not yet online for the new node.
1238 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1239 * already in use.
1241 * Must hold slab_mutex.
1243 static int init_cache_nodelists_node(int node)
1245 struct kmem_cache *cachep;
1246 struct kmem_list3 *l3;
1247 const int memsize = sizeof(struct kmem_list3);
1249 list_for_each_entry(cachep, &slab_caches, list) {
1251 * Set up the size64 kmemlist for cpu before we can
1252 * begin anything. Make sure some other cpu on this
1253 * node has not already allocated this
1255 if (!cachep->nodelists[node]) {
1256 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1257 if (!l3)
1258 return -ENOMEM;
1259 kmem_list3_init(l3);
1260 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1261 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1264 * The l3s don't come and go as CPUs come and
1265 * go. slab_mutex is sufficient
1266 * protection here.
1268 cachep->nodelists[node] = l3;
1271 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1272 cachep->nodelists[node]->free_limit =
1273 (1 + nr_cpus_node(node)) *
1274 cachep->batchcount + cachep->num;
1275 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1277 return 0;
1280 static void __cpuinit cpuup_canceled(long cpu)
1282 struct kmem_cache *cachep;
1283 struct kmem_list3 *l3 = NULL;
1284 int node = cpu_to_mem(cpu);
1285 const struct cpumask *mask = cpumask_of_node(node);
1287 list_for_each_entry(cachep, &slab_caches, list) {
1288 struct array_cache *nc;
1289 struct array_cache *shared;
1290 struct array_cache **alien;
1292 /* cpu is dead; no one can alloc from it. */
1293 nc = cachep->array[cpu];
1294 cachep->array[cpu] = NULL;
1295 l3 = cachep->nodelists[node];
1297 if (!l3)
1298 goto free_array_cache;
1300 spin_lock_irq(&l3->list_lock);
1302 /* Free limit for this kmem_list3 */
1303 l3->free_limit -= cachep->batchcount;
1304 if (nc)
1305 free_block(cachep, nc->entry, nc->avail, node);
1307 if (!cpumask_empty(mask)) {
1308 spin_unlock_irq(&l3->list_lock);
1309 goto free_array_cache;
1312 shared = l3->shared;
1313 if (shared) {
1314 free_block(cachep, shared->entry,
1315 shared->avail, node);
1316 l3->shared = NULL;
1319 alien = l3->alien;
1320 l3->alien = NULL;
1322 spin_unlock_irq(&l3->list_lock);
1324 kfree(shared);
1325 if (alien) {
1326 drain_alien_cache(cachep, alien);
1327 free_alien_cache(alien);
1329 free_array_cache:
1330 kfree(nc);
1333 * In the previous loop, all the objects were freed to
1334 * the respective cache's slabs, now we can go ahead and
1335 * shrink each nodelist to its limit.
1337 list_for_each_entry(cachep, &slab_caches, list) {
1338 l3 = cachep->nodelists[node];
1339 if (!l3)
1340 continue;
1341 drain_freelist(cachep, l3, l3->free_objects);
1345 static int __cpuinit cpuup_prepare(long cpu)
1347 struct kmem_cache *cachep;
1348 struct kmem_list3 *l3 = NULL;
1349 int node = cpu_to_mem(cpu);
1350 int err;
1353 * We need to do this right in the beginning since
1354 * alloc_arraycache's are going to use this list.
1355 * kmalloc_node allows us to add the slab to the right
1356 * kmem_list3 and not this cpu's kmem_list3
1358 err = init_cache_nodelists_node(node);
1359 if (err < 0)
1360 goto bad;
1363 * Now we can go ahead with allocating the shared arrays and
1364 * array caches
1366 list_for_each_entry(cachep, &slab_caches, list) {
1367 struct array_cache *nc;
1368 struct array_cache *shared = NULL;
1369 struct array_cache **alien = NULL;
1371 nc = alloc_arraycache(node, cachep->limit,
1372 cachep->batchcount, GFP_KERNEL);
1373 if (!nc)
1374 goto bad;
1375 if (cachep->shared) {
1376 shared = alloc_arraycache(node,
1377 cachep->shared * cachep->batchcount,
1378 0xbaadf00d, GFP_KERNEL);
1379 if (!shared) {
1380 kfree(nc);
1381 goto bad;
1384 if (use_alien_caches) {
1385 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1386 if (!alien) {
1387 kfree(shared);
1388 kfree(nc);
1389 goto bad;
1392 cachep->array[cpu] = nc;
1393 l3 = cachep->nodelists[node];
1394 BUG_ON(!l3);
1396 spin_lock_irq(&l3->list_lock);
1397 if (!l3->shared) {
1399 * We are serialised from CPU_DEAD or
1400 * CPU_UP_CANCELLED by the cpucontrol lock
1402 l3->shared = shared;
1403 shared = NULL;
1405 #ifdef CONFIG_NUMA
1406 if (!l3->alien) {
1407 l3->alien = alien;
1408 alien = NULL;
1410 #endif
1411 spin_unlock_irq(&l3->list_lock);
1412 kfree(shared);
1413 free_alien_cache(alien);
1414 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1415 slab_set_debugobj_lock_classes_node(cachep, node);
1416 else if (!OFF_SLAB(cachep) &&
1417 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1418 on_slab_lock_classes_node(cachep, node);
1420 init_node_lock_keys(node);
1422 return 0;
1423 bad:
1424 cpuup_canceled(cpu);
1425 return -ENOMEM;
1428 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1429 unsigned long action, void *hcpu)
1431 long cpu = (long)hcpu;
1432 int err = 0;
1434 switch (action) {
1435 case CPU_UP_PREPARE:
1436 case CPU_UP_PREPARE_FROZEN:
1437 mutex_lock(&slab_mutex);
1438 err = cpuup_prepare(cpu);
1439 mutex_unlock(&slab_mutex);
1440 break;
1441 case CPU_ONLINE:
1442 case CPU_ONLINE_FROZEN:
1443 start_cpu_timer(cpu);
1444 break;
1445 #ifdef CONFIG_HOTPLUG_CPU
1446 case CPU_DOWN_PREPARE:
1447 case CPU_DOWN_PREPARE_FROZEN:
1449 * Shutdown cache reaper. Note that the slab_mutex is
1450 * held so that if cache_reap() is invoked it cannot do
1451 * anything expensive but will only modify reap_work
1452 * and reschedule the timer.
1454 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1455 /* Now the cache_reaper is guaranteed to be not running. */
1456 per_cpu(slab_reap_work, cpu).work.func = NULL;
1457 break;
1458 case CPU_DOWN_FAILED:
1459 case CPU_DOWN_FAILED_FROZEN:
1460 start_cpu_timer(cpu);
1461 break;
1462 case CPU_DEAD:
1463 case CPU_DEAD_FROZEN:
1465 * Even if all the cpus of a node are down, we don't free the
1466 * kmem_list3 of any cache. This to avoid a race between
1467 * cpu_down, and a kmalloc allocation from another cpu for
1468 * memory from the node of the cpu going down. The list3
1469 * structure is usually allocated from kmem_cache_create() and
1470 * gets destroyed at kmem_cache_destroy().
1472 /* fall through */
1473 #endif
1474 case CPU_UP_CANCELED:
1475 case CPU_UP_CANCELED_FROZEN:
1476 mutex_lock(&slab_mutex);
1477 cpuup_canceled(cpu);
1478 mutex_unlock(&slab_mutex);
1479 break;
1481 return notifier_from_errno(err);
1484 static struct notifier_block __cpuinitdata cpucache_notifier = {
1485 &cpuup_callback, NULL, 0
1488 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1490 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1491 * Returns -EBUSY if all objects cannot be drained so that the node is not
1492 * removed.
1494 * Must hold slab_mutex.
1496 static int __meminit drain_cache_nodelists_node(int node)
1498 struct kmem_cache *cachep;
1499 int ret = 0;
1501 list_for_each_entry(cachep, &slab_caches, list) {
1502 struct kmem_list3 *l3;
1504 l3 = cachep->nodelists[node];
1505 if (!l3)
1506 continue;
1508 drain_freelist(cachep, l3, l3->free_objects);
1510 if (!list_empty(&l3->slabs_full) ||
1511 !list_empty(&l3->slabs_partial)) {
1512 ret = -EBUSY;
1513 break;
1516 return ret;
1519 static int __meminit slab_memory_callback(struct notifier_block *self,
1520 unsigned long action, void *arg)
1522 struct memory_notify *mnb = arg;
1523 int ret = 0;
1524 int nid;
1526 nid = mnb->status_change_nid;
1527 if (nid < 0)
1528 goto out;
1530 switch (action) {
1531 case MEM_GOING_ONLINE:
1532 mutex_lock(&slab_mutex);
1533 ret = init_cache_nodelists_node(nid);
1534 mutex_unlock(&slab_mutex);
1535 break;
1536 case MEM_GOING_OFFLINE:
1537 mutex_lock(&slab_mutex);
1538 ret = drain_cache_nodelists_node(nid);
1539 mutex_unlock(&slab_mutex);
1540 break;
1541 case MEM_ONLINE:
1542 case MEM_OFFLINE:
1543 case MEM_CANCEL_ONLINE:
1544 case MEM_CANCEL_OFFLINE:
1545 break;
1547 out:
1548 return notifier_from_errno(ret);
1550 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1553 * swap the static kmem_list3 with kmalloced memory
1555 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1556 int nodeid)
1558 struct kmem_list3 *ptr;
1560 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1561 BUG_ON(!ptr);
1563 memcpy(ptr, list, sizeof(struct kmem_list3));
1565 * Do not assume that spinlocks can be initialized via memcpy:
1567 spin_lock_init(&ptr->list_lock);
1569 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1570 cachep->nodelists[nodeid] = ptr;
1574 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1575 * size of kmem_list3.
1577 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1579 int node;
1581 for_each_online_node(node) {
1582 cachep->nodelists[node] = &initkmem_list3[index + node];
1583 cachep->nodelists[node]->next_reap = jiffies +
1584 REAPTIMEOUT_LIST3 +
1585 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1590 * The memory after the last cpu cache pointer is used for the
1591 * the nodelists pointer.
1593 static void setup_nodelists_pointer(struct kmem_cache *cachep)
1595 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1599 * Initialisation. Called after the page allocator have been initialised and
1600 * before smp_init().
1602 void __init kmem_cache_init(void)
1604 struct cache_sizes *sizes;
1605 struct cache_names *names;
1606 int i;
1608 kmem_cache = &kmem_cache_boot;
1609 setup_nodelists_pointer(kmem_cache);
1611 if (num_possible_nodes() == 1)
1612 use_alien_caches = 0;
1614 for (i = 0; i < NUM_INIT_LISTS; i++)
1615 kmem_list3_init(&initkmem_list3[i]);
1617 set_up_list3s(kmem_cache, CACHE_CACHE);
1620 * Fragmentation resistance on low memory - only use bigger
1621 * page orders on machines with more than 32MB of memory if
1622 * not overridden on the command line.
1624 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1625 slab_max_order = SLAB_MAX_ORDER_HI;
1627 /* Bootstrap is tricky, because several objects are allocated
1628 * from caches that do not exist yet:
1629 * 1) initialize the kmem_cache cache: it contains the struct
1630 * kmem_cache structures of all caches, except kmem_cache itself:
1631 * kmem_cache is statically allocated.
1632 * Initially an __init data area is used for the head array and the
1633 * kmem_list3 structures, it's replaced with a kmalloc allocated
1634 * array at the end of the bootstrap.
1635 * 2) Create the first kmalloc cache.
1636 * The struct kmem_cache for the new cache is allocated normally.
1637 * An __init data area is used for the head array.
1638 * 3) Create the remaining kmalloc caches, with minimally sized
1639 * head arrays.
1640 * 4) Replace the __init data head arrays for kmem_cache and the first
1641 * kmalloc cache with kmalloc allocated arrays.
1642 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1643 * the other cache's with kmalloc allocated memory.
1644 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1647 /* 1) create the kmem_cache */
1650 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1652 create_boot_cache(kmem_cache, "kmem_cache",
1653 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1654 nr_node_ids * sizeof(struct kmem_list3 *),
1655 SLAB_HWCACHE_ALIGN);
1656 list_add(&kmem_cache->list, &slab_caches);
1658 /* 2+3) create the kmalloc caches */
1659 sizes = malloc_sizes;
1660 names = cache_names;
1663 * Initialize the caches that provide memory for the array cache and the
1664 * kmem_list3 structures first. Without this, further allocations will
1665 * bug.
1668 sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
1669 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
1671 if (INDEX_AC != INDEX_L3)
1672 sizes[INDEX_L3].cs_cachep =
1673 create_kmalloc_cache(names[INDEX_L3].name,
1674 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1676 slab_early_init = 0;
1678 while (sizes->cs_size != ULONG_MAX) {
1680 * For performance, all the general caches are L1 aligned.
1681 * This should be particularly beneficial on SMP boxes, as it
1682 * eliminates "false sharing".
1683 * Note for systems short on memory removing the alignment will
1684 * allow tighter packing of the smaller caches.
1686 if (!sizes->cs_cachep)
1687 sizes->cs_cachep = create_kmalloc_cache(names->name,
1688 sizes->cs_size, ARCH_KMALLOC_FLAGS);
1690 #ifdef CONFIG_ZONE_DMA
1691 sizes->cs_dmacachep = create_kmalloc_cache(
1692 names->name_dma, sizes->cs_size,
1693 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1694 #endif
1695 sizes++;
1696 names++;
1698 /* 4) Replace the bootstrap head arrays */
1700 struct array_cache *ptr;
1702 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1704 memcpy(ptr, cpu_cache_get(kmem_cache),
1705 sizeof(struct arraycache_init));
1707 * Do not assume that spinlocks can be initialized via memcpy:
1709 spin_lock_init(&ptr->lock);
1711 kmem_cache->array[smp_processor_id()] = ptr;
1713 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1715 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1716 != &initarray_generic.cache);
1717 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1718 sizeof(struct arraycache_init));
1720 * Do not assume that spinlocks can be initialized via memcpy:
1722 spin_lock_init(&ptr->lock);
1724 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1725 ptr;
1727 /* 5) Replace the bootstrap kmem_list3's */
1729 int nid;
1731 for_each_online_node(nid) {
1732 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1734 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1735 &initkmem_list3[SIZE_AC + nid], nid);
1737 if (INDEX_AC != INDEX_L3) {
1738 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1739 &initkmem_list3[SIZE_L3 + nid], nid);
1744 slab_state = UP;
1747 void __init kmem_cache_init_late(void)
1749 struct kmem_cache *cachep;
1751 slab_state = UP;
1753 /* 6) resize the head arrays to their final sizes */
1754 mutex_lock(&slab_mutex);
1755 list_for_each_entry(cachep, &slab_caches, list)
1756 if (enable_cpucache(cachep, GFP_NOWAIT))
1757 BUG();
1758 mutex_unlock(&slab_mutex);
1760 /* Annotate slab for lockdep -- annotate the malloc caches */
1761 init_lock_keys();
1763 /* Done! */
1764 slab_state = FULL;
1767 * Register a cpu startup notifier callback that initializes
1768 * cpu_cache_get for all new cpus
1770 register_cpu_notifier(&cpucache_notifier);
1772 #ifdef CONFIG_NUMA
1774 * Register a memory hotplug callback that initializes and frees
1775 * nodelists.
1777 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1778 #endif
1781 * The reap timers are started later, with a module init call: That part
1782 * of the kernel is not yet operational.
1786 static int __init cpucache_init(void)
1788 int cpu;
1791 * Register the timers that return unneeded pages to the page allocator
1793 for_each_online_cpu(cpu)
1794 start_cpu_timer(cpu);
1796 /* Done! */
1797 slab_state = FULL;
1798 return 0;
1800 __initcall(cpucache_init);
1802 static noinline void
1803 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1805 struct kmem_list3 *l3;
1806 struct slab *slabp;
1807 unsigned long flags;
1808 int node;
1810 printk(KERN_WARNING
1811 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1812 nodeid, gfpflags);
1813 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1814 cachep->name, cachep->size, cachep->gfporder);
1816 for_each_online_node(node) {
1817 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1818 unsigned long active_slabs = 0, num_slabs = 0;
1820 l3 = cachep->nodelists[node];
1821 if (!l3)
1822 continue;
1824 spin_lock_irqsave(&l3->list_lock, flags);
1825 list_for_each_entry(slabp, &l3->slabs_full, list) {
1826 active_objs += cachep->num;
1827 active_slabs++;
1829 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1830 active_objs += slabp->inuse;
1831 active_slabs++;
1833 list_for_each_entry(slabp, &l3->slabs_free, list)
1834 num_slabs++;
1836 free_objects += l3->free_objects;
1837 spin_unlock_irqrestore(&l3->list_lock, flags);
1839 num_slabs += active_slabs;
1840 num_objs = num_slabs * cachep->num;
1841 printk(KERN_WARNING
1842 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1843 node, active_slabs, num_slabs, active_objs, num_objs,
1844 free_objects);
1849 * Interface to system's page allocator. No need to hold the cache-lock.
1851 * If we requested dmaable memory, we will get it. Even if we
1852 * did not request dmaable memory, we might get it, but that
1853 * would be relatively rare and ignorable.
1855 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1857 struct page *page;
1858 int nr_pages;
1859 int i;
1861 #ifndef CONFIG_MMU
1863 * Nommu uses slab's for process anonymous memory allocations, and thus
1864 * requires __GFP_COMP to properly refcount higher order allocations
1866 flags |= __GFP_COMP;
1867 #endif
1869 flags |= cachep->allocflags;
1870 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1871 flags |= __GFP_RECLAIMABLE;
1873 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1874 if (!page) {
1875 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1876 slab_out_of_memory(cachep, flags, nodeid);
1877 return NULL;
1880 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1881 if (unlikely(page->pfmemalloc))
1882 pfmemalloc_active = true;
1884 nr_pages = (1 << cachep->gfporder);
1885 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1886 add_zone_page_state(page_zone(page),
1887 NR_SLAB_RECLAIMABLE, nr_pages);
1888 else
1889 add_zone_page_state(page_zone(page),
1890 NR_SLAB_UNRECLAIMABLE, nr_pages);
1891 for (i = 0; i < nr_pages; i++) {
1892 __SetPageSlab(page + i);
1894 if (page->pfmemalloc)
1895 SetPageSlabPfmemalloc(page + i);
1898 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1899 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1901 if (cachep->ctor)
1902 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1903 else
1904 kmemcheck_mark_unallocated_pages(page, nr_pages);
1907 return page_address(page);
1911 * Interface to system's page release.
1913 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1915 unsigned long i = (1 << cachep->gfporder);
1916 struct page *page = virt_to_page(addr);
1917 const unsigned long nr_freed = i;
1919 kmemcheck_free_shadow(page, cachep->gfporder);
1921 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1922 sub_zone_page_state(page_zone(page),
1923 NR_SLAB_RECLAIMABLE, nr_freed);
1924 else
1925 sub_zone_page_state(page_zone(page),
1926 NR_SLAB_UNRECLAIMABLE, nr_freed);
1927 while (i--) {
1928 BUG_ON(!PageSlab(page));
1929 __ClearPageSlabPfmemalloc(page);
1930 __ClearPageSlab(page);
1931 page++;
1933 if (current->reclaim_state)
1934 current->reclaim_state->reclaimed_slab += nr_freed;
1935 free_pages((unsigned long)addr, cachep->gfporder);
1938 static void kmem_rcu_free(struct rcu_head *head)
1940 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1941 struct kmem_cache *cachep = slab_rcu->cachep;
1943 kmem_freepages(cachep, slab_rcu->addr);
1944 if (OFF_SLAB(cachep))
1945 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1948 #if DEBUG
1950 #ifdef CONFIG_DEBUG_PAGEALLOC
1951 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1952 unsigned long caller)
1954 int size = cachep->object_size;
1956 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1958 if (size < 5 * sizeof(unsigned long))
1959 return;
1961 *addr++ = 0x12345678;
1962 *addr++ = caller;
1963 *addr++ = smp_processor_id();
1964 size -= 3 * sizeof(unsigned long);
1966 unsigned long *sptr = &caller;
1967 unsigned long svalue;
1969 while (!kstack_end(sptr)) {
1970 svalue = *sptr++;
1971 if (kernel_text_address(svalue)) {
1972 *addr++ = svalue;
1973 size -= sizeof(unsigned long);
1974 if (size <= sizeof(unsigned long))
1975 break;
1980 *addr++ = 0x87654321;
1982 #endif
1984 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1986 int size = cachep->object_size;
1987 addr = &((char *)addr)[obj_offset(cachep)];
1989 memset(addr, val, size);
1990 *(unsigned char *)(addr + size - 1) = POISON_END;
1993 static void dump_line(char *data, int offset, int limit)
1995 int i;
1996 unsigned char error = 0;
1997 int bad_count = 0;
1999 printk(KERN_ERR "%03x: ", offset);
2000 for (i = 0; i < limit; i++) {
2001 if (data[offset + i] != POISON_FREE) {
2002 error = data[offset + i];
2003 bad_count++;
2006 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2007 &data[offset], limit, 1);
2009 if (bad_count == 1) {
2010 error ^= POISON_FREE;
2011 if (!(error & (error - 1))) {
2012 printk(KERN_ERR "Single bit error detected. Probably "
2013 "bad RAM.\n");
2014 #ifdef CONFIG_X86
2015 printk(KERN_ERR "Run memtest86+ or a similar memory "
2016 "test tool.\n");
2017 #else
2018 printk(KERN_ERR "Run a memory test tool.\n");
2019 #endif
2023 #endif
2025 #if DEBUG
2027 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2029 int i, size;
2030 char *realobj;
2032 if (cachep->flags & SLAB_RED_ZONE) {
2033 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2034 *dbg_redzone1(cachep, objp),
2035 *dbg_redzone2(cachep, objp));
2038 if (cachep->flags & SLAB_STORE_USER) {
2039 printk(KERN_ERR "Last user: [<%p>]",
2040 *dbg_userword(cachep, objp));
2041 print_symbol("(%s)",
2042 (unsigned long)*dbg_userword(cachep, objp));
2043 printk("\n");
2045 realobj = (char *)objp + obj_offset(cachep);
2046 size = cachep->object_size;
2047 for (i = 0; i < size && lines; i += 16, lines--) {
2048 int limit;
2049 limit = 16;
2050 if (i + limit > size)
2051 limit = size - i;
2052 dump_line(realobj, i, limit);
2056 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2058 char *realobj;
2059 int size, i;
2060 int lines = 0;
2062 realobj = (char *)objp + obj_offset(cachep);
2063 size = cachep->object_size;
2065 for (i = 0; i < size; i++) {
2066 char exp = POISON_FREE;
2067 if (i == size - 1)
2068 exp = POISON_END;
2069 if (realobj[i] != exp) {
2070 int limit;
2071 /* Mismatch ! */
2072 /* Print header */
2073 if (lines == 0) {
2074 printk(KERN_ERR
2075 "Slab corruption (%s): %s start=%p, len=%d\n",
2076 print_tainted(), cachep->name, realobj, size);
2077 print_objinfo(cachep, objp, 0);
2079 /* Hexdump the affected line */
2080 i = (i / 16) * 16;
2081 limit = 16;
2082 if (i + limit > size)
2083 limit = size - i;
2084 dump_line(realobj, i, limit);
2085 i += 16;
2086 lines++;
2087 /* Limit to 5 lines */
2088 if (lines > 5)
2089 break;
2092 if (lines != 0) {
2093 /* Print some data about the neighboring objects, if they
2094 * exist:
2096 struct slab *slabp = virt_to_slab(objp);
2097 unsigned int objnr;
2099 objnr = obj_to_index(cachep, slabp, objp);
2100 if (objnr) {
2101 objp = index_to_obj(cachep, slabp, objnr - 1);
2102 realobj = (char *)objp + obj_offset(cachep);
2103 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2104 realobj, size);
2105 print_objinfo(cachep, objp, 2);
2107 if (objnr + 1 < cachep->num) {
2108 objp = index_to_obj(cachep, slabp, objnr + 1);
2109 realobj = (char *)objp + obj_offset(cachep);
2110 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2111 realobj, size);
2112 print_objinfo(cachep, objp, 2);
2116 #endif
2118 #if DEBUG
2119 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2121 int i;
2122 for (i = 0; i < cachep->num; i++) {
2123 void *objp = index_to_obj(cachep, slabp, i);
2125 if (cachep->flags & SLAB_POISON) {
2126 #ifdef CONFIG_DEBUG_PAGEALLOC
2127 if (cachep->size % PAGE_SIZE == 0 &&
2128 OFF_SLAB(cachep))
2129 kernel_map_pages(virt_to_page(objp),
2130 cachep->size / PAGE_SIZE, 1);
2131 else
2132 check_poison_obj(cachep, objp);
2133 #else
2134 check_poison_obj(cachep, objp);
2135 #endif
2137 if (cachep->flags & SLAB_RED_ZONE) {
2138 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2139 slab_error(cachep, "start of a freed object "
2140 "was overwritten");
2141 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2142 slab_error(cachep, "end of a freed object "
2143 "was overwritten");
2147 #else
2148 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2151 #endif
2154 * slab_destroy - destroy and release all objects in a slab
2155 * @cachep: cache pointer being destroyed
2156 * @slabp: slab pointer being destroyed
2158 * Destroy all the objs in a slab, and release the mem back to the system.
2159 * Before calling the slab must have been unlinked from the cache. The
2160 * cache-lock is not held/needed.
2162 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2164 void *addr = slabp->s_mem - slabp->colouroff;
2166 slab_destroy_debugcheck(cachep, slabp);
2167 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2168 struct slab_rcu *slab_rcu;
2170 slab_rcu = (struct slab_rcu *)slabp;
2171 slab_rcu->cachep = cachep;
2172 slab_rcu->addr = addr;
2173 call_rcu(&slab_rcu->head, kmem_rcu_free);
2174 } else {
2175 kmem_freepages(cachep, addr);
2176 if (OFF_SLAB(cachep))
2177 kmem_cache_free(cachep->slabp_cache, slabp);
2182 * calculate_slab_order - calculate size (page order) of slabs
2183 * @cachep: pointer to the cache that is being created
2184 * @size: size of objects to be created in this cache.
2185 * @align: required alignment for the objects.
2186 * @flags: slab allocation flags
2188 * Also calculates the number of objects per slab.
2190 * This could be made much more intelligent. For now, try to avoid using
2191 * high order pages for slabs. When the gfp() functions are more friendly
2192 * towards high-order requests, this should be changed.
2194 static size_t calculate_slab_order(struct kmem_cache *cachep,
2195 size_t size, size_t align, unsigned long flags)
2197 unsigned long offslab_limit;
2198 size_t left_over = 0;
2199 int gfporder;
2201 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2202 unsigned int num;
2203 size_t remainder;
2205 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2206 if (!num)
2207 continue;
2209 if (flags & CFLGS_OFF_SLAB) {
2211 * Max number of objs-per-slab for caches which
2212 * use off-slab slabs. Needed to avoid a possible
2213 * looping condition in cache_grow().
2215 offslab_limit = size - sizeof(struct slab);
2216 offslab_limit /= sizeof(kmem_bufctl_t);
2218 if (num > offslab_limit)
2219 break;
2222 /* Found something acceptable - save it away */
2223 cachep->num = num;
2224 cachep->gfporder = gfporder;
2225 left_over = remainder;
2228 * A VFS-reclaimable slab tends to have most allocations
2229 * as GFP_NOFS and we really don't want to have to be allocating
2230 * higher-order pages when we are unable to shrink dcache.
2232 if (flags & SLAB_RECLAIM_ACCOUNT)
2233 break;
2236 * Large number of objects is good, but very large slabs are
2237 * currently bad for the gfp()s.
2239 if (gfporder >= slab_max_order)
2240 break;
2243 * Acceptable internal fragmentation?
2245 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2246 break;
2248 return left_over;
2251 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2253 if (slab_state >= FULL)
2254 return enable_cpucache(cachep, gfp);
2256 if (slab_state == DOWN) {
2258 * Note: Creation of first cache (kmem_cache).
2259 * The setup_list3s is taken care
2260 * of by the caller of __kmem_cache_create
2262 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2263 slab_state = PARTIAL;
2264 } else if (slab_state == PARTIAL) {
2266 * Note: the second kmem_cache_create must create the cache
2267 * that's used by kmalloc(24), otherwise the creation of
2268 * further caches will BUG().
2270 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2273 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2274 * the second cache, then we need to set up all its list3s,
2275 * otherwise the creation of further caches will BUG().
2277 set_up_list3s(cachep, SIZE_AC);
2278 if (INDEX_AC == INDEX_L3)
2279 slab_state = PARTIAL_L3;
2280 else
2281 slab_state = PARTIAL_ARRAYCACHE;
2282 } else {
2283 /* Remaining boot caches */
2284 cachep->array[smp_processor_id()] =
2285 kmalloc(sizeof(struct arraycache_init), gfp);
2287 if (slab_state == PARTIAL_ARRAYCACHE) {
2288 set_up_list3s(cachep, SIZE_L3);
2289 slab_state = PARTIAL_L3;
2290 } else {
2291 int node;
2292 for_each_online_node(node) {
2293 cachep->nodelists[node] =
2294 kmalloc_node(sizeof(struct kmem_list3),
2295 gfp, node);
2296 BUG_ON(!cachep->nodelists[node]);
2297 kmem_list3_init(cachep->nodelists[node]);
2301 cachep->nodelists[numa_mem_id()]->next_reap =
2302 jiffies + REAPTIMEOUT_LIST3 +
2303 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2305 cpu_cache_get(cachep)->avail = 0;
2306 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2307 cpu_cache_get(cachep)->batchcount = 1;
2308 cpu_cache_get(cachep)->touched = 0;
2309 cachep->batchcount = 1;
2310 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2311 return 0;
2315 * __kmem_cache_create - Create a cache.
2316 * @cachep: cache management descriptor
2317 * @flags: SLAB flags
2319 * Returns a ptr to the cache on success, NULL on failure.
2320 * Cannot be called within a int, but can be interrupted.
2321 * The @ctor is run when new pages are allocated by the cache.
2323 * The flags are
2325 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2326 * to catch references to uninitialised memory.
2328 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2329 * for buffer overruns.
2331 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2332 * cacheline. This can be beneficial if you're counting cycles as closely
2333 * as davem.
2336 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2338 size_t left_over, slab_size, ralign;
2339 gfp_t gfp;
2340 int err;
2341 size_t size = cachep->size;
2343 #if DEBUG
2344 #if FORCED_DEBUG
2346 * Enable redzoning and last user accounting, except for caches with
2347 * large objects, if the increased size would increase the object size
2348 * above the next power of two: caches with object sizes just above a
2349 * power of two have a significant amount of internal fragmentation.
2351 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2352 2 * sizeof(unsigned long long)))
2353 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2354 if (!(flags & SLAB_DESTROY_BY_RCU))
2355 flags |= SLAB_POISON;
2356 #endif
2357 if (flags & SLAB_DESTROY_BY_RCU)
2358 BUG_ON(flags & SLAB_POISON);
2359 #endif
2362 * Check that size is in terms of words. This is needed to avoid
2363 * unaligned accesses for some archs when redzoning is used, and makes
2364 * sure any on-slab bufctl's are also correctly aligned.
2366 if (size & (BYTES_PER_WORD - 1)) {
2367 size += (BYTES_PER_WORD - 1);
2368 size &= ~(BYTES_PER_WORD - 1);
2372 * Redzoning and user store require word alignment or possibly larger.
2373 * Note this will be overridden by architecture or caller mandated
2374 * alignment if either is greater than BYTES_PER_WORD.
2376 if (flags & SLAB_STORE_USER)
2377 ralign = BYTES_PER_WORD;
2379 if (flags & SLAB_RED_ZONE) {
2380 ralign = REDZONE_ALIGN;
2381 /* If redzoning, ensure that the second redzone is suitably
2382 * aligned, by adjusting the object size accordingly. */
2383 size += REDZONE_ALIGN - 1;
2384 size &= ~(REDZONE_ALIGN - 1);
2387 /* 3) caller mandated alignment */
2388 if (ralign < cachep->align) {
2389 ralign = cachep->align;
2391 /* disable debug if necessary */
2392 if (ralign > __alignof__(unsigned long long))
2393 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2395 * 4) Store it.
2397 cachep->align = ralign;
2399 if (slab_is_available())
2400 gfp = GFP_KERNEL;
2401 else
2402 gfp = GFP_NOWAIT;
2404 setup_nodelists_pointer(cachep);
2405 #if DEBUG
2408 * Both debugging options require word-alignment which is calculated
2409 * into align above.
2411 if (flags & SLAB_RED_ZONE) {
2412 /* add space for red zone words */
2413 cachep->obj_offset += sizeof(unsigned long long);
2414 size += 2 * sizeof(unsigned long long);
2416 if (flags & SLAB_STORE_USER) {
2417 /* user store requires one word storage behind the end of
2418 * the real object. But if the second red zone needs to be
2419 * aligned to 64 bits, we must allow that much space.
2421 if (flags & SLAB_RED_ZONE)
2422 size += REDZONE_ALIGN;
2423 else
2424 size += BYTES_PER_WORD;
2426 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2427 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2428 && cachep->object_size > cache_line_size()
2429 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2430 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2431 size = PAGE_SIZE;
2433 #endif
2434 #endif
2437 * Determine if the slab management is 'on' or 'off' slab.
2438 * (bootstrapping cannot cope with offslab caches so don't do
2439 * it too early on. Always use on-slab management when
2440 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2442 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2443 !(flags & SLAB_NOLEAKTRACE))
2445 * Size is large, assume best to place the slab management obj
2446 * off-slab (should allow better packing of objs).
2448 flags |= CFLGS_OFF_SLAB;
2450 size = ALIGN(size, cachep->align);
2452 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2454 if (!cachep->num)
2455 return -E2BIG;
2457 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2458 + sizeof(struct slab), cachep->align);
2461 * If the slab has been placed off-slab, and we have enough space then
2462 * move it on-slab. This is at the expense of any extra colouring.
2464 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2465 flags &= ~CFLGS_OFF_SLAB;
2466 left_over -= slab_size;
2469 if (flags & CFLGS_OFF_SLAB) {
2470 /* really off slab. No need for manual alignment */
2471 slab_size =
2472 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2474 #ifdef CONFIG_PAGE_POISONING
2475 /* If we're going to use the generic kernel_map_pages()
2476 * poisoning, then it's going to smash the contents of
2477 * the redzone and userword anyhow, so switch them off.
2479 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2480 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2481 #endif
2484 cachep->colour_off = cache_line_size();
2485 /* Offset must be a multiple of the alignment. */
2486 if (cachep->colour_off < cachep->align)
2487 cachep->colour_off = cachep->align;
2488 cachep->colour = left_over / cachep->colour_off;
2489 cachep->slab_size = slab_size;
2490 cachep->flags = flags;
2491 cachep->allocflags = 0;
2492 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2493 cachep->allocflags |= GFP_DMA;
2494 cachep->size = size;
2495 cachep->reciprocal_buffer_size = reciprocal_value(size);
2497 if (flags & CFLGS_OFF_SLAB) {
2498 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2500 * This is a possibility for one of the malloc_sizes caches.
2501 * But since we go off slab only for object size greater than
2502 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2503 * this should not happen at all.
2504 * But leave a BUG_ON for some lucky dude.
2506 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2509 err = setup_cpu_cache(cachep, gfp);
2510 if (err) {
2511 __kmem_cache_shutdown(cachep);
2512 return err;
2515 if (flags & SLAB_DEBUG_OBJECTS) {
2517 * Would deadlock through slab_destroy()->call_rcu()->
2518 * debug_object_activate()->kmem_cache_alloc().
2520 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2522 slab_set_debugobj_lock_classes(cachep);
2523 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2524 on_slab_lock_classes(cachep);
2526 return 0;
2529 #if DEBUG
2530 static void check_irq_off(void)
2532 BUG_ON(!irqs_disabled());
2535 static void check_irq_on(void)
2537 BUG_ON(irqs_disabled());
2540 static void check_spinlock_acquired(struct kmem_cache *cachep)
2542 #ifdef CONFIG_SMP
2543 check_irq_off();
2544 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2545 #endif
2548 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2550 #ifdef CONFIG_SMP
2551 check_irq_off();
2552 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2553 #endif
2556 #else
2557 #define check_irq_off() do { } while(0)
2558 #define check_irq_on() do { } while(0)
2559 #define check_spinlock_acquired(x) do { } while(0)
2560 #define check_spinlock_acquired_node(x, y) do { } while(0)
2561 #endif
2563 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2564 struct array_cache *ac,
2565 int force, int node);
2567 static void do_drain(void *arg)
2569 struct kmem_cache *cachep = arg;
2570 struct array_cache *ac;
2571 int node = numa_mem_id();
2573 check_irq_off();
2574 ac = cpu_cache_get(cachep);
2575 spin_lock(&cachep->nodelists[node]->list_lock);
2576 free_block(cachep, ac->entry, ac->avail, node);
2577 spin_unlock(&cachep->nodelists[node]->list_lock);
2578 ac->avail = 0;
2581 static void drain_cpu_caches(struct kmem_cache *cachep)
2583 struct kmem_list3 *l3;
2584 int node;
2586 on_each_cpu(do_drain, cachep, 1);
2587 check_irq_on();
2588 for_each_online_node(node) {
2589 l3 = cachep->nodelists[node];
2590 if (l3 && l3->alien)
2591 drain_alien_cache(cachep, l3->alien);
2594 for_each_online_node(node) {
2595 l3 = cachep->nodelists[node];
2596 if (l3)
2597 drain_array(cachep, l3, l3->shared, 1, node);
2602 * Remove slabs from the list of free slabs.
2603 * Specify the number of slabs to drain in tofree.
2605 * Returns the actual number of slabs released.
2607 static int drain_freelist(struct kmem_cache *cache,
2608 struct kmem_list3 *l3, int tofree)
2610 struct list_head *p;
2611 int nr_freed;
2612 struct slab *slabp;
2614 nr_freed = 0;
2615 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2617 spin_lock_irq(&l3->list_lock);
2618 p = l3->slabs_free.prev;
2619 if (p == &l3->slabs_free) {
2620 spin_unlock_irq(&l3->list_lock);
2621 goto out;
2624 slabp = list_entry(p, struct slab, list);
2625 #if DEBUG
2626 BUG_ON(slabp->inuse);
2627 #endif
2628 list_del(&slabp->list);
2630 * Safe to drop the lock. The slab is no longer linked
2631 * to the cache.
2633 l3->free_objects -= cache->num;
2634 spin_unlock_irq(&l3->list_lock);
2635 slab_destroy(cache, slabp);
2636 nr_freed++;
2638 out:
2639 return nr_freed;
2642 /* Called with slab_mutex held to protect against cpu hotplug */
2643 static int __cache_shrink(struct kmem_cache *cachep)
2645 int ret = 0, i = 0;
2646 struct kmem_list3 *l3;
2648 drain_cpu_caches(cachep);
2650 check_irq_on();
2651 for_each_online_node(i) {
2652 l3 = cachep->nodelists[i];
2653 if (!l3)
2654 continue;
2656 drain_freelist(cachep, l3, l3->free_objects);
2658 ret += !list_empty(&l3->slabs_full) ||
2659 !list_empty(&l3->slabs_partial);
2661 return (ret ? 1 : 0);
2665 * kmem_cache_shrink - Shrink a cache.
2666 * @cachep: The cache to shrink.
2668 * Releases as many slabs as possible for a cache.
2669 * To help debugging, a zero exit status indicates all slabs were released.
2671 int kmem_cache_shrink(struct kmem_cache *cachep)
2673 int ret;
2674 BUG_ON(!cachep || in_interrupt());
2676 get_online_cpus();
2677 mutex_lock(&slab_mutex);
2678 ret = __cache_shrink(cachep);
2679 mutex_unlock(&slab_mutex);
2680 put_online_cpus();
2681 return ret;
2683 EXPORT_SYMBOL(kmem_cache_shrink);
2685 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2687 int i;
2688 struct kmem_list3 *l3;
2689 int rc = __cache_shrink(cachep);
2691 if (rc)
2692 return rc;
2694 for_each_online_cpu(i)
2695 kfree(cachep->array[i]);
2697 /* NUMA: free the list3 structures */
2698 for_each_online_node(i) {
2699 l3 = cachep->nodelists[i];
2700 if (l3) {
2701 kfree(l3->shared);
2702 free_alien_cache(l3->alien);
2703 kfree(l3);
2706 return 0;
2710 * Get the memory for a slab management obj.
2711 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2712 * always come from malloc_sizes caches. The slab descriptor cannot
2713 * come from the same cache which is getting created because,
2714 * when we are searching for an appropriate cache for these
2715 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2716 * If we are creating a malloc_sizes cache here it would not be visible to
2717 * kmem_find_general_cachep till the initialization is complete.
2718 * Hence we cannot have slabp_cache same as the original cache.
2720 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2721 int colour_off, gfp_t local_flags,
2722 int nodeid)
2724 struct slab *slabp;
2726 if (OFF_SLAB(cachep)) {
2727 /* Slab management obj is off-slab. */
2728 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2729 local_flags, nodeid);
2731 * If the first object in the slab is leaked (it's allocated
2732 * but no one has a reference to it), we want to make sure
2733 * kmemleak does not treat the ->s_mem pointer as a reference
2734 * to the object. Otherwise we will not report the leak.
2736 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2737 local_flags);
2738 if (!slabp)
2739 return NULL;
2740 } else {
2741 slabp = objp + colour_off;
2742 colour_off += cachep->slab_size;
2744 slabp->inuse = 0;
2745 slabp->colouroff = colour_off;
2746 slabp->s_mem = objp + colour_off;
2747 slabp->nodeid = nodeid;
2748 slabp->free = 0;
2749 return slabp;
2752 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2754 return (kmem_bufctl_t *) (slabp + 1);
2757 static void cache_init_objs(struct kmem_cache *cachep,
2758 struct slab *slabp)
2760 int i;
2762 for (i = 0; i < cachep->num; i++) {
2763 void *objp = index_to_obj(cachep, slabp, i);
2764 #if DEBUG
2765 /* need to poison the objs? */
2766 if (cachep->flags & SLAB_POISON)
2767 poison_obj(cachep, objp, POISON_FREE);
2768 if (cachep->flags & SLAB_STORE_USER)
2769 *dbg_userword(cachep, objp) = NULL;
2771 if (cachep->flags & SLAB_RED_ZONE) {
2772 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2773 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2776 * Constructors are not allowed to allocate memory from the same
2777 * cache which they are a constructor for. Otherwise, deadlock.
2778 * They must also be threaded.
2780 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2781 cachep->ctor(objp + obj_offset(cachep));
2783 if (cachep->flags & SLAB_RED_ZONE) {
2784 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2785 slab_error(cachep, "constructor overwrote the"
2786 " end of an object");
2787 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2788 slab_error(cachep, "constructor overwrote the"
2789 " start of an object");
2791 if ((cachep->size % PAGE_SIZE) == 0 &&
2792 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2793 kernel_map_pages(virt_to_page(objp),
2794 cachep->size / PAGE_SIZE, 0);
2795 #else
2796 if (cachep->ctor)
2797 cachep->ctor(objp);
2798 #endif
2799 slab_bufctl(slabp)[i] = i + 1;
2801 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2804 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2806 if (CONFIG_ZONE_DMA_FLAG) {
2807 if (flags & GFP_DMA)
2808 BUG_ON(!(cachep->allocflags & GFP_DMA));
2809 else
2810 BUG_ON(cachep->allocflags & GFP_DMA);
2814 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2815 int nodeid)
2817 void *objp = index_to_obj(cachep, slabp, slabp->free);
2818 kmem_bufctl_t next;
2820 slabp->inuse++;
2821 next = slab_bufctl(slabp)[slabp->free];
2822 #if DEBUG
2823 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2824 WARN_ON(slabp->nodeid != nodeid);
2825 #endif
2826 slabp->free = next;
2828 return objp;
2831 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2832 void *objp, int nodeid)
2834 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2836 #if DEBUG
2837 /* Verify that the slab belongs to the intended node */
2838 WARN_ON(slabp->nodeid != nodeid);
2840 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2841 printk(KERN_ERR "slab: double free detected in cache "
2842 "'%s', objp %p\n", cachep->name, objp);
2843 BUG();
2845 #endif
2846 slab_bufctl(slabp)[objnr] = slabp->free;
2847 slabp->free = objnr;
2848 slabp->inuse--;
2852 * Map pages beginning at addr to the given cache and slab. This is required
2853 * for the slab allocator to be able to lookup the cache and slab of a
2854 * virtual address for kfree, ksize, and slab debugging.
2856 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2857 void *addr)
2859 int nr_pages;
2860 struct page *page;
2862 page = virt_to_page(addr);
2864 nr_pages = 1;
2865 if (likely(!PageCompound(page)))
2866 nr_pages <<= cache->gfporder;
2868 do {
2869 page->slab_cache = cache;
2870 page->slab_page = slab;
2871 page++;
2872 } while (--nr_pages);
2876 * Grow (by 1) the number of slabs within a cache. This is called by
2877 * kmem_cache_alloc() when there are no active objs left in a cache.
2879 static int cache_grow(struct kmem_cache *cachep,
2880 gfp_t flags, int nodeid, void *objp)
2882 struct slab *slabp;
2883 size_t offset;
2884 gfp_t local_flags;
2885 struct kmem_list3 *l3;
2888 * Be lazy and only check for valid flags here, keeping it out of the
2889 * critical path in kmem_cache_alloc().
2891 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2892 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2894 /* Take the l3 list lock to change the colour_next on this node */
2895 check_irq_off();
2896 l3 = cachep->nodelists[nodeid];
2897 spin_lock(&l3->list_lock);
2899 /* Get colour for the slab, and cal the next value. */
2900 offset = l3->colour_next;
2901 l3->colour_next++;
2902 if (l3->colour_next >= cachep->colour)
2903 l3->colour_next = 0;
2904 spin_unlock(&l3->list_lock);
2906 offset *= cachep->colour_off;
2908 if (local_flags & __GFP_WAIT)
2909 local_irq_enable();
2912 * The test for missing atomic flag is performed here, rather than
2913 * the more obvious place, simply to reduce the critical path length
2914 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2915 * will eventually be caught here (where it matters).
2917 kmem_flagcheck(cachep, flags);
2920 * Get mem for the objs. Attempt to allocate a physical page from
2921 * 'nodeid'.
2923 if (!objp)
2924 objp = kmem_getpages(cachep, local_flags, nodeid);
2925 if (!objp)
2926 goto failed;
2928 /* Get slab management. */
2929 slabp = alloc_slabmgmt(cachep, objp, offset,
2930 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2931 if (!slabp)
2932 goto opps1;
2934 slab_map_pages(cachep, slabp, objp);
2936 cache_init_objs(cachep, slabp);
2938 if (local_flags & __GFP_WAIT)
2939 local_irq_disable();
2940 check_irq_off();
2941 spin_lock(&l3->list_lock);
2943 /* Make slab active. */
2944 list_add_tail(&slabp->list, &(l3->slabs_free));
2945 STATS_INC_GROWN(cachep);
2946 l3->free_objects += cachep->num;
2947 spin_unlock(&l3->list_lock);
2948 return 1;
2949 opps1:
2950 kmem_freepages(cachep, objp);
2951 failed:
2952 if (local_flags & __GFP_WAIT)
2953 local_irq_disable();
2954 return 0;
2957 #if DEBUG
2960 * Perform extra freeing checks:
2961 * - detect bad pointers.
2962 * - POISON/RED_ZONE checking
2964 static void kfree_debugcheck(const void *objp)
2966 if (!virt_addr_valid(objp)) {
2967 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2968 (unsigned long)objp);
2969 BUG();
2973 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2975 unsigned long long redzone1, redzone2;
2977 redzone1 = *dbg_redzone1(cache, obj);
2978 redzone2 = *dbg_redzone2(cache, obj);
2981 * Redzone is ok.
2983 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2984 return;
2986 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2987 slab_error(cache, "double free detected");
2988 else
2989 slab_error(cache, "memory outside object was overwritten");
2991 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2992 obj, redzone1, redzone2);
2995 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2996 unsigned long caller)
2998 struct page *page;
2999 unsigned int objnr;
3000 struct slab *slabp;
3002 BUG_ON(virt_to_cache(objp) != cachep);
3004 objp -= obj_offset(cachep);
3005 kfree_debugcheck(objp);
3006 page = virt_to_head_page(objp);
3008 slabp = page->slab_page;
3010 if (cachep->flags & SLAB_RED_ZONE) {
3011 verify_redzone_free(cachep, objp);
3012 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3013 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3015 if (cachep->flags & SLAB_STORE_USER)
3016 *dbg_userword(cachep, objp) = (void *)caller;
3018 objnr = obj_to_index(cachep, slabp, objp);
3020 BUG_ON(objnr >= cachep->num);
3021 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3023 #ifdef CONFIG_DEBUG_SLAB_LEAK
3024 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3025 #endif
3026 if (cachep->flags & SLAB_POISON) {
3027 #ifdef CONFIG_DEBUG_PAGEALLOC
3028 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3029 store_stackinfo(cachep, objp, caller);
3030 kernel_map_pages(virt_to_page(objp),
3031 cachep->size / PAGE_SIZE, 0);
3032 } else {
3033 poison_obj(cachep, objp, POISON_FREE);
3035 #else
3036 poison_obj(cachep, objp, POISON_FREE);
3037 #endif
3039 return objp;
3042 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3044 kmem_bufctl_t i;
3045 int entries = 0;
3047 /* Check slab's freelist to see if this obj is there. */
3048 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3049 entries++;
3050 if (entries > cachep->num || i >= cachep->num)
3051 goto bad;
3053 if (entries != cachep->num - slabp->inuse) {
3054 bad:
3055 printk(KERN_ERR "slab: Internal list corruption detected in "
3056 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3057 cachep->name, cachep->num, slabp, slabp->inuse,
3058 print_tainted());
3059 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3060 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3062 BUG();
3065 #else
3066 #define kfree_debugcheck(x) do { } while(0)
3067 #define cache_free_debugcheck(x,objp,z) (objp)
3068 #define check_slabp(x,y) do { } while(0)
3069 #endif
3071 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3072 bool force_refill)
3074 int batchcount;
3075 struct kmem_list3 *l3;
3076 struct array_cache *ac;
3077 int node;
3079 check_irq_off();
3080 node = numa_mem_id();
3081 if (unlikely(force_refill))
3082 goto force_grow;
3083 retry:
3084 ac = cpu_cache_get(cachep);
3085 batchcount = ac->batchcount;
3086 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3088 * If there was little recent activity on this cache, then
3089 * perform only a partial refill. Otherwise we could generate
3090 * refill bouncing.
3092 batchcount = BATCHREFILL_LIMIT;
3094 l3 = cachep->nodelists[node];
3096 BUG_ON(ac->avail > 0 || !l3);
3097 spin_lock(&l3->list_lock);
3099 /* See if we can refill from the shared array */
3100 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3101 l3->shared->touched = 1;
3102 goto alloc_done;
3105 while (batchcount > 0) {
3106 struct list_head *entry;
3107 struct slab *slabp;
3108 /* Get slab alloc is to come from. */
3109 entry = l3->slabs_partial.next;
3110 if (entry == &l3->slabs_partial) {
3111 l3->free_touched = 1;
3112 entry = l3->slabs_free.next;
3113 if (entry == &l3->slabs_free)
3114 goto must_grow;
3117 slabp = list_entry(entry, struct slab, list);
3118 check_slabp(cachep, slabp);
3119 check_spinlock_acquired(cachep);
3122 * The slab was either on partial or free list so
3123 * there must be at least one object available for
3124 * allocation.
3126 BUG_ON(slabp->inuse >= cachep->num);
3128 while (slabp->inuse < cachep->num && batchcount--) {
3129 STATS_INC_ALLOCED(cachep);
3130 STATS_INC_ACTIVE(cachep);
3131 STATS_SET_HIGH(cachep);
3133 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3134 node));
3136 check_slabp(cachep, slabp);
3138 /* move slabp to correct slabp list: */
3139 list_del(&slabp->list);
3140 if (slabp->free == BUFCTL_END)
3141 list_add(&slabp->list, &l3->slabs_full);
3142 else
3143 list_add(&slabp->list, &l3->slabs_partial);
3146 must_grow:
3147 l3->free_objects -= ac->avail;
3148 alloc_done:
3149 spin_unlock(&l3->list_lock);
3151 if (unlikely(!ac->avail)) {
3152 int x;
3153 force_grow:
3154 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3156 /* cache_grow can reenable interrupts, then ac could change. */
3157 ac = cpu_cache_get(cachep);
3158 node = numa_mem_id();
3160 /* no objects in sight? abort */
3161 if (!x && (ac->avail == 0 || force_refill))
3162 return NULL;
3164 if (!ac->avail) /* objects refilled by interrupt? */
3165 goto retry;
3167 ac->touched = 1;
3169 return ac_get_obj(cachep, ac, flags, force_refill);
3172 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3173 gfp_t flags)
3175 might_sleep_if(flags & __GFP_WAIT);
3176 #if DEBUG
3177 kmem_flagcheck(cachep, flags);
3178 #endif
3181 #if DEBUG
3182 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3183 gfp_t flags, void *objp, unsigned long caller)
3185 if (!objp)
3186 return objp;
3187 if (cachep->flags & SLAB_POISON) {
3188 #ifdef CONFIG_DEBUG_PAGEALLOC
3189 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3190 kernel_map_pages(virt_to_page(objp),
3191 cachep->size / PAGE_SIZE, 1);
3192 else
3193 check_poison_obj(cachep, objp);
3194 #else
3195 check_poison_obj(cachep, objp);
3196 #endif
3197 poison_obj(cachep, objp, POISON_INUSE);
3199 if (cachep->flags & SLAB_STORE_USER)
3200 *dbg_userword(cachep, objp) = (void *)caller;
3202 if (cachep->flags & SLAB_RED_ZONE) {
3203 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3204 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3205 slab_error(cachep, "double free, or memory outside"
3206 " object was overwritten");
3207 printk(KERN_ERR
3208 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3209 objp, *dbg_redzone1(cachep, objp),
3210 *dbg_redzone2(cachep, objp));
3212 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3213 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3215 #ifdef CONFIG_DEBUG_SLAB_LEAK
3217 struct slab *slabp;
3218 unsigned objnr;
3220 slabp = virt_to_head_page(objp)->slab_page;
3221 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3222 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3224 #endif
3225 objp += obj_offset(cachep);
3226 if (cachep->ctor && cachep->flags & SLAB_POISON)
3227 cachep->ctor(objp);
3228 if (ARCH_SLAB_MINALIGN &&
3229 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3230 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3231 objp, (int)ARCH_SLAB_MINALIGN);
3233 return objp;
3235 #else
3236 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3237 #endif
3239 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3241 if (cachep == kmem_cache)
3242 return false;
3244 return should_failslab(cachep->object_size, flags, cachep->flags);
3247 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3249 void *objp;
3250 struct array_cache *ac;
3251 bool force_refill = false;
3253 check_irq_off();
3255 ac = cpu_cache_get(cachep);
3256 if (likely(ac->avail)) {
3257 ac->touched = 1;
3258 objp = ac_get_obj(cachep, ac, flags, false);
3261 * Allow for the possibility all avail objects are not allowed
3262 * by the current flags
3264 if (objp) {
3265 STATS_INC_ALLOCHIT(cachep);
3266 goto out;
3268 force_refill = true;
3271 STATS_INC_ALLOCMISS(cachep);
3272 objp = cache_alloc_refill(cachep, flags, force_refill);
3274 * the 'ac' may be updated by cache_alloc_refill(),
3275 * and kmemleak_erase() requires its correct value.
3277 ac = cpu_cache_get(cachep);
3279 out:
3281 * To avoid a false negative, if an object that is in one of the
3282 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3283 * treat the array pointers as a reference to the object.
3285 if (objp)
3286 kmemleak_erase(&ac->entry[ac->avail]);
3287 return objp;
3290 #ifdef CONFIG_NUMA
3292 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3294 * If we are in_interrupt, then process context, including cpusets and
3295 * mempolicy, may not apply and should not be used for allocation policy.
3297 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3299 int nid_alloc, nid_here;
3301 if (in_interrupt() || (flags & __GFP_THISNODE))
3302 return NULL;
3303 nid_alloc = nid_here = numa_mem_id();
3304 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3305 nid_alloc = cpuset_slab_spread_node();
3306 else if (current->mempolicy)
3307 nid_alloc = slab_node();
3308 if (nid_alloc != nid_here)
3309 return ____cache_alloc_node(cachep, flags, nid_alloc);
3310 return NULL;
3314 * Fallback function if there was no memory available and no objects on a
3315 * certain node and fall back is permitted. First we scan all the
3316 * available nodelists for available objects. If that fails then we
3317 * perform an allocation without specifying a node. This allows the page
3318 * allocator to do its reclaim / fallback magic. We then insert the
3319 * slab into the proper nodelist and then allocate from it.
3321 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3323 struct zonelist *zonelist;
3324 gfp_t local_flags;
3325 struct zoneref *z;
3326 struct zone *zone;
3327 enum zone_type high_zoneidx = gfp_zone(flags);
3328 void *obj = NULL;
3329 int nid;
3330 unsigned int cpuset_mems_cookie;
3332 if (flags & __GFP_THISNODE)
3333 return NULL;
3335 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3337 retry_cpuset:
3338 cpuset_mems_cookie = get_mems_allowed();
3339 zonelist = node_zonelist(slab_node(), flags);
3341 retry:
3343 * Look through allowed nodes for objects available
3344 * from existing per node queues.
3346 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3347 nid = zone_to_nid(zone);
3349 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3350 cache->nodelists[nid] &&
3351 cache->nodelists[nid]->free_objects) {
3352 obj = ____cache_alloc_node(cache,
3353 flags | GFP_THISNODE, nid);
3354 if (obj)
3355 break;
3359 if (!obj) {
3361 * This allocation will be performed within the constraints
3362 * of the current cpuset / memory policy requirements.
3363 * We may trigger various forms of reclaim on the allowed
3364 * set and go into memory reserves if necessary.
3366 if (local_flags & __GFP_WAIT)
3367 local_irq_enable();
3368 kmem_flagcheck(cache, flags);
3369 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3370 if (local_flags & __GFP_WAIT)
3371 local_irq_disable();
3372 if (obj) {
3374 * Insert into the appropriate per node queues
3376 nid = page_to_nid(virt_to_page(obj));
3377 if (cache_grow(cache, flags, nid, obj)) {
3378 obj = ____cache_alloc_node(cache,
3379 flags | GFP_THISNODE, nid);
3380 if (!obj)
3382 * Another processor may allocate the
3383 * objects in the slab since we are
3384 * not holding any locks.
3386 goto retry;
3387 } else {
3388 /* cache_grow already freed obj */
3389 obj = NULL;
3394 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3395 goto retry_cpuset;
3396 return obj;
3400 * A interface to enable slab creation on nodeid
3402 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3403 int nodeid)
3405 struct list_head *entry;
3406 struct slab *slabp;
3407 struct kmem_list3 *l3;
3408 void *obj;
3409 int x;
3411 l3 = cachep->nodelists[nodeid];
3412 BUG_ON(!l3);
3414 retry:
3415 check_irq_off();
3416 spin_lock(&l3->list_lock);
3417 entry = l3->slabs_partial.next;
3418 if (entry == &l3->slabs_partial) {
3419 l3->free_touched = 1;
3420 entry = l3->slabs_free.next;
3421 if (entry == &l3->slabs_free)
3422 goto must_grow;
3425 slabp = list_entry(entry, struct slab, list);
3426 check_spinlock_acquired_node(cachep, nodeid);
3427 check_slabp(cachep, slabp);
3429 STATS_INC_NODEALLOCS(cachep);
3430 STATS_INC_ACTIVE(cachep);
3431 STATS_SET_HIGH(cachep);
3433 BUG_ON(slabp->inuse == cachep->num);
3435 obj = slab_get_obj(cachep, slabp, nodeid);
3436 check_slabp(cachep, slabp);
3437 l3->free_objects--;
3438 /* move slabp to correct slabp list: */
3439 list_del(&slabp->list);
3441 if (slabp->free == BUFCTL_END)
3442 list_add(&slabp->list, &l3->slabs_full);
3443 else
3444 list_add(&slabp->list, &l3->slabs_partial);
3446 spin_unlock(&l3->list_lock);
3447 goto done;
3449 must_grow:
3450 spin_unlock(&l3->list_lock);
3451 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3452 if (x)
3453 goto retry;
3455 return fallback_alloc(cachep, flags);
3457 done:
3458 return obj;
3462 * kmem_cache_alloc_node - Allocate an object on the specified node
3463 * @cachep: The cache to allocate from.
3464 * @flags: See kmalloc().
3465 * @nodeid: node number of the target node.
3466 * @caller: return address of caller, used for debug information
3468 * Identical to kmem_cache_alloc but it will allocate memory on the given
3469 * node, which can improve the performance for cpu bound structures.
3471 * Fallback to other node is possible if __GFP_THISNODE is not set.
3473 static __always_inline void *
3474 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3475 unsigned long caller)
3477 unsigned long save_flags;
3478 void *ptr;
3479 int slab_node = numa_mem_id();
3481 flags &= gfp_allowed_mask;
3483 lockdep_trace_alloc(flags);
3485 if (slab_should_failslab(cachep, flags))
3486 return NULL;
3488 cache_alloc_debugcheck_before(cachep, flags);
3489 local_irq_save(save_flags);
3491 if (nodeid == NUMA_NO_NODE)
3492 nodeid = slab_node;
3494 if (unlikely(!cachep->nodelists[nodeid])) {
3495 /* Node not bootstrapped yet */
3496 ptr = fallback_alloc(cachep, flags);
3497 goto out;
3500 if (nodeid == slab_node) {
3502 * Use the locally cached objects if possible.
3503 * However ____cache_alloc does not allow fallback
3504 * to other nodes. It may fail while we still have
3505 * objects on other nodes available.
3507 ptr = ____cache_alloc(cachep, flags);
3508 if (ptr)
3509 goto out;
3511 /* ___cache_alloc_node can fall back to other nodes */
3512 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3513 out:
3514 local_irq_restore(save_flags);
3515 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3516 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3517 flags);
3519 if (likely(ptr))
3520 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3522 if (unlikely((flags & __GFP_ZERO) && ptr))
3523 memset(ptr, 0, cachep->object_size);
3525 return ptr;
3528 static __always_inline void *
3529 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3531 void *objp;
3533 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3534 objp = alternate_node_alloc(cache, flags);
3535 if (objp)
3536 goto out;
3538 objp = ____cache_alloc(cache, flags);
3541 * We may just have run out of memory on the local node.
3542 * ____cache_alloc_node() knows how to locate memory on other nodes
3544 if (!objp)
3545 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3547 out:
3548 return objp;
3550 #else
3552 static __always_inline void *
3553 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3555 return ____cache_alloc(cachep, flags);
3558 #endif /* CONFIG_NUMA */
3560 static __always_inline void *
3561 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3563 unsigned long save_flags;
3564 void *objp;
3566 flags &= gfp_allowed_mask;
3568 lockdep_trace_alloc(flags);
3570 if (slab_should_failslab(cachep, flags))
3571 return NULL;
3573 cache_alloc_debugcheck_before(cachep, flags);
3574 local_irq_save(save_flags);
3575 objp = __do_cache_alloc(cachep, flags);
3576 local_irq_restore(save_flags);
3577 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3578 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3579 flags);
3580 prefetchw(objp);
3582 if (likely(objp))
3583 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3585 if (unlikely((flags & __GFP_ZERO) && objp))
3586 memset(objp, 0, cachep->object_size);
3588 return objp;
3592 * Caller needs to acquire correct kmem_list's list_lock
3594 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3595 int node)
3597 int i;
3598 struct kmem_list3 *l3;
3600 for (i = 0; i < nr_objects; i++) {
3601 void *objp;
3602 struct slab *slabp;
3604 clear_obj_pfmemalloc(&objpp[i]);
3605 objp = objpp[i];
3607 slabp = virt_to_slab(objp);
3608 l3 = cachep->nodelists[node];
3609 list_del(&slabp->list);
3610 check_spinlock_acquired_node(cachep, node);
3611 check_slabp(cachep, slabp);
3612 slab_put_obj(cachep, slabp, objp, node);
3613 STATS_DEC_ACTIVE(cachep);
3614 l3->free_objects++;
3615 check_slabp(cachep, slabp);
3617 /* fixup slab chains */
3618 if (slabp->inuse == 0) {
3619 if (l3->free_objects > l3->free_limit) {
3620 l3->free_objects -= cachep->num;
3621 /* No need to drop any previously held
3622 * lock here, even if we have a off-slab slab
3623 * descriptor it is guaranteed to come from
3624 * a different cache, refer to comments before
3625 * alloc_slabmgmt.
3627 slab_destroy(cachep, slabp);
3628 } else {
3629 list_add(&slabp->list, &l3->slabs_free);
3631 } else {
3632 /* Unconditionally move a slab to the end of the
3633 * partial list on free - maximum time for the
3634 * other objects to be freed, too.
3636 list_add_tail(&slabp->list, &l3->slabs_partial);
3641 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3643 int batchcount;
3644 struct kmem_list3 *l3;
3645 int node = numa_mem_id();
3647 batchcount = ac->batchcount;
3648 #if DEBUG
3649 BUG_ON(!batchcount || batchcount > ac->avail);
3650 #endif
3651 check_irq_off();
3652 l3 = cachep->nodelists[node];
3653 spin_lock(&l3->list_lock);
3654 if (l3->shared) {
3655 struct array_cache *shared_array = l3->shared;
3656 int max = shared_array->limit - shared_array->avail;
3657 if (max) {
3658 if (batchcount > max)
3659 batchcount = max;
3660 memcpy(&(shared_array->entry[shared_array->avail]),
3661 ac->entry, sizeof(void *) * batchcount);
3662 shared_array->avail += batchcount;
3663 goto free_done;
3667 free_block(cachep, ac->entry, batchcount, node);
3668 free_done:
3669 #if STATS
3671 int i = 0;
3672 struct list_head *p;
3674 p = l3->slabs_free.next;
3675 while (p != &(l3->slabs_free)) {
3676 struct slab *slabp;
3678 slabp = list_entry(p, struct slab, list);
3679 BUG_ON(slabp->inuse);
3681 i++;
3682 p = p->next;
3684 STATS_SET_FREEABLE(cachep, i);
3686 #endif
3687 spin_unlock(&l3->list_lock);
3688 ac->avail -= batchcount;
3689 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3693 * Release an obj back to its cache. If the obj has a constructed state, it must
3694 * be in this state _before_ it is released. Called with disabled ints.
3696 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3697 unsigned long caller)
3699 struct array_cache *ac = cpu_cache_get(cachep);
3701 check_irq_off();
3702 kmemleak_free_recursive(objp, cachep->flags);
3703 objp = cache_free_debugcheck(cachep, objp, caller);
3705 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3708 * Skip calling cache_free_alien() when the platform is not numa.
3709 * This will avoid cache misses that happen while accessing slabp (which
3710 * is per page memory reference) to get nodeid. Instead use a global
3711 * variable to skip the call, which is mostly likely to be present in
3712 * the cache.
3714 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3715 return;
3717 if (likely(ac->avail < ac->limit)) {
3718 STATS_INC_FREEHIT(cachep);
3719 } else {
3720 STATS_INC_FREEMISS(cachep);
3721 cache_flusharray(cachep, ac);
3724 ac_put_obj(cachep, ac, objp);
3728 * kmem_cache_alloc - Allocate an object
3729 * @cachep: The cache to allocate from.
3730 * @flags: See kmalloc().
3732 * Allocate an object from this cache. The flags are only relevant
3733 * if the cache has no available objects.
3735 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3737 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3739 trace_kmem_cache_alloc(_RET_IP_, ret,
3740 cachep->object_size, cachep->size, flags);
3742 return ret;
3744 EXPORT_SYMBOL(kmem_cache_alloc);
3746 #ifdef CONFIG_TRACING
3747 void *
3748 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3750 void *ret;
3752 ret = slab_alloc(cachep, flags, _RET_IP_);
3754 trace_kmalloc(_RET_IP_, ret,
3755 size, cachep->size, flags);
3756 return ret;
3758 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3759 #endif
3761 #ifdef CONFIG_NUMA
3762 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3764 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3766 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3767 cachep->object_size, cachep->size,
3768 flags, nodeid);
3770 return ret;
3772 EXPORT_SYMBOL(kmem_cache_alloc_node);
3774 #ifdef CONFIG_TRACING
3775 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3776 gfp_t flags,
3777 int nodeid,
3778 size_t size)
3780 void *ret;
3782 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3784 trace_kmalloc_node(_RET_IP_, ret,
3785 size, cachep->size,
3786 flags, nodeid);
3787 return ret;
3789 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3790 #endif
3792 static __always_inline void *
3793 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3795 struct kmem_cache *cachep;
3797 cachep = kmem_find_general_cachep(size, flags);
3798 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3799 return cachep;
3800 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3803 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3804 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3806 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3808 EXPORT_SYMBOL(__kmalloc_node);
3810 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3811 int node, unsigned long caller)
3813 return __do_kmalloc_node(size, flags, node, caller);
3815 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3816 #else
3817 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3819 return __do_kmalloc_node(size, flags, node, 0);
3821 EXPORT_SYMBOL(__kmalloc_node);
3822 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3823 #endif /* CONFIG_NUMA */
3826 * __do_kmalloc - allocate memory
3827 * @size: how many bytes of memory are required.
3828 * @flags: the type of memory to allocate (see kmalloc).
3829 * @caller: function caller for debug tracking of the caller
3831 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3832 unsigned long caller)
3834 struct kmem_cache *cachep;
3835 void *ret;
3837 /* If you want to save a few bytes .text space: replace
3838 * __ with kmem_.
3839 * Then kmalloc uses the uninlined functions instead of the inline
3840 * functions.
3842 cachep = __find_general_cachep(size, flags);
3843 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3844 return cachep;
3845 ret = slab_alloc(cachep, flags, caller);
3847 trace_kmalloc(caller, ret,
3848 size, cachep->size, flags);
3850 return ret;
3854 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3855 void *__kmalloc(size_t size, gfp_t flags)
3857 return __do_kmalloc(size, flags, _RET_IP_);
3859 EXPORT_SYMBOL(__kmalloc);
3861 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3863 return __do_kmalloc(size, flags, caller);
3865 EXPORT_SYMBOL(__kmalloc_track_caller);
3867 #else
3868 void *__kmalloc(size_t size, gfp_t flags)
3870 return __do_kmalloc(size, flags, 0);
3872 EXPORT_SYMBOL(__kmalloc);
3873 #endif
3876 * kmem_cache_free - Deallocate an object
3877 * @cachep: The cache the allocation was from.
3878 * @objp: The previously allocated object.
3880 * Free an object which was previously allocated from this
3881 * cache.
3883 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3885 unsigned long flags;
3887 local_irq_save(flags);
3888 debug_check_no_locks_freed(objp, cachep->object_size);
3889 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3890 debug_check_no_obj_freed(objp, cachep->object_size);
3891 __cache_free(cachep, objp, _RET_IP_);
3892 local_irq_restore(flags);
3894 trace_kmem_cache_free(_RET_IP_, objp);
3896 EXPORT_SYMBOL(kmem_cache_free);
3899 * kfree - free previously allocated memory
3900 * @objp: pointer returned by kmalloc.
3902 * If @objp is NULL, no operation is performed.
3904 * Don't free memory not originally allocated by kmalloc()
3905 * or you will run into trouble.
3907 void kfree(const void *objp)
3909 struct kmem_cache *c;
3910 unsigned long flags;
3912 trace_kfree(_RET_IP_, objp);
3914 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3915 return;
3916 local_irq_save(flags);
3917 kfree_debugcheck(objp);
3918 c = virt_to_cache(objp);
3919 debug_check_no_locks_freed(objp, c->object_size);
3921 debug_check_no_obj_freed(objp, c->object_size);
3922 __cache_free(c, (void *)objp, _RET_IP_);
3923 local_irq_restore(flags);
3925 EXPORT_SYMBOL(kfree);
3928 * This initializes kmem_list3 or resizes various caches for all nodes.
3930 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3932 int node;
3933 struct kmem_list3 *l3;
3934 struct array_cache *new_shared;
3935 struct array_cache **new_alien = NULL;
3937 for_each_online_node(node) {
3939 if (use_alien_caches) {
3940 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3941 if (!new_alien)
3942 goto fail;
3945 new_shared = NULL;
3946 if (cachep->shared) {
3947 new_shared = alloc_arraycache(node,
3948 cachep->shared*cachep->batchcount,
3949 0xbaadf00d, gfp);
3950 if (!new_shared) {
3951 free_alien_cache(new_alien);
3952 goto fail;
3956 l3 = cachep->nodelists[node];
3957 if (l3) {
3958 struct array_cache *shared = l3->shared;
3960 spin_lock_irq(&l3->list_lock);
3962 if (shared)
3963 free_block(cachep, shared->entry,
3964 shared->avail, node);
3966 l3->shared = new_shared;
3967 if (!l3->alien) {
3968 l3->alien = new_alien;
3969 new_alien = NULL;
3971 l3->free_limit = (1 + nr_cpus_node(node)) *
3972 cachep->batchcount + cachep->num;
3973 spin_unlock_irq(&l3->list_lock);
3974 kfree(shared);
3975 free_alien_cache(new_alien);
3976 continue;
3978 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3979 if (!l3) {
3980 free_alien_cache(new_alien);
3981 kfree(new_shared);
3982 goto fail;
3985 kmem_list3_init(l3);
3986 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3987 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3988 l3->shared = new_shared;
3989 l3->alien = new_alien;
3990 l3->free_limit = (1 + nr_cpus_node(node)) *
3991 cachep->batchcount + cachep->num;
3992 cachep->nodelists[node] = l3;
3994 return 0;
3996 fail:
3997 if (!cachep->list.next) {
3998 /* Cache is not active yet. Roll back what we did */
3999 node--;
4000 while (node >= 0) {
4001 if (cachep->nodelists[node]) {
4002 l3 = cachep->nodelists[node];
4004 kfree(l3->shared);
4005 free_alien_cache(l3->alien);
4006 kfree(l3);
4007 cachep->nodelists[node] = NULL;
4009 node--;
4012 return -ENOMEM;
4015 struct ccupdate_struct {
4016 struct kmem_cache *cachep;
4017 struct array_cache *new[0];
4020 static void do_ccupdate_local(void *info)
4022 struct ccupdate_struct *new = info;
4023 struct array_cache *old;
4025 check_irq_off();
4026 old = cpu_cache_get(new->cachep);
4028 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4029 new->new[smp_processor_id()] = old;
4032 /* Always called with the slab_mutex held */
4033 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4034 int batchcount, int shared, gfp_t gfp)
4036 struct ccupdate_struct *new;
4037 int i;
4039 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4040 gfp);
4041 if (!new)
4042 return -ENOMEM;
4044 for_each_online_cpu(i) {
4045 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4046 batchcount, gfp);
4047 if (!new->new[i]) {
4048 for (i--; i >= 0; i--)
4049 kfree(new->new[i]);
4050 kfree(new);
4051 return -ENOMEM;
4054 new->cachep = cachep;
4056 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4058 check_irq_on();
4059 cachep->batchcount = batchcount;
4060 cachep->limit = limit;
4061 cachep->shared = shared;
4063 for_each_online_cpu(i) {
4064 struct array_cache *ccold = new->new[i];
4065 if (!ccold)
4066 continue;
4067 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4068 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4069 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4070 kfree(ccold);
4072 kfree(new);
4073 return alloc_kmemlist(cachep, gfp);
4076 /* Called with slab_mutex held always */
4077 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4079 int err;
4080 int limit, shared;
4083 * The head array serves three purposes:
4084 * - create a LIFO ordering, i.e. return objects that are cache-warm
4085 * - reduce the number of spinlock operations.
4086 * - reduce the number of linked list operations on the slab and
4087 * bufctl chains: array operations are cheaper.
4088 * The numbers are guessed, we should auto-tune as described by
4089 * Bonwick.
4091 if (cachep->size > 131072)
4092 limit = 1;
4093 else if (cachep->size > PAGE_SIZE)
4094 limit = 8;
4095 else if (cachep->size > 1024)
4096 limit = 24;
4097 else if (cachep->size > 256)
4098 limit = 54;
4099 else
4100 limit = 120;
4103 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4104 * allocation behaviour: Most allocs on one cpu, most free operations
4105 * on another cpu. For these cases, an efficient object passing between
4106 * cpus is necessary. This is provided by a shared array. The array
4107 * replaces Bonwick's magazine layer.
4108 * On uniprocessor, it's functionally equivalent (but less efficient)
4109 * to a larger limit. Thus disabled by default.
4111 shared = 0;
4112 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4113 shared = 8;
4115 #if DEBUG
4117 * With debugging enabled, large batchcount lead to excessively long
4118 * periods with disabled local interrupts. Limit the batchcount
4120 if (limit > 32)
4121 limit = 32;
4122 #endif
4123 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4124 if (err)
4125 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4126 cachep->name, -err);
4127 return err;
4131 * Drain an array if it contains any elements taking the l3 lock only if
4132 * necessary. Note that the l3 listlock also protects the array_cache
4133 * if drain_array() is used on the shared array.
4135 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4136 struct array_cache *ac, int force, int node)
4138 int tofree;
4140 if (!ac || !ac->avail)
4141 return;
4142 if (ac->touched && !force) {
4143 ac->touched = 0;
4144 } else {
4145 spin_lock_irq(&l3->list_lock);
4146 if (ac->avail) {
4147 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4148 if (tofree > ac->avail)
4149 tofree = (ac->avail + 1) / 2;
4150 free_block(cachep, ac->entry, tofree, node);
4151 ac->avail -= tofree;
4152 memmove(ac->entry, &(ac->entry[tofree]),
4153 sizeof(void *) * ac->avail);
4155 spin_unlock_irq(&l3->list_lock);
4160 * cache_reap - Reclaim memory from caches.
4161 * @w: work descriptor
4163 * Called from workqueue/eventd every few seconds.
4164 * Purpose:
4165 * - clear the per-cpu caches for this CPU.
4166 * - return freeable pages to the main free memory pool.
4168 * If we cannot acquire the cache chain mutex then just give up - we'll try
4169 * again on the next iteration.
4171 static void cache_reap(struct work_struct *w)
4173 struct kmem_cache *searchp;
4174 struct kmem_list3 *l3;
4175 int node = numa_mem_id();
4176 struct delayed_work *work = to_delayed_work(w);
4178 if (!mutex_trylock(&slab_mutex))
4179 /* Give up. Setup the next iteration. */
4180 goto out;
4182 list_for_each_entry(searchp, &slab_caches, list) {
4183 check_irq_on();
4186 * We only take the l3 lock if absolutely necessary and we
4187 * have established with reasonable certainty that
4188 * we can do some work if the lock was obtained.
4190 l3 = searchp->nodelists[node];
4192 reap_alien(searchp, l3);
4194 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4197 * These are racy checks but it does not matter
4198 * if we skip one check or scan twice.
4200 if (time_after(l3->next_reap, jiffies))
4201 goto next;
4203 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4205 drain_array(searchp, l3, l3->shared, 0, node);
4207 if (l3->free_touched)
4208 l3->free_touched = 0;
4209 else {
4210 int freed;
4212 freed = drain_freelist(searchp, l3, (l3->free_limit +
4213 5 * searchp->num - 1) / (5 * searchp->num));
4214 STATS_ADD_REAPED(searchp, freed);
4216 next:
4217 cond_resched();
4219 check_irq_on();
4220 mutex_unlock(&slab_mutex);
4221 next_reap_node();
4222 out:
4223 /* Set up the next iteration */
4224 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4227 #ifdef CONFIG_SLABINFO
4228 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4230 struct slab *slabp;
4231 unsigned long active_objs;
4232 unsigned long num_objs;
4233 unsigned long active_slabs = 0;
4234 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4235 const char *name;
4236 char *error = NULL;
4237 int node;
4238 struct kmem_list3 *l3;
4240 active_objs = 0;
4241 num_slabs = 0;
4242 for_each_online_node(node) {
4243 l3 = cachep->nodelists[node];
4244 if (!l3)
4245 continue;
4247 check_irq_on();
4248 spin_lock_irq(&l3->list_lock);
4250 list_for_each_entry(slabp, &l3->slabs_full, list) {
4251 if (slabp->inuse != cachep->num && !error)
4252 error = "slabs_full accounting error";
4253 active_objs += cachep->num;
4254 active_slabs++;
4256 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4257 if (slabp->inuse == cachep->num && !error)
4258 error = "slabs_partial inuse accounting error";
4259 if (!slabp->inuse && !error)
4260 error = "slabs_partial/inuse accounting error";
4261 active_objs += slabp->inuse;
4262 active_slabs++;
4264 list_for_each_entry(slabp, &l3->slabs_free, list) {
4265 if (slabp->inuse && !error)
4266 error = "slabs_free/inuse accounting error";
4267 num_slabs++;
4269 free_objects += l3->free_objects;
4270 if (l3->shared)
4271 shared_avail += l3->shared->avail;
4273 spin_unlock_irq(&l3->list_lock);
4275 num_slabs += active_slabs;
4276 num_objs = num_slabs * cachep->num;
4277 if (num_objs - active_objs != free_objects && !error)
4278 error = "free_objects accounting error";
4280 name = cachep->name;
4281 if (error)
4282 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4284 sinfo->active_objs = active_objs;
4285 sinfo->num_objs = num_objs;
4286 sinfo->active_slabs = active_slabs;
4287 sinfo->num_slabs = num_slabs;
4288 sinfo->shared_avail = shared_avail;
4289 sinfo->limit = cachep->limit;
4290 sinfo->batchcount = cachep->batchcount;
4291 sinfo->shared = cachep->shared;
4292 sinfo->objects_per_slab = cachep->num;
4293 sinfo->cache_order = cachep->gfporder;
4296 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4298 #if STATS
4299 { /* list3 stats */
4300 unsigned long high = cachep->high_mark;
4301 unsigned long allocs = cachep->num_allocations;
4302 unsigned long grown = cachep->grown;
4303 unsigned long reaped = cachep->reaped;
4304 unsigned long errors = cachep->errors;
4305 unsigned long max_freeable = cachep->max_freeable;
4306 unsigned long node_allocs = cachep->node_allocs;
4307 unsigned long node_frees = cachep->node_frees;
4308 unsigned long overflows = cachep->node_overflow;
4310 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4311 "%4lu %4lu %4lu %4lu %4lu",
4312 allocs, high, grown,
4313 reaped, errors, max_freeable, node_allocs,
4314 node_frees, overflows);
4316 /* cpu stats */
4318 unsigned long allochit = atomic_read(&cachep->allochit);
4319 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4320 unsigned long freehit = atomic_read(&cachep->freehit);
4321 unsigned long freemiss = atomic_read(&cachep->freemiss);
4323 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4324 allochit, allocmiss, freehit, freemiss);
4326 #endif
4329 #define MAX_SLABINFO_WRITE 128
4331 * slabinfo_write - Tuning for the slab allocator
4332 * @file: unused
4333 * @buffer: user buffer
4334 * @count: data length
4335 * @ppos: unused
4337 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4338 size_t count, loff_t *ppos)
4340 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4341 int limit, batchcount, shared, res;
4342 struct kmem_cache *cachep;
4344 if (count > MAX_SLABINFO_WRITE)
4345 return -EINVAL;
4346 if (copy_from_user(&kbuf, buffer, count))
4347 return -EFAULT;
4348 kbuf[MAX_SLABINFO_WRITE] = '\0';
4350 tmp = strchr(kbuf, ' ');
4351 if (!tmp)
4352 return -EINVAL;
4353 *tmp = '\0';
4354 tmp++;
4355 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4356 return -EINVAL;
4358 /* Find the cache in the chain of caches. */
4359 mutex_lock(&slab_mutex);
4360 res = -EINVAL;
4361 list_for_each_entry(cachep, &slab_caches, list) {
4362 if (!strcmp(cachep->name, kbuf)) {
4363 if (limit < 1 || batchcount < 1 ||
4364 batchcount > limit || shared < 0) {
4365 res = 0;
4366 } else {
4367 res = do_tune_cpucache(cachep, limit,
4368 batchcount, shared,
4369 GFP_KERNEL);
4371 break;
4374 mutex_unlock(&slab_mutex);
4375 if (res >= 0)
4376 res = count;
4377 return res;
4380 #ifdef CONFIG_DEBUG_SLAB_LEAK
4382 static void *leaks_start(struct seq_file *m, loff_t *pos)
4384 mutex_lock(&slab_mutex);
4385 return seq_list_start(&slab_caches, *pos);
4388 static inline int add_caller(unsigned long *n, unsigned long v)
4390 unsigned long *p;
4391 int l;
4392 if (!v)
4393 return 1;
4394 l = n[1];
4395 p = n + 2;
4396 while (l) {
4397 int i = l/2;
4398 unsigned long *q = p + 2 * i;
4399 if (*q == v) {
4400 q[1]++;
4401 return 1;
4403 if (*q > v) {
4404 l = i;
4405 } else {
4406 p = q + 2;
4407 l -= i + 1;
4410 if (++n[1] == n[0])
4411 return 0;
4412 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4413 p[0] = v;
4414 p[1] = 1;
4415 return 1;
4418 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4420 void *p;
4421 int i;
4422 if (n[0] == n[1])
4423 return;
4424 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4425 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4426 continue;
4427 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4428 return;
4432 static void show_symbol(struct seq_file *m, unsigned long address)
4434 #ifdef CONFIG_KALLSYMS
4435 unsigned long offset, size;
4436 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4438 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4439 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4440 if (modname[0])
4441 seq_printf(m, " [%s]", modname);
4442 return;
4444 #endif
4445 seq_printf(m, "%p", (void *)address);
4448 static int leaks_show(struct seq_file *m, void *p)
4450 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4451 struct slab *slabp;
4452 struct kmem_list3 *l3;
4453 const char *name;
4454 unsigned long *n = m->private;
4455 int node;
4456 int i;
4458 if (!(cachep->flags & SLAB_STORE_USER))
4459 return 0;
4460 if (!(cachep->flags & SLAB_RED_ZONE))
4461 return 0;
4463 /* OK, we can do it */
4465 n[1] = 0;
4467 for_each_online_node(node) {
4468 l3 = cachep->nodelists[node];
4469 if (!l3)
4470 continue;
4472 check_irq_on();
4473 spin_lock_irq(&l3->list_lock);
4475 list_for_each_entry(slabp, &l3->slabs_full, list)
4476 handle_slab(n, cachep, slabp);
4477 list_for_each_entry(slabp, &l3->slabs_partial, list)
4478 handle_slab(n, cachep, slabp);
4479 spin_unlock_irq(&l3->list_lock);
4481 name = cachep->name;
4482 if (n[0] == n[1]) {
4483 /* Increase the buffer size */
4484 mutex_unlock(&slab_mutex);
4485 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4486 if (!m->private) {
4487 /* Too bad, we are really out */
4488 m->private = n;
4489 mutex_lock(&slab_mutex);
4490 return -ENOMEM;
4492 *(unsigned long *)m->private = n[0] * 2;
4493 kfree(n);
4494 mutex_lock(&slab_mutex);
4495 /* Now make sure this entry will be retried */
4496 m->count = m->size;
4497 return 0;
4499 for (i = 0; i < n[1]; i++) {
4500 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4501 show_symbol(m, n[2*i+2]);
4502 seq_putc(m, '\n');
4505 return 0;
4508 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4510 return seq_list_next(p, &slab_caches, pos);
4513 static void s_stop(struct seq_file *m, void *p)
4515 mutex_unlock(&slab_mutex);
4518 static const struct seq_operations slabstats_op = {
4519 .start = leaks_start,
4520 .next = s_next,
4521 .stop = s_stop,
4522 .show = leaks_show,
4525 static int slabstats_open(struct inode *inode, struct file *file)
4527 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4528 int ret = -ENOMEM;
4529 if (n) {
4530 ret = seq_open(file, &slabstats_op);
4531 if (!ret) {
4532 struct seq_file *m = file->private_data;
4533 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4534 m->private = n;
4535 n = NULL;
4537 kfree(n);
4539 return ret;
4542 static const struct file_operations proc_slabstats_operations = {
4543 .open = slabstats_open,
4544 .read = seq_read,
4545 .llseek = seq_lseek,
4546 .release = seq_release_private,
4548 #endif
4550 static int __init slab_proc_init(void)
4552 #ifdef CONFIG_DEBUG_SLAB_LEAK
4553 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4554 #endif
4555 return 0;
4557 module_init(slab_proc_init);
4558 #endif
4561 * ksize - get the actual amount of memory allocated for a given object
4562 * @objp: Pointer to the object
4564 * kmalloc may internally round up allocations and return more memory
4565 * than requested. ksize() can be used to determine the actual amount of
4566 * memory allocated. The caller may use this additional memory, even though
4567 * a smaller amount of memory was initially specified with the kmalloc call.
4568 * The caller must guarantee that objp points to a valid object previously
4569 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4570 * must not be freed during the duration of the call.
4572 size_t ksize(const void *objp)
4574 BUG_ON(!objp);
4575 if (unlikely(objp == ZERO_SIZE_PTR))
4576 return 0;
4578 return virt_to_cache(objp)->object_size;
4580 EXPORT_SYMBOL(ksize);