Merge branches 'x86/mce' and 'x86/urgent' into perf/mce
[linux-2.6/cjktty.git] / block / cfq-iosched.c
blob069a61017c02c9ee4307a43ba97786f86a1ec196
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per process-grouping structure
76 struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
115 pid_t pid;
119 * Per block device queue structure
121 struct cfq_data {
122 struct request_queue *queue;
125 * rr list of queues with requests and the count of them
127 struct cfq_rb_root service_tree;
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
136 unsigned int busy_queues;
138 int rq_in_driver[2];
139 int sync_flight;
142 * queue-depth detection
144 int rq_queued;
145 int hw_tag;
146 int hw_tag_samples;
147 int rq_in_driver_peak;
150 * idle window management
152 struct timer_list idle_slice_timer;
153 struct work_struct unplug_work;
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
159 * async queue for each priority case
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
164 sector_t last_position;
167 * tunables, see top of file
169 unsigned int cfq_quantum;
170 unsigned int cfq_fifo_expire[2];
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
176 unsigned int cfq_latency;
178 struct list_head cic_list;
181 * Fallback dummy cfqq for extreme OOM conditions
183 struct cfq_queue oom_cfqq;
185 unsigned long last_end_sync_rq;
188 enum cfqq_state_flags {
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
201 #define CFQ_CFQQ_FNS(name) \
202 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
206 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
210 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
215 CFQ_CFQQ_FNS(on_rr);
216 CFQ_CFQQ_FNS(wait_request);
217 CFQ_CFQQ_FNS(must_dispatch);
218 CFQ_CFQQ_FNS(must_alloc_slice);
219 CFQ_CFQQ_FNS(fifo_expire);
220 CFQ_CFQQ_FNS(idle_window);
221 CFQ_CFQQ_FNS(prio_changed);
222 CFQ_CFQQ_FNS(slice_new);
223 CFQ_CFQQ_FNS(sync);
224 CFQ_CFQQ_FNS(coop);
225 #undef CFQ_CFQQ_FNS
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
232 static void cfq_dispatch_insert(struct request_queue *, struct request *);
233 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
234 struct io_context *, gfp_t);
235 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
236 struct io_context *);
238 static inline int rq_in_driver(struct cfq_data *cfqd)
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
243 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244 bool is_sync)
246 return cic->cfqq[is_sync];
249 static inline void cic_set_cfqq(struct cfq_io_context *cic,
250 struct cfq_queue *cfqq, bool is_sync)
252 cic->cfqq[is_sync] = cfqq;
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
259 static inline bool cfq_bio_sync(struct bio *bio)
261 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
265 * scheduler run of queue, if there are requests pending and no one in the
266 * driver that will restart queueing
268 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
270 if (cfqd->busy_queues) {
271 cfq_log(cfqd, "schedule dispatch");
272 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
276 static int cfq_queue_empty(struct request_queue *q)
278 struct cfq_data *cfqd = q->elevator->elevator_data;
280 return !cfqd->busy_queues;
284 * Scale schedule slice based on io priority. Use the sync time slice only
285 * if a queue is marked sync and has sync io queued. A sync queue with async
286 * io only, should not get full sync slice length.
288 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
289 unsigned short prio)
291 const int base_slice = cfqd->cfq_slice[sync];
293 WARN_ON(prio >= IOPRIO_BE_NR);
295 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
298 static inline int
299 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
301 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
304 static inline void
305 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
307 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
308 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
312 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313 * isn't valid until the first request from the dispatch is activated
314 * and the slice time set.
316 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
318 if (cfq_cfqq_slice_new(cfqq))
319 return 0;
320 if (time_before(jiffies, cfqq->slice_end))
321 return 0;
323 return 1;
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closest to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
331 static struct request *
332 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
334 sector_t last, s1, s2, d1 = 0, d2 = 0;
335 unsigned long back_max;
336 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
337 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
338 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
340 if (rq1 == NULL || rq1 == rq2)
341 return rq2;
342 if (rq2 == NULL)
343 return rq1;
345 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
346 return rq1;
347 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
348 return rq2;
349 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
350 return rq1;
351 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
352 return rq2;
354 s1 = blk_rq_pos(rq1);
355 s2 = blk_rq_pos(rq2);
357 last = cfqd->last_position;
360 * by definition, 1KiB is 2 sectors
362 back_max = cfqd->cfq_back_max * 2;
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
369 if (s1 >= last)
370 d1 = s1 - last;
371 else if (s1 + back_max >= last)
372 d1 = (last - s1) * cfqd->cfq_back_penalty;
373 else
374 wrap |= CFQ_RQ1_WRAP;
376 if (s2 >= last)
377 d2 = s2 - last;
378 else if (s2 + back_max >= last)
379 d2 = (last - s2) * cfqd->cfq_back_penalty;
380 else
381 wrap |= CFQ_RQ2_WRAP;
383 /* Found required data */
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
389 switch (wrap) {
390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
391 if (d1 < d2)
392 return rq1;
393 else if (d2 < d1)
394 return rq2;
395 else {
396 if (s1 >= s2)
397 return rq1;
398 else
399 return rq2;
402 case CFQ_RQ2_WRAP:
403 return rq1;
404 case CFQ_RQ1_WRAP:
405 return rq2;
406 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
407 default:
409 * Since both rqs are wrapped,
410 * start with the one that's further behind head
411 * (--> only *one* back seek required),
412 * since back seek takes more time than forward.
414 if (s1 <= s2)
415 return rq1;
416 else
417 return rq2;
422 * The below is leftmost cache rbtree addon
424 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
426 if (!root->left)
427 root->left = rb_first(&root->rb);
429 if (root->left)
430 return rb_entry(root->left, struct cfq_queue, rb_node);
432 return NULL;
435 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
437 rb_erase(n, root);
438 RB_CLEAR_NODE(n);
441 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
443 if (root->left == n)
444 root->left = NULL;
445 rb_erase_init(n, &root->rb);
449 * would be nice to take fifo expire time into account as well
451 static struct request *
452 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
453 struct request *last)
455 struct rb_node *rbnext = rb_next(&last->rb_node);
456 struct rb_node *rbprev = rb_prev(&last->rb_node);
457 struct request *next = NULL, *prev = NULL;
459 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
461 if (rbprev)
462 prev = rb_entry_rq(rbprev);
464 if (rbnext)
465 next = rb_entry_rq(rbnext);
466 else {
467 rbnext = rb_first(&cfqq->sort_list);
468 if (rbnext && rbnext != &last->rb_node)
469 next = rb_entry_rq(rbnext);
472 return cfq_choose_req(cfqd, next, prev);
475 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
476 struct cfq_queue *cfqq)
479 * just an approximation, should be ok.
481 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
482 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
486 * The cfqd->service_tree holds all pending cfq_queue's that have
487 * requests waiting to be processed. It is sorted in the order that
488 * we will service the queues.
490 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
491 bool add_front)
493 struct rb_node **p, *parent;
494 struct cfq_queue *__cfqq;
495 unsigned long rb_key;
496 int left;
498 if (cfq_class_idle(cfqq)) {
499 rb_key = CFQ_IDLE_DELAY;
500 parent = rb_last(&cfqd->service_tree.rb);
501 if (parent && parent != &cfqq->rb_node) {
502 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
503 rb_key += __cfqq->rb_key;
504 } else
505 rb_key += jiffies;
506 } else if (!add_front) {
508 * Get our rb key offset. Subtract any residual slice
509 * value carried from last service. A negative resid
510 * count indicates slice overrun, and this should position
511 * the next service time further away in the tree.
513 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
514 rb_key -= cfqq->slice_resid;
515 cfqq->slice_resid = 0;
516 } else {
517 rb_key = -HZ;
518 __cfqq = cfq_rb_first(&cfqd->service_tree);
519 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
522 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
524 * same position, nothing more to do
526 if (rb_key == cfqq->rb_key)
527 return;
529 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
532 left = 1;
533 parent = NULL;
534 p = &cfqd->service_tree.rb.rb_node;
535 while (*p) {
536 struct rb_node **n;
538 parent = *p;
539 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
542 * sort RT queues first, we always want to give
543 * preference to them. IDLE queues goes to the back.
544 * after that, sort on the next service time.
546 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
547 n = &(*p)->rb_left;
548 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
549 n = &(*p)->rb_right;
550 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
551 n = &(*p)->rb_left;
552 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
553 n = &(*p)->rb_right;
554 else if (time_before(rb_key, __cfqq->rb_key))
555 n = &(*p)->rb_left;
556 else
557 n = &(*p)->rb_right;
559 if (n == &(*p)->rb_right)
560 left = 0;
562 p = n;
565 if (left)
566 cfqd->service_tree.left = &cfqq->rb_node;
568 cfqq->rb_key = rb_key;
569 rb_link_node(&cfqq->rb_node, parent, p);
570 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
573 static struct cfq_queue *
574 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
575 sector_t sector, struct rb_node **ret_parent,
576 struct rb_node ***rb_link)
578 struct rb_node **p, *parent;
579 struct cfq_queue *cfqq = NULL;
581 parent = NULL;
582 p = &root->rb_node;
583 while (*p) {
584 struct rb_node **n;
586 parent = *p;
587 cfqq = rb_entry(parent, struct cfq_queue, p_node);
590 * Sort strictly based on sector. Smallest to the left,
591 * largest to the right.
593 if (sector > blk_rq_pos(cfqq->next_rq))
594 n = &(*p)->rb_right;
595 else if (sector < blk_rq_pos(cfqq->next_rq))
596 n = &(*p)->rb_left;
597 else
598 break;
599 p = n;
600 cfqq = NULL;
603 *ret_parent = parent;
604 if (rb_link)
605 *rb_link = p;
606 return cfqq;
609 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
611 struct rb_node **p, *parent;
612 struct cfq_queue *__cfqq;
614 if (cfqq->p_root) {
615 rb_erase(&cfqq->p_node, cfqq->p_root);
616 cfqq->p_root = NULL;
619 if (cfq_class_idle(cfqq))
620 return;
621 if (!cfqq->next_rq)
622 return;
624 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
625 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
626 blk_rq_pos(cfqq->next_rq), &parent, &p);
627 if (!__cfqq) {
628 rb_link_node(&cfqq->p_node, parent, p);
629 rb_insert_color(&cfqq->p_node, cfqq->p_root);
630 } else
631 cfqq->p_root = NULL;
635 * Update cfqq's position in the service tree.
637 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
640 * Resorting requires the cfqq to be on the RR list already.
642 if (cfq_cfqq_on_rr(cfqq)) {
643 cfq_service_tree_add(cfqd, cfqq, 0);
644 cfq_prio_tree_add(cfqd, cfqq);
649 * add to busy list of queues for service, trying to be fair in ordering
650 * the pending list according to last request service
652 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
654 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
655 BUG_ON(cfq_cfqq_on_rr(cfqq));
656 cfq_mark_cfqq_on_rr(cfqq);
657 cfqd->busy_queues++;
659 cfq_resort_rr_list(cfqd, cfqq);
663 * Called when the cfqq no longer has requests pending, remove it from
664 * the service tree.
666 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
668 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
669 BUG_ON(!cfq_cfqq_on_rr(cfqq));
670 cfq_clear_cfqq_on_rr(cfqq);
672 if (!RB_EMPTY_NODE(&cfqq->rb_node))
673 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
674 if (cfqq->p_root) {
675 rb_erase(&cfqq->p_node, cfqq->p_root);
676 cfqq->p_root = NULL;
679 BUG_ON(!cfqd->busy_queues);
680 cfqd->busy_queues--;
684 * rb tree support functions
686 static void cfq_del_rq_rb(struct request *rq)
688 struct cfq_queue *cfqq = RQ_CFQQ(rq);
689 struct cfq_data *cfqd = cfqq->cfqd;
690 const int sync = rq_is_sync(rq);
692 BUG_ON(!cfqq->queued[sync]);
693 cfqq->queued[sync]--;
695 elv_rb_del(&cfqq->sort_list, rq);
697 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
698 cfq_del_cfqq_rr(cfqd, cfqq);
701 static void cfq_add_rq_rb(struct request *rq)
703 struct cfq_queue *cfqq = RQ_CFQQ(rq);
704 struct cfq_data *cfqd = cfqq->cfqd;
705 struct request *__alias, *prev;
707 cfqq->queued[rq_is_sync(rq)]++;
710 * looks a little odd, but the first insert might return an alias.
711 * if that happens, put the alias on the dispatch list
713 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
714 cfq_dispatch_insert(cfqd->queue, __alias);
716 if (!cfq_cfqq_on_rr(cfqq))
717 cfq_add_cfqq_rr(cfqd, cfqq);
720 * check if this request is a better next-serve candidate
722 prev = cfqq->next_rq;
723 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
726 * adjust priority tree position, if ->next_rq changes
728 if (prev != cfqq->next_rq)
729 cfq_prio_tree_add(cfqd, cfqq);
731 BUG_ON(!cfqq->next_rq);
734 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
736 elv_rb_del(&cfqq->sort_list, rq);
737 cfqq->queued[rq_is_sync(rq)]--;
738 cfq_add_rq_rb(rq);
741 static struct request *
742 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
744 struct task_struct *tsk = current;
745 struct cfq_io_context *cic;
746 struct cfq_queue *cfqq;
748 cic = cfq_cic_lookup(cfqd, tsk->io_context);
749 if (!cic)
750 return NULL;
752 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
753 if (cfqq) {
754 sector_t sector = bio->bi_sector + bio_sectors(bio);
756 return elv_rb_find(&cfqq->sort_list, sector);
759 return NULL;
762 static void cfq_activate_request(struct request_queue *q, struct request *rq)
764 struct cfq_data *cfqd = q->elevator->elevator_data;
766 cfqd->rq_in_driver[rq_is_sync(rq)]++;
767 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
768 rq_in_driver(cfqd));
770 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
773 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
775 struct cfq_data *cfqd = q->elevator->elevator_data;
776 const int sync = rq_is_sync(rq);
778 WARN_ON(!cfqd->rq_in_driver[sync]);
779 cfqd->rq_in_driver[sync]--;
780 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
781 rq_in_driver(cfqd));
784 static void cfq_remove_request(struct request *rq)
786 struct cfq_queue *cfqq = RQ_CFQQ(rq);
788 if (cfqq->next_rq == rq)
789 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
791 list_del_init(&rq->queuelist);
792 cfq_del_rq_rb(rq);
794 cfqq->cfqd->rq_queued--;
795 if (rq_is_meta(rq)) {
796 WARN_ON(!cfqq->meta_pending);
797 cfqq->meta_pending--;
801 static int cfq_merge(struct request_queue *q, struct request **req,
802 struct bio *bio)
804 struct cfq_data *cfqd = q->elevator->elevator_data;
805 struct request *__rq;
807 __rq = cfq_find_rq_fmerge(cfqd, bio);
808 if (__rq && elv_rq_merge_ok(__rq, bio)) {
809 *req = __rq;
810 return ELEVATOR_FRONT_MERGE;
813 return ELEVATOR_NO_MERGE;
816 static void cfq_merged_request(struct request_queue *q, struct request *req,
817 int type)
819 if (type == ELEVATOR_FRONT_MERGE) {
820 struct cfq_queue *cfqq = RQ_CFQQ(req);
822 cfq_reposition_rq_rb(cfqq, req);
826 static void
827 cfq_merged_requests(struct request_queue *q, struct request *rq,
828 struct request *next)
831 * reposition in fifo if next is older than rq
833 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
834 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
835 list_move(&rq->queuelist, &next->queuelist);
836 rq_set_fifo_time(rq, rq_fifo_time(next));
839 cfq_remove_request(next);
842 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
843 struct bio *bio)
845 struct cfq_data *cfqd = q->elevator->elevator_data;
846 struct cfq_io_context *cic;
847 struct cfq_queue *cfqq;
850 * Disallow merge of a sync bio into an async request.
852 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
853 return false;
856 * Lookup the cfqq that this bio will be queued with. Allow
857 * merge only if rq is queued there.
859 cic = cfq_cic_lookup(cfqd, current->io_context);
860 if (!cic)
861 return false;
863 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
864 return cfqq == RQ_CFQQ(rq);
867 static void __cfq_set_active_queue(struct cfq_data *cfqd,
868 struct cfq_queue *cfqq)
870 if (cfqq) {
871 cfq_log_cfqq(cfqd, cfqq, "set_active");
872 cfqq->slice_end = 0;
873 cfqq->slice_dispatch = 0;
875 cfq_clear_cfqq_wait_request(cfqq);
876 cfq_clear_cfqq_must_dispatch(cfqq);
877 cfq_clear_cfqq_must_alloc_slice(cfqq);
878 cfq_clear_cfqq_fifo_expire(cfqq);
879 cfq_mark_cfqq_slice_new(cfqq);
881 del_timer(&cfqd->idle_slice_timer);
884 cfqd->active_queue = cfqq;
888 * current cfqq expired its slice (or was too idle), select new one
890 static void
891 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
892 bool timed_out)
894 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
896 if (cfq_cfqq_wait_request(cfqq))
897 del_timer(&cfqd->idle_slice_timer);
899 cfq_clear_cfqq_wait_request(cfqq);
902 * store what was left of this slice, if the queue idled/timed out
904 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
905 cfqq->slice_resid = cfqq->slice_end - jiffies;
906 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
909 cfq_resort_rr_list(cfqd, cfqq);
911 if (cfqq == cfqd->active_queue)
912 cfqd->active_queue = NULL;
914 if (cfqd->active_cic) {
915 put_io_context(cfqd->active_cic->ioc);
916 cfqd->active_cic = NULL;
920 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
922 struct cfq_queue *cfqq = cfqd->active_queue;
924 if (cfqq)
925 __cfq_slice_expired(cfqd, cfqq, timed_out);
929 * Get next queue for service. Unless we have a queue preemption,
930 * we'll simply select the first cfqq in the service tree.
932 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
934 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
935 return NULL;
937 return cfq_rb_first(&cfqd->service_tree);
941 * Get and set a new active queue for service.
943 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
944 struct cfq_queue *cfqq)
946 if (!cfqq) {
947 cfqq = cfq_get_next_queue(cfqd);
948 if (cfqq)
949 cfq_clear_cfqq_coop(cfqq);
952 __cfq_set_active_queue(cfqd, cfqq);
953 return cfqq;
956 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
957 struct request *rq)
959 if (blk_rq_pos(rq) >= cfqd->last_position)
960 return blk_rq_pos(rq) - cfqd->last_position;
961 else
962 return cfqd->last_position - blk_rq_pos(rq);
965 #define CIC_SEEK_THR 8 * 1024
966 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
968 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
970 struct cfq_io_context *cic = cfqd->active_cic;
971 sector_t sdist = cic->seek_mean;
973 if (!sample_valid(cic->seek_samples))
974 sdist = CIC_SEEK_THR;
976 return cfq_dist_from_last(cfqd, rq) <= sdist;
979 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
980 struct cfq_queue *cur_cfqq)
982 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
983 struct rb_node *parent, *node;
984 struct cfq_queue *__cfqq;
985 sector_t sector = cfqd->last_position;
987 if (RB_EMPTY_ROOT(root))
988 return NULL;
991 * First, if we find a request starting at the end of the last
992 * request, choose it.
994 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
995 if (__cfqq)
996 return __cfqq;
999 * If the exact sector wasn't found, the parent of the NULL leaf
1000 * will contain the closest sector.
1002 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1003 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1004 return __cfqq;
1006 if (blk_rq_pos(__cfqq->next_rq) < sector)
1007 node = rb_next(&__cfqq->p_node);
1008 else
1009 node = rb_prev(&__cfqq->p_node);
1010 if (!node)
1011 return NULL;
1013 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1014 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1015 return __cfqq;
1017 return NULL;
1021 * cfqd - obvious
1022 * cur_cfqq - passed in so that we don't decide that the current queue is
1023 * closely cooperating with itself.
1025 * So, basically we're assuming that that cur_cfqq has dispatched at least
1026 * one request, and that cfqd->last_position reflects a position on the disk
1027 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1028 * assumption.
1030 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1031 struct cfq_queue *cur_cfqq,
1032 bool probe)
1034 struct cfq_queue *cfqq;
1037 * A valid cfq_io_context is necessary to compare requests against
1038 * the seek_mean of the current cfqq.
1040 if (!cfqd->active_cic)
1041 return NULL;
1044 * We should notice if some of the queues are cooperating, eg
1045 * working closely on the same area of the disk. In that case,
1046 * we can group them together and don't waste time idling.
1048 cfqq = cfqq_close(cfqd, cur_cfqq);
1049 if (!cfqq)
1050 return NULL;
1052 if (cfq_cfqq_coop(cfqq))
1053 return NULL;
1055 if (!probe)
1056 cfq_mark_cfqq_coop(cfqq);
1057 return cfqq;
1060 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1062 struct cfq_queue *cfqq = cfqd->active_queue;
1063 struct cfq_io_context *cic;
1064 unsigned long sl;
1067 * SSD device without seek penalty, disable idling. But only do so
1068 * for devices that support queuing, otherwise we still have a problem
1069 * with sync vs async workloads.
1071 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1072 return;
1074 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1075 WARN_ON(cfq_cfqq_slice_new(cfqq));
1078 * idle is disabled, either manually or by past process history
1080 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1081 return;
1084 * still requests with the driver, don't idle
1086 if (rq_in_driver(cfqd))
1087 return;
1090 * task has exited, don't wait
1092 cic = cfqd->active_cic;
1093 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1094 return;
1097 * If our average think time is larger than the remaining time
1098 * slice, then don't idle. This avoids overrunning the allotted
1099 * time slice.
1101 if (sample_valid(cic->ttime_samples) &&
1102 (cfqq->slice_end - jiffies < cic->ttime_mean))
1103 return;
1105 cfq_mark_cfqq_wait_request(cfqq);
1108 * we don't want to idle for seeks, but we do want to allow
1109 * fair distribution of slice time for a process doing back-to-back
1110 * seeks. so allow a little bit of time for him to submit a new rq
1112 sl = cfqd->cfq_slice_idle;
1113 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1114 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1116 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1117 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1121 * Move request from internal lists to the request queue dispatch list.
1123 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1125 struct cfq_data *cfqd = q->elevator->elevator_data;
1126 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1128 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1130 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1131 cfq_remove_request(rq);
1132 cfqq->dispatched++;
1133 elv_dispatch_sort(q, rq);
1135 if (cfq_cfqq_sync(cfqq))
1136 cfqd->sync_flight++;
1140 * return expired entry, or NULL to just start from scratch in rbtree
1142 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1144 struct request *rq = NULL;
1146 if (cfq_cfqq_fifo_expire(cfqq))
1147 return NULL;
1149 cfq_mark_cfqq_fifo_expire(cfqq);
1151 if (list_empty(&cfqq->fifo))
1152 return NULL;
1154 rq = rq_entry_fifo(cfqq->fifo.next);
1155 if (time_before(jiffies, rq_fifo_time(rq)))
1156 rq = NULL;
1158 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1159 return rq;
1162 static inline int
1163 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1165 const int base_rq = cfqd->cfq_slice_async_rq;
1167 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1169 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1173 * Select a queue for service. If we have a current active queue,
1174 * check whether to continue servicing it, or retrieve and set a new one.
1176 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1178 struct cfq_queue *cfqq, *new_cfqq = NULL;
1180 cfqq = cfqd->active_queue;
1181 if (!cfqq)
1182 goto new_queue;
1185 * The active queue has run out of time, expire it and select new.
1187 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1188 goto expire;
1191 * The active queue has requests and isn't expired, allow it to
1192 * dispatch.
1194 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1195 goto keep_queue;
1198 * If another queue has a request waiting within our mean seek
1199 * distance, let it run. The expire code will check for close
1200 * cooperators and put the close queue at the front of the service
1201 * tree.
1203 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1204 if (new_cfqq)
1205 goto expire;
1208 * No requests pending. If the active queue still has requests in
1209 * flight or is idling for a new request, allow either of these
1210 * conditions to happen (or time out) before selecting a new queue.
1212 if (timer_pending(&cfqd->idle_slice_timer) ||
1213 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1214 cfqq = NULL;
1215 goto keep_queue;
1218 expire:
1219 cfq_slice_expired(cfqd, 0);
1220 new_queue:
1221 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1222 keep_queue:
1223 return cfqq;
1226 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1228 int dispatched = 0;
1230 while (cfqq->next_rq) {
1231 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1232 dispatched++;
1235 BUG_ON(!list_empty(&cfqq->fifo));
1236 return dispatched;
1240 * Drain our current requests. Used for barriers and when switching
1241 * io schedulers on-the-fly.
1243 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1245 struct cfq_queue *cfqq;
1246 int dispatched = 0;
1248 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1249 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1251 cfq_slice_expired(cfqd, 0);
1253 BUG_ON(cfqd->busy_queues);
1255 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1256 return dispatched;
1259 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1261 unsigned int max_dispatch;
1264 * Drain async requests before we start sync IO
1266 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1267 return false;
1270 * If this is an async queue and we have sync IO in flight, let it wait
1272 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1273 return false;
1275 max_dispatch = cfqd->cfq_quantum;
1276 if (cfq_class_idle(cfqq))
1277 max_dispatch = 1;
1280 * Does this cfqq already have too much IO in flight?
1282 if (cfqq->dispatched >= max_dispatch) {
1284 * idle queue must always only have a single IO in flight
1286 if (cfq_class_idle(cfqq))
1287 return false;
1290 * We have other queues, don't allow more IO from this one
1292 if (cfqd->busy_queues > 1)
1293 return false;
1296 * Sole queue user, allow bigger slice
1298 max_dispatch *= 4;
1302 * Async queues must wait a bit before being allowed dispatch.
1303 * We also ramp up the dispatch depth gradually for async IO,
1304 * based on the last sync IO we serviced
1306 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1307 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1308 unsigned int depth;
1310 depth = last_sync / cfqd->cfq_slice[1];
1311 if (!depth && !cfqq->dispatched)
1312 depth = 1;
1313 if (depth < max_dispatch)
1314 max_dispatch = depth;
1318 * If we're below the current max, allow a dispatch
1320 return cfqq->dispatched < max_dispatch;
1324 * Dispatch a request from cfqq, moving them to the request queue
1325 * dispatch list.
1327 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1329 struct request *rq;
1331 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1333 if (!cfq_may_dispatch(cfqd, cfqq))
1334 return false;
1337 * follow expired path, else get first next available
1339 rq = cfq_check_fifo(cfqq);
1340 if (!rq)
1341 rq = cfqq->next_rq;
1344 * insert request into driver dispatch list
1346 cfq_dispatch_insert(cfqd->queue, rq);
1348 if (!cfqd->active_cic) {
1349 struct cfq_io_context *cic = RQ_CIC(rq);
1351 atomic_long_inc(&cic->ioc->refcount);
1352 cfqd->active_cic = cic;
1355 return true;
1359 * Find the cfqq that we need to service and move a request from that to the
1360 * dispatch list
1362 static int cfq_dispatch_requests(struct request_queue *q, int force)
1364 struct cfq_data *cfqd = q->elevator->elevator_data;
1365 struct cfq_queue *cfqq;
1367 if (!cfqd->busy_queues)
1368 return 0;
1370 if (unlikely(force))
1371 return cfq_forced_dispatch(cfqd);
1373 cfqq = cfq_select_queue(cfqd);
1374 if (!cfqq)
1375 return 0;
1378 * Dispatch a request from this cfqq, if it is allowed
1380 if (!cfq_dispatch_request(cfqd, cfqq))
1381 return 0;
1383 cfqq->slice_dispatch++;
1384 cfq_clear_cfqq_must_dispatch(cfqq);
1387 * expire an async queue immediately if it has used up its slice. idle
1388 * queue always expire after 1 dispatch round.
1390 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1391 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1392 cfq_class_idle(cfqq))) {
1393 cfqq->slice_end = jiffies + 1;
1394 cfq_slice_expired(cfqd, 0);
1397 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1398 return 1;
1402 * task holds one reference to the queue, dropped when task exits. each rq
1403 * in-flight on this queue also holds a reference, dropped when rq is freed.
1405 * queue lock must be held here.
1407 static void cfq_put_queue(struct cfq_queue *cfqq)
1409 struct cfq_data *cfqd = cfqq->cfqd;
1411 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1413 if (!atomic_dec_and_test(&cfqq->ref))
1414 return;
1416 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1417 BUG_ON(rb_first(&cfqq->sort_list));
1418 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1419 BUG_ON(cfq_cfqq_on_rr(cfqq));
1421 if (unlikely(cfqd->active_queue == cfqq)) {
1422 __cfq_slice_expired(cfqd, cfqq, 0);
1423 cfq_schedule_dispatch(cfqd);
1426 kmem_cache_free(cfq_pool, cfqq);
1430 * Must always be called with the rcu_read_lock() held
1432 static void
1433 __call_for_each_cic(struct io_context *ioc,
1434 void (*func)(struct io_context *, struct cfq_io_context *))
1436 struct cfq_io_context *cic;
1437 struct hlist_node *n;
1439 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1440 func(ioc, cic);
1444 * Call func for each cic attached to this ioc.
1446 static void
1447 call_for_each_cic(struct io_context *ioc,
1448 void (*func)(struct io_context *, struct cfq_io_context *))
1450 rcu_read_lock();
1451 __call_for_each_cic(ioc, func);
1452 rcu_read_unlock();
1455 static void cfq_cic_free_rcu(struct rcu_head *head)
1457 struct cfq_io_context *cic;
1459 cic = container_of(head, struct cfq_io_context, rcu_head);
1461 kmem_cache_free(cfq_ioc_pool, cic);
1462 elv_ioc_count_dec(cfq_ioc_count);
1464 if (ioc_gone) {
1466 * CFQ scheduler is exiting, grab exit lock and check
1467 * the pending io context count. If it hits zero,
1468 * complete ioc_gone and set it back to NULL
1470 spin_lock(&ioc_gone_lock);
1471 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1472 complete(ioc_gone);
1473 ioc_gone = NULL;
1475 spin_unlock(&ioc_gone_lock);
1479 static void cfq_cic_free(struct cfq_io_context *cic)
1481 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1484 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1486 unsigned long flags;
1488 BUG_ON(!cic->dead_key);
1490 spin_lock_irqsave(&ioc->lock, flags);
1491 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1492 hlist_del_rcu(&cic->cic_list);
1493 spin_unlock_irqrestore(&ioc->lock, flags);
1495 cfq_cic_free(cic);
1499 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1500 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1501 * and ->trim() which is called with the task lock held
1503 static void cfq_free_io_context(struct io_context *ioc)
1506 * ioc->refcount is zero here, or we are called from elv_unregister(),
1507 * so no more cic's are allowed to be linked into this ioc. So it
1508 * should be ok to iterate over the known list, we will see all cic's
1509 * since no new ones are added.
1511 __call_for_each_cic(ioc, cic_free_func);
1514 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1516 if (unlikely(cfqq == cfqd->active_queue)) {
1517 __cfq_slice_expired(cfqd, cfqq, 0);
1518 cfq_schedule_dispatch(cfqd);
1521 cfq_put_queue(cfqq);
1524 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1525 struct cfq_io_context *cic)
1527 struct io_context *ioc = cic->ioc;
1529 list_del_init(&cic->queue_list);
1532 * Make sure key == NULL is seen for dead queues
1534 smp_wmb();
1535 cic->dead_key = (unsigned long) cic->key;
1536 cic->key = NULL;
1538 if (ioc->ioc_data == cic)
1539 rcu_assign_pointer(ioc->ioc_data, NULL);
1541 if (cic->cfqq[BLK_RW_ASYNC]) {
1542 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1543 cic->cfqq[BLK_RW_ASYNC] = NULL;
1546 if (cic->cfqq[BLK_RW_SYNC]) {
1547 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1548 cic->cfqq[BLK_RW_SYNC] = NULL;
1552 static void cfq_exit_single_io_context(struct io_context *ioc,
1553 struct cfq_io_context *cic)
1555 struct cfq_data *cfqd = cic->key;
1557 if (cfqd) {
1558 struct request_queue *q = cfqd->queue;
1559 unsigned long flags;
1561 spin_lock_irqsave(q->queue_lock, flags);
1564 * Ensure we get a fresh copy of the ->key to prevent
1565 * race between exiting task and queue
1567 smp_read_barrier_depends();
1568 if (cic->key)
1569 __cfq_exit_single_io_context(cfqd, cic);
1571 spin_unlock_irqrestore(q->queue_lock, flags);
1576 * The process that ioc belongs to has exited, we need to clean up
1577 * and put the internal structures we have that belongs to that process.
1579 static void cfq_exit_io_context(struct io_context *ioc)
1581 call_for_each_cic(ioc, cfq_exit_single_io_context);
1584 static struct cfq_io_context *
1585 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1587 struct cfq_io_context *cic;
1589 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1590 cfqd->queue->node);
1591 if (cic) {
1592 cic->last_end_request = jiffies;
1593 INIT_LIST_HEAD(&cic->queue_list);
1594 INIT_HLIST_NODE(&cic->cic_list);
1595 cic->dtor = cfq_free_io_context;
1596 cic->exit = cfq_exit_io_context;
1597 elv_ioc_count_inc(cfq_ioc_count);
1600 return cic;
1603 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1605 struct task_struct *tsk = current;
1606 int ioprio_class;
1608 if (!cfq_cfqq_prio_changed(cfqq))
1609 return;
1611 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1612 switch (ioprio_class) {
1613 default:
1614 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1615 case IOPRIO_CLASS_NONE:
1617 * no prio set, inherit CPU scheduling settings
1619 cfqq->ioprio = task_nice_ioprio(tsk);
1620 cfqq->ioprio_class = task_nice_ioclass(tsk);
1621 break;
1622 case IOPRIO_CLASS_RT:
1623 cfqq->ioprio = task_ioprio(ioc);
1624 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1625 break;
1626 case IOPRIO_CLASS_BE:
1627 cfqq->ioprio = task_ioprio(ioc);
1628 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1629 break;
1630 case IOPRIO_CLASS_IDLE:
1631 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1632 cfqq->ioprio = 7;
1633 cfq_clear_cfqq_idle_window(cfqq);
1634 break;
1638 * keep track of original prio settings in case we have to temporarily
1639 * elevate the priority of this queue
1641 cfqq->org_ioprio = cfqq->ioprio;
1642 cfqq->org_ioprio_class = cfqq->ioprio_class;
1643 cfq_clear_cfqq_prio_changed(cfqq);
1646 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1648 struct cfq_data *cfqd = cic->key;
1649 struct cfq_queue *cfqq;
1650 unsigned long flags;
1652 if (unlikely(!cfqd))
1653 return;
1655 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1657 cfqq = cic->cfqq[BLK_RW_ASYNC];
1658 if (cfqq) {
1659 struct cfq_queue *new_cfqq;
1660 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1661 GFP_ATOMIC);
1662 if (new_cfqq) {
1663 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1664 cfq_put_queue(cfqq);
1668 cfqq = cic->cfqq[BLK_RW_SYNC];
1669 if (cfqq)
1670 cfq_mark_cfqq_prio_changed(cfqq);
1672 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1675 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1677 call_for_each_cic(ioc, changed_ioprio);
1678 ioc->ioprio_changed = 0;
1681 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1682 pid_t pid, bool is_sync)
1684 RB_CLEAR_NODE(&cfqq->rb_node);
1685 RB_CLEAR_NODE(&cfqq->p_node);
1686 INIT_LIST_HEAD(&cfqq->fifo);
1688 atomic_set(&cfqq->ref, 0);
1689 cfqq->cfqd = cfqd;
1691 cfq_mark_cfqq_prio_changed(cfqq);
1693 if (is_sync) {
1694 if (!cfq_class_idle(cfqq))
1695 cfq_mark_cfqq_idle_window(cfqq);
1696 cfq_mark_cfqq_sync(cfqq);
1698 cfqq->pid = pid;
1701 static struct cfq_queue *
1702 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1703 struct io_context *ioc, gfp_t gfp_mask)
1705 struct cfq_queue *cfqq, *new_cfqq = NULL;
1706 struct cfq_io_context *cic;
1708 retry:
1709 cic = cfq_cic_lookup(cfqd, ioc);
1710 /* cic always exists here */
1711 cfqq = cic_to_cfqq(cic, is_sync);
1714 * Always try a new alloc if we fell back to the OOM cfqq
1715 * originally, since it should just be a temporary situation.
1717 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1718 cfqq = NULL;
1719 if (new_cfqq) {
1720 cfqq = new_cfqq;
1721 new_cfqq = NULL;
1722 } else if (gfp_mask & __GFP_WAIT) {
1723 spin_unlock_irq(cfqd->queue->queue_lock);
1724 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1725 gfp_mask | __GFP_ZERO,
1726 cfqd->queue->node);
1727 spin_lock_irq(cfqd->queue->queue_lock);
1728 if (new_cfqq)
1729 goto retry;
1730 } else {
1731 cfqq = kmem_cache_alloc_node(cfq_pool,
1732 gfp_mask | __GFP_ZERO,
1733 cfqd->queue->node);
1736 if (cfqq) {
1737 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1738 cfq_init_prio_data(cfqq, ioc);
1739 cfq_log_cfqq(cfqd, cfqq, "alloced");
1740 } else
1741 cfqq = &cfqd->oom_cfqq;
1744 if (new_cfqq)
1745 kmem_cache_free(cfq_pool, new_cfqq);
1747 return cfqq;
1750 static struct cfq_queue **
1751 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1753 switch (ioprio_class) {
1754 case IOPRIO_CLASS_RT:
1755 return &cfqd->async_cfqq[0][ioprio];
1756 case IOPRIO_CLASS_BE:
1757 return &cfqd->async_cfqq[1][ioprio];
1758 case IOPRIO_CLASS_IDLE:
1759 return &cfqd->async_idle_cfqq;
1760 default:
1761 BUG();
1765 static struct cfq_queue *
1766 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1767 gfp_t gfp_mask)
1769 const int ioprio = task_ioprio(ioc);
1770 const int ioprio_class = task_ioprio_class(ioc);
1771 struct cfq_queue **async_cfqq = NULL;
1772 struct cfq_queue *cfqq = NULL;
1774 if (!is_sync) {
1775 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1776 cfqq = *async_cfqq;
1779 if (!cfqq)
1780 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1783 * pin the queue now that it's allocated, scheduler exit will prune it
1785 if (!is_sync && !(*async_cfqq)) {
1786 atomic_inc(&cfqq->ref);
1787 *async_cfqq = cfqq;
1790 atomic_inc(&cfqq->ref);
1791 return cfqq;
1795 * We drop cfq io contexts lazily, so we may find a dead one.
1797 static void
1798 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1799 struct cfq_io_context *cic)
1801 unsigned long flags;
1803 WARN_ON(!list_empty(&cic->queue_list));
1805 spin_lock_irqsave(&ioc->lock, flags);
1807 BUG_ON(ioc->ioc_data == cic);
1809 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1810 hlist_del_rcu(&cic->cic_list);
1811 spin_unlock_irqrestore(&ioc->lock, flags);
1813 cfq_cic_free(cic);
1816 static struct cfq_io_context *
1817 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1819 struct cfq_io_context *cic;
1820 unsigned long flags;
1821 void *k;
1823 if (unlikely(!ioc))
1824 return NULL;
1826 rcu_read_lock();
1829 * we maintain a last-hit cache, to avoid browsing over the tree
1831 cic = rcu_dereference(ioc->ioc_data);
1832 if (cic && cic->key == cfqd) {
1833 rcu_read_unlock();
1834 return cic;
1837 do {
1838 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1839 rcu_read_unlock();
1840 if (!cic)
1841 break;
1842 /* ->key must be copied to avoid race with cfq_exit_queue() */
1843 k = cic->key;
1844 if (unlikely(!k)) {
1845 cfq_drop_dead_cic(cfqd, ioc, cic);
1846 rcu_read_lock();
1847 continue;
1850 spin_lock_irqsave(&ioc->lock, flags);
1851 rcu_assign_pointer(ioc->ioc_data, cic);
1852 spin_unlock_irqrestore(&ioc->lock, flags);
1853 break;
1854 } while (1);
1856 return cic;
1860 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1861 * the process specific cfq io context when entered from the block layer.
1862 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1864 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1865 struct cfq_io_context *cic, gfp_t gfp_mask)
1867 unsigned long flags;
1868 int ret;
1870 ret = radix_tree_preload(gfp_mask);
1871 if (!ret) {
1872 cic->ioc = ioc;
1873 cic->key = cfqd;
1875 spin_lock_irqsave(&ioc->lock, flags);
1876 ret = radix_tree_insert(&ioc->radix_root,
1877 (unsigned long) cfqd, cic);
1878 if (!ret)
1879 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1880 spin_unlock_irqrestore(&ioc->lock, flags);
1882 radix_tree_preload_end();
1884 if (!ret) {
1885 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1886 list_add(&cic->queue_list, &cfqd->cic_list);
1887 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1891 if (ret)
1892 printk(KERN_ERR "cfq: cic link failed!\n");
1894 return ret;
1898 * Setup general io context and cfq io context. There can be several cfq
1899 * io contexts per general io context, if this process is doing io to more
1900 * than one device managed by cfq.
1902 static struct cfq_io_context *
1903 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1905 struct io_context *ioc = NULL;
1906 struct cfq_io_context *cic;
1908 might_sleep_if(gfp_mask & __GFP_WAIT);
1910 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1911 if (!ioc)
1912 return NULL;
1914 cic = cfq_cic_lookup(cfqd, ioc);
1915 if (cic)
1916 goto out;
1918 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1919 if (cic == NULL)
1920 goto err;
1922 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1923 goto err_free;
1925 out:
1926 smp_read_barrier_depends();
1927 if (unlikely(ioc->ioprio_changed))
1928 cfq_ioc_set_ioprio(ioc);
1930 return cic;
1931 err_free:
1932 cfq_cic_free(cic);
1933 err:
1934 put_io_context(ioc);
1935 return NULL;
1938 static void
1939 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1941 unsigned long elapsed = jiffies - cic->last_end_request;
1942 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1944 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1945 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1946 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1949 static void
1950 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1951 struct request *rq)
1953 sector_t sdist;
1954 u64 total;
1956 if (!cic->last_request_pos)
1957 sdist = 0;
1958 else if (cic->last_request_pos < blk_rq_pos(rq))
1959 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1960 else
1961 sdist = cic->last_request_pos - blk_rq_pos(rq);
1964 * Don't allow the seek distance to get too large from the
1965 * odd fragment, pagein, etc
1967 if (cic->seek_samples <= 60) /* second&third seek */
1968 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1969 else
1970 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1972 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1973 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1974 total = cic->seek_total + (cic->seek_samples/2);
1975 do_div(total, cic->seek_samples);
1976 cic->seek_mean = (sector_t)total;
1980 * Disable idle window if the process thinks too long or seeks so much that
1981 * it doesn't matter
1983 static void
1984 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1985 struct cfq_io_context *cic)
1987 int old_idle, enable_idle;
1990 * Don't idle for async or idle io prio class
1992 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1993 return;
1995 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1997 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1998 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
1999 enable_idle = 0;
2000 else if (sample_valid(cic->ttime_samples)) {
2001 unsigned int slice_idle = cfqd->cfq_slice_idle;
2002 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
2003 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2004 if (cic->ttime_mean > slice_idle)
2005 enable_idle = 0;
2006 else
2007 enable_idle = 1;
2010 if (old_idle != enable_idle) {
2011 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2012 if (enable_idle)
2013 cfq_mark_cfqq_idle_window(cfqq);
2014 else
2015 cfq_clear_cfqq_idle_window(cfqq);
2020 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2021 * no or if we aren't sure, a 1 will cause a preempt.
2023 static bool
2024 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2025 struct request *rq)
2027 struct cfq_queue *cfqq;
2029 cfqq = cfqd->active_queue;
2030 if (!cfqq)
2031 return false;
2033 if (cfq_slice_used(cfqq))
2034 return true;
2036 if (cfq_class_idle(new_cfqq))
2037 return false;
2039 if (cfq_class_idle(cfqq))
2040 return true;
2043 * if the new request is sync, but the currently running queue is
2044 * not, let the sync request have priority.
2046 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2047 return true;
2050 * So both queues are sync. Let the new request get disk time if
2051 * it's a metadata request and the current queue is doing regular IO.
2053 if (rq_is_meta(rq) && !cfqq->meta_pending)
2054 return false;
2057 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2059 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2060 return true;
2062 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2063 return false;
2066 * if this request is as-good as one we would expect from the
2067 * current cfqq, let it preempt
2069 if (cfq_rq_close(cfqd, rq))
2070 return true;
2072 return false;
2076 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2077 * let it have half of its nominal slice.
2079 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2081 cfq_log_cfqq(cfqd, cfqq, "preempt");
2082 cfq_slice_expired(cfqd, 1);
2085 * Put the new queue at the front of the of the current list,
2086 * so we know that it will be selected next.
2088 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2090 cfq_service_tree_add(cfqd, cfqq, 1);
2092 cfqq->slice_end = 0;
2093 cfq_mark_cfqq_slice_new(cfqq);
2097 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2098 * something we should do about it
2100 static void
2101 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2102 struct request *rq)
2104 struct cfq_io_context *cic = RQ_CIC(rq);
2106 cfqd->rq_queued++;
2107 if (rq_is_meta(rq))
2108 cfqq->meta_pending++;
2110 cfq_update_io_thinktime(cfqd, cic);
2111 cfq_update_io_seektime(cfqd, cic, rq);
2112 cfq_update_idle_window(cfqd, cfqq, cic);
2114 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2116 if (cfqq == cfqd->active_queue) {
2118 * Remember that we saw a request from this process, but
2119 * don't start queuing just yet. Otherwise we risk seeing lots
2120 * of tiny requests, because we disrupt the normal plugging
2121 * and merging. If the request is already larger than a single
2122 * page, let it rip immediately. For that case we assume that
2123 * merging is already done. Ditto for a busy system that
2124 * has other work pending, don't risk delaying until the
2125 * idle timer unplug to continue working.
2127 if (cfq_cfqq_wait_request(cfqq)) {
2128 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2129 cfqd->busy_queues > 1) {
2130 del_timer(&cfqd->idle_slice_timer);
2131 __blk_run_queue(cfqd->queue);
2133 cfq_mark_cfqq_must_dispatch(cfqq);
2135 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2137 * not the active queue - expire current slice if it is
2138 * idle and has expired it's mean thinktime or this new queue
2139 * has some old slice time left and is of higher priority or
2140 * this new queue is RT and the current one is BE
2142 cfq_preempt_queue(cfqd, cfqq);
2143 __blk_run_queue(cfqd->queue);
2147 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2149 struct cfq_data *cfqd = q->elevator->elevator_data;
2150 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2152 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2153 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2155 cfq_add_rq_rb(rq);
2157 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2158 list_add_tail(&rq->queuelist, &cfqq->fifo);
2160 cfq_rq_enqueued(cfqd, cfqq, rq);
2164 * Update hw_tag based on peak queue depth over 50 samples under
2165 * sufficient load.
2167 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2169 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2170 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2172 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2173 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2174 return;
2176 if (cfqd->hw_tag_samples++ < 50)
2177 return;
2179 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2180 cfqd->hw_tag = 1;
2181 else
2182 cfqd->hw_tag = 0;
2184 cfqd->hw_tag_samples = 0;
2185 cfqd->rq_in_driver_peak = 0;
2188 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2190 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2191 struct cfq_data *cfqd = cfqq->cfqd;
2192 const int sync = rq_is_sync(rq);
2193 unsigned long now;
2195 now = jiffies;
2196 cfq_log_cfqq(cfqd, cfqq, "complete");
2198 cfq_update_hw_tag(cfqd);
2200 WARN_ON(!cfqd->rq_in_driver[sync]);
2201 WARN_ON(!cfqq->dispatched);
2202 cfqd->rq_in_driver[sync]--;
2203 cfqq->dispatched--;
2205 if (cfq_cfqq_sync(cfqq))
2206 cfqd->sync_flight--;
2208 if (sync) {
2209 RQ_CIC(rq)->last_end_request = now;
2210 cfqd->last_end_sync_rq = now;
2214 * If this is the active queue, check if it needs to be expired,
2215 * or if we want to idle in case it has no pending requests.
2217 if (cfqd->active_queue == cfqq) {
2218 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2220 if (cfq_cfqq_slice_new(cfqq)) {
2221 cfq_set_prio_slice(cfqd, cfqq);
2222 cfq_clear_cfqq_slice_new(cfqq);
2225 * If there are no requests waiting in this queue, and
2226 * there are other queues ready to issue requests, AND
2227 * those other queues are issuing requests within our
2228 * mean seek distance, give them a chance to run instead
2229 * of idling.
2231 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2232 cfq_slice_expired(cfqd, 1);
2233 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2234 sync && !rq_noidle(rq))
2235 cfq_arm_slice_timer(cfqd);
2238 if (!rq_in_driver(cfqd))
2239 cfq_schedule_dispatch(cfqd);
2243 * we temporarily boost lower priority queues if they are holding fs exclusive
2244 * resources. they are boosted to normal prio (CLASS_BE/4)
2246 static void cfq_prio_boost(struct cfq_queue *cfqq)
2248 if (has_fs_excl()) {
2250 * boost idle prio on transactions that would lock out other
2251 * users of the filesystem
2253 if (cfq_class_idle(cfqq))
2254 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2255 if (cfqq->ioprio > IOPRIO_NORM)
2256 cfqq->ioprio = IOPRIO_NORM;
2257 } else {
2259 * check if we need to unboost the queue
2261 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2262 cfqq->ioprio_class = cfqq->org_ioprio_class;
2263 if (cfqq->ioprio != cfqq->org_ioprio)
2264 cfqq->ioprio = cfqq->org_ioprio;
2268 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2270 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2271 cfq_mark_cfqq_must_alloc_slice(cfqq);
2272 return ELV_MQUEUE_MUST;
2275 return ELV_MQUEUE_MAY;
2278 static int cfq_may_queue(struct request_queue *q, int rw)
2280 struct cfq_data *cfqd = q->elevator->elevator_data;
2281 struct task_struct *tsk = current;
2282 struct cfq_io_context *cic;
2283 struct cfq_queue *cfqq;
2286 * don't force setup of a queue from here, as a call to may_queue
2287 * does not necessarily imply that a request actually will be queued.
2288 * so just lookup a possibly existing queue, or return 'may queue'
2289 * if that fails
2291 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2292 if (!cic)
2293 return ELV_MQUEUE_MAY;
2295 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2296 if (cfqq) {
2297 cfq_init_prio_data(cfqq, cic->ioc);
2298 cfq_prio_boost(cfqq);
2300 return __cfq_may_queue(cfqq);
2303 return ELV_MQUEUE_MAY;
2307 * queue lock held here
2309 static void cfq_put_request(struct request *rq)
2311 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2313 if (cfqq) {
2314 const int rw = rq_data_dir(rq);
2316 BUG_ON(!cfqq->allocated[rw]);
2317 cfqq->allocated[rw]--;
2319 put_io_context(RQ_CIC(rq)->ioc);
2321 rq->elevator_private = NULL;
2322 rq->elevator_private2 = NULL;
2324 cfq_put_queue(cfqq);
2329 * Allocate cfq data structures associated with this request.
2331 static int
2332 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2334 struct cfq_data *cfqd = q->elevator->elevator_data;
2335 struct cfq_io_context *cic;
2336 const int rw = rq_data_dir(rq);
2337 const bool is_sync = rq_is_sync(rq);
2338 struct cfq_queue *cfqq;
2339 unsigned long flags;
2341 might_sleep_if(gfp_mask & __GFP_WAIT);
2343 cic = cfq_get_io_context(cfqd, gfp_mask);
2345 spin_lock_irqsave(q->queue_lock, flags);
2347 if (!cic)
2348 goto queue_fail;
2350 cfqq = cic_to_cfqq(cic, is_sync);
2351 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2352 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2353 cic_set_cfqq(cic, cfqq, is_sync);
2356 cfqq->allocated[rw]++;
2357 atomic_inc(&cfqq->ref);
2359 spin_unlock_irqrestore(q->queue_lock, flags);
2361 rq->elevator_private = cic;
2362 rq->elevator_private2 = cfqq;
2363 return 0;
2365 queue_fail:
2366 if (cic)
2367 put_io_context(cic->ioc);
2369 cfq_schedule_dispatch(cfqd);
2370 spin_unlock_irqrestore(q->queue_lock, flags);
2371 cfq_log(cfqd, "set_request fail");
2372 return 1;
2375 static void cfq_kick_queue(struct work_struct *work)
2377 struct cfq_data *cfqd =
2378 container_of(work, struct cfq_data, unplug_work);
2379 struct request_queue *q = cfqd->queue;
2381 spin_lock_irq(q->queue_lock);
2382 __blk_run_queue(cfqd->queue);
2383 spin_unlock_irq(q->queue_lock);
2387 * Timer running if the active_queue is currently idling inside its time slice
2389 static void cfq_idle_slice_timer(unsigned long data)
2391 struct cfq_data *cfqd = (struct cfq_data *) data;
2392 struct cfq_queue *cfqq;
2393 unsigned long flags;
2394 int timed_out = 1;
2396 cfq_log(cfqd, "idle timer fired");
2398 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2400 cfqq = cfqd->active_queue;
2401 if (cfqq) {
2402 timed_out = 0;
2405 * We saw a request before the queue expired, let it through
2407 if (cfq_cfqq_must_dispatch(cfqq))
2408 goto out_kick;
2411 * expired
2413 if (cfq_slice_used(cfqq))
2414 goto expire;
2417 * only expire and reinvoke request handler, if there are
2418 * other queues with pending requests
2420 if (!cfqd->busy_queues)
2421 goto out_cont;
2424 * not expired and it has a request pending, let it dispatch
2426 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2427 goto out_kick;
2429 expire:
2430 cfq_slice_expired(cfqd, timed_out);
2431 out_kick:
2432 cfq_schedule_dispatch(cfqd);
2433 out_cont:
2434 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2437 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2439 del_timer_sync(&cfqd->idle_slice_timer);
2440 cancel_work_sync(&cfqd->unplug_work);
2443 static void cfq_put_async_queues(struct cfq_data *cfqd)
2445 int i;
2447 for (i = 0; i < IOPRIO_BE_NR; i++) {
2448 if (cfqd->async_cfqq[0][i])
2449 cfq_put_queue(cfqd->async_cfqq[0][i]);
2450 if (cfqd->async_cfqq[1][i])
2451 cfq_put_queue(cfqd->async_cfqq[1][i]);
2454 if (cfqd->async_idle_cfqq)
2455 cfq_put_queue(cfqd->async_idle_cfqq);
2458 static void cfq_exit_queue(struct elevator_queue *e)
2460 struct cfq_data *cfqd = e->elevator_data;
2461 struct request_queue *q = cfqd->queue;
2463 cfq_shutdown_timer_wq(cfqd);
2465 spin_lock_irq(q->queue_lock);
2467 if (cfqd->active_queue)
2468 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2470 while (!list_empty(&cfqd->cic_list)) {
2471 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2472 struct cfq_io_context,
2473 queue_list);
2475 __cfq_exit_single_io_context(cfqd, cic);
2478 cfq_put_async_queues(cfqd);
2480 spin_unlock_irq(q->queue_lock);
2482 cfq_shutdown_timer_wq(cfqd);
2484 kfree(cfqd);
2487 static void *cfq_init_queue(struct request_queue *q)
2489 struct cfq_data *cfqd;
2490 int i;
2492 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2493 if (!cfqd)
2494 return NULL;
2496 cfqd->service_tree = CFQ_RB_ROOT;
2499 * Not strictly needed (since RB_ROOT just clears the node and we
2500 * zeroed cfqd on alloc), but better be safe in case someone decides
2501 * to add magic to the rb code
2503 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2504 cfqd->prio_trees[i] = RB_ROOT;
2507 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2508 * Grab a permanent reference to it, so that the normal code flow
2509 * will not attempt to free it.
2511 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2512 atomic_inc(&cfqd->oom_cfqq.ref);
2514 INIT_LIST_HEAD(&cfqd->cic_list);
2516 cfqd->queue = q;
2518 init_timer(&cfqd->idle_slice_timer);
2519 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2520 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2522 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2524 cfqd->cfq_quantum = cfq_quantum;
2525 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2526 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2527 cfqd->cfq_back_max = cfq_back_max;
2528 cfqd->cfq_back_penalty = cfq_back_penalty;
2529 cfqd->cfq_slice[0] = cfq_slice_async;
2530 cfqd->cfq_slice[1] = cfq_slice_sync;
2531 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2532 cfqd->cfq_slice_idle = cfq_slice_idle;
2533 cfqd->cfq_latency = 1;
2534 cfqd->hw_tag = 1;
2535 cfqd->last_end_sync_rq = jiffies;
2536 return cfqd;
2539 static void cfq_slab_kill(void)
2542 * Caller already ensured that pending RCU callbacks are completed,
2543 * so we should have no busy allocations at this point.
2545 if (cfq_pool)
2546 kmem_cache_destroy(cfq_pool);
2547 if (cfq_ioc_pool)
2548 kmem_cache_destroy(cfq_ioc_pool);
2551 static int __init cfq_slab_setup(void)
2553 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2554 if (!cfq_pool)
2555 goto fail;
2557 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2558 if (!cfq_ioc_pool)
2559 goto fail;
2561 return 0;
2562 fail:
2563 cfq_slab_kill();
2564 return -ENOMEM;
2568 * sysfs parts below -->
2570 static ssize_t
2571 cfq_var_show(unsigned int var, char *page)
2573 return sprintf(page, "%d\n", var);
2576 static ssize_t
2577 cfq_var_store(unsigned int *var, const char *page, size_t count)
2579 char *p = (char *) page;
2581 *var = simple_strtoul(p, &p, 10);
2582 return count;
2585 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2586 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2588 struct cfq_data *cfqd = e->elevator_data; \
2589 unsigned int __data = __VAR; \
2590 if (__CONV) \
2591 __data = jiffies_to_msecs(__data); \
2592 return cfq_var_show(__data, (page)); \
2594 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2595 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2596 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2597 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2598 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2599 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2600 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2601 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2602 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2603 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2604 #undef SHOW_FUNCTION
2606 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2607 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2609 struct cfq_data *cfqd = e->elevator_data; \
2610 unsigned int __data; \
2611 int ret = cfq_var_store(&__data, (page), count); \
2612 if (__data < (MIN)) \
2613 __data = (MIN); \
2614 else if (__data > (MAX)) \
2615 __data = (MAX); \
2616 if (__CONV) \
2617 *(__PTR) = msecs_to_jiffies(__data); \
2618 else \
2619 *(__PTR) = __data; \
2620 return ret; \
2622 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2623 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2624 UINT_MAX, 1);
2625 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2626 UINT_MAX, 1);
2627 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2628 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2629 UINT_MAX, 0);
2630 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2631 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2632 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2633 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2634 UINT_MAX, 0);
2635 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2636 #undef STORE_FUNCTION
2638 #define CFQ_ATTR(name) \
2639 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2641 static struct elv_fs_entry cfq_attrs[] = {
2642 CFQ_ATTR(quantum),
2643 CFQ_ATTR(fifo_expire_sync),
2644 CFQ_ATTR(fifo_expire_async),
2645 CFQ_ATTR(back_seek_max),
2646 CFQ_ATTR(back_seek_penalty),
2647 CFQ_ATTR(slice_sync),
2648 CFQ_ATTR(slice_async),
2649 CFQ_ATTR(slice_async_rq),
2650 CFQ_ATTR(slice_idle),
2651 CFQ_ATTR(low_latency),
2652 __ATTR_NULL
2655 static struct elevator_type iosched_cfq = {
2656 .ops = {
2657 .elevator_merge_fn = cfq_merge,
2658 .elevator_merged_fn = cfq_merged_request,
2659 .elevator_merge_req_fn = cfq_merged_requests,
2660 .elevator_allow_merge_fn = cfq_allow_merge,
2661 .elevator_dispatch_fn = cfq_dispatch_requests,
2662 .elevator_add_req_fn = cfq_insert_request,
2663 .elevator_activate_req_fn = cfq_activate_request,
2664 .elevator_deactivate_req_fn = cfq_deactivate_request,
2665 .elevator_queue_empty_fn = cfq_queue_empty,
2666 .elevator_completed_req_fn = cfq_completed_request,
2667 .elevator_former_req_fn = elv_rb_former_request,
2668 .elevator_latter_req_fn = elv_rb_latter_request,
2669 .elevator_set_req_fn = cfq_set_request,
2670 .elevator_put_req_fn = cfq_put_request,
2671 .elevator_may_queue_fn = cfq_may_queue,
2672 .elevator_init_fn = cfq_init_queue,
2673 .elevator_exit_fn = cfq_exit_queue,
2674 .trim = cfq_free_io_context,
2676 .elevator_attrs = cfq_attrs,
2677 .elevator_name = "cfq",
2678 .elevator_owner = THIS_MODULE,
2681 static int __init cfq_init(void)
2684 * could be 0 on HZ < 1000 setups
2686 if (!cfq_slice_async)
2687 cfq_slice_async = 1;
2688 if (!cfq_slice_idle)
2689 cfq_slice_idle = 1;
2691 if (cfq_slab_setup())
2692 return -ENOMEM;
2694 elv_register(&iosched_cfq);
2696 return 0;
2699 static void __exit cfq_exit(void)
2701 DECLARE_COMPLETION_ONSTACK(all_gone);
2702 elv_unregister(&iosched_cfq);
2703 ioc_gone = &all_gone;
2704 /* ioc_gone's update must be visible before reading ioc_count */
2705 smp_wmb();
2708 * this also protects us from entering cfq_slab_kill() with
2709 * pending RCU callbacks
2711 if (elv_ioc_count_read(cfq_ioc_count))
2712 wait_for_completion(&all_gone);
2713 cfq_slab_kill();
2716 module_init(cfq_init);
2717 module_exit(cfq_exit);
2719 MODULE_AUTHOR("Jens Axboe");
2720 MODULE_LICENSE("GPL");
2721 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");