Merge commit 'v3.5-rc3' into x86/debug
[linux-2.6/cjktty.git] / arch / x86 / kernel / cpu / perf_event_intel.c
blob5073bf1c1d86903ccc715e86c52dcfeb7b456298
1 /*
2 * Per core/cpu state
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
19 #include "perf_event.h"
22 * Intel PerfMon, used on Core and later.
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
27 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
28 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
29 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
30 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
31 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
32 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
33 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44 EVENT_CONSTRAINT_END
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62 EVENT_CONSTRAINT_END
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78 EVENT_CONSTRAINT_END
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84 EVENT_EXTRA_END
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
89 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96 EVENT_CONSTRAINT_END
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
101 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
107 EVENT_CONSTRAINT_END
110 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
112 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
113 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
114 EVENT_EXTRA_END
117 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
119 EVENT_CONSTRAINT_END
122 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
124 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
125 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
126 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
127 EVENT_CONSTRAINT_END
130 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
131 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
132 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
133 EVENT_EXTRA_END
136 static u64 intel_pmu_event_map(int hw_event)
138 return intel_perfmon_event_map[hw_event];
141 static __initconst const u64 snb_hw_cache_event_ids
142 [PERF_COUNT_HW_CACHE_MAX]
143 [PERF_COUNT_HW_CACHE_OP_MAX]
144 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
146 [ C(L1D) ] = {
147 [ C(OP_READ) ] = {
148 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
149 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
151 [ C(OP_WRITE) ] = {
152 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
153 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
155 [ C(OP_PREFETCH) ] = {
156 [ C(RESULT_ACCESS) ] = 0x0,
157 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
160 [ C(L1I ) ] = {
161 [ C(OP_READ) ] = {
162 [ C(RESULT_ACCESS) ] = 0x0,
163 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
165 [ C(OP_WRITE) ] = {
166 [ C(RESULT_ACCESS) ] = -1,
167 [ C(RESULT_MISS) ] = -1,
169 [ C(OP_PREFETCH) ] = {
170 [ C(RESULT_ACCESS) ] = 0x0,
171 [ C(RESULT_MISS) ] = 0x0,
174 [ C(LL ) ] = {
175 [ C(OP_READ) ] = {
176 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
177 [ C(RESULT_ACCESS) ] = 0x01b7,
178 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
179 [ C(RESULT_MISS) ] = 0x01b7,
181 [ C(OP_WRITE) ] = {
182 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
183 [ C(RESULT_ACCESS) ] = 0x01b7,
184 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
185 [ C(RESULT_MISS) ] = 0x01b7,
187 [ C(OP_PREFETCH) ] = {
188 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
189 [ C(RESULT_ACCESS) ] = 0x01b7,
190 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
191 [ C(RESULT_MISS) ] = 0x01b7,
194 [ C(DTLB) ] = {
195 [ C(OP_READ) ] = {
196 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
197 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
199 [ C(OP_WRITE) ] = {
200 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
201 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
203 [ C(OP_PREFETCH) ] = {
204 [ C(RESULT_ACCESS) ] = 0x0,
205 [ C(RESULT_MISS) ] = 0x0,
208 [ C(ITLB) ] = {
209 [ C(OP_READ) ] = {
210 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
211 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
213 [ C(OP_WRITE) ] = {
214 [ C(RESULT_ACCESS) ] = -1,
215 [ C(RESULT_MISS) ] = -1,
217 [ C(OP_PREFETCH) ] = {
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
222 [ C(BPU ) ] = {
223 [ C(OP_READ) ] = {
224 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
225 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
227 [ C(OP_WRITE) ] = {
228 [ C(RESULT_ACCESS) ] = -1,
229 [ C(RESULT_MISS) ] = -1,
231 [ C(OP_PREFETCH) ] = {
232 [ C(RESULT_ACCESS) ] = -1,
233 [ C(RESULT_MISS) ] = -1,
236 [ C(NODE) ] = {
237 [ C(OP_READ) ] = {
238 [ C(RESULT_ACCESS) ] = -1,
239 [ C(RESULT_MISS) ] = -1,
241 [ C(OP_WRITE) ] = {
242 [ C(RESULT_ACCESS) ] = -1,
243 [ C(RESULT_MISS) ] = -1,
245 [ C(OP_PREFETCH) ] = {
246 [ C(RESULT_ACCESS) ] = -1,
247 [ C(RESULT_MISS) ] = -1,
253 static __initconst const u64 westmere_hw_cache_event_ids
254 [PERF_COUNT_HW_CACHE_MAX]
255 [PERF_COUNT_HW_CACHE_OP_MAX]
256 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
258 [ C(L1D) ] = {
259 [ C(OP_READ) ] = {
260 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
261 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
263 [ C(OP_WRITE) ] = {
264 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
265 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
267 [ C(OP_PREFETCH) ] = {
268 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
269 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
272 [ C(L1I ) ] = {
273 [ C(OP_READ) ] = {
274 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
275 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
277 [ C(OP_WRITE) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
281 [ C(OP_PREFETCH) ] = {
282 [ C(RESULT_ACCESS) ] = 0x0,
283 [ C(RESULT_MISS) ] = 0x0,
286 [ C(LL ) ] = {
287 [ C(OP_READ) ] = {
288 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
289 [ C(RESULT_ACCESS) ] = 0x01b7,
290 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
291 [ C(RESULT_MISS) ] = 0x01b7,
294 * Use RFO, not WRITEBACK, because a write miss would typically occur
295 * on RFO.
297 [ C(OP_WRITE) ] = {
298 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
299 [ C(RESULT_ACCESS) ] = 0x01b7,
300 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
301 [ C(RESULT_MISS) ] = 0x01b7,
303 [ C(OP_PREFETCH) ] = {
304 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
305 [ C(RESULT_ACCESS) ] = 0x01b7,
306 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
307 [ C(RESULT_MISS) ] = 0x01b7,
310 [ C(DTLB) ] = {
311 [ C(OP_READ) ] = {
312 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
313 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
315 [ C(OP_WRITE) ] = {
316 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
317 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
319 [ C(OP_PREFETCH) ] = {
320 [ C(RESULT_ACCESS) ] = 0x0,
321 [ C(RESULT_MISS) ] = 0x0,
324 [ C(ITLB) ] = {
325 [ C(OP_READ) ] = {
326 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
327 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
329 [ C(OP_WRITE) ] = {
330 [ C(RESULT_ACCESS) ] = -1,
331 [ C(RESULT_MISS) ] = -1,
333 [ C(OP_PREFETCH) ] = {
334 [ C(RESULT_ACCESS) ] = -1,
335 [ C(RESULT_MISS) ] = -1,
338 [ C(BPU ) ] = {
339 [ C(OP_READ) ] = {
340 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
341 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
343 [ C(OP_WRITE) ] = {
344 [ C(RESULT_ACCESS) ] = -1,
345 [ C(RESULT_MISS) ] = -1,
347 [ C(OP_PREFETCH) ] = {
348 [ C(RESULT_ACCESS) ] = -1,
349 [ C(RESULT_MISS) ] = -1,
352 [ C(NODE) ] = {
353 [ C(OP_READ) ] = {
354 [ C(RESULT_ACCESS) ] = 0x01b7,
355 [ C(RESULT_MISS) ] = 0x01b7,
357 [ C(OP_WRITE) ] = {
358 [ C(RESULT_ACCESS) ] = 0x01b7,
359 [ C(RESULT_MISS) ] = 0x01b7,
361 [ C(OP_PREFETCH) ] = {
362 [ C(RESULT_ACCESS) ] = 0x01b7,
363 [ C(RESULT_MISS) ] = 0x01b7,
369 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
370 * See IA32 SDM Vol 3B 30.6.1.3
373 #define NHM_DMND_DATA_RD (1 << 0)
374 #define NHM_DMND_RFO (1 << 1)
375 #define NHM_DMND_IFETCH (1 << 2)
376 #define NHM_DMND_WB (1 << 3)
377 #define NHM_PF_DATA_RD (1 << 4)
378 #define NHM_PF_DATA_RFO (1 << 5)
379 #define NHM_PF_IFETCH (1 << 6)
380 #define NHM_OFFCORE_OTHER (1 << 7)
381 #define NHM_UNCORE_HIT (1 << 8)
382 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
383 #define NHM_OTHER_CORE_HITM (1 << 10)
384 /* reserved */
385 #define NHM_REMOTE_CACHE_FWD (1 << 12)
386 #define NHM_REMOTE_DRAM (1 << 13)
387 #define NHM_LOCAL_DRAM (1 << 14)
388 #define NHM_NON_DRAM (1 << 15)
390 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
391 #define NHM_REMOTE (NHM_REMOTE_DRAM)
393 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
394 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
395 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
397 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
398 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
399 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
401 static __initconst const u64 nehalem_hw_cache_extra_regs
402 [PERF_COUNT_HW_CACHE_MAX]
403 [PERF_COUNT_HW_CACHE_OP_MAX]
404 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
406 [ C(LL ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
409 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
413 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
417 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
420 [ C(NODE) ] = {
421 [ C(OP_READ) ] = {
422 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
423 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
425 [ C(OP_WRITE) ] = {
426 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
427 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
429 [ C(OP_PREFETCH) ] = {
430 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
431 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
436 static __initconst const u64 nehalem_hw_cache_event_ids
437 [PERF_COUNT_HW_CACHE_MAX]
438 [PERF_COUNT_HW_CACHE_OP_MAX]
439 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
441 [ C(L1D) ] = {
442 [ C(OP_READ) ] = {
443 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
444 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
448 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
452 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
455 [ C(L1I ) ] = {
456 [ C(OP_READ) ] = {
457 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
458 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
460 [ C(OP_WRITE) ] = {
461 [ C(RESULT_ACCESS) ] = -1,
462 [ C(RESULT_MISS) ] = -1,
464 [ C(OP_PREFETCH) ] = {
465 [ C(RESULT_ACCESS) ] = 0x0,
466 [ C(RESULT_MISS) ] = 0x0,
469 [ C(LL ) ] = {
470 [ C(OP_READ) ] = {
471 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
472 [ C(RESULT_ACCESS) ] = 0x01b7,
473 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
474 [ C(RESULT_MISS) ] = 0x01b7,
477 * Use RFO, not WRITEBACK, because a write miss would typically occur
478 * on RFO.
480 [ C(OP_WRITE) ] = {
481 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
482 [ C(RESULT_ACCESS) ] = 0x01b7,
483 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
484 [ C(RESULT_MISS) ] = 0x01b7,
486 [ C(OP_PREFETCH) ] = {
487 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
488 [ C(RESULT_ACCESS) ] = 0x01b7,
489 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
490 [ C(RESULT_MISS) ] = 0x01b7,
493 [ C(DTLB) ] = {
494 [ C(OP_READ) ] = {
495 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
496 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
498 [ C(OP_WRITE) ] = {
499 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
500 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
502 [ C(OP_PREFETCH) ] = {
503 [ C(RESULT_ACCESS) ] = 0x0,
504 [ C(RESULT_MISS) ] = 0x0,
507 [ C(ITLB) ] = {
508 [ C(OP_READ) ] = {
509 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
510 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
512 [ C(OP_WRITE) ] = {
513 [ C(RESULT_ACCESS) ] = -1,
514 [ C(RESULT_MISS) ] = -1,
516 [ C(OP_PREFETCH) ] = {
517 [ C(RESULT_ACCESS) ] = -1,
518 [ C(RESULT_MISS) ] = -1,
521 [ C(BPU ) ] = {
522 [ C(OP_READ) ] = {
523 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
524 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
526 [ C(OP_WRITE) ] = {
527 [ C(RESULT_ACCESS) ] = -1,
528 [ C(RESULT_MISS) ] = -1,
530 [ C(OP_PREFETCH) ] = {
531 [ C(RESULT_ACCESS) ] = -1,
532 [ C(RESULT_MISS) ] = -1,
535 [ C(NODE) ] = {
536 [ C(OP_READ) ] = {
537 [ C(RESULT_ACCESS) ] = 0x01b7,
538 [ C(RESULT_MISS) ] = 0x01b7,
540 [ C(OP_WRITE) ] = {
541 [ C(RESULT_ACCESS) ] = 0x01b7,
542 [ C(RESULT_MISS) ] = 0x01b7,
544 [ C(OP_PREFETCH) ] = {
545 [ C(RESULT_ACCESS) ] = 0x01b7,
546 [ C(RESULT_MISS) ] = 0x01b7,
551 static __initconst const u64 core2_hw_cache_event_ids
552 [PERF_COUNT_HW_CACHE_MAX]
553 [PERF_COUNT_HW_CACHE_OP_MAX]
554 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
556 [ C(L1D) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
559 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
563 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
565 [ C(OP_PREFETCH) ] = {
566 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
567 [ C(RESULT_MISS) ] = 0,
570 [ C(L1I ) ] = {
571 [ C(OP_READ) ] = {
572 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
573 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
575 [ C(OP_WRITE) ] = {
576 [ C(RESULT_ACCESS) ] = -1,
577 [ C(RESULT_MISS) ] = -1,
579 [ C(OP_PREFETCH) ] = {
580 [ C(RESULT_ACCESS) ] = 0,
581 [ C(RESULT_MISS) ] = 0,
584 [ C(LL ) ] = {
585 [ C(OP_READ) ] = {
586 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
587 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
589 [ C(OP_WRITE) ] = {
590 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
591 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
593 [ C(OP_PREFETCH) ] = {
594 [ C(RESULT_ACCESS) ] = 0,
595 [ C(RESULT_MISS) ] = 0,
598 [ C(DTLB) ] = {
599 [ C(OP_READ) ] = {
600 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
601 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
603 [ C(OP_WRITE) ] = {
604 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
605 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
607 [ C(OP_PREFETCH) ] = {
608 [ C(RESULT_ACCESS) ] = 0,
609 [ C(RESULT_MISS) ] = 0,
612 [ C(ITLB) ] = {
613 [ C(OP_READ) ] = {
614 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
615 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
617 [ C(OP_WRITE) ] = {
618 [ C(RESULT_ACCESS) ] = -1,
619 [ C(RESULT_MISS) ] = -1,
621 [ C(OP_PREFETCH) ] = {
622 [ C(RESULT_ACCESS) ] = -1,
623 [ C(RESULT_MISS) ] = -1,
626 [ C(BPU ) ] = {
627 [ C(OP_READ) ] = {
628 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
629 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
631 [ C(OP_WRITE) ] = {
632 [ C(RESULT_ACCESS) ] = -1,
633 [ C(RESULT_MISS) ] = -1,
635 [ C(OP_PREFETCH) ] = {
636 [ C(RESULT_ACCESS) ] = -1,
637 [ C(RESULT_MISS) ] = -1,
642 static __initconst const u64 atom_hw_cache_event_ids
643 [PERF_COUNT_HW_CACHE_MAX]
644 [PERF_COUNT_HW_CACHE_OP_MAX]
645 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
647 [ C(L1D) ] = {
648 [ C(OP_READ) ] = {
649 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
650 [ C(RESULT_MISS) ] = 0,
652 [ C(OP_WRITE) ] = {
653 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
654 [ C(RESULT_MISS) ] = 0,
656 [ C(OP_PREFETCH) ] = {
657 [ C(RESULT_ACCESS) ] = 0x0,
658 [ C(RESULT_MISS) ] = 0,
661 [ C(L1I ) ] = {
662 [ C(OP_READ) ] = {
663 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
664 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
666 [ C(OP_WRITE) ] = {
667 [ C(RESULT_ACCESS) ] = -1,
668 [ C(RESULT_MISS) ] = -1,
670 [ C(OP_PREFETCH) ] = {
671 [ C(RESULT_ACCESS) ] = 0,
672 [ C(RESULT_MISS) ] = 0,
675 [ C(LL ) ] = {
676 [ C(OP_READ) ] = {
677 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
678 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
680 [ C(OP_WRITE) ] = {
681 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
682 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
684 [ C(OP_PREFETCH) ] = {
685 [ C(RESULT_ACCESS) ] = 0,
686 [ C(RESULT_MISS) ] = 0,
689 [ C(DTLB) ] = {
690 [ C(OP_READ) ] = {
691 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
692 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
694 [ C(OP_WRITE) ] = {
695 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
696 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
698 [ C(OP_PREFETCH) ] = {
699 [ C(RESULT_ACCESS) ] = 0,
700 [ C(RESULT_MISS) ] = 0,
703 [ C(ITLB) ] = {
704 [ C(OP_READ) ] = {
705 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
706 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
708 [ C(OP_WRITE) ] = {
709 [ C(RESULT_ACCESS) ] = -1,
710 [ C(RESULT_MISS) ] = -1,
712 [ C(OP_PREFETCH) ] = {
713 [ C(RESULT_ACCESS) ] = -1,
714 [ C(RESULT_MISS) ] = -1,
717 [ C(BPU ) ] = {
718 [ C(OP_READ) ] = {
719 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
720 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
722 [ C(OP_WRITE) ] = {
723 [ C(RESULT_ACCESS) ] = -1,
724 [ C(RESULT_MISS) ] = -1,
726 [ C(OP_PREFETCH) ] = {
727 [ C(RESULT_ACCESS) ] = -1,
728 [ C(RESULT_MISS) ] = -1,
733 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
735 /* user explicitly requested branch sampling */
736 if (has_branch_stack(event))
737 return true;
739 /* implicit branch sampling to correct PEBS skid */
740 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
741 return true;
743 return false;
746 static void intel_pmu_disable_all(void)
748 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
750 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
752 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
753 intel_pmu_disable_bts();
755 intel_pmu_pebs_disable_all();
756 intel_pmu_lbr_disable_all();
759 static void intel_pmu_enable_all(int added)
761 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
763 intel_pmu_pebs_enable_all();
764 intel_pmu_lbr_enable_all();
765 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
766 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
768 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
769 struct perf_event *event =
770 cpuc->events[X86_PMC_IDX_FIXED_BTS];
772 if (WARN_ON_ONCE(!event))
773 return;
775 intel_pmu_enable_bts(event->hw.config);
780 * Workaround for:
781 * Intel Errata AAK100 (model 26)
782 * Intel Errata AAP53 (model 30)
783 * Intel Errata BD53 (model 44)
785 * The official story:
786 * These chips need to be 'reset' when adding counters by programming the
787 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
788 * in sequence on the same PMC or on different PMCs.
790 * In practise it appears some of these events do in fact count, and
791 * we need to programm all 4 events.
793 static void intel_pmu_nhm_workaround(void)
795 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
796 static const unsigned long nhm_magic[4] = {
797 0x4300B5,
798 0x4300D2,
799 0x4300B1,
800 0x4300B1
802 struct perf_event *event;
803 int i;
806 * The Errata requires below steps:
807 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
808 * 2) Configure 4 PERFEVTSELx with the magic events and clear
809 * the corresponding PMCx;
810 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
811 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
812 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
816 * The real steps we choose are a little different from above.
817 * A) To reduce MSR operations, we don't run step 1) as they
818 * are already cleared before this function is called;
819 * B) Call x86_perf_event_update to save PMCx before configuring
820 * PERFEVTSELx with magic number;
821 * C) With step 5), we do clear only when the PERFEVTSELx is
822 * not used currently.
823 * D) Call x86_perf_event_set_period to restore PMCx;
826 /* We always operate 4 pairs of PERF Counters */
827 for (i = 0; i < 4; i++) {
828 event = cpuc->events[i];
829 if (event)
830 x86_perf_event_update(event);
833 for (i = 0; i < 4; i++) {
834 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
835 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
838 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
839 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
841 for (i = 0; i < 4; i++) {
842 event = cpuc->events[i];
844 if (event) {
845 x86_perf_event_set_period(event);
846 __x86_pmu_enable_event(&event->hw,
847 ARCH_PERFMON_EVENTSEL_ENABLE);
848 } else
849 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
853 static void intel_pmu_nhm_enable_all(int added)
855 if (added)
856 intel_pmu_nhm_workaround();
857 intel_pmu_enable_all(added);
860 static inline u64 intel_pmu_get_status(void)
862 u64 status;
864 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
866 return status;
869 static inline void intel_pmu_ack_status(u64 ack)
871 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
874 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
876 int idx = hwc->idx - X86_PMC_IDX_FIXED;
877 u64 ctrl_val, mask;
879 mask = 0xfULL << (idx * 4);
881 rdmsrl(hwc->config_base, ctrl_val);
882 ctrl_val &= ~mask;
883 wrmsrl(hwc->config_base, ctrl_val);
886 static void intel_pmu_disable_event(struct perf_event *event)
888 struct hw_perf_event *hwc = &event->hw;
889 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
891 if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
892 intel_pmu_disable_bts();
893 intel_pmu_drain_bts_buffer();
894 return;
897 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
898 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
901 * must disable before any actual event
902 * because any event may be combined with LBR
904 if (intel_pmu_needs_lbr_smpl(event))
905 intel_pmu_lbr_disable(event);
907 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
908 intel_pmu_disable_fixed(hwc);
909 return;
912 x86_pmu_disable_event(event);
914 if (unlikely(event->attr.precise_ip))
915 intel_pmu_pebs_disable(event);
918 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
920 int idx = hwc->idx - X86_PMC_IDX_FIXED;
921 u64 ctrl_val, bits, mask;
924 * Enable IRQ generation (0x8),
925 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
926 * if requested:
928 bits = 0x8ULL;
929 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
930 bits |= 0x2;
931 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
932 bits |= 0x1;
935 * ANY bit is supported in v3 and up
937 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
938 bits |= 0x4;
940 bits <<= (idx * 4);
941 mask = 0xfULL << (idx * 4);
943 rdmsrl(hwc->config_base, ctrl_val);
944 ctrl_val &= ~mask;
945 ctrl_val |= bits;
946 wrmsrl(hwc->config_base, ctrl_val);
949 static void intel_pmu_enable_event(struct perf_event *event)
951 struct hw_perf_event *hwc = &event->hw;
952 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
954 if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
955 if (!__this_cpu_read(cpu_hw_events.enabled))
956 return;
958 intel_pmu_enable_bts(hwc->config);
959 return;
962 * must enabled before any actual event
963 * because any event may be combined with LBR
965 if (intel_pmu_needs_lbr_smpl(event))
966 intel_pmu_lbr_enable(event);
968 if (event->attr.exclude_host)
969 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
970 if (event->attr.exclude_guest)
971 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
973 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
974 intel_pmu_enable_fixed(hwc);
975 return;
978 if (unlikely(event->attr.precise_ip))
979 intel_pmu_pebs_enable(event);
981 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
985 * Save and restart an expired event. Called by NMI contexts,
986 * so it has to be careful about preempting normal event ops:
988 int intel_pmu_save_and_restart(struct perf_event *event)
990 x86_perf_event_update(event);
991 return x86_perf_event_set_period(event);
994 static void intel_pmu_reset(void)
996 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
997 unsigned long flags;
998 int idx;
1000 if (!x86_pmu.num_counters)
1001 return;
1003 local_irq_save(flags);
1005 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1007 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1008 checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
1009 checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
1011 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1012 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1014 if (ds)
1015 ds->bts_index = ds->bts_buffer_base;
1017 local_irq_restore(flags);
1021 * This handler is triggered by the local APIC, so the APIC IRQ handling
1022 * rules apply:
1024 static int intel_pmu_handle_irq(struct pt_regs *regs)
1026 struct perf_sample_data data;
1027 struct cpu_hw_events *cpuc;
1028 int bit, loops;
1029 u64 status;
1030 int handled;
1032 cpuc = &__get_cpu_var(cpu_hw_events);
1035 * Some chipsets need to unmask the LVTPC in a particular spot
1036 * inside the nmi handler. As a result, the unmasking was pushed
1037 * into all the nmi handlers.
1039 * This handler doesn't seem to have any issues with the unmasking
1040 * so it was left at the top.
1042 apic_write(APIC_LVTPC, APIC_DM_NMI);
1044 intel_pmu_disable_all();
1045 handled = intel_pmu_drain_bts_buffer();
1046 status = intel_pmu_get_status();
1047 if (!status) {
1048 intel_pmu_enable_all(0);
1049 return handled;
1052 loops = 0;
1053 again:
1054 intel_pmu_ack_status(status);
1055 if (++loops > 100) {
1056 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1057 perf_event_print_debug();
1058 intel_pmu_reset();
1059 goto done;
1062 inc_irq_stat(apic_perf_irqs);
1064 intel_pmu_lbr_read();
1067 * PEBS overflow sets bit 62 in the global status register
1069 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1070 handled++;
1071 x86_pmu.drain_pebs(regs);
1074 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1075 struct perf_event *event = cpuc->events[bit];
1077 handled++;
1079 if (!test_bit(bit, cpuc->active_mask))
1080 continue;
1082 if (!intel_pmu_save_and_restart(event))
1083 continue;
1085 perf_sample_data_init(&data, 0, event->hw.last_period);
1087 if (has_branch_stack(event))
1088 data.br_stack = &cpuc->lbr_stack;
1090 if (perf_event_overflow(event, &data, regs))
1091 x86_pmu_stop(event, 0);
1095 * Repeat if there is more work to be done:
1097 status = intel_pmu_get_status();
1098 if (status)
1099 goto again;
1101 done:
1102 intel_pmu_enable_all(0);
1103 return handled;
1106 static struct event_constraint *
1107 intel_bts_constraints(struct perf_event *event)
1109 struct hw_perf_event *hwc = &event->hw;
1110 unsigned int hw_event, bts_event;
1112 if (event->attr.freq)
1113 return NULL;
1115 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1116 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1118 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1119 return &bts_constraint;
1121 return NULL;
1124 static int intel_alt_er(int idx)
1126 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1127 return idx;
1129 if (idx == EXTRA_REG_RSP_0)
1130 return EXTRA_REG_RSP_1;
1132 if (idx == EXTRA_REG_RSP_1)
1133 return EXTRA_REG_RSP_0;
1135 return idx;
1138 static void intel_fixup_er(struct perf_event *event, int idx)
1140 event->hw.extra_reg.idx = idx;
1142 if (idx == EXTRA_REG_RSP_0) {
1143 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1144 event->hw.config |= 0x01b7;
1145 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1146 } else if (idx == EXTRA_REG_RSP_1) {
1147 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1148 event->hw.config |= 0x01bb;
1149 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1154 * manage allocation of shared extra msr for certain events
1156 * sharing can be:
1157 * per-cpu: to be shared between the various events on a single PMU
1158 * per-core: per-cpu + shared by HT threads
1160 static struct event_constraint *
1161 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1162 struct perf_event *event,
1163 struct hw_perf_event_extra *reg)
1165 struct event_constraint *c = &emptyconstraint;
1166 struct er_account *era;
1167 unsigned long flags;
1168 int idx = reg->idx;
1171 * reg->alloc can be set due to existing state, so for fake cpuc we
1172 * need to ignore this, otherwise we might fail to allocate proper fake
1173 * state for this extra reg constraint. Also see the comment below.
1175 if (reg->alloc && !cpuc->is_fake)
1176 return NULL; /* call x86_get_event_constraint() */
1178 again:
1179 era = &cpuc->shared_regs->regs[idx];
1181 * we use spin_lock_irqsave() to avoid lockdep issues when
1182 * passing a fake cpuc
1184 raw_spin_lock_irqsave(&era->lock, flags);
1186 if (!atomic_read(&era->ref) || era->config == reg->config) {
1189 * If its a fake cpuc -- as per validate_{group,event}() we
1190 * shouldn't touch event state and we can avoid doing so
1191 * since both will only call get_event_constraints() once
1192 * on each event, this avoids the need for reg->alloc.
1194 * Not doing the ER fixup will only result in era->reg being
1195 * wrong, but since we won't actually try and program hardware
1196 * this isn't a problem either.
1198 if (!cpuc->is_fake) {
1199 if (idx != reg->idx)
1200 intel_fixup_er(event, idx);
1203 * x86_schedule_events() can call get_event_constraints()
1204 * multiple times on events in the case of incremental
1205 * scheduling(). reg->alloc ensures we only do the ER
1206 * allocation once.
1208 reg->alloc = 1;
1211 /* lock in msr value */
1212 era->config = reg->config;
1213 era->reg = reg->reg;
1215 /* one more user */
1216 atomic_inc(&era->ref);
1219 * need to call x86_get_event_constraint()
1220 * to check if associated event has constraints
1222 c = NULL;
1223 } else {
1224 idx = intel_alt_er(idx);
1225 if (idx != reg->idx) {
1226 raw_spin_unlock_irqrestore(&era->lock, flags);
1227 goto again;
1230 raw_spin_unlock_irqrestore(&era->lock, flags);
1232 return c;
1235 static void
1236 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1237 struct hw_perf_event_extra *reg)
1239 struct er_account *era;
1242 * Only put constraint if extra reg was actually allocated. Also takes
1243 * care of event which do not use an extra shared reg.
1245 * Also, if this is a fake cpuc we shouldn't touch any event state
1246 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1247 * either since it'll be thrown out.
1249 if (!reg->alloc || cpuc->is_fake)
1250 return;
1252 era = &cpuc->shared_regs->regs[reg->idx];
1254 /* one fewer user */
1255 atomic_dec(&era->ref);
1257 /* allocate again next time */
1258 reg->alloc = 0;
1261 static struct event_constraint *
1262 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1263 struct perf_event *event)
1265 struct event_constraint *c = NULL, *d;
1266 struct hw_perf_event_extra *xreg, *breg;
1268 xreg = &event->hw.extra_reg;
1269 if (xreg->idx != EXTRA_REG_NONE) {
1270 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1271 if (c == &emptyconstraint)
1272 return c;
1274 breg = &event->hw.branch_reg;
1275 if (breg->idx != EXTRA_REG_NONE) {
1276 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1277 if (d == &emptyconstraint) {
1278 __intel_shared_reg_put_constraints(cpuc, xreg);
1279 c = d;
1282 return c;
1285 struct event_constraint *
1286 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1288 struct event_constraint *c;
1290 if (x86_pmu.event_constraints) {
1291 for_each_event_constraint(c, x86_pmu.event_constraints) {
1292 if ((event->hw.config & c->cmask) == c->code)
1293 return c;
1297 return &unconstrained;
1300 static struct event_constraint *
1301 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1303 struct event_constraint *c;
1305 c = intel_bts_constraints(event);
1306 if (c)
1307 return c;
1309 c = intel_pebs_constraints(event);
1310 if (c)
1311 return c;
1313 c = intel_shared_regs_constraints(cpuc, event);
1314 if (c)
1315 return c;
1317 return x86_get_event_constraints(cpuc, event);
1320 static void
1321 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1322 struct perf_event *event)
1324 struct hw_perf_event_extra *reg;
1326 reg = &event->hw.extra_reg;
1327 if (reg->idx != EXTRA_REG_NONE)
1328 __intel_shared_reg_put_constraints(cpuc, reg);
1330 reg = &event->hw.branch_reg;
1331 if (reg->idx != EXTRA_REG_NONE)
1332 __intel_shared_reg_put_constraints(cpuc, reg);
1335 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1336 struct perf_event *event)
1338 intel_put_shared_regs_event_constraints(cpuc, event);
1341 static void intel_pebs_aliases_core2(struct perf_event *event)
1343 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1345 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1346 * (0x003c) so that we can use it with PEBS.
1348 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1349 * PEBS capable. However we can use INST_RETIRED.ANY_P
1350 * (0x00c0), which is a PEBS capable event, to get the same
1351 * count.
1353 * INST_RETIRED.ANY_P counts the number of cycles that retires
1354 * CNTMASK instructions. By setting CNTMASK to a value (16)
1355 * larger than the maximum number of instructions that can be
1356 * retired per cycle (4) and then inverting the condition, we
1357 * count all cycles that retire 16 or less instructions, which
1358 * is every cycle.
1360 * Thereby we gain a PEBS capable cycle counter.
1362 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1364 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1365 event->hw.config = alt_config;
1369 static void intel_pebs_aliases_snb(struct perf_event *event)
1371 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1373 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1374 * (0x003c) so that we can use it with PEBS.
1376 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1377 * PEBS capable. However we can use UOPS_RETIRED.ALL
1378 * (0x01c2), which is a PEBS capable event, to get the same
1379 * count.
1381 * UOPS_RETIRED.ALL counts the number of cycles that retires
1382 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1383 * larger than the maximum number of micro-ops that can be
1384 * retired per cycle (4) and then inverting the condition, we
1385 * count all cycles that retire 16 or less micro-ops, which
1386 * is every cycle.
1388 * Thereby we gain a PEBS capable cycle counter.
1390 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1392 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1393 event->hw.config = alt_config;
1397 static int intel_pmu_hw_config(struct perf_event *event)
1399 int ret = x86_pmu_hw_config(event);
1401 if (ret)
1402 return ret;
1404 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1405 x86_pmu.pebs_aliases(event);
1407 if (intel_pmu_needs_lbr_smpl(event)) {
1408 ret = intel_pmu_setup_lbr_filter(event);
1409 if (ret)
1410 return ret;
1413 if (event->attr.type != PERF_TYPE_RAW)
1414 return 0;
1416 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1417 return 0;
1419 if (x86_pmu.version < 3)
1420 return -EINVAL;
1422 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1423 return -EACCES;
1425 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1427 return 0;
1430 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1432 if (x86_pmu.guest_get_msrs)
1433 return x86_pmu.guest_get_msrs(nr);
1434 *nr = 0;
1435 return NULL;
1437 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1439 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1441 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1442 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1444 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1445 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1446 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1448 *nr = 1;
1449 return arr;
1452 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1454 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1455 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1456 int idx;
1458 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1459 struct perf_event *event = cpuc->events[idx];
1461 arr[idx].msr = x86_pmu_config_addr(idx);
1462 arr[idx].host = arr[idx].guest = 0;
1464 if (!test_bit(idx, cpuc->active_mask))
1465 continue;
1467 arr[idx].host = arr[idx].guest =
1468 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1470 if (event->attr.exclude_host)
1471 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1472 else if (event->attr.exclude_guest)
1473 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1476 *nr = x86_pmu.num_counters;
1477 return arr;
1480 static void core_pmu_enable_event(struct perf_event *event)
1482 if (!event->attr.exclude_host)
1483 x86_pmu_enable_event(event);
1486 static void core_pmu_enable_all(int added)
1488 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1489 int idx;
1491 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1492 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1494 if (!test_bit(idx, cpuc->active_mask) ||
1495 cpuc->events[idx]->attr.exclude_host)
1496 continue;
1498 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1502 PMU_FORMAT_ATTR(event, "config:0-7" );
1503 PMU_FORMAT_ATTR(umask, "config:8-15" );
1504 PMU_FORMAT_ATTR(edge, "config:18" );
1505 PMU_FORMAT_ATTR(pc, "config:19" );
1506 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1507 PMU_FORMAT_ATTR(inv, "config:23" );
1508 PMU_FORMAT_ATTR(cmask, "config:24-31" );
1510 static struct attribute *intel_arch_formats_attr[] = {
1511 &format_attr_event.attr,
1512 &format_attr_umask.attr,
1513 &format_attr_edge.attr,
1514 &format_attr_pc.attr,
1515 &format_attr_inv.attr,
1516 &format_attr_cmask.attr,
1517 NULL,
1520 static __initconst const struct x86_pmu core_pmu = {
1521 .name = "core",
1522 .handle_irq = x86_pmu_handle_irq,
1523 .disable_all = x86_pmu_disable_all,
1524 .enable_all = core_pmu_enable_all,
1525 .enable = core_pmu_enable_event,
1526 .disable = x86_pmu_disable_event,
1527 .hw_config = x86_pmu_hw_config,
1528 .schedule_events = x86_schedule_events,
1529 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1530 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1531 .event_map = intel_pmu_event_map,
1532 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1533 .apic = 1,
1535 * Intel PMCs cannot be accessed sanely above 32 bit width,
1536 * so we install an artificial 1<<31 period regardless of
1537 * the generic event period:
1539 .max_period = (1ULL << 31) - 1,
1540 .get_event_constraints = intel_get_event_constraints,
1541 .put_event_constraints = intel_put_event_constraints,
1542 .event_constraints = intel_core_event_constraints,
1543 .guest_get_msrs = core_guest_get_msrs,
1544 .format_attrs = intel_arch_formats_attr,
1547 struct intel_shared_regs *allocate_shared_regs(int cpu)
1549 struct intel_shared_regs *regs;
1550 int i;
1552 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1553 GFP_KERNEL, cpu_to_node(cpu));
1554 if (regs) {
1556 * initialize the locks to keep lockdep happy
1558 for (i = 0; i < EXTRA_REG_MAX; i++)
1559 raw_spin_lock_init(&regs->regs[i].lock);
1561 regs->core_id = -1;
1563 return regs;
1566 static int intel_pmu_cpu_prepare(int cpu)
1568 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1570 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1571 return NOTIFY_OK;
1573 cpuc->shared_regs = allocate_shared_regs(cpu);
1574 if (!cpuc->shared_regs)
1575 return NOTIFY_BAD;
1577 return NOTIFY_OK;
1580 static void intel_pmu_cpu_starting(int cpu)
1582 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1583 int core_id = topology_core_id(cpu);
1584 int i;
1586 init_debug_store_on_cpu(cpu);
1588 * Deal with CPUs that don't clear their LBRs on power-up.
1590 intel_pmu_lbr_reset();
1592 cpuc->lbr_sel = NULL;
1594 if (!cpuc->shared_regs)
1595 return;
1597 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1598 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1599 struct intel_shared_regs *pc;
1601 pc = per_cpu(cpu_hw_events, i).shared_regs;
1602 if (pc && pc->core_id == core_id) {
1603 cpuc->kfree_on_online = cpuc->shared_regs;
1604 cpuc->shared_regs = pc;
1605 break;
1608 cpuc->shared_regs->core_id = core_id;
1609 cpuc->shared_regs->refcnt++;
1612 if (x86_pmu.lbr_sel_map)
1613 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1616 static void intel_pmu_cpu_dying(int cpu)
1618 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1619 struct intel_shared_regs *pc;
1621 pc = cpuc->shared_regs;
1622 if (pc) {
1623 if (pc->core_id == -1 || --pc->refcnt == 0)
1624 kfree(pc);
1625 cpuc->shared_regs = NULL;
1628 fini_debug_store_on_cpu(cpu);
1631 static void intel_pmu_flush_branch_stack(void)
1634 * Intel LBR does not tag entries with the
1635 * PID of the current task, then we need to
1636 * flush it on ctxsw
1637 * For now, we simply reset it
1639 if (x86_pmu.lbr_nr)
1640 intel_pmu_lbr_reset();
1643 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1645 static struct attribute *intel_arch3_formats_attr[] = {
1646 &format_attr_event.attr,
1647 &format_attr_umask.attr,
1648 &format_attr_edge.attr,
1649 &format_attr_pc.attr,
1650 &format_attr_any.attr,
1651 &format_attr_inv.attr,
1652 &format_attr_cmask.attr,
1654 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1655 NULL,
1658 static __initconst const struct x86_pmu intel_pmu = {
1659 .name = "Intel",
1660 .handle_irq = intel_pmu_handle_irq,
1661 .disable_all = intel_pmu_disable_all,
1662 .enable_all = intel_pmu_enable_all,
1663 .enable = intel_pmu_enable_event,
1664 .disable = intel_pmu_disable_event,
1665 .hw_config = intel_pmu_hw_config,
1666 .schedule_events = x86_schedule_events,
1667 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1668 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1669 .event_map = intel_pmu_event_map,
1670 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1671 .apic = 1,
1673 * Intel PMCs cannot be accessed sanely above 32 bit width,
1674 * so we install an artificial 1<<31 period regardless of
1675 * the generic event period:
1677 .max_period = (1ULL << 31) - 1,
1678 .get_event_constraints = intel_get_event_constraints,
1679 .put_event_constraints = intel_put_event_constraints,
1680 .pebs_aliases = intel_pebs_aliases_core2,
1682 .format_attrs = intel_arch3_formats_attr,
1684 .cpu_prepare = intel_pmu_cpu_prepare,
1685 .cpu_starting = intel_pmu_cpu_starting,
1686 .cpu_dying = intel_pmu_cpu_dying,
1687 .guest_get_msrs = intel_guest_get_msrs,
1688 .flush_branch_stack = intel_pmu_flush_branch_stack,
1691 static __init void intel_clovertown_quirk(void)
1694 * PEBS is unreliable due to:
1696 * AJ67 - PEBS may experience CPL leaks
1697 * AJ68 - PEBS PMI may be delayed by one event
1698 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1699 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1701 * AJ67 could be worked around by restricting the OS/USR flags.
1702 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1704 * AJ106 could possibly be worked around by not allowing LBR
1705 * usage from PEBS, including the fixup.
1706 * AJ68 could possibly be worked around by always programming
1707 * a pebs_event_reset[0] value and coping with the lost events.
1709 * But taken together it might just make sense to not enable PEBS on
1710 * these chips.
1712 pr_warn("PEBS disabled due to CPU errata\n");
1713 x86_pmu.pebs = 0;
1714 x86_pmu.pebs_constraints = NULL;
1717 static __init void intel_sandybridge_quirk(void)
1719 pr_warn("PEBS disabled due to CPU errata\n");
1720 x86_pmu.pebs = 0;
1721 x86_pmu.pebs_constraints = NULL;
1724 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1725 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1726 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1727 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1728 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1729 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1730 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1731 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1734 static __init void intel_arch_events_quirk(void)
1736 int bit;
1738 /* disable event that reported as not presend by cpuid */
1739 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1740 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1741 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1742 intel_arch_events_map[bit].name);
1746 static __init void intel_nehalem_quirk(void)
1748 union cpuid10_ebx ebx;
1750 ebx.full = x86_pmu.events_maskl;
1751 if (ebx.split.no_branch_misses_retired) {
1753 * Erratum AAJ80 detected, we work it around by using
1754 * the BR_MISP_EXEC.ANY event. This will over-count
1755 * branch-misses, but it's still much better than the
1756 * architectural event which is often completely bogus:
1758 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1759 ebx.split.no_branch_misses_retired = 0;
1760 x86_pmu.events_maskl = ebx.full;
1761 pr_info("CPU erratum AAJ80 worked around\n");
1765 __init int intel_pmu_init(void)
1767 union cpuid10_edx edx;
1768 union cpuid10_eax eax;
1769 union cpuid10_ebx ebx;
1770 unsigned int unused;
1771 int version;
1773 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1774 switch (boot_cpu_data.x86) {
1775 case 0x6:
1776 return p6_pmu_init();
1777 case 0xf:
1778 return p4_pmu_init();
1780 return -ENODEV;
1784 * Check whether the Architectural PerfMon supports
1785 * Branch Misses Retired hw_event or not.
1787 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1788 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1789 return -ENODEV;
1791 version = eax.split.version_id;
1792 if (version < 2)
1793 x86_pmu = core_pmu;
1794 else
1795 x86_pmu = intel_pmu;
1797 x86_pmu.version = version;
1798 x86_pmu.num_counters = eax.split.num_counters;
1799 x86_pmu.cntval_bits = eax.split.bit_width;
1800 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
1802 x86_pmu.events_maskl = ebx.full;
1803 x86_pmu.events_mask_len = eax.split.mask_length;
1806 * Quirk: v2 perfmon does not report fixed-purpose events, so
1807 * assume at least 3 events:
1809 if (version > 1)
1810 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1813 * v2 and above have a perf capabilities MSR
1815 if (version > 1) {
1816 u64 capabilities;
1818 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1819 x86_pmu.intel_cap.capabilities = capabilities;
1822 intel_ds_init();
1824 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1827 * Install the hw-cache-events table:
1829 switch (boot_cpu_data.x86_model) {
1830 case 14: /* 65 nm core solo/duo, "Yonah" */
1831 pr_cont("Core events, ");
1832 break;
1834 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1835 x86_add_quirk(intel_clovertown_quirk);
1836 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1837 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1838 case 29: /* six-core 45 nm xeon "Dunnington" */
1839 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1840 sizeof(hw_cache_event_ids));
1842 intel_pmu_lbr_init_core();
1844 x86_pmu.event_constraints = intel_core2_event_constraints;
1845 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1846 pr_cont("Core2 events, ");
1847 break;
1849 case 26: /* 45 nm nehalem, "Bloomfield" */
1850 case 30: /* 45 nm nehalem, "Lynnfield" */
1851 case 46: /* 45 nm nehalem-ex, "Beckton" */
1852 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1853 sizeof(hw_cache_event_ids));
1854 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1855 sizeof(hw_cache_extra_regs));
1857 intel_pmu_lbr_init_nhm();
1859 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1860 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1861 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1862 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1864 /* UOPS_ISSUED.STALLED_CYCLES */
1865 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1866 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1867 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1868 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1869 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1871 x86_add_quirk(intel_nehalem_quirk);
1873 pr_cont("Nehalem events, ");
1874 break;
1876 case 28: /* Atom */
1877 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1878 sizeof(hw_cache_event_ids));
1880 intel_pmu_lbr_init_atom();
1882 x86_pmu.event_constraints = intel_gen_event_constraints;
1883 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1884 pr_cont("Atom events, ");
1885 break;
1887 case 37: /* 32 nm nehalem, "Clarkdale" */
1888 case 44: /* 32 nm nehalem, "Gulftown" */
1889 case 47: /* 32 nm Xeon E7 */
1890 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1891 sizeof(hw_cache_event_ids));
1892 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1893 sizeof(hw_cache_extra_regs));
1895 intel_pmu_lbr_init_nhm();
1897 x86_pmu.event_constraints = intel_westmere_event_constraints;
1898 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1899 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1900 x86_pmu.extra_regs = intel_westmere_extra_regs;
1901 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1903 /* UOPS_ISSUED.STALLED_CYCLES */
1904 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1905 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1906 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1907 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1908 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1910 pr_cont("Westmere events, ");
1911 break;
1913 case 42: /* SandyBridge */
1914 case 45: /* SandyBridge, "Romely-EP" */
1915 x86_add_quirk(intel_sandybridge_quirk);
1916 case 58: /* IvyBridge */
1917 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1918 sizeof(hw_cache_event_ids));
1920 intel_pmu_lbr_init_snb();
1922 x86_pmu.event_constraints = intel_snb_event_constraints;
1923 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1924 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
1925 x86_pmu.extra_regs = intel_snb_extra_regs;
1926 /* all extra regs are per-cpu when HT is on */
1927 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1928 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1930 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1931 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1932 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1933 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1934 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1935 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
1937 pr_cont("SandyBridge events, ");
1938 break;
1940 default:
1941 switch (x86_pmu.version) {
1942 case 1:
1943 x86_pmu.event_constraints = intel_v1_event_constraints;
1944 pr_cont("generic architected perfmon v1, ");
1945 break;
1946 default:
1948 * default constraints for v2 and up
1950 x86_pmu.event_constraints = intel_gen_event_constraints;
1951 pr_cont("generic architected perfmon, ");
1952 break;
1956 return 0;