net: Add support for hardware-offloaded encapsulation
[linux-2.6/cjktty.git] / net / core / skbuff.c
blobccbabf5657323cc94cd6f89f9af1532c77b0934b
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__, here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__, here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
150 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151 * the caller if emergency pfmemalloc reserves are being used. If it is and
152 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153 * may be used. Otherwise, the packet data may be discarded until enough
154 * memory is free
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
159 bool *pfmemalloc)
161 void *obj;
162 bool ret_pfmemalloc = false;
165 * Try a regular allocation, when that fails and we're not entitled
166 * to the reserves, fail.
168 obj = kmalloc_node_track_caller(size,
169 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
170 node);
171 if (obj || !(gfp_pfmemalloc_allowed(flags)))
172 goto out;
174 /* Try again but now we are using pfmemalloc reserves */
175 ret_pfmemalloc = true;
176 obj = kmalloc_node_track_caller(size, flags, node);
178 out:
179 if (pfmemalloc)
180 *pfmemalloc = ret_pfmemalloc;
182 return obj;
185 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
186 * 'private' fields and also do memory statistics to find all the
187 * [BEEP] leaks.
192 * __alloc_skb - allocate a network buffer
193 * @size: size to allocate
194 * @gfp_mask: allocation mask
195 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
196 * instead of head cache and allocate a cloned (child) skb.
197 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
198 * allocations in case the data is required for writeback
199 * @node: numa node to allocate memory on
201 * Allocate a new &sk_buff. The returned buffer has no headroom and a
202 * tail room of at least size bytes. The object has a reference count
203 * of one. The return is the buffer. On a failure the return is %NULL.
205 * Buffers may only be allocated from interrupts using a @gfp_mask of
206 * %GFP_ATOMIC.
208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
209 int flags, int node)
211 struct kmem_cache *cache;
212 struct skb_shared_info *shinfo;
213 struct sk_buff *skb;
214 u8 *data;
215 bool pfmemalloc;
217 cache = (flags & SKB_ALLOC_FCLONE)
218 ? skbuff_fclone_cache : skbuff_head_cache;
220 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
221 gfp_mask |= __GFP_MEMALLOC;
223 /* Get the HEAD */
224 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
225 if (!skb)
226 goto out;
227 prefetchw(skb);
229 /* We do our best to align skb_shared_info on a separate cache
230 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232 * Both skb->head and skb_shared_info are cache line aligned.
234 size = SKB_DATA_ALIGN(size);
235 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
236 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
237 if (!data)
238 goto nodata;
239 /* kmalloc(size) might give us more room than requested.
240 * Put skb_shared_info exactly at the end of allocated zone,
241 * to allow max possible filling before reallocation.
243 size = SKB_WITH_OVERHEAD(ksize(data));
244 prefetchw(data + size);
247 * Only clear those fields we need to clear, not those that we will
248 * actually initialise below. Hence, don't put any more fields after
249 * the tail pointer in struct sk_buff!
251 memset(skb, 0, offsetof(struct sk_buff, tail));
252 /* Account for allocated memory : skb + skb->head */
253 skb->truesize = SKB_TRUESIZE(size);
254 skb->pfmemalloc = pfmemalloc;
255 atomic_set(&skb->users, 1);
256 skb->head = data;
257 skb->data = data;
258 skb_reset_tail_pointer(skb);
259 skb->end = skb->tail + size;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261 skb->mac_header = ~0U;
262 #endif
264 /* make sure we initialize shinfo sequentially */
265 shinfo = skb_shinfo(skb);
266 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
267 atomic_set(&shinfo->dataref, 1);
268 kmemcheck_annotate_variable(shinfo->destructor_arg);
270 if (flags & SKB_ALLOC_FCLONE) {
271 struct sk_buff *child = skb + 1;
272 atomic_t *fclone_ref = (atomic_t *) (child + 1);
274 kmemcheck_annotate_bitfield(child, flags1);
275 kmemcheck_annotate_bitfield(child, flags2);
276 skb->fclone = SKB_FCLONE_ORIG;
277 atomic_set(fclone_ref, 1);
279 child->fclone = SKB_FCLONE_UNAVAILABLE;
280 child->pfmemalloc = pfmemalloc;
282 out:
283 return skb;
284 nodata:
285 kmem_cache_free(cache, skb);
286 skb = NULL;
287 goto out;
289 EXPORT_SYMBOL(__alloc_skb);
292 * build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of fragment, or 0 if head was kmalloced
296 * Allocate a new &sk_buff. Caller provides space holding head and
297 * skb_shared_info. @data must have been allocated by kmalloc()
298 * The return is the new skb buffer.
299 * On a failure the return is %NULL, and @data is not freed.
300 * Notes :
301 * Before IO, driver allocates only data buffer where NIC put incoming frame
302 * Driver should add room at head (NET_SKB_PAD) and
303 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
304 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
305 * before giving packet to stack.
306 * RX rings only contains data buffers, not full skbs.
308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
310 struct skb_shared_info *shinfo;
311 struct sk_buff *skb;
312 unsigned int size = frag_size ? : ksize(data);
314 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
315 if (!skb)
316 return NULL;
318 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
320 memset(skb, 0, offsetof(struct sk_buff, tail));
321 skb->truesize = SKB_TRUESIZE(size);
322 skb->head_frag = frag_size != 0;
323 atomic_set(&skb->users, 1);
324 skb->head = data;
325 skb->data = data;
326 skb_reset_tail_pointer(skb);
327 skb->end = skb->tail + size;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 skb->mac_header = ~0U;
330 #endif
332 /* make sure we initialize shinfo sequentially */
333 shinfo = skb_shinfo(skb);
334 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
335 atomic_set(&shinfo->dataref, 1);
336 kmemcheck_annotate_variable(shinfo->destructor_arg);
338 return skb;
340 EXPORT_SYMBOL(build_skb);
342 struct netdev_alloc_cache {
343 struct page_frag frag;
344 /* we maintain a pagecount bias, so that we dont dirty cache line
345 * containing page->_count every time we allocate a fragment.
347 unsigned int pagecnt_bias;
349 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
351 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
352 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
353 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
357 struct netdev_alloc_cache *nc;
358 void *data = NULL;
359 int order;
360 unsigned long flags;
362 local_irq_save(flags);
363 nc = &__get_cpu_var(netdev_alloc_cache);
364 if (unlikely(!nc->frag.page)) {
365 refill:
366 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
367 gfp_t gfp = gfp_mask;
369 if (order)
370 gfp |= __GFP_COMP | __GFP_NOWARN;
371 nc->frag.page = alloc_pages(gfp, order);
372 if (likely(nc->frag.page))
373 break;
374 if (--order < 0)
375 goto end;
377 nc->frag.size = PAGE_SIZE << order;
378 recycle:
379 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
380 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
381 nc->frag.offset = 0;
384 if (nc->frag.offset + fragsz > nc->frag.size) {
385 /* avoid unnecessary locked operations if possible */
386 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
387 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
388 goto recycle;
389 goto refill;
392 data = page_address(nc->frag.page) + nc->frag.offset;
393 nc->frag.offset += fragsz;
394 nc->pagecnt_bias--;
395 end:
396 local_irq_restore(flags);
397 return data;
401 * netdev_alloc_frag - allocate a page fragment
402 * @fragsz: fragment size
404 * Allocates a frag from a page for receive buffer.
405 * Uses GFP_ATOMIC allocations.
407 void *netdev_alloc_frag(unsigned int fragsz)
409 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
411 EXPORT_SYMBOL(netdev_alloc_frag);
414 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
415 * @dev: network device to receive on
416 * @length: length to allocate
417 * @gfp_mask: get_free_pages mask, passed to alloc_skb
419 * Allocate a new &sk_buff and assign it a usage count of one. The
420 * buffer has unspecified headroom built in. Users should allocate
421 * the headroom they think they need without accounting for the
422 * built in space. The built in space is used for optimisations.
424 * %NULL is returned if there is no free memory.
426 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
427 unsigned int length, gfp_t gfp_mask)
429 struct sk_buff *skb = NULL;
430 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
431 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
433 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
434 void *data;
436 if (sk_memalloc_socks())
437 gfp_mask |= __GFP_MEMALLOC;
439 data = __netdev_alloc_frag(fragsz, gfp_mask);
441 if (likely(data)) {
442 skb = build_skb(data, fragsz);
443 if (unlikely(!skb))
444 put_page(virt_to_head_page(data));
446 } else {
447 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
448 SKB_ALLOC_RX, NUMA_NO_NODE);
450 if (likely(skb)) {
451 skb_reserve(skb, NET_SKB_PAD);
452 skb->dev = dev;
454 return skb;
456 EXPORT_SYMBOL(__netdev_alloc_skb);
458 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
459 int size, unsigned int truesize)
461 skb_fill_page_desc(skb, i, page, off, size);
462 skb->len += size;
463 skb->data_len += size;
464 skb->truesize += truesize;
466 EXPORT_SYMBOL(skb_add_rx_frag);
468 static void skb_drop_list(struct sk_buff **listp)
470 struct sk_buff *list = *listp;
472 *listp = NULL;
474 do {
475 struct sk_buff *this = list;
476 list = list->next;
477 kfree_skb(this);
478 } while (list);
481 static inline void skb_drop_fraglist(struct sk_buff *skb)
483 skb_drop_list(&skb_shinfo(skb)->frag_list);
486 static void skb_clone_fraglist(struct sk_buff *skb)
488 struct sk_buff *list;
490 skb_walk_frags(skb, list)
491 skb_get(list);
494 static void skb_free_head(struct sk_buff *skb)
496 if (skb->head_frag)
497 put_page(virt_to_head_page(skb->head));
498 else
499 kfree(skb->head);
502 static void skb_release_data(struct sk_buff *skb)
504 if (!skb->cloned ||
505 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
506 &skb_shinfo(skb)->dataref)) {
507 if (skb_shinfo(skb)->nr_frags) {
508 int i;
509 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
510 skb_frag_unref(skb, i);
514 * If skb buf is from userspace, we need to notify the caller
515 * the lower device DMA has done;
517 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
518 struct ubuf_info *uarg;
520 uarg = skb_shinfo(skb)->destructor_arg;
521 if (uarg->callback)
522 uarg->callback(uarg, true);
525 if (skb_has_frag_list(skb))
526 skb_drop_fraglist(skb);
528 skb_free_head(skb);
533 * Free an skbuff by memory without cleaning the state.
535 static void kfree_skbmem(struct sk_buff *skb)
537 struct sk_buff *other;
538 atomic_t *fclone_ref;
540 switch (skb->fclone) {
541 case SKB_FCLONE_UNAVAILABLE:
542 kmem_cache_free(skbuff_head_cache, skb);
543 break;
545 case SKB_FCLONE_ORIG:
546 fclone_ref = (atomic_t *) (skb + 2);
547 if (atomic_dec_and_test(fclone_ref))
548 kmem_cache_free(skbuff_fclone_cache, skb);
549 break;
551 case SKB_FCLONE_CLONE:
552 fclone_ref = (atomic_t *) (skb + 1);
553 other = skb - 1;
555 /* The clone portion is available for
556 * fast-cloning again.
558 skb->fclone = SKB_FCLONE_UNAVAILABLE;
560 if (atomic_dec_and_test(fclone_ref))
561 kmem_cache_free(skbuff_fclone_cache, other);
562 break;
566 static void skb_release_head_state(struct sk_buff *skb)
568 skb_dst_drop(skb);
569 #ifdef CONFIG_XFRM
570 secpath_put(skb->sp);
571 #endif
572 if (skb->destructor) {
573 WARN_ON(in_irq());
574 skb->destructor(skb);
576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
577 nf_conntrack_put(skb->nfct);
578 #endif
579 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
580 nf_conntrack_put_reasm(skb->nfct_reasm);
581 #endif
582 #ifdef CONFIG_BRIDGE_NETFILTER
583 nf_bridge_put(skb->nf_bridge);
584 #endif
585 /* XXX: IS this still necessary? - JHS */
586 #ifdef CONFIG_NET_SCHED
587 skb->tc_index = 0;
588 #ifdef CONFIG_NET_CLS_ACT
589 skb->tc_verd = 0;
590 #endif
591 #endif
594 /* Free everything but the sk_buff shell. */
595 static void skb_release_all(struct sk_buff *skb)
597 skb_release_head_state(skb);
598 skb_release_data(skb);
602 * __kfree_skb - private function
603 * @skb: buffer
605 * Free an sk_buff. Release anything attached to the buffer.
606 * Clean the state. This is an internal helper function. Users should
607 * always call kfree_skb
610 void __kfree_skb(struct sk_buff *skb)
612 skb_release_all(skb);
613 kfree_skbmem(skb);
615 EXPORT_SYMBOL(__kfree_skb);
618 * kfree_skb - free an sk_buff
619 * @skb: buffer to free
621 * Drop a reference to the buffer and free it if the usage count has
622 * hit zero.
624 void kfree_skb(struct sk_buff *skb)
626 if (unlikely(!skb))
627 return;
628 if (likely(atomic_read(&skb->users) == 1))
629 smp_rmb();
630 else if (likely(!atomic_dec_and_test(&skb->users)))
631 return;
632 trace_kfree_skb(skb, __builtin_return_address(0));
633 __kfree_skb(skb);
635 EXPORT_SYMBOL(kfree_skb);
638 * skb_tx_error - report an sk_buff xmit error
639 * @skb: buffer that triggered an error
641 * Report xmit error if a device callback is tracking this skb.
642 * skb must be freed afterwards.
644 void skb_tx_error(struct sk_buff *skb)
646 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
647 struct ubuf_info *uarg;
649 uarg = skb_shinfo(skb)->destructor_arg;
650 if (uarg->callback)
651 uarg->callback(uarg, false);
652 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
655 EXPORT_SYMBOL(skb_tx_error);
658 * consume_skb - free an skbuff
659 * @skb: buffer to free
661 * Drop a ref to the buffer and free it if the usage count has hit zero
662 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
663 * is being dropped after a failure and notes that
665 void consume_skb(struct sk_buff *skb)
667 if (unlikely(!skb))
668 return;
669 if (likely(atomic_read(&skb->users) == 1))
670 smp_rmb();
671 else if (likely(!atomic_dec_and_test(&skb->users)))
672 return;
673 trace_consume_skb(skb);
674 __kfree_skb(skb);
676 EXPORT_SYMBOL(consume_skb);
678 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
680 new->tstamp = old->tstamp;
681 new->dev = old->dev;
682 new->transport_header = old->transport_header;
683 new->network_header = old->network_header;
684 new->mac_header = old->mac_header;
685 new->inner_transport_header = old->inner_transport_header;
686 new->inner_network_header = old->inner_transport_header;
687 skb_dst_copy(new, old);
688 new->rxhash = old->rxhash;
689 new->ooo_okay = old->ooo_okay;
690 new->l4_rxhash = old->l4_rxhash;
691 new->no_fcs = old->no_fcs;
692 new->encapsulation = old->encapsulation;
693 #ifdef CONFIG_XFRM
694 new->sp = secpath_get(old->sp);
695 #endif
696 memcpy(new->cb, old->cb, sizeof(old->cb));
697 new->csum = old->csum;
698 new->local_df = old->local_df;
699 new->pkt_type = old->pkt_type;
700 new->ip_summed = old->ip_summed;
701 skb_copy_queue_mapping(new, old);
702 new->priority = old->priority;
703 #if IS_ENABLED(CONFIG_IP_VS)
704 new->ipvs_property = old->ipvs_property;
705 #endif
706 new->pfmemalloc = old->pfmemalloc;
707 new->protocol = old->protocol;
708 new->mark = old->mark;
709 new->skb_iif = old->skb_iif;
710 __nf_copy(new, old);
711 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
712 new->nf_trace = old->nf_trace;
713 #endif
714 #ifdef CONFIG_NET_SCHED
715 new->tc_index = old->tc_index;
716 #ifdef CONFIG_NET_CLS_ACT
717 new->tc_verd = old->tc_verd;
718 #endif
719 #endif
720 new->vlan_tci = old->vlan_tci;
722 skb_copy_secmark(new, old);
726 * You should not add any new code to this function. Add it to
727 * __copy_skb_header above instead.
729 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
731 #define C(x) n->x = skb->x
733 n->next = n->prev = NULL;
734 n->sk = NULL;
735 __copy_skb_header(n, skb);
737 C(len);
738 C(data_len);
739 C(mac_len);
740 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
741 n->cloned = 1;
742 n->nohdr = 0;
743 n->destructor = NULL;
744 C(tail);
745 C(end);
746 C(head);
747 C(head_frag);
748 C(data);
749 C(truesize);
750 atomic_set(&n->users, 1);
752 atomic_inc(&(skb_shinfo(skb)->dataref));
753 skb->cloned = 1;
755 return n;
756 #undef C
760 * skb_morph - morph one skb into another
761 * @dst: the skb to receive the contents
762 * @src: the skb to supply the contents
764 * This is identical to skb_clone except that the target skb is
765 * supplied by the user.
767 * The target skb is returned upon exit.
769 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
771 skb_release_all(dst);
772 return __skb_clone(dst, src);
774 EXPORT_SYMBOL_GPL(skb_morph);
777 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
778 * @skb: the skb to modify
779 * @gfp_mask: allocation priority
781 * This must be called on SKBTX_DEV_ZEROCOPY skb.
782 * It will copy all frags into kernel and drop the reference
783 * to userspace pages.
785 * If this function is called from an interrupt gfp_mask() must be
786 * %GFP_ATOMIC.
788 * Returns 0 on success or a negative error code on failure
789 * to allocate kernel memory to copy to.
791 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
793 int i;
794 int num_frags = skb_shinfo(skb)->nr_frags;
795 struct page *page, *head = NULL;
796 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
798 for (i = 0; i < num_frags; i++) {
799 u8 *vaddr;
800 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
802 page = alloc_page(gfp_mask);
803 if (!page) {
804 while (head) {
805 struct page *next = (struct page *)head->private;
806 put_page(head);
807 head = next;
809 return -ENOMEM;
811 vaddr = kmap_atomic(skb_frag_page(f));
812 memcpy(page_address(page),
813 vaddr + f->page_offset, skb_frag_size(f));
814 kunmap_atomic(vaddr);
815 page->private = (unsigned long)head;
816 head = page;
819 /* skb frags release userspace buffers */
820 for (i = 0; i < num_frags; i++)
821 skb_frag_unref(skb, i);
823 uarg->callback(uarg, false);
825 /* skb frags point to kernel buffers */
826 for (i = num_frags - 1; i >= 0; i--) {
827 __skb_fill_page_desc(skb, i, head, 0,
828 skb_shinfo(skb)->frags[i].size);
829 head = (struct page *)head->private;
832 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
833 return 0;
835 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
838 * skb_clone - duplicate an sk_buff
839 * @skb: buffer to clone
840 * @gfp_mask: allocation priority
842 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
843 * copies share the same packet data but not structure. The new
844 * buffer has a reference count of 1. If the allocation fails the
845 * function returns %NULL otherwise the new buffer is returned.
847 * If this function is called from an interrupt gfp_mask() must be
848 * %GFP_ATOMIC.
851 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
853 struct sk_buff *n;
855 if (skb_orphan_frags(skb, gfp_mask))
856 return NULL;
858 n = skb + 1;
859 if (skb->fclone == SKB_FCLONE_ORIG &&
860 n->fclone == SKB_FCLONE_UNAVAILABLE) {
861 atomic_t *fclone_ref = (atomic_t *) (n + 1);
862 n->fclone = SKB_FCLONE_CLONE;
863 atomic_inc(fclone_ref);
864 } else {
865 if (skb_pfmemalloc(skb))
866 gfp_mask |= __GFP_MEMALLOC;
868 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
869 if (!n)
870 return NULL;
872 kmemcheck_annotate_bitfield(n, flags1);
873 kmemcheck_annotate_bitfield(n, flags2);
874 n->fclone = SKB_FCLONE_UNAVAILABLE;
877 return __skb_clone(n, skb);
879 EXPORT_SYMBOL(skb_clone);
881 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
883 #ifndef NET_SKBUFF_DATA_USES_OFFSET
885 * Shift between the two data areas in bytes
887 unsigned long offset = new->data - old->data;
888 #endif
890 __copy_skb_header(new, old);
892 #ifndef NET_SKBUFF_DATA_USES_OFFSET
893 /* {transport,network,mac}_header are relative to skb->head */
894 new->transport_header += offset;
895 new->network_header += offset;
896 if (skb_mac_header_was_set(new))
897 new->mac_header += offset;
898 new->inner_transport_header += offset;
899 new->inner_network_header += offset;
900 #endif
901 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
902 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
903 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
908 if (skb_pfmemalloc(skb))
909 return SKB_ALLOC_RX;
910 return 0;
914 * skb_copy - create private copy of an sk_buff
915 * @skb: buffer to copy
916 * @gfp_mask: allocation priority
918 * Make a copy of both an &sk_buff and its data. This is used when the
919 * caller wishes to modify the data and needs a private copy of the
920 * data to alter. Returns %NULL on failure or the pointer to the buffer
921 * on success. The returned buffer has a reference count of 1.
923 * As by-product this function converts non-linear &sk_buff to linear
924 * one, so that &sk_buff becomes completely private and caller is allowed
925 * to modify all the data of returned buffer. This means that this
926 * function is not recommended for use in circumstances when only
927 * header is going to be modified. Use pskb_copy() instead.
930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
932 int headerlen = skb_headroom(skb);
933 unsigned int size = skb_end_offset(skb) + skb->data_len;
934 struct sk_buff *n = __alloc_skb(size, gfp_mask,
935 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
937 if (!n)
938 return NULL;
940 /* Set the data pointer */
941 skb_reserve(n, headerlen);
942 /* Set the tail pointer and length */
943 skb_put(n, skb->len);
945 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
946 BUG();
948 copy_skb_header(n, skb);
949 return n;
951 EXPORT_SYMBOL(skb_copy);
954 * __pskb_copy - create copy of an sk_buff with private head.
955 * @skb: buffer to copy
956 * @headroom: headroom of new skb
957 * @gfp_mask: allocation priority
959 * Make a copy of both an &sk_buff and part of its data, located
960 * in header. Fragmented data remain shared. This is used when
961 * the caller wishes to modify only header of &sk_buff and needs
962 * private copy of the header to alter. Returns %NULL on failure
963 * or the pointer to the buffer on success.
964 * The returned buffer has a reference count of 1.
967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
969 unsigned int size = skb_headlen(skb) + headroom;
970 struct sk_buff *n = __alloc_skb(size, gfp_mask,
971 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
973 if (!n)
974 goto out;
976 /* Set the data pointer */
977 skb_reserve(n, headroom);
978 /* Set the tail pointer and length */
979 skb_put(n, skb_headlen(skb));
980 /* Copy the bytes */
981 skb_copy_from_linear_data(skb, n->data, n->len);
983 n->truesize += skb->data_len;
984 n->data_len = skb->data_len;
985 n->len = skb->len;
987 if (skb_shinfo(skb)->nr_frags) {
988 int i;
990 if (skb_orphan_frags(skb, gfp_mask)) {
991 kfree_skb(n);
992 n = NULL;
993 goto out;
995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
997 skb_frag_ref(skb, i);
999 skb_shinfo(n)->nr_frags = i;
1002 if (skb_has_frag_list(skb)) {
1003 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1004 skb_clone_fraglist(n);
1007 copy_skb_header(n, skb);
1008 out:
1009 return n;
1011 EXPORT_SYMBOL(__pskb_copy);
1014 * pskb_expand_head - reallocate header of &sk_buff
1015 * @skb: buffer to reallocate
1016 * @nhead: room to add at head
1017 * @ntail: room to add at tail
1018 * @gfp_mask: allocation priority
1020 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1021 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1022 * reference count of 1. Returns zero in the case of success or error,
1023 * if expansion failed. In the last case, &sk_buff is not changed.
1025 * All the pointers pointing into skb header may change and must be
1026 * reloaded after call to this function.
1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1030 gfp_t gfp_mask)
1032 int i;
1033 u8 *data;
1034 int size = nhead + skb_end_offset(skb) + ntail;
1035 long off;
1037 BUG_ON(nhead < 0);
1039 if (skb_shared(skb))
1040 BUG();
1042 size = SKB_DATA_ALIGN(size);
1044 if (skb_pfmemalloc(skb))
1045 gfp_mask |= __GFP_MEMALLOC;
1046 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1047 gfp_mask, NUMA_NO_NODE, NULL);
1048 if (!data)
1049 goto nodata;
1050 size = SKB_WITH_OVERHEAD(ksize(data));
1052 /* Copy only real data... and, alas, header. This should be
1053 * optimized for the cases when header is void.
1055 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1057 memcpy((struct skb_shared_info *)(data + size),
1058 skb_shinfo(skb),
1059 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1062 * if shinfo is shared we must drop the old head gracefully, but if it
1063 * is not we can just drop the old head and let the existing refcount
1064 * be since all we did is relocate the values
1066 if (skb_cloned(skb)) {
1067 /* copy this zero copy skb frags */
1068 if (skb_orphan_frags(skb, gfp_mask))
1069 goto nofrags;
1070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1071 skb_frag_ref(skb, i);
1073 if (skb_has_frag_list(skb))
1074 skb_clone_fraglist(skb);
1076 skb_release_data(skb);
1077 } else {
1078 skb_free_head(skb);
1080 off = (data + nhead) - skb->head;
1082 skb->head = data;
1083 skb->head_frag = 0;
1084 skb->data += off;
1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1086 skb->end = size;
1087 off = nhead;
1088 #else
1089 skb->end = skb->head + size;
1090 #endif
1091 /* {transport,network,mac}_header and tail are relative to skb->head */
1092 skb->tail += off;
1093 skb->transport_header += off;
1094 skb->network_header += off;
1095 if (skb_mac_header_was_set(skb))
1096 skb->mac_header += off;
1097 skb->inner_transport_header += off;
1098 skb->inner_network_header += off;
1099 /* Only adjust this if it actually is csum_start rather than csum */
1100 if (skb->ip_summed == CHECKSUM_PARTIAL)
1101 skb->csum_start += nhead;
1102 skb->cloned = 0;
1103 skb->hdr_len = 0;
1104 skb->nohdr = 0;
1105 atomic_set(&skb_shinfo(skb)->dataref, 1);
1106 return 0;
1108 nofrags:
1109 kfree(data);
1110 nodata:
1111 return -ENOMEM;
1113 EXPORT_SYMBOL(pskb_expand_head);
1115 /* Make private copy of skb with writable head and some headroom */
1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1119 struct sk_buff *skb2;
1120 int delta = headroom - skb_headroom(skb);
1122 if (delta <= 0)
1123 skb2 = pskb_copy(skb, GFP_ATOMIC);
1124 else {
1125 skb2 = skb_clone(skb, GFP_ATOMIC);
1126 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1127 GFP_ATOMIC)) {
1128 kfree_skb(skb2);
1129 skb2 = NULL;
1132 return skb2;
1134 EXPORT_SYMBOL(skb_realloc_headroom);
1137 * skb_copy_expand - copy and expand sk_buff
1138 * @skb: buffer to copy
1139 * @newheadroom: new free bytes at head
1140 * @newtailroom: new free bytes at tail
1141 * @gfp_mask: allocation priority
1143 * Make a copy of both an &sk_buff and its data and while doing so
1144 * allocate additional space.
1146 * This is used when the caller wishes to modify the data and needs a
1147 * private copy of the data to alter as well as more space for new fields.
1148 * Returns %NULL on failure or the pointer to the buffer
1149 * on success. The returned buffer has a reference count of 1.
1151 * You must pass %GFP_ATOMIC as the allocation priority if this function
1152 * is called from an interrupt.
1154 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1155 int newheadroom, int newtailroom,
1156 gfp_t gfp_mask)
1159 * Allocate the copy buffer
1161 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1162 gfp_mask, skb_alloc_rx_flag(skb),
1163 NUMA_NO_NODE);
1164 int oldheadroom = skb_headroom(skb);
1165 int head_copy_len, head_copy_off;
1166 int off;
1168 if (!n)
1169 return NULL;
1171 skb_reserve(n, newheadroom);
1173 /* Set the tail pointer and length */
1174 skb_put(n, skb->len);
1176 head_copy_len = oldheadroom;
1177 head_copy_off = 0;
1178 if (newheadroom <= head_copy_len)
1179 head_copy_len = newheadroom;
1180 else
1181 head_copy_off = newheadroom - head_copy_len;
1183 /* Copy the linear header and data. */
1184 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1185 skb->len + head_copy_len))
1186 BUG();
1188 copy_skb_header(n, skb);
1190 off = newheadroom - oldheadroom;
1191 if (n->ip_summed == CHECKSUM_PARTIAL)
1192 n->csum_start += off;
1193 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1194 n->transport_header += off;
1195 n->network_header += off;
1196 if (skb_mac_header_was_set(skb))
1197 n->mac_header += off;
1198 n->inner_transport_header += off;
1199 n->inner_network_header += off;
1200 #endif
1202 return n;
1204 EXPORT_SYMBOL(skb_copy_expand);
1207 * skb_pad - zero pad the tail of an skb
1208 * @skb: buffer to pad
1209 * @pad: space to pad
1211 * Ensure that a buffer is followed by a padding area that is zero
1212 * filled. Used by network drivers which may DMA or transfer data
1213 * beyond the buffer end onto the wire.
1215 * May return error in out of memory cases. The skb is freed on error.
1218 int skb_pad(struct sk_buff *skb, int pad)
1220 int err;
1221 int ntail;
1223 /* If the skbuff is non linear tailroom is always zero.. */
1224 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1225 memset(skb->data+skb->len, 0, pad);
1226 return 0;
1229 ntail = skb->data_len + pad - (skb->end - skb->tail);
1230 if (likely(skb_cloned(skb) || ntail > 0)) {
1231 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1232 if (unlikely(err))
1233 goto free_skb;
1236 /* FIXME: The use of this function with non-linear skb's really needs
1237 * to be audited.
1239 err = skb_linearize(skb);
1240 if (unlikely(err))
1241 goto free_skb;
1243 memset(skb->data + skb->len, 0, pad);
1244 return 0;
1246 free_skb:
1247 kfree_skb(skb);
1248 return err;
1250 EXPORT_SYMBOL(skb_pad);
1253 * skb_put - add data to a buffer
1254 * @skb: buffer to use
1255 * @len: amount of data to add
1257 * This function extends the used data area of the buffer. If this would
1258 * exceed the total buffer size the kernel will panic. A pointer to the
1259 * first byte of the extra data is returned.
1261 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1263 unsigned char *tmp = skb_tail_pointer(skb);
1264 SKB_LINEAR_ASSERT(skb);
1265 skb->tail += len;
1266 skb->len += len;
1267 if (unlikely(skb->tail > skb->end))
1268 skb_over_panic(skb, len, __builtin_return_address(0));
1269 return tmp;
1271 EXPORT_SYMBOL(skb_put);
1274 * skb_push - add data to the start of a buffer
1275 * @skb: buffer to use
1276 * @len: amount of data to add
1278 * This function extends the used data area of the buffer at the buffer
1279 * start. If this would exceed the total buffer headroom the kernel will
1280 * panic. A pointer to the first byte of the extra data is returned.
1282 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1284 skb->data -= len;
1285 skb->len += len;
1286 if (unlikely(skb->data<skb->head))
1287 skb_under_panic(skb, len, __builtin_return_address(0));
1288 return skb->data;
1290 EXPORT_SYMBOL(skb_push);
1293 * skb_pull - remove data from the start of a buffer
1294 * @skb: buffer to use
1295 * @len: amount of data to remove
1297 * This function removes data from the start of a buffer, returning
1298 * the memory to the headroom. A pointer to the next data in the buffer
1299 * is returned. Once the data has been pulled future pushes will overwrite
1300 * the old data.
1302 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1304 return skb_pull_inline(skb, len);
1306 EXPORT_SYMBOL(skb_pull);
1309 * skb_trim - remove end from a buffer
1310 * @skb: buffer to alter
1311 * @len: new length
1313 * Cut the length of a buffer down by removing data from the tail. If
1314 * the buffer is already under the length specified it is not modified.
1315 * The skb must be linear.
1317 void skb_trim(struct sk_buff *skb, unsigned int len)
1319 if (skb->len > len)
1320 __skb_trim(skb, len);
1322 EXPORT_SYMBOL(skb_trim);
1324 /* Trims skb to length len. It can change skb pointers.
1327 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1329 struct sk_buff **fragp;
1330 struct sk_buff *frag;
1331 int offset = skb_headlen(skb);
1332 int nfrags = skb_shinfo(skb)->nr_frags;
1333 int i;
1334 int err;
1336 if (skb_cloned(skb) &&
1337 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1338 return err;
1340 i = 0;
1341 if (offset >= len)
1342 goto drop_pages;
1344 for (; i < nfrags; i++) {
1345 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1347 if (end < len) {
1348 offset = end;
1349 continue;
1352 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1354 drop_pages:
1355 skb_shinfo(skb)->nr_frags = i;
1357 for (; i < nfrags; i++)
1358 skb_frag_unref(skb, i);
1360 if (skb_has_frag_list(skb))
1361 skb_drop_fraglist(skb);
1362 goto done;
1365 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1366 fragp = &frag->next) {
1367 int end = offset + frag->len;
1369 if (skb_shared(frag)) {
1370 struct sk_buff *nfrag;
1372 nfrag = skb_clone(frag, GFP_ATOMIC);
1373 if (unlikely(!nfrag))
1374 return -ENOMEM;
1376 nfrag->next = frag->next;
1377 consume_skb(frag);
1378 frag = nfrag;
1379 *fragp = frag;
1382 if (end < len) {
1383 offset = end;
1384 continue;
1387 if (end > len &&
1388 unlikely((err = pskb_trim(frag, len - offset))))
1389 return err;
1391 if (frag->next)
1392 skb_drop_list(&frag->next);
1393 break;
1396 done:
1397 if (len > skb_headlen(skb)) {
1398 skb->data_len -= skb->len - len;
1399 skb->len = len;
1400 } else {
1401 skb->len = len;
1402 skb->data_len = 0;
1403 skb_set_tail_pointer(skb, len);
1406 return 0;
1408 EXPORT_SYMBOL(___pskb_trim);
1411 * __pskb_pull_tail - advance tail of skb header
1412 * @skb: buffer to reallocate
1413 * @delta: number of bytes to advance tail
1415 * The function makes a sense only on a fragmented &sk_buff,
1416 * it expands header moving its tail forward and copying necessary
1417 * data from fragmented part.
1419 * &sk_buff MUST have reference count of 1.
1421 * Returns %NULL (and &sk_buff does not change) if pull failed
1422 * or value of new tail of skb in the case of success.
1424 * All the pointers pointing into skb header may change and must be
1425 * reloaded after call to this function.
1428 /* Moves tail of skb head forward, copying data from fragmented part,
1429 * when it is necessary.
1430 * 1. It may fail due to malloc failure.
1431 * 2. It may change skb pointers.
1433 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1435 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1437 /* If skb has not enough free space at tail, get new one
1438 * plus 128 bytes for future expansions. If we have enough
1439 * room at tail, reallocate without expansion only if skb is cloned.
1441 int i, k, eat = (skb->tail + delta) - skb->end;
1443 if (eat > 0 || skb_cloned(skb)) {
1444 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1445 GFP_ATOMIC))
1446 return NULL;
1449 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1450 BUG();
1452 /* Optimization: no fragments, no reasons to preestimate
1453 * size of pulled pages. Superb.
1455 if (!skb_has_frag_list(skb))
1456 goto pull_pages;
1458 /* Estimate size of pulled pages. */
1459 eat = delta;
1460 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1461 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1463 if (size >= eat)
1464 goto pull_pages;
1465 eat -= size;
1468 /* If we need update frag list, we are in troubles.
1469 * Certainly, it possible to add an offset to skb data,
1470 * but taking into account that pulling is expected to
1471 * be very rare operation, it is worth to fight against
1472 * further bloating skb head and crucify ourselves here instead.
1473 * Pure masohism, indeed. 8)8)
1475 if (eat) {
1476 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1477 struct sk_buff *clone = NULL;
1478 struct sk_buff *insp = NULL;
1480 do {
1481 BUG_ON(!list);
1483 if (list->len <= eat) {
1484 /* Eaten as whole. */
1485 eat -= list->len;
1486 list = list->next;
1487 insp = list;
1488 } else {
1489 /* Eaten partially. */
1491 if (skb_shared(list)) {
1492 /* Sucks! We need to fork list. :-( */
1493 clone = skb_clone(list, GFP_ATOMIC);
1494 if (!clone)
1495 return NULL;
1496 insp = list->next;
1497 list = clone;
1498 } else {
1499 /* This may be pulled without
1500 * problems. */
1501 insp = list;
1503 if (!pskb_pull(list, eat)) {
1504 kfree_skb(clone);
1505 return NULL;
1507 break;
1509 } while (eat);
1511 /* Free pulled out fragments. */
1512 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1513 skb_shinfo(skb)->frag_list = list->next;
1514 kfree_skb(list);
1516 /* And insert new clone at head. */
1517 if (clone) {
1518 clone->next = list;
1519 skb_shinfo(skb)->frag_list = clone;
1522 /* Success! Now we may commit changes to skb data. */
1524 pull_pages:
1525 eat = delta;
1526 k = 0;
1527 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1528 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1530 if (size <= eat) {
1531 skb_frag_unref(skb, i);
1532 eat -= size;
1533 } else {
1534 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1535 if (eat) {
1536 skb_shinfo(skb)->frags[k].page_offset += eat;
1537 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1538 eat = 0;
1540 k++;
1543 skb_shinfo(skb)->nr_frags = k;
1545 skb->tail += delta;
1546 skb->data_len -= delta;
1548 return skb_tail_pointer(skb);
1550 EXPORT_SYMBOL(__pskb_pull_tail);
1553 * skb_copy_bits - copy bits from skb to kernel buffer
1554 * @skb: source skb
1555 * @offset: offset in source
1556 * @to: destination buffer
1557 * @len: number of bytes to copy
1559 * Copy the specified number of bytes from the source skb to the
1560 * destination buffer.
1562 * CAUTION ! :
1563 * If its prototype is ever changed,
1564 * check arch/{*}/net/{*}.S files,
1565 * since it is called from BPF assembly code.
1567 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1569 int start = skb_headlen(skb);
1570 struct sk_buff *frag_iter;
1571 int i, copy;
1573 if (offset > (int)skb->len - len)
1574 goto fault;
1576 /* Copy header. */
1577 if ((copy = start - offset) > 0) {
1578 if (copy > len)
1579 copy = len;
1580 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1581 if ((len -= copy) == 0)
1582 return 0;
1583 offset += copy;
1584 to += copy;
1587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1588 int end;
1589 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1591 WARN_ON(start > offset + len);
1593 end = start + skb_frag_size(f);
1594 if ((copy = end - offset) > 0) {
1595 u8 *vaddr;
1597 if (copy > len)
1598 copy = len;
1600 vaddr = kmap_atomic(skb_frag_page(f));
1601 memcpy(to,
1602 vaddr + f->page_offset + offset - start,
1603 copy);
1604 kunmap_atomic(vaddr);
1606 if ((len -= copy) == 0)
1607 return 0;
1608 offset += copy;
1609 to += copy;
1611 start = end;
1614 skb_walk_frags(skb, frag_iter) {
1615 int end;
1617 WARN_ON(start > offset + len);
1619 end = start + frag_iter->len;
1620 if ((copy = end - offset) > 0) {
1621 if (copy > len)
1622 copy = len;
1623 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1624 goto fault;
1625 if ((len -= copy) == 0)
1626 return 0;
1627 offset += copy;
1628 to += copy;
1630 start = end;
1633 if (!len)
1634 return 0;
1636 fault:
1637 return -EFAULT;
1639 EXPORT_SYMBOL(skb_copy_bits);
1642 * Callback from splice_to_pipe(), if we need to release some pages
1643 * at the end of the spd in case we error'ed out in filling the pipe.
1645 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1647 put_page(spd->pages[i]);
1650 static struct page *linear_to_page(struct page *page, unsigned int *len,
1651 unsigned int *offset,
1652 struct sk_buff *skb, struct sock *sk)
1654 struct page_frag *pfrag = sk_page_frag(sk);
1656 if (!sk_page_frag_refill(sk, pfrag))
1657 return NULL;
1659 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1661 memcpy(page_address(pfrag->page) + pfrag->offset,
1662 page_address(page) + *offset, *len);
1663 *offset = pfrag->offset;
1664 pfrag->offset += *len;
1666 return pfrag->page;
1669 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1670 struct page *page,
1671 unsigned int offset)
1673 return spd->nr_pages &&
1674 spd->pages[spd->nr_pages - 1] == page &&
1675 (spd->partial[spd->nr_pages - 1].offset +
1676 spd->partial[spd->nr_pages - 1].len == offset);
1680 * Fill page/offset/length into spd, if it can hold more pages.
1682 static bool spd_fill_page(struct splice_pipe_desc *spd,
1683 struct pipe_inode_info *pipe, struct page *page,
1684 unsigned int *len, unsigned int offset,
1685 struct sk_buff *skb, bool linear,
1686 struct sock *sk)
1688 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1689 return true;
1691 if (linear) {
1692 page = linear_to_page(page, len, &offset, skb, sk);
1693 if (!page)
1694 return true;
1696 if (spd_can_coalesce(spd, page, offset)) {
1697 spd->partial[spd->nr_pages - 1].len += *len;
1698 return false;
1700 get_page(page);
1701 spd->pages[spd->nr_pages] = page;
1702 spd->partial[spd->nr_pages].len = *len;
1703 spd->partial[spd->nr_pages].offset = offset;
1704 spd->nr_pages++;
1706 return false;
1709 static inline void __segment_seek(struct page **page, unsigned int *poff,
1710 unsigned int *plen, unsigned int off)
1712 unsigned long n;
1714 *poff += off;
1715 n = *poff / PAGE_SIZE;
1716 if (n)
1717 *page = nth_page(*page, n);
1719 *poff = *poff % PAGE_SIZE;
1720 *plen -= off;
1723 static bool __splice_segment(struct page *page, unsigned int poff,
1724 unsigned int plen, unsigned int *off,
1725 unsigned int *len, struct sk_buff *skb,
1726 struct splice_pipe_desc *spd, bool linear,
1727 struct sock *sk,
1728 struct pipe_inode_info *pipe)
1730 if (!*len)
1731 return true;
1733 /* skip this segment if already processed */
1734 if (*off >= plen) {
1735 *off -= plen;
1736 return false;
1739 /* ignore any bits we already processed */
1740 if (*off) {
1741 __segment_seek(&page, &poff, &plen, *off);
1742 *off = 0;
1745 do {
1746 unsigned int flen = min(*len, plen);
1748 /* the linear region may spread across several pages */
1749 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1751 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1752 return true;
1754 __segment_seek(&page, &poff, &plen, flen);
1755 *len -= flen;
1757 } while (*len && plen);
1759 return false;
1763 * Map linear and fragment data from the skb to spd. It reports true if the
1764 * pipe is full or if we already spliced the requested length.
1766 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1767 unsigned int *offset, unsigned int *len,
1768 struct splice_pipe_desc *spd, struct sock *sk)
1770 int seg;
1772 /* map the linear part :
1773 * If skb->head_frag is set, this 'linear' part is backed by a
1774 * fragment, and if the head is not shared with any clones then
1775 * we can avoid a copy since we own the head portion of this page.
1777 if (__splice_segment(virt_to_page(skb->data),
1778 (unsigned long) skb->data & (PAGE_SIZE - 1),
1779 skb_headlen(skb),
1780 offset, len, skb, spd,
1781 skb_head_is_locked(skb),
1782 sk, pipe))
1783 return true;
1786 * then map the fragments
1788 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1789 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1791 if (__splice_segment(skb_frag_page(f),
1792 f->page_offset, skb_frag_size(f),
1793 offset, len, skb, spd, false, sk, pipe))
1794 return true;
1797 return false;
1801 * Map data from the skb to a pipe. Should handle both the linear part,
1802 * the fragments, and the frag list. It does NOT handle frag lists within
1803 * the frag list, if such a thing exists. We'd probably need to recurse to
1804 * handle that cleanly.
1806 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1807 struct pipe_inode_info *pipe, unsigned int tlen,
1808 unsigned int flags)
1810 struct partial_page partial[MAX_SKB_FRAGS];
1811 struct page *pages[MAX_SKB_FRAGS];
1812 struct splice_pipe_desc spd = {
1813 .pages = pages,
1814 .partial = partial,
1815 .nr_pages_max = MAX_SKB_FRAGS,
1816 .flags = flags,
1817 .ops = &sock_pipe_buf_ops,
1818 .spd_release = sock_spd_release,
1820 struct sk_buff *frag_iter;
1821 struct sock *sk = skb->sk;
1822 int ret = 0;
1825 * __skb_splice_bits() only fails if the output has no room left,
1826 * so no point in going over the frag_list for the error case.
1828 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1829 goto done;
1830 else if (!tlen)
1831 goto done;
1834 * now see if we have a frag_list to map
1836 skb_walk_frags(skb, frag_iter) {
1837 if (!tlen)
1838 break;
1839 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1840 break;
1843 done:
1844 if (spd.nr_pages) {
1846 * Drop the socket lock, otherwise we have reverse
1847 * locking dependencies between sk_lock and i_mutex
1848 * here as compared to sendfile(). We enter here
1849 * with the socket lock held, and splice_to_pipe() will
1850 * grab the pipe inode lock. For sendfile() emulation,
1851 * we call into ->sendpage() with the i_mutex lock held
1852 * and networking will grab the socket lock.
1854 release_sock(sk);
1855 ret = splice_to_pipe(pipe, &spd);
1856 lock_sock(sk);
1859 return ret;
1863 * skb_store_bits - store bits from kernel buffer to skb
1864 * @skb: destination buffer
1865 * @offset: offset in destination
1866 * @from: source buffer
1867 * @len: number of bytes to copy
1869 * Copy the specified number of bytes from the source buffer to the
1870 * destination skb. This function handles all the messy bits of
1871 * traversing fragment lists and such.
1874 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1876 int start = skb_headlen(skb);
1877 struct sk_buff *frag_iter;
1878 int i, copy;
1880 if (offset > (int)skb->len - len)
1881 goto fault;
1883 if ((copy = start - offset) > 0) {
1884 if (copy > len)
1885 copy = len;
1886 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1887 if ((len -= copy) == 0)
1888 return 0;
1889 offset += copy;
1890 from += copy;
1893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1895 int end;
1897 WARN_ON(start > offset + len);
1899 end = start + skb_frag_size(frag);
1900 if ((copy = end - offset) > 0) {
1901 u8 *vaddr;
1903 if (copy > len)
1904 copy = len;
1906 vaddr = kmap_atomic(skb_frag_page(frag));
1907 memcpy(vaddr + frag->page_offset + offset - start,
1908 from, copy);
1909 kunmap_atomic(vaddr);
1911 if ((len -= copy) == 0)
1912 return 0;
1913 offset += copy;
1914 from += copy;
1916 start = end;
1919 skb_walk_frags(skb, frag_iter) {
1920 int end;
1922 WARN_ON(start > offset + len);
1924 end = start + frag_iter->len;
1925 if ((copy = end - offset) > 0) {
1926 if (copy > len)
1927 copy = len;
1928 if (skb_store_bits(frag_iter, offset - start,
1929 from, copy))
1930 goto fault;
1931 if ((len -= copy) == 0)
1932 return 0;
1933 offset += copy;
1934 from += copy;
1936 start = end;
1938 if (!len)
1939 return 0;
1941 fault:
1942 return -EFAULT;
1944 EXPORT_SYMBOL(skb_store_bits);
1946 /* Checksum skb data. */
1948 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1949 int len, __wsum csum)
1951 int start = skb_headlen(skb);
1952 int i, copy = start - offset;
1953 struct sk_buff *frag_iter;
1954 int pos = 0;
1956 /* Checksum header. */
1957 if (copy > 0) {
1958 if (copy > len)
1959 copy = len;
1960 csum = csum_partial(skb->data + offset, copy, csum);
1961 if ((len -= copy) == 0)
1962 return csum;
1963 offset += copy;
1964 pos = copy;
1967 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1968 int end;
1969 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1971 WARN_ON(start > offset + len);
1973 end = start + skb_frag_size(frag);
1974 if ((copy = end - offset) > 0) {
1975 __wsum csum2;
1976 u8 *vaddr;
1978 if (copy > len)
1979 copy = len;
1980 vaddr = kmap_atomic(skb_frag_page(frag));
1981 csum2 = csum_partial(vaddr + frag->page_offset +
1982 offset - start, copy, 0);
1983 kunmap_atomic(vaddr);
1984 csum = csum_block_add(csum, csum2, pos);
1985 if (!(len -= copy))
1986 return csum;
1987 offset += copy;
1988 pos += copy;
1990 start = end;
1993 skb_walk_frags(skb, frag_iter) {
1994 int end;
1996 WARN_ON(start > offset + len);
1998 end = start + frag_iter->len;
1999 if ((copy = end - offset) > 0) {
2000 __wsum csum2;
2001 if (copy > len)
2002 copy = len;
2003 csum2 = skb_checksum(frag_iter, offset - start,
2004 copy, 0);
2005 csum = csum_block_add(csum, csum2, pos);
2006 if ((len -= copy) == 0)
2007 return csum;
2008 offset += copy;
2009 pos += copy;
2011 start = end;
2013 BUG_ON(len);
2015 return csum;
2017 EXPORT_SYMBOL(skb_checksum);
2019 /* Both of above in one bottle. */
2021 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2022 u8 *to, int len, __wsum csum)
2024 int start = skb_headlen(skb);
2025 int i, copy = start - offset;
2026 struct sk_buff *frag_iter;
2027 int pos = 0;
2029 /* Copy header. */
2030 if (copy > 0) {
2031 if (copy > len)
2032 copy = len;
2033 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2034 copy, csum);
2035 if ((len -= copy) == 0)
2036 return csum;
2037 offset += copy;
2038 to += copy;
2039 pos = copy;
2042 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 int end;
2045 WARN_ON(start > offset + len);
2047 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2048 if ((copy = end - offset) > 0) {
2049 __wsum csum2;
2050 u8 *vaddr;
2051 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2053 if (copy > len)
2054 copy = len;
2055 vaddr = kmap_atomic(skb_frag_page(frag));
2056 csum2 = csum_partial_copy_nocheck(vaddr +
2057 frag->page_offset +
2058 offset - start, to,
2059 copy, 0);
2060 kunmap_atomic(vaddr);
2061 csum = csum_block_add(csum, csum2, pos);
2062 if (!(len -= copy))
2063 return csum;
2064 offset += copy;
2065 to += copy;
2066 pos += copy;
2068 start = end;
2071 skb_walk_frags(skb, frag_iter) {
2072 __wsum csum2;
2073 int end;
2075 WARN_ON(start > offset + len);
2077 end = start + frag_iter->len;
2078 if ((copy = end - offset) > 0) {
2079 if (copy > len)
2080 copy = len;
2081 csum2 = skb_copy_and_csum_bits(frag_iter,
2082 offset - start,
2083 to, copy, 0);
2084 csum = csum_block_add(csum, csum2, pos);
2085 if ((len -= copy) == 0)
2086 return csum;
2087 offset += copy;
2088 to += copy;
2089 pos += copy;
2091 start = end;
2093 BUG_ON(len);
2094 return csum;
2096 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2098 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2100 __wsum csum;
2101 long csstart;
2103 if (skb->ip_summed == CHECKSUM_PARTIAL)
2104 csstart = skb_checksum_start_offset(skb);
2105 else
2106 csstart = skb_headlen(skb);
2108 BUG_ON(csstart > skb_headlen(skb));
2110 skb_copy_from_linear_data(skb, to, csstart);
2112 csum = 0;
2113 if (csstart != skb->len)
2114 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2115 skb->len - csstart, 0);
2117 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2118 long csstuff = csstart + skb->csum_offset;
2120 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2123 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2126 * skb_dequeue - remove from the head of the queue
2127 * @list: list to dequeue from
2129 * Remove the head of the list. The list lock is taken so the function
2130 * may be used safely with other locking list functions. The head item is
2131 * returned or %NULL if the list is empty.
2134 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2136 unsigned long flags;
2137 struct sk_buff *result;
2139 spin_lock_irqsave(&list->lock, flags);
2140 result = __skb_dequeue(list);
2141 spin_unlock_irqrestore(&list->lock, flags);
2142 return result;
2144 EXPORT_SYMBOL(skb_dequeue);
2147 * skb_dequeue_tail - remove from the tail of the queue
2148 * @list: list to dequeue from
2150 * Remove the tail of the list. The list lock is taken so the function
2151 * may be used safely with other locking list functions. The tail item is
2152 * returned or %NULL if the list is empty.
2154 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2156 unsigned long flags;
2157 struct sk_buff *result;
2159 spin_lock_irqsave(&list->lock, flags);
2160 result = __skb_dequeue_tail(list);
2161 spin_unlock_irqrestore(&list->lock, flags);
2162 return result;
2164 EXPORT_SYMBOL(skb_dequeue_tail);
2167 * skb_queue_purge - empty a list
2168 * @list: list to empty
2170 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2171 * the list and one reference dropped. This function takes the list
2172 * lock and is atomic with respect to other list locking functions.
2174 void skb_queue_purge(struct sk_buff_head *list)
2176 struct sk_buff *skb;
2177 while ((skb = skb_dequeue(list)) != NULL)
2178 kfree_skb(skb);
2180 EXPORT_SYMBOL(skb_queue_purge);
2183 * skb_queue_head - queue a buffer at the list head
2184 * @list: list to use
2185 * @newsk: buffer to queue
2187 * Queue a buffer at the start of the list. This function takes the
2188 * list lock and can be used safely with other locking &sk_buff functions
2189 * safely.
2191 * A buffer cannot be placed on two lists at the same time.
2193 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2195 unsigned long flags;
2197 spin_lock_irqsave(&list->lock, flags);
2198 __skb_queue_head(list, newsk);
2199 spin_unlock_irqrestore(&list->lock, flags);
2201 EXPORT_SYMBOL(skb_queue_head);
2204 * skb_queue_tail - queue a buffer at the list tail
2205 * @list: list to use
2206 * @newsk: buffer to queue
2208 * Queue a buffer at the tail of the list. This function takes the
2209 * list lock and can be used safely with other locking &sk_buff functions
2210 * safely.
2212 * A buffer cannot be placed on two lists at the same time.
2214 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2216 unsigned long flags;
2218 spin_lock_irqsave(&list->lock, flags);
2219 __skb_queue_tail(list, newsk);
2220 spin_unlock_irqrestore(&list->lock, flags);
2222 EXPORT_SYMBOL(skb_queue_tail);
2225 * skb_unlink - remove a buffer from a list
2226 * @skb: buffer to remove
2227 * @list: list to use
2229 * Remove a packet from a list. The list locks are taken and this
2230 * function is atomic with respect to other list locked calls
2232 * You must know what list the SKB is on.
2234 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2236 unsigned long flags;
2238 spin_lock_irqsave(&list->lock, flags);
2239 __skb_unlink(skb, list);
2240 spin_unlock_irqrestore(&list->lock, flags);
2242 EXPORT_SYMBOL(skb_unlink);
2245 * skb_append - append a buffer
2246 * @old: buffer to insert after
2247 * @newsk: buffer to insert
2248 * @list: list to use
2250 * Place a packet after a given packet in a list. The list locks are taken
2251 * and this function is atomic with respect to other list locked calls.
2252 * A buffer cannot be placed on two lists at the same time.
2254 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2256 unsigned long flags;
2258 spin_lock_irqsave(&list->lock, flags);
2259 __skb_queue_after(list, old, newsk);
2260 spin_unlock_irqrestore(&list->lock, flags);
2262 EXPORT_SYMBOL(skb_append);
2265 * skb_insert - insert a buffer
2266 * @old: buffer to insert before
2267 * @newsk: buffer to insert
2268 * @list: list to use
2270 * Place a packet before a given packet in a list. The list locks are
2271 * taken and this function is atomic with respect to other list locked
2272 * calls.
2274 * A buffer cannot be placed on two lists at the same time.
2276 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2278 unsigned long flags;
2280 spin_lock_irqsave(&list->lock, flags);
2281 __skb_insert(newsk, old->prev, old, list);
2282 spin_unlock_irqrestore(&list->lock, flags);
2284 EXPORT_SYMBOL(skb_insert);
2286 static inline void skb_split_inside_header(struct sk_buff *skb,
2287 struct sk_buff* skb1,
2288 const u32 len, const int pos)
2290 int i;
2292 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2293 pos - len);
2294 /* And move data appendix as is. */
2295 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2296 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2298 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2299 skb_shinfo(skb)->nr_frags = 0;
2300 skb1->data_len = skb->data_len;
2301 skb1->len += skb1->data_len;
2302 skb->data_len = 0;
2303 skb->len = len;
2304 skb_set_tail_pointer(skb, len);
2307 static inline void skb_split_no_header(struct sk_buff *skb,
2308 struct sk_buff* skb1,
2309 const u32 len, int pos)
2311 int i, k = 0;
2312 const int nfrags = skb_shinfo(skb)->nr_frags;
2314 skb_shinfo(skb)->nr_frags = 0;
2315 skb1->len = skb1->data_len = skb->len - len;
2316 skb->len = len;
2317 skb->data_len = len - pos;
2319 for (i = 0; i < nfrags; i++) {
2320 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2322 if (pos + size > len) {
2323 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2325 if (pos < len) {
2326 /* Split frag.
2327 * We have two variants in this case:
2328 * 1. Move all the frag to the second
2329 * part, if it is possible. F.e.
2330 * this approach is mandatory for TUX,
2331 * where splitting is expensive.
2332 * 2. Split is accurately. We make this.
2334 skb_frag_ref(skb, i);
2335 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2336 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2337 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2338 skb_shinfo(skb)->nr_frags++;
2340 k++;
2341 } else
2342 skb_shinfo(skb)->nr_frags++;
2343 pos += size;
2345 skb_shinfo(skb1)->nr_frags = k;
2349 * skb_split - Split fragmented skb to two parts at length len.
2350 * @skb: the buffer to split
2351 * @skb1: the buffer to receive the second part
2352 * @len: new length for skb
2354 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2356 int pos = skb_headlen(skb);
2358 if (len < pos) /* Split line is inside header. */
2359 skb_split_inside_header(skb, skb1, len, pos);
2360 else /* Second chunk has no header, nothing to copy. */
2361 skb_split_no_header(skb, skb1, len, pos);
2363 EXPORT_SYMBOL(skb_split);
2365 /* Shifting from/to a cloned skb is a no-go.
2367 * Caller cannot keep skb_shinfo related pointers past calling here!
2369 static int skb_prepare_for_shift(struct sk_buff *skb)
2371 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2375 * skb_shift - Shifts paged data partially from skb to another
2376 * @tgt: buffer into which tail data gets added
2377 * @skb: buffer from which the paged data comes from
2378 * @shiftlen: shift up to this many bytes
2380 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2381 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2382 * It's up to caller to free skb if everything was shifted.
2384 * If @tgt runs out of frags, the whole operation is aborted.
2386 * Skb cannot include anything else but paged data while tgt is allowed
2387 * to have non-paged data as well.
2389 * TODO: full sized shift could be optimized but that would need
2390 * specialized skb free'er to handle frags without up-to-date nr_frags.
2392 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2394 int from, to, merge, todo;
2395 struct skb_frag_struct *fragfrom, *fragto;
2397 BUG_ON(shiftlen > skb->len);
2398 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2400 todo = shiftlen;
2401 from = 0;
2402 to = skb_shinfo(tgt)->nr_frags;
2403 fragfrom = &skb_shinfo(skb)->frags[from];
2405 /* Actual merge is delayed until the point when we know we can
2406 * commit all, so that we don't have to undo partial changes
2408 if (!to ||
2409 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2410 fragfrom->page_offset)) {
2411 merge = -1;
2412 } else {
2413 merge = to - 1;
2415 todo -= skb_frag_size(fragfrom);
2416 if (todo < 0) {
2417 if (skb_prepare_for_shift(skb) ||
2418 skb_prepare_for_shift(tgt))
2419 return 0;
2421 /* All previous frag pointers might be stale! */
2422 fragfrom = &skb_shinfo(skb)->frags[from];
2423 fragto = &skb_shinfo(tgt)->frags[merge];
2425 skb_frag_size_add(fragto, shiftlen);
2426 skb_frag_size_sub(fragfrom, shiftlen);
2427 fragfrom->page_offset += shiftlen;
2429 goto onlymerged;
2432 from++;
2435 /* Skip full, not-fitting skb to avoid expensive operations */
2436 if ((shiftlen == skb->len) &&
2437 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2438 return 0;
2440 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2441 return 0;
2443 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2444 if (to == MAX_SKB_FRAGS)
2445 return 0;
2447 fragfrom = &skb_shinfo(skb)->frags[from];
2448 fragto = &skb_shinfo(tgt)->frags[to];
2450 if (todo >= skb_frag_size(fragfrom)) {
2451 *fragto = *fragfrom;
2452 todo -= skb_frag_size(fragfrom);
2453 from++;
2454 to++;
2456 } else {
2457 __skb_frag_ref(fragfrom);
2458 fragto->page = fragfrom->page;
2459 fragto->page_offset = fragfrom->page_offset;
2460 skb_frag_size_set(fragto, todo);
2462 fragfrom->page_offset += todo;
2463 skb_frag_size_sub(fragfrom, todo);
2464 todo = 0;
2466 to++;
2467 break;
2471 /* Ready to "commit" this state change to tgt */
2472 skb_shinfo(tgt)->nr_frags = to;
2474 if (merge >= 0) {
2475 fragfrom = &skb_shinfo(skb)->frags[0];
2476 fragto = &skb_shinfo(tgt)->frags[merge];
2478 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2479 __skb_frag_unref(fragfrom);
2482 /* Reposition in the original skb */
2483 to = 0;
2484 while (from < skb_shinfo(skb)->nr_frags)
2485 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2486 skb_shinfo(skb)->nr_frags = to;
2488 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2490 onlymerged:
2491 /* Most likely the tgt won't ever need its checksum anymore, skb on
2492 * the other hand might need it if it needs to be resent
2494 tgt->ip_summed = CHECKSUM_PARTIAL;
2495 skb->ip_summed = CHECKSUM_PARTIAL;
2497 /* Yak, is it really working this way? Some helper please? */
2498 skb->len -= shiftlen;
2499 skb->data_len -= shiftlen;
2500 skb->truesize -= shiftlen;
2501 tgt->len += shiftlen;
2502 tgt->data_len += shiftlen;
2503 tgt->truesize += shiftlen;
2505 return shiftlen;
2509 * skb_prepare_seq_read - Prepare a sequential read of skb data
2510 * @skb: the buffer to read
2511 * @from: lower offset of data to be read
2512 * @to: upper offset of data to be read
2513 * @st: state variable
2515 * Initializes the specified state variable. Must be called before
2516 * invoking skb_seq_read() for the first time.
2518 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2519 unsigned int to, struct skb_seq_state *st)
2521 st->lower_offset = from;
2522 st->upper_offset = to;
2523 st->root_skb = st->cur_skb = skb;
2524 st->frag_idx = st->stepped_offset = 0;
2525 st->frag_data = NULL;
2527 EXPORT_SYMBOL(skb_prepare_seq_read);
2530 * skb_seq_read - Sequentially read skb data
2531 * @consumed: number of bytes consumed by the caller so far
2532 * @data: destination pointer for data to be returned
2533 * @st: state variable
2535 * Reads a block of skb data at &consumed relative to the
2536 * lower offset specified to skb_prepare_seq_read(). Assigns
2537 * the head of the data block to &data and returns the length
2538 * of the block or 0 if the end of the skb data or the upper
2539 * offset has been reached.
2541 * The caller is not required to consume all of the data
2542 * returned, i.e. &consumed is typically set to the number
2543 * of bytes already consumed and the next call to
2544 * skb_seq_read() will return the remaining part of the block.
2546 * Note 1: The size of each block of data returned can be arbitrary,
2547 * this limitation is the cost for zerocopy seqeuental
2548 * reads of potentially non linear data.
2550 * Note 2: Fragment lists within fragments are not implemented
2551 * at the moment, state->root_skb could be replaced with
2552 * a stack for this purpose.
2554 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2555 struct skb_seq_state *st)
2557 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2558 skb_frag_t *frag;
2560 if (unlikely(abs_offset >= st->upper_offset))
2561 return 0;
2563 next_skb:
2564 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2566 if (abs_offset < block_limit && !st->frag_data) {
2567 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2568 return block_limit - abs_offset;
2571 if (st->frag_idx == 0 && !st->frag_data)
2572 st->stepped_offset += skb_headlen(st->cur_skb);
2574 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2575 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2576 block_limit = skb_frag_size(frag) + st->stepped_offset;
2578 if (abs_offset < block_limit) {
2579 if (!st->frag_data)
2580 st->frag_data = kmap_atomic(skb_frag_page(frag));
2582 *data = (u8 *) st->frag_data + frag->page_offset +
2583 (abs_offset - st->stepped_offset);
2585 return block_limit - abs_offset;
2588 if (st->frag_data) {
2589 kunmap_atomic(st->frag_data);
2590 st->frag_data = NULL;
2593 st->frag_idx++;
2594 st->stepped_offset += skb_frag_size(frag);
2597 if (st->frag_data) {
2598 kunmap_atomic(st->frag_data);
2599 st->frag_data = NULL;
2602 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2603 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2604 st->frag_idx = 0;
2605 goto next_skb;
2606 } else if (st->cur_skb->next) {
2607 st->cur_skb = st->cur_skb->next;
2608 st->frag_idx = 0;
2609 goto next_skb;
2612 return 0;
2614 EXPORT_SYMBOL(skb_seq_read);
2617 * skb_abort_seq_read - Abort a sequential read of skb data
2618 * @st: state variable
2620 * Must be called if skb_seq_read() was not called until it
2621 * returned 0.
2623 void skb_abort_seq_read(struct skb_seq_state *st)
2625 if (st->frag_data)
2626 kunmap_atomic(st->frag_data);
2628 EXPORT_SYMBOL(skb_abort_seq_read);
2630 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2632 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2633 struct ts_config *conf,
2634 struct ts_state *state)
2636 return skb_seq_read(offset, text, TS_SKB_CB(state));
2639 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2641 skb_abort_seq_read(TS_SKB_CB(state));
2645 * skb_find_text - Find a text pattern in skb data
2646 * @skb: the buffer to look in
2647 * @from: search offset
2648 * @to: search limit
2649 * @config: textsearch configuration
2650 * @state: uninitialized textsearch state variable
2652 * Finds a pattern in the skb data according to the specified
2653 * textsearch configuration. Use textsearch_next() to retrieve
2654 * subsequent occurrences of the pattern. Returns the offset
2655 * to the first occurrence or UINT_MAX if no match was found.
2657 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2658 unsigned int to, struct ts_config *config,
2659 struct ts_state *state)
2661 unsigned int ret;
2663 config->get_next_block = skb_ts_get_next_block;
2664 config->finish = skb_ts_finish;
2666 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2668 ret = textsearch_find(config, state);
2669 return (ret <= to - from ? ret : UINT_MAX);
2671 EXPORT_SYMBOL(skb_find_text);
2674 * skb_append_datato_frags - append the user data to a skb
2675 * @sk: sock structure
2676 * @skb: skb structure to be appened with user data.
2677 * @getfrag: call back function to be used for getting the user data
2678 * @from: pointer to user message iov
2679 * @length: length of the iov message
2681 * Description: This procedure append the user data in the fragment part
2682 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2684 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2685 int (*getfrag)(void *from, char *to, int offset,
2686 int len, int odd, struct sk_buff *skb),
2687 void *from, int length)
2689 int frg_cnt = 0;
2690 skb_frag_t *frag = NULL;
2691 struct page *page = NULL;
2692 int copy, left;
2693 int offset = 0;
2694 int ret;
2696 do {
2697 /* Return error if we don't have space for new frag */
2698 frg_cnt = skb_shinfo(skb)->nr_frags;
2699 if (frg_cnt >= MAX_SKB_FRAGS)
2700 return -EFAULT;
2702 /* allocate a new page for next frag */
2703 page = alloc_pages(sk->sk_allocation, 0);
2705 /* If alloc_page fails just return failure and caller will
2706 * free previous allocated pages by doing kfree_skb()
2708 if (page == NULL)
2709 return -ENOMEM;
2711 /* initialize the next frag */
2712 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2713 skb->truesize += PAGE_SIZE;
2714 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2716 /* get the new initialized frag */
2717 frg_cnt = skb_shinfo(skb)->nr_frags;
2718 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2720 /* copy the user data to page */
2721 left = PAGE_SIZE - frag->page_offset;
2722 copy = (length > left)? left : length;
2724 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2725 offset, copy, 0, skb);
2726 if (ret < 0)
2727 return -EFAULT;
2729 /* copy was successful so update the size parameters */
2730 skb_frag_size_add(frag, copy);
2731 skb->len += copy;
2732 skb->data_len += copy;
2733 offset += copy;
2734 length -= copy;
2736 } while (length > 0);
2738 return 0;
2740 EXPORT_SYMBOL(skb_append_datato_frags);
2743 * skb_pull_rcsum - pull skb and update receive checksum
2744 * @skb: buffer to update
2745 * @len: length of data pulled
2747 * This function performs an skb_pull on the packet and updates
2748 * the CHECKSUM_COMPLETE checksum. It should be used on
2749 * receive path processing instead of skb_pull unless you know
2750 * that the checksum difference is zero (e.g., a valid IP header)
2751 * or you are setting ip_summed to CHECKSUM_NONE.
2753 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2755 BUG_ON(len > skb->len);
2756 skb->len -= len;
2757 BUG_ON(skb->len < skb->data_len);
2758 skb_postpull_rcsum(skb, skb->data, len);
2759 return skb->data += len;
2761 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2764 * skb_segment - Perform protocol segmentation on skb.
2765 * @skb: buffer to segment
2766 * @features: features for the output path (see dev->features)
2768 * This function performs segmentation on the given skb. It returns
2769 * a pointer to the first in a list of new skbs for the segments.
2770 * In case of error it returns ERR_PTR(err).
2772 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2774 struct sk_buff *segs = NULL;
2775 struct sk_buff *tail = NULL;
2776 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2777 unsigned int mss = skb_shinfo(skb)->gso_size;
2778 unsigned int doffset = skb->data - skb_mac_header(skb);
2779 unsigned int offset = doffset;
2780 unsigned int headroom;
2781 unsigned int len;
2782 int sg = !!(features & NETIF_F_SG);
2783 int nfrags = skb_shinfo(skb)->nr_frags;
2784 int err = -ENOMEM;
2785 int i = 0;
2786 int pos;
2788 __skb_push(skb, doffset);
2789 headroom = skb_headroom(skb);
2790 pos = skb_headlen(skb);
2792 do {
2793 struct sk_buff *nskb;
2794 skb_frag_t *frag;
2795 int hsize;
2796 int size;
2798 len = skb->len - offset;
2799 if (len > mss)
2800 len = mss;
2802 hsize = skb_headlen(skb) - offset;
2803 if (hsize < 0)
2804 hsize = 0;
2805 if (hsize > len || !sg)
2806 hsize = len;
2808 if (!hsize && i >= nfrags) {
2809 BUG_ON(fskb->len != len);
2811 pos += len;
2812 nskb = skb_clone(fskb, GFP_ATOMIC);
2813 fskb = fskb->next;
2815 if (unlikely(!nskb))
2816 goto err;
2818 hsize = skb_end_offset(nskb);
2819 if (skb_cow_head(nskb, doffset + headroom)) {
2820 kfree_skb(nskb);
2821 goto err;
2824 nskb->truesize += skb_end_offset(nskb) - hsize;
2825 skb_release_head_state(nskb);
2826 __skb_push(nskb, doffset);
2827 } else {
2828 nskb = __alloc_skb(hsize + doffset + headroom,
2829 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2830 NUMA_NO_NODE);
2832 if (unlikely(!nskb))
2833 goto err;
2835 skb_reserve(nskb, headroom);
2836 __skb_put(nskb, doffset);
2839 if (segs)
2840 tail->next = nskb;
2841 else
2842 segs = nskb;
2843 tail = nskb;
2845 __copy_skb_header(nskb, skb);
2846 nskb->mac_len = skb->mac_len;
2848 /* nskb and skb might have different headroom */
2849 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2850 nskb->csum_start += skb_headroom(nskb) - headroom;
2852 skb_reset_mac_header(nskb);
2853 skb_set_network_header(nskb, skb->mac_len);
2854 nskb->transport_header = (nskb->network_header +
2855 skb_network_header_len(skb));
2856 skb_copy_from_linear_data(skb, nskb->data, doffset);
2858 if (fskb != skb_shinfo(skb)->frag_list)
2859 continue;
2861 if (!sg) {
2862 nskb->ip_summed = CHECKSUM_NONE;
2863 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2864 skb_put(nskb, len),
2865 len, 0);
2866 continue;
2869 frag = skb_shinfo(nskb)->frags;
2871 skb_copy_from_linear_data_offset(skb, offset,
2872 skb_put(nskb, hsize), hsize);
2874 while (pos < offset + len && i < nfrags) {
2875 *frag = skb_shinfo(skb)->frags[i];
2876 __skb_frag_ref(frag);
2877 size = skb_frag_size(frag);
2879 if (pos < offset) {
2880 frag->page_offset += offset - pos;
2881 skb_frag_size_sub(frag, offset - pos);
2884 skb_shinfo(nskb)->nr_frags++;
2886 if (pos + size <= offset + len) {
2887 i++;
2888 pos += size;
2889 } else {
2890 skb_frag_size_sub(frag, pos + size - (offset + len));
2891 goto skip_fraglist;
2894 frag++;
2897 if (pos < offset + len) {
2898 struct sk_buff *fskb2 = fskb;
2900 BUG_ON(pos + fskb->len != offset + len);
2902 pos += fskb->len;
2903 fskb = fskb->next;
2905 if (fskb2->next) {
2906 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2907 if (!fskb2)
2908 goto err;
2909 } else
2910 skb_get(fskb2);
2912 SKB_FRAG_ASSERT(nskb);
2913 skb_shinfo(nskb)->frag_list = fskb2;
2916 skip_fraglist:
2917 nskb->data_len = len - hsize;
2918 nskb->len += nskb->data_len;
2919 nskb->truesize += nskb->data_len;
2920 } while ((offset += len) < skb->len);
2922 return segs;
2924 err:
2925 while ((skb = segs)) {
2926 segs = skb->next;
2927 kfree_skb(skb);
2929 return ERR_PTR(err);
2931 EXPORT_SYMBOL_GPL(skb_segment);
2933 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2935 struct sk_buff *p = *head;
2936 struct sk_buff *nskb;
2937 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2938 struct skb_shared_info *pinfo = skb_shinfo(p);
2939 unsigned int headroom;
2940 unsigned int len = skb_gro_len(skb);
2941 unsigned int offset = skb_gro_offset(skb);
2942 unsigned int headlen = skb_headlen(skb);
2943 unsigned int delta_truesize;
2945 if (p->len + len >= 65536)
2946 return -E2BIG;
2948 if (pinfo->frag_list)
2949 goto merge;
2950 else if (headlen <= offset) {
2951 skb_frag_t *frag;
2952 skb_frag_t *frag2;
2953 int i = skbinfo->nr_frags;
2954 int nr_frags = pinfo->nr_frags + i;
2956 offset -= headlen;
2958 if (nr_frags > MAX_SKB_FRAGS)
2959 return -E2BIG;
2961 pinfo->nr_frags = nr_frags;
2962 skbinfo->nr_frags = 0;
2964 frag = pinfo->frags + nr_frags;
2965 frag2 = skbinfo->frags + i;
2966 do {
2967 *--frag = *--frag2;
2968 } while (--i);
2970 frag->page_offset += offset;
2971 skb_frag_size_sub(frag, offset);
2973 /* all fragments truesize : remove (head size + sk_buff) */
2974 delta_truesize = skb->truesize -
2975 SKB_TRUESIZE(skb_end_offset(skb));
2977 skb->truesize -= skb->data_len;
2978 skb->len -= skb->data_len;
2979 skb->data_len = 0;
2981 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2982 goto done;
2983 } else if (skb->head_frag) {
2984 int nr_frags = pinfo->nr_frags;
2985 skb_frag_t *frag = pinfo->frags + nr_frags;
2986 struct page *page = virt_to_head_page(skb->head);
2987 unsigned int first_size = headlen - offset;
2988 unsigned int first_offset;
2990 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2991 return -E2BIG;
2993 first_offset = skb->data -
2994 (unsigned char *)page_address(page) +
2995 offset;
2997 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2999 frag->page.p = page;
3000 frag->page_offset = first_offset;
3001 skb_frag_size_set(frag, first_size);
3003 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3004 /* We dont need to clear skbinfo->nr_frags here */
3006 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3007 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3008 goto done;
3009 } else if (skb_gro_len(p) != pinfo->gso_size)
3010 return -E2BIG;
3012 headroom = skb_headroom(p);
3013 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3014 if (unlikely(!nskb))
3015 return -ENOMEM;
3017 __copy_skb_header(nskb, p);
3018 nskb->mac_len = p->mac_len;
3020 skb_reserve(nskb, headroom);
3021 __skb_put(nskb, skb_gro_offset(p));
3023 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3024 skb_set_network_header(nskb, skb_network_offset(p));
3025 skb_set_transport_header(nskb, skb_transport_offset(p));
3027 __skb_pull(p, skb_gro_offset(p));
3028 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3029 p->data - skb_mac_header(p));
3031 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
3032 skb_shinfo(nskb)->frag_list = p;
3033 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3034 pinfo->gso_size = 0;
3035 skb_header_release(p);
3036 nskb->prev = p;
3038 nskb->data_len += p->len;
3039 nskb->truesize += p->truesize;
3040 nskb->len += p->len;
3042 *head = nskb;
3043 nskb->next = p->next;
3044 p->next = NULL;
3046 p = nskb;
3048 merge:
3049 delta_truesize = skb->truesize;
3050 if (offset > headlen) {
3051 unsigned int eat = offset - headlen;
3053 skbinfo->frags[0].page_offset += eat;
3054 skb_frag_size_sub(&skbinfo->frags[0], eat);
3055 skb->data_len -= eat;
3056 skb->len -= eat;
3057 offset = headlen;
3060 __skb_pull(skb, offset);
3062 p->prev->next = skb;
3063 p->prev = skb;
3064 skb_header_release(skb);
3066 done:
3067 NAPI_GRO_CB(p)->count++;
3068 p->data_len += len;
3069 p->truesize += delta_truesize;
3070 p->len += len;
3072 NAPI_GRO_CB(skb)->same_flow = 1;
3073 return 0;
3075 EXPORT_SYMBOL_GPL(skb_gro_receive);
3077 void __init skb_init(void)
3079 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3080 sizeof(struct sk_buff),
3082 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3083 NULL);
3084 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3085 (2*sizeof(struct sk_buff)) +
3086 sizeof(atomic_t),
3088 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3089 NULL);
3093 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3094 * @skb: Socket buffer containing the buffers to be mapped
3095 * @sg: The scatter-gather list to map into
3096 * @offset: The offset into the buffer's contents to start mapping
3097 * @len: Length of buffer space to be mapped
3099 * Fill the specified scatter-gather list with mappings/pointers into a
3100 * region of the buffer space attached to a socket buffer.
3102 static int
3103 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3105 int start = skb_headlen(skb);
3106 int i, copy = start - offset;
3107 struct sk_buff *frag_iter;
3108 int elt = 0;
3110 if (copy > 0) {
3111 if (copy > len)
3112 copy = len;
3113 sg_set_buf(sg, skb->data + offset, copy);
3114 elt++;
3115 if ((len -= copy) == 0)
3116 return elt;
3117 offset += copy;
3120 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3121 int end;
3123 WARN_ON(start > offset + len);
3125 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3126 if ((copy = end - offset) > 0) {
3127 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3129 if (copy > len)
3130 copy = len;
3131 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3132 frag->page_offset+offset-start);
3133 elt++;
3134 if (!(len -= copy))
3135 return elt;
3136 offset += copy;
3138 start = end;
3141 skb_walk_frags(skb, frag_iter) {
3142 int end;
3144 WARN_ON(start > offset + len);
3146 end = start + frag_iter->len;
3147 if ((copy = end - offset) > 0) {
3148 if (copy > len)
3149 copy = len;
3150 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3151 copy);
3152 if ((len -= copy) == 0)
3153 return elt;
3154 offset += copy;
3156 start = end;
3158 BUG_ON(len);
3159 return elt;
3162 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3164 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3166 sg_mark_end(&sg[nsg - 1]);
3168 return nsg;
3170 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3173 * skb_cow_data - Check that a socket buffer's data buffers are writable
3174 * @skb: The socket buffer to check.
3175 * @tailbits: Amount of trailing space to be added
3176 * @trailer: Returned pointer to the skb where the @tailbits space begins
3178 * Make sure that the data buffers attached to a socket buffer are
3179 * writable. If they are not, private copies are made of the data buffers
3180 * and the socket buffer is set to use these instead.
3182 * If @tailbits is given, make sure that there is space to write @tailbits
3183 * bytes of data beyond current end of socket buffer. @trailer will be
3184 * set to point to the skb in which this space begins.
3186 * The number of scatterlist elements required to completely map the
3187 * COW'd and extended socket buffer will be returned.
3189 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3191 int copyflag;
3192 int elt;
3193 struct sk_buff *skb1, **skb_p;
3195 /* If skb is cloned or its head is paged, reallocate
3196 * head pulling out all the pages (pages are considered not writable
3197 * at the moment even if they are anonymous).
3199 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3200 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3201 return -ENOMEM;
3203 /* Easy case. Most of packets will go this way. */
3204 if (!skb_has_frag_list(skb)) {
3205 /* A little of trouble, not enough of space for trailer.
3206 * This should not happen, when stack is tuned to generate
3207 * good frames. OK, on miss we reallocate and reserve even more
3208 * space, 128 bytes is fair. */
3210 if (skb_tailroom(skb) < tailbits &&
3211 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3212 return -ENOMEM;
3214 /* Voila! */
3215 *trailer = skb;
3216 return 1;
3219 /* Misery. We are in troubles, going to mincer fragments... */
3221 elt = 1;
3222 skb_p = &skb_shinfo(skb)->frag_list;
3223 copyflag = 0;
3225 while ((skb1 = *skb_p) != NULL) {
3226 int ntail = 0;
3228 /* The fragment is partially pulled by someone,
3229 * this can happen on input. Copy it and everything
3230 * after it. */
3232 if (skb_shared(skb1))
3233 copyflag = 1;
3235 /* If the skb is the last, worry about trailer. */
3237 if (skb1->next == NULL && tailbits) {
3238 if (skb_shinfo(skb1)->nr_frags ||
3239 skb_has_frag_list(skb1) ||
3240 skb_tailroom(skb1) < tailbits)
3241 ntail = tailbits + 128;
3244 if (copyflag ||
3245 skb_cloned(skb1) ||
3246 ntail ||
3247 skb_shinfo(skb1)->nr_frags ||
3248 skb_has_frag_list(skb1)) {
3249 struct sk_buff *skb2;
3251 /* Fuck, we are miserable poor guys... */
3252 if (ntail == 0)
3253 skb2 = skb_copy(skb1, GFP_ATOMIC);
3254 else
3255 skb2 = skb_copy_expand(skb1,
3256 skb_headroom(skb1),
3257 ntail,
3258 GFP_ATOMIC);
3259 if (unlikely(skb2 == NULL))
3260 return -ENOMEM;
3262 if (skb1->sk)
3263 skb_set_owner_w(skb2, skb1->sk);
3265 /* Looking around. Are we still alive?
3266 * OK, link new skb, drop old one */
3268 skb2->next = skb1->next;
3269 *skb_p = skb2;
3270 kfree_skb(skb1);
3271 skb1 = skb2;
3273 elt++;
3274 *trailer = skb1;
3275 skb_p = &skb1->next;
3278 return elt;
3280 EXPORT_SYMBOL_GPL(skb_cow_data);
3282 static void sock_rmem_free(struct sk_buff *skb)
3284 struct sock *sk = skb->sk;
3286 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3290 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3292 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3294 int len = skb->len;
3296 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3297 (unsigned int)sk->sk_rcvbuf)
3298 return -ENOMEM;
3300 skb_orphan(skb);
3301 skb->sk = sk;
3302 skb->destructor = sock_rmem_free;
3303 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3305 /* before exiting rcu section, make sure dst is refcounted */
3306 skb_dst_force(skb);
3308 skb_queue_tail(&sk->sk_error_queue, skb);
3309 if (!sock_flag(sk, SOCK_DEAD))
3310 sk->sk_data_ready(sk, len);
3311 return 0;
3313 EXPORT_SYMBOL(sock_queue_err_skb);
3315 void skb_tstamp_tx(struct sk_buff *orig_skb,
3316 struct skb_shared_hwtstamps *hwtstamps)
3318 struct sock *sk = orig_skb->sk;
3319 struct sock_exterr_skb *serr;
3320 struct sk_buff *skb;
3321 int err;
3323 if (!sk)
3324 return;
3326 skb = skb_clone(orig_skb, GFP_ATOMIC);
3327 if (!skb)
3328 return;
3330 if (hwtstamps) {
3331 *skb_hwtstamps(skb) =
3332 *hwtstamps;
3333 } else {
3335 * no hardware time stamps available,
3336 * so keep the shared tx_flags and only
3337 * store software time stamp
3339 skb->tstamp = ktime_get_real();
3342 serr = SKB_EXT_ERR(skb);
3343 memset(serr, 0, sizeof(*serr));
3344 serr->ee.ee_errno = ENOMSG;
3345 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3347 err = sock_queue_err_skb(sk, skb);
3349 if (err)
3350 kfree_skb(skb);
3352 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3354 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3356 struct sock *sk = skb->sk;
3357 struct sock_exterr_skb *serr;
3358 int err;
3360 skb->wifi_acked_valid = 1;
3361 skb->wifi_acked = acked;
3363 serr = SKB_EXT_ERR(skb);
3364 memset(serr, 0, sizeof(*serr));
3365 serr->ee.ee_errno = ENOMSG;
3366 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3368 err = sock_queue_err_skb(sk, skb);
3369 if (err)
3370 kfree_skb(skb);
3372 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3376 * skb_partial_csum_set - set up and verify partial csum values for packet
3377 * @skb: the skb to set
3378 * @start: the number of bytes after skb->data to start checksumming.
3379 * @off: the offset from start to place the checksum.
3381 * For untrusted partially-checksummed packets, we need to make sure the values
3382 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3384 * This function checks and sets those values and skb->ip_summed: if this
3385 * returns false you should drop the packet.
3387 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3389 if (unlikely(start > skb_headlen(skb)) ||
3390 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3391 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3392 start, off, skb_headlen(skb));
3393 return false;
3395 skb->ip_summed = CHECKSUM_PARTIAL;
3396 skb->csum_start = skb_headroom(skb) + start;
3397 skb->csum_offset = off;
3398 return true;
3400 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3402 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3404 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3405 skb->dev->name);
3407 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3409 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3411 if (head_stolen) {
3412 skb_release_head_state(skb);
3413 kmem_cache_free(skbuff_head_cache, skb);
3414 } else {
3415 __kfree_skb(skb);
3418 EXPORT_SYMBOL(kfree_skb_partial);
3421 * skb_try_coalesce - try to merge skb to prior one
3422 * @to: prior buffer
3423 * @from: buffer to add
3424 * @fragstolen: pointer to boolean
3425 * @delta_truesize: how much more was allocated than was requested
3427 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3428 bool *fragstolen, int *delta_truesize)
3430 int i, delta, len = from->len;
3432 *fragstolen = false;
3434 if (skb_cloned(to))
3435 return false;
3437 if (len <= skb_tailroom(to)) {
3438 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3439 *delta_truesize = 0;
3440 return true;
3443 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3444 return false;
3446 if (skb_headlen(from) != 0) {
3447 struct page *page;
3448 unsigned int offset;
3450 if (skb_shinfo(to)->nr_frags +
3451 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3452 return false;
3454 if (skb_head_is_locked(from))
3455 return false;
3457 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3459 page = virt_to_head_page(from->head);
3460 offset = from->data - (unsigned char *)page_address(page);
3462 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3463 page, offset, skb_headlen(from));
3464 *fragstolen = true;
3465 } else {
3466 if (skb_shinfo(to)->nr_frags +
3467 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3468 return false;
3470 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3473 WARN_ON_ONCE(delta < len);
3475 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3476 skb_shinfo(from)->frags,
3477 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3478 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3480 if (!skb_cloned(from))
3481 skb_shinfo(from)->nr_frags = 0;
3483 /* if the skb is not cloned this does nothing
3484 * since we set nr_frags to 0.
3486 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3487 skb_frag_ref(from, i);
3489 to->truesize += delta;
3490 to->len += len;
3491 to->data_len += len;
3493 *delta_truesize = delta;
3494 return true;
3496 EXPORT_SYMBOL(skb_try_coalesce);