igb: Split igb_update_dca into separate Tx and Rx functions
[linux-2.6/cjktty.git] / drivers / md / raid5.c
blobc5439dce0295078ecf82094af5474a649284ce61
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
62 * Stripe cache
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
104 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105 return (atomic_read(segments) >> 16) & 0xffff;
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
110 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111 return atomic_sub_return(1, segments) & 0xffff;
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
116 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117 atomic_inc(segments);
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121 unsigned int cnt)
123 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124 int old, new;
126 do {
127 old = atomic_read(segments);
128 new = (old & 0xffff) | (cnt << 16);
129 } while (atomic_cmpxchg(segments, old, new) != old);
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
134 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135 atomic_set(segments, cnt);
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
141 if (sh->ddf_layout)
142 /* ddf always start from first device */
143 return 0;
144 /* md starts just after Q block */
145 if (sh->qd_idx == sh->disks - 1)
146 return 0;
147 else
148 return sh->qd_idx + 1;
150 static inline int raid6_next_disk(int disk, int raid_disks)
152 disk++;
153 return (disk < raid_disks) ? disk : 0;
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157 * We need to map each disk to a 'slot', where the data disks are slot
158 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159 * is raid_disks-1. This help does that mapping.
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162 int *count, int syndrome_disks)
164 int slot = *count;
166 if (sh->ddf_layout)
167 (*count)++;
168 if (idx == sh->pd_idx)
169 return syndrome_disks;
170 if (idx == sh->qd_idx)
171 return syndrome_disks + 1;
172 if (!sh->ddf_layout)
173 (*count)++;
174 return slot;
177 static void return_io(struct bio *return_bi)
179 struct bio *bi = return_bi;
180 while (bi) {
182 return_bi = bi->bi_next;
183 bi->bi_next = NULL;
184 bi->bi_size = 0;
185 bio_endio(bi, 0);
186 bi = return_bi;
190 static void print_raid5_conf (struct r5conf *conf);
192 static int stripe_operations_active(struct stripe_head *sh)
194 return sh->check_state || sh->reconstruct_state ||
195 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
201 BUG_ON(!list_empty(&sh->lru));
202 BUG_ON(atomic_read(&conf->active_stripes)==0);
203 if (test_bit(STRIPE_HANDLE, &sh->state)) {
204 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206 list_add_tail(&sh->lru, &conf->delayed_list);
207 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208 sh->bm_seq - conf->seq_write > 0)
209 list_add_tail(&sh->lru, &conf->bitmap_list);
210 else {
211 clear_bit(STRIPE_DELAYED, &sh->state);
212 clear_bit(STRIPE_BIT_DELAY, &sh->state);
213 list_add_tail(&sh->lru, &conf->handle_list);
215 md_wakeup_thread(conf->mddev->thread);
216 } else {
217 BUG_ON(stripe_operations_active(sh));
218 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219 if (atomic_dec_return(&conf->preread_active_stripes)
220 < IO_THRESHOLD)
221 md_wakeup_thread(conf->mddev->thread);
222 atomic_dec(&conf->active_stripes);
223 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224 list_add_tail(&sh->lru, &conf->inactive_list);
225 wake_up(&conf->wait_for_stripe);
226 if (conf->retry_read_aligned)
227 md_wakeup_thread(conf->mddev->thread);
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
234 if (atomic_dec_and_test(&sh->count))
235 do_release_stripe(conf, sh);
238 static void release_stripe(struct stripe_head *sh)
240 struct r5conf *conf = sh->raid_conf;
241 unsigned long flags;
243 local_irq_save(flags);
244 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245 do_release_stripe(conf, sh);
246 spin_unlock(&conf->device_lock);
248 local_irq_restore(flags);
251 static inline void remove_hash(struct stripe_head *sh)
253 pr_debug("remove_hash(), stripe %llu\n",
254 (unsigned long long)sh->sector);
256 hlist_del_init(&sh->hash);
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
261 struct hlist_head *hp = stripe_hash(conf, sh->sector);
263 pr_debug("insert_hash(), stripe %llu\n",
264 (unsigned long long)sh->sector);
266 hlist_add_head(&sh->hash, hp);
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
273 struct stripe_head *sh = NULL;
274 struct list_head *first;
276 if (list_empty(&conf->inactive_list))
277 goto out;
278 first = conf->inactive_list.next;
279 sh = list_entry(first, struct stripe_head, lru);
280 list_del_init(first);
281 remove_hash(sh);
282 atomic_inc(&conf->active_stripes);
283 out:
284 return sh;
287 static void shrink_buffers(struct stripe_head *sh)
289 struct page *p;
290 int i;
291 int num = sh->raid_conf->pool_size;
293 for (i = 0; i < num ; i++) {
294 p = sh->dev[i].page;
295 if (!p)
296 continue;
297 sh->dev[i].page = NULL;
298 put_page(p);
302 static int grow_buffers(struct stripe_head *sh)
304 int i;
305 int num = sh->raid_conf->pool_size;
307 for (i = 0; i < num; i++) {
308 struct page *page;
310 if (!(page = alloc_page(GFP_KERNEL))) {
311 return 1;
313 sh->dev[i].page = page;
315 return 0;
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320 struct stripe_head *sh);
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
324 struct r5conf *conf = sh->raid_conf;
325 int i;
327 BUG_ON(atomic_read(&sh->count) != 0);
328 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329 BUG_ON(stripe_operations_active(sh));
331 pr_debug("init_stripe called, stripe %llu\n",
332 (unsigned long long)sh->sector);
334 remove_hash(sh);
336 sh->generation = conf->generation - previous;
337 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338 sh->sector = sector;
339 stripe_set_idx(sector, conf, previous, sh);
340 sh->state = 0;
343 for (i = sh->disks; i--; ) {
344 struct r5dev *dev = &sh->dev[i];
346 if (dev->toread || dev->read || dev->towrite || dev->written ||
347 test_bit(R5_LOCKED, &dev->flags)) {
348 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349 (unsigned long long)sh->sector, i, dev->toread,
350 dev->read, dev->towrite, dev->written,
351 test_bit(R5_LOCKED, &dev->flags));
352 WARN_ON(1);
354 dev->flags = 0;
355 raid5_build_block(sh, i, previous);
357 insert_hash(conf, sh);
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361 short generation)
363 struct stripe_head *sh;
364 struct hlist_node *hn;
366 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368 if (sh->sector == sector && sh->generation == generation)
369 return sh;
370 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371 return NULL;
375 * Need to check if array has failed when deciding whether to:
376 * - start an array
377 * - remove non-faulty devices
378 * - add a spare
379 * - allow a reshape
380 * This determination is simple when no reshape is happening.
381 * However if there is a reshape, we need to carefully check
382 * both the before and after sections.
383 * This is because some failed devices may only affect one
384 * of the two sections, and some non-in_sync devices may
385 * be insync in the section most affected by failed devices.
387 static int calc_degraded(struct r5conf *conf)
389 int degraded, degraded2;
390 int i;
392 rcu_read_lock();
393 degraded = 0;
394 for (i = 0; i < conf->previous_raid_disks; i++) {
395 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 if (rdev && test_bit(Faulty, &rdev->flags))
397 rdev = rcu_dereference(conf->disks[i].replacement);
398 if (!rdev || test_bit(Faulty, &rdev->flags))
399 degraded++;
400 else if (test_bit(In_sync, &rdev->flags))
402 else
403 /* not in-sync or faulty.
404 * If the reshape increases the number of devices,
405 * this is being recovered by the reshape, so
406 * this 'previous' section is not in_sync.
407 * If the number of devices is being reduced however,
408 * the device can only be part of the array if
409 * we are reverting a reshape, so this section will
410 * be in-sync.
412 if (conf->raid_disks >= conf->previous_raid_disks)
413 degraded++;
415 rcu_read_unlock();
416 if (conf->raid_disks == conf->previous_raid_disks)
417 return degraded;
418 rcu_read_lock();
419 degraded2 = 0;
420 for (i = 0; i < conf->raid_disks; i++) {
421 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422 if (rdev && test_bit(Faulty, &rdev->flags))
423 rdev = rcu_dereference(conf->disks[i].replacement);
424 if (!rdev || test_bit(Faulty, &rdev->flags))
425 degraded2++;
426 else if (test_bit(In_sync, &rdev->flags))
428 else
429 /* not in-sync or faulty.
430 * If reshape increases the number of devices, this
431 * section has already been recovered, else it
432 * almost certainly hasn't.
434 if (conf->raid_disks <= conf->previous_raid_disks)
435 degraded2++;
437 rcu_read_unlock();
438 if (degraded2 > degraded)
439 return degraded2;
440 return degraded;
443 static int has_failed(struct r5conf *conf)
445 int degraded;
447 if (conf->mddev->reshape_position == MaxSector)
448 return conf->mddev->degraded > conf->max_degraded;
450 degraded = calc_degraded(conf);
451 if (degraded > conf->max_degraded)
452 return 1;
453 return 0;
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458 int previous, int noblock, int noquiesce)
460 struct stripe_head *sh;
462 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
464 spin_lock_irq(&conf->device_lock);
466 do {
467 wait_event_lock_irq(conf->wait_for_stripe,
468 conf->quiesce == 0 || noquiesce,
469 conf->device_lock, /* nothing */);
470 sh = __find_stripe(conf, sector, conf->generation - previous);
471 if (!sh) {
472 if (!conf->inactive_blocked)
473 sh = get_free_stripe(conf);
474 if (noblock && sh == NULL)
475 break;
476 if (!sh) {
477 conf->inactive_blocked = 1;
478 wait_event_lock_irq(conf->wait_for_stripe,
479 !list_empty(&conf->inactive_list) &&
480 (atomic_read(&conf->active_stripes)
481 < (conf->max_nr_stripes *3/4)
482 || !conf->inactive_blocked),
483 conf->device_lock,
485 conf->inactive_blocked = 0;
486 } else
487 init_stripe(sh, sector, previous);
488 } else {
489 if (atomic_read(&sh->count)) {
490 BUG_ON(!list_empty(&sh->lru)
491 && !test_bit(STRIPE_EXPANDING, &sh->state)
492 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 } else {
494 if (!test_bit(STRIPE_HANDLE, &sh->state))
495 atomic_inc(&conf->active_stripes);
496 if (list_empty(&sh->lru) &&
497 !test_bit(STRIPE_EXPANDING, &sh->state))
498 BUG();
499 list_del_init(&sh->lru);
502 } while (sh == NULL);
504 if (sh)
505 atomic_inc(&sh->count);
507 spin_unlock_irq(&conf->device_lock);
508 return sh;
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512 * in this stripe_head.
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
516 sector_t progress = conf->reshape_progress;
517 /* Need a memory barrier to make sure we see the value
518 * of conf->generation, or ->data_offset that was set before
519 * reshape_progress was updated.
521 smp_rmb();
522 if (progress == MaxSector)
523 return 0;
524 if (sh->generation == conf->generation - 1)
525 return 0;
526 /* We are in a reshape, and this is a new-generation stripe,
527 * so use new_data_offset.
529 return 1;
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
539 struct r5conf *conf = sh->raid_conf;
540 int i, disks = sh->disks;
542 might_sleep();
544 for (i = disks; i--; ) {
545 int rw;
546 int replace_only = 0;
547 struct bio *bi, *rbi;
548 struct md_rdev *rdev, *rrdev = NULL;
549 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 rw = WRITE_FUA;
552 else
553 rw = WRITE;
554 if (test_bit(R5_Discard, &sh->dev[i].flags))
555 rw |= REQ_DISCARD;
556 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557 rw = READ;
558 else if (test_and_clear_bit(R5_WantReplace,
559 &sh->dev[i].flags)) {
560 rw = WRITE;
561 replace_only = 1;
562 } else
563 continue;
564 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 rw |= REQ_SYNC;
567 bi = &sh->dev[i].req;
568 rbi = &sh->dev[i].rreq; /* For writing to replacement */
570 bi->bi_rw = rw;
571 rbi->bi_rw = rw;
572 if (rw & WRITE) {
573 bi->bi_end_io = raid5_end_write_request;
574 rbi->bi_end_io = raid5_end_write_request;
575 } else
576 bi->bi_end_io = raid5_end_read_request;
578 rcu_read_lock();
579 rrdev = rcu_dereference(conf->disks[i].replacement);
580 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 rdev = rcu_dereference(conf->disks[i].rdev);
582 if (!rdev) {
583 rdev = rrdev;
584 rrdev = NULL;
586 if (rw & WRITE) {
587 if (replace_only)
588 rdev = NULL;
589 if (rdev == rrdev)
590 /* We raced and saw duplicates */
591 rrdev = NULL;
592 } else {
593 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594 rdev = rrdev;
595 rrdev = NULL;
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = NULL;
600 if (rdev)
601 atomic_inc(&rdev->nr_pending);
602 if (rrdev && test_bit(Faulty, &rrdev->flags))
603 rrdev = NULL;
604 if (rrdev)
605 atomic_inc(&rrdev->nr_pending);
606 rcu_read_unlock();
608 /* We have already checked bad blocks for reads. Now
609 * need to check for writes. We never accept write errors
610 * on the replacement, so we don't to check rrdev.
612 while ((rw & WRITE) && rdev &&
613 test_bit(WriteErrorSeen, &rdev->flags)) {
614 sector_t first_bad;
615 int bad_sectors;
616 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 &first_bad, &bad_sectors);
618 if (!bad)
619 break;
621 if (bad < 0) {
622 set_bit(BlockedBadBlocks, &rdev->flags);
623 if (!conf->mddev->external &&
624 conf->mddev->flags) {
625 /* It is very unlikely, but we might
626 * still need to write out the
627 * bad block log - better give it
628 * a chance*/
629 md_check_recovery(conf->mddev);
632 * Because md_wait_for_blocked_rdev
633 * will dec nr_pending, we must
634 * increment it first.
636 atomic_inc(&rdev->nr_pending);
637 md_wait_for_blocked_rdev(rdev, conf->mddev);
638 } else {
639 /* Acknowledged bad block - skip the write */
640 rdev_dec_pending(rdev, conf->mddev);
641 rdev = NULL;
645 if (rdev) {
646 if (s->syncing || s->expanding || s->expanded
647 || s->replacing)
648 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
650 set_bit(STRIPE_IO_STARTED, &sh->state);
652 bi->bi_bdev = rdev->bdev;
653 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654 __func__, (unsigned long long)sh->sector,
655 bi->bi_rw, i);
656 atomic_inc(&sh->count);
657 if (use_new_offset(conf, sh))
658 bi->bi_sector = (sh->sector
659 + rdev->new_data_offset);
660 else
661 bi->bi_sector = (sh->sector
662 + rdev->data_offset);
663 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 bi->bi_rw |= REQ_FLUSH;
666 bi->bi_flags = 1 << BIO_UPTODATE;
667 bi->bi_idx = 0;
668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 bi->bi_io_vec[0].bv_offset = 0;
670 bi->bi_size = STRIPE_SIZE;
671 bi->bi_next = NULL;
672 if (rrdev)
673 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674 generic_make_request(bi);
676 if (rrdev) {
677 if (s->syncing || s->expanding || s->expanded
678 || s->replacing)
679 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
681 set_bit(STRIPE_IO_STARTED, &sh->state);
683 rbi->bi_bdev = rrdev->bdev;
684 pr_debug("%s: for %llu schedule op %ld on "
685 "replacement disc %d\n",
686 __func__, (unsigned long long)sh->sector,
687 rbi->bi_rw, i);
688 atomic_inc(&sh->count);
689 if (use_new_offset(conf, sh))
690 rbi->bi_sector = (sh->sector
691 + rrdev->new_data_offset);
692 else
693 rbi->bi_sector = (sh->sector
694 + rrdev->data_offset);
695 rbi->bi_flags = 1 << BIO_UPTODATE;
696 rbi->bi_idx = 0;
697 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
698 rbi->bi_io_vec[0].bv_offset = 0;
699 rbi->bi_size = STRIPE_SIZE;
700 rbi->bi_next = NULL;
701 generic_make_request(rbi);
703 if (!rdev && !rrdev) {
704 if (rw & WRITE)
705 set_bit(STRIPE_DEGRADED, &sh->state);
706 pr_debug("skip op %ld on disc %d for sector %llu\n",
707 bi->bi_rw, i, (unsigned long long)sh->sector);
708 clear_bit(R5_LOCKED, &sh->dev[i].flags);
709 set_bit(STRIPE_HANDLE, &sh->state);
714 static struct dma_async_tx_descriptor *
715 async_copy_data(int frombio, struct bio *bio, struct page *page,
716 sector_t sector, struct dma_async_tx_descriptor *tx)
718 struct bio_vec *bvl;
719 struct page *bio_page;
720 int i;
721 int page_offset;
722 struct async_submit_ctl submit;
723 enum async_tx_flags flags = 0;
725 if (bio->bi_sector >= sector)
726 page_offset = (signed)(bio->bi_sector - sector) * 512;
727 else
728 page_offset = (signed)(sector - bio->bi_sector) * -512;
730 if (frombio)
731 flags |= ASYNC_TX_FENCE;
732 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
734 bio_for_each_segment(bvl, bio, i) {
735 int len = bvl->bv_len;
736 int clen;
737 int b_offset = 0;
739 if (page_offset < 0) {
740 b_offset = -page_offset;
741 page_offset += b_offset;
742 len -= b_offset;
745 if (len > 0 && page_offset + len > STRIPE_SIZE)
746 clen = STRIPE_SIZE - page_offset;
747 else
748 clen = len;
750 if (clen > 0) {
751 b_offset += bvl->bv_offset;
752 bio_page = bvl->bv_page;
753 if (frombio)
754 tx = async_memcpy(page, bio_page, page_offset,
755 b_offset, clen, &submit);
756 else
757 tx = async_memcpy(bio_page, page, b_offset,
758 page_offset, clen, &submit);
760 /* chain the operations */
761 submit.depend_tx = tx;
763 if (clen < len) /* hit end of page */
764 break;
765 page_offset += len;
768 return tx;
771 static void ops_complete_biofill(void *stripe_head_ref)
773 struct stripe_head *sh = stripe_head_ref;
774 struct bio *return_bi = NULL;
775 int i;
777 pr_debug("%s: stripe %llu\n", __func__,
778 (unsigned long long)sh->sector);
780 /* clear completed biofills */
781 for (i = sh->disks; i--; ) {
782 struct r5dev *dev = &sh->dev[i];
784 /* acknowledge completion of a biofill operation */
785 /* and check if we need to reply to a read request,
786 * new R5_Wantfill requests are held off until
787 * !STRIPE_BIOFILL_RUN
789 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
790 struct bio *rbi, *rbi2;
792 BUG_ON(!dev->read);
793 rbi = dev->read;
794 dev->read = NULL;
795 while (rbi && rbi->bi_sector <
796 dev->sector + STRIPE_SECTORS) {
797 rbi2 = r5_next_bio(rbi, dev->sector);
798 if (!raid5_dec_bi_active_stripes(rbi)) {
799 rbi->bi_next = return_bi;
800 return_bi = rbi;
802 rbi = rbi2;
806 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
808 return_io(return_bi);
810 set_bit(STRIPE_HANDLE, &sh->state);
811 release_stripe(sh);
814 static void ops_run_biofill(struct stripe_head *sh)
816 struct dma_async_tx_descriptor *tx = NULL;
817 struct async_submit_ctl submit;
818 int i;
820 pr_debug("%s: stripe %llu\n", __func__,
821 (unsigned long long)sh->sector);
823 for (i = sh->disks; i--; ) {
824 struct r5dev *dev = &sh->dev[i];
825 if (test_bit(R5_Wantfill, &dev->flags)) {
826 struct bio *rbi;
827 spin_lock_irq(&sh->stripe_lock);
828 dev->read = rbi = dev->toread;
829 dev->toread = NULL;
830 spin_unlock_irq(&sh->stripe_lock);
831 while (rbi && rbi->bi_sector <
832 dev->sector + STRIPE_SECTORS) {
833 tx = async_copy_data(0, rbi, dev->page,
834 dev->sector, tx);
835 rbi = r5_next_bio(rbi, dev->sector);
840 atomic_inc(&sh->count);
841 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
842 async_trigger_callback(&submit);
845 static void mark_target_uptodate(struct stripe_head *sh, int target)
847 struct r5dev *tgt;
849 if (target < 0)
850 return;
852 tgt = &sh->dev[target];
853 set_bit(R5_UPTODATE, &tgt->flags);
854 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
855 clear_bit(R5_Wantcompute, &tgt->flags);
858 static void ops_complete_compute(void *stripe_head_ref)
860 struct stripe_head *sh = stripe_head_ref;
862 pr_debug("%s: stripe %llu\n", __func__,
863 (unsigned long long)sh->sector);
865 /* mark the computed target(s) as uptodate */
866 mark_target_uptodate(sh, sh->ops.target);
867 mark_target_uptodate(sh, sh->ops.target2);
869 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
870 if (sh->check_state == check_state_compute_run)
871 sh->check_state = check_state_compute_result;
872 set_bit(STRIPE_HANDLE, &sh->state);
873 release_stripe(sh);
876 /* return a pointer to the address conversion region of the scribble buffer */
877 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
878 struct raid5_percpu *percpu)
880 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
883 static struct dma_async_tx_descriptor *
884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
886 int disks = sh->disks;
887 struct page **xor_srcs = percpu->scribble;
888 int target = sh->ops.target;
889 struct r5dev *tgt = &sh->dev[target];
890 struct page *xor_dest = tgt->page;
891 int count = 0;
892 struct dma_async_tx_descriptor *tx;
893 struct async_submit_ctl submit;
894 int i;
896 pr_debug("%s: stripe %llu block: %d\n",
897 __func__, (unsigned long long)sh->sector, target);
898 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
900 for (i = disks; i--; )
901 if (i != target)
902 xor_srcs[count++] = sh->dev[i].page;
904 atomic_inc(&sh->count);
906 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
907 ops_complete_compute, sh, to_addr_conv(sh, percpu));
908 if (unlikely(count == 1))
909 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
910 else
911 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
913 return tx;
916 /* set_syndrome_sources - populate source buffers for gen_syndrome
917 * @srcs - (struct page *) array of size sh->disks
918 * @sh - stripe_head to parse
920 * Populates srcs in proper layout order for the stripe and returns the
921 * 'count' of sources to be used in a call to async_gen_syndrome. The P
922 * destination buffer is recorded in srcs[count] and the Q destination
923 * is recorded in srcs[count+1]].
925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
927 int disks = sh->disks;
928 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
929 int d0_idx = raid6_d0(sh);
930 int count;
931 int i;
933 for (i = 0; i < disks; i++)
934 srcs[i] = NULL;
936 count = 0;
937 i = d0_idx;
938 do {
939 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
941 srcs[slot] = sh->dev[i].page;
942 i = raid6_next_disk(i, disks);
943 } while (i != d0_idx);
945 return syndrome_disks;
948 static struct dma_async_tx_descriptor *
949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
951 int disks = sh->disks;
952 struct page **blocks = percpu->scribble;
953 int target;
954 int qd_idx = sh->qd_idx;
955 struct dma_async_tx_descriptor *tx;
956 struct async_submit_ctl submit;
957 struct r5dev *tgt;
958 struct page *dest;
959 int i;
960 int count;
962 if (sh->ops.target < 0)
963 target = sh->ops.target2;
964 else if (sh->ops.target2 < 0)
965 target = sh->ops.target;
966 else
967 /* we should only have one valid target */
968 BUG();
969 BUG_ON(target < 0);
970 pr_debug("%s: stripe %llu block: %d\n",
971 __func__, (unsigned long long)sh->sector, target);
973 tgt = &sh->dev[target];
974 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975 dest = tgt->page;
977 atomic_inc(&sh->count);
979 if (target == qd_idx) {
980 count = set_syndrome_sources(blocks, sh);
981 blocks[count] = NULL; /* regenerating p is not necessary */
982 BUG_ON(blocks[count+1] != dest); /* q should already be set */
983 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
984 ops_complete_compute, sh,
985 to_addr_conv(sh, percpu));
986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
987 } else {
988 /* Compute any data- or p-drive using XOR */
989 count = 0;
990 for (i = disks; i-- ; ) {
991 if (i == target || i == qd_idx)
992 continue;
993 blocks[count++] = sh->dev[i].page;
996 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
997 NULL, ops_complete_compute, sh,
998 to_addr_conv(sh, percpu));
999 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1002 return tx;
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1008 int i, count, disks = sh->disks;
1009 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1010 int d0_idx = raid6_d0(sh);
1011 int faila = -1, failb = -1;
1012 int target = sh->ops.target;
1013 int target2 = sh->ops.target2;
1014 struct r5dev *tgt = &sh->dev[target];
1015 struct r5dev *tgt2 = &sh->dev[target2];
1016 struct dma_async_tx_descriptor *tx;
1017 struct page **blocks = percpu->scribble;
1018 struct async_submit_ctl submit;
1020 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1021 __func__, (unsigned long long)sh->sector, target, target2);
1022 BUG_ON(target < 0 || target2 < 0);
1023 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1024 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1026 /* we need to open-code set_syndrome_sources to handle the
1027 * slot number conversion for 'faila' and 'failb'
1029 for (i = 0; i < disks ; i++)
1030 blocks[i] = NULL;
1031 count = 0;
1032 i = d0_idx;
1033 do {
1034 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1036 blocks[slot] = sh->dev[i].page;
1038 if (i == target)
1039 faila = slot;
1040 if (i == target2)
1041 failb = slot;
1042 i = raid6_next_disk(i, disks);
1043 } while (i != d0_idx);
1045 BUG_ON(faila == failb);
1046 if (failb < faila)
1047 swap(faila, failb);
1048 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1049 __func__, (unsigned long long)sh->sector, faila, failb);
1051 atomic_inc(&sh->count);
1053 if (failb == syndrome_disks+1) {
1054 /* Q disk is one of the missing disks */
1055 if (faila == syndrome_disks) {
1056 /* Missing P+Q, just recompute */
1057 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1058 ops_complete_compute, sh,
1059 to_addr_conv(sh, percpu));
1060 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1061 STRIPE_SIZE, &submit);
1062 } else {
1063 struct page *dest;
1064 int data_target;
1065 int qd_idx = sh->qd_idx;
1067 /* Missing D+Q: recompute D from P, then recompute Q */
1068 if (target == qd_idx)
1069 data_target = target2;
1070 else
1071 data_target = target;
1073 count = 0;
1074 for (i = disks; i-- ; ) {
1075 if (i == data_target || i == qd_idx)
1076 continue;
1077 blocks[count++] = sh->dev[i].page;
1079 dest = sh->dev[data_target].page;
1080 init_async_submit(&submit,
1081 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1082 NULL, NULL, NULL,
1083 to_addr_conv(sh, percpu));
1084 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1085 &submit);
1087 count = set_syndrome_sources(blocks, sh);
1088 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1089 ops_complete_compute, sh,
1090 to_addr_conv(sh, percpu));
1091 return async_gen_syndrome(blocks, 0, count+2,
1092 STRIPE_SIZE, &submit);
1094 } else {
1095 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1096 ops_complete_compute, sh,
1097 to_addr_conv(sh, percpu));
1098 if (failb == syndrome_disks) {
1099 /* We're missing D+P. */
1100 return async_raid6_datap_recov(syndrome_disks+2,
1101 STRIPE_SIZE, faila,
1102 blocks, &submit);
1103 } else {
1104 /* We're missing D+D. */
1105 return async_raid6_2data_recov(syndrome_disks+2,
1106 STRIPE_SIZE, faila, failb,
1107 blocks, &submit);
1113 static void ops_complete_prexor(void *stripe_head_ref)
1115 struct stripe_head *sh = stripe_head_ref;
1117 pr_debug("%s: stripe %llu\n", __func__,
1118 (unsigned long long)sh->sector);
1121 static struct dma_async_tx_descriptor *
1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1123 struct dma_async_tx_descriptor *tx)
1125 int disks = sh->disks;
1126 struct page **xor_srcs = percpu->scribble;
1127 int count = 0, pd_idx = sh->pd_idx, i;
1128 struct async_submit_ctl submit;
1130 /* existing parity data subtracted */
1131 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1133 pr_debug("%s: stripe %llu\n", __func__,
1134 (unsigned long long)sh->sector);
1136 for (i = disks; i--; ) {
1137 struct r5dev *dev = &sh->dev[i];
1138 /* Only process blocks that are known to be uptodate */
1139 if (test_bit(R5_Wantdrain, &dev->flags))
1140 xor_srcs[count++] = dev->page;
1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1144 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1145 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1147 return tx;
1150 static struct dma_async_tx_descriptor *
1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1153 int disks = sh->disks;
1154 int i;
1156 pr_debug("%s: stripe %llu\n", __func__,
1157 (unsigned long long)sh->sector);
1159 for (i = disks; i--; ) {
1160 struct r5dev *dev = &sh->dev[i];
1161 struct bio *chosen;
1163 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1164 struct bio *wbi;
1166 spin_lock_irq(&sh->stripe_lock);
1167 chosen = dev->towrite;
1168 dev->towrite = NULL;
1169 BUG_ON(dev->written);
1170 wbi = dev->written = chosen;
1171 spin_unlock_irq(&sh->stripe_lock);
1173 while (wbi && wbi->bi_sector <
1174 dev->sector + STRIPE_SECTORS) {
1175 if (wbi->bi_rw & REQ_FUA)
1176 set_bit(R5_WantFUA, &dev->flags);
1177 if (wbi->bi_rw & REQ_SYNC)
1178 set_bit(R5_SyncIO, &dev->flags);
1179 if (wbi->bi_rw & REQ_DISCARD)
1180 set_bit(R5_Discard, &dev->flags);
1181 else
1182 tx = async_copy_data(1, wbi, dev->page,
1183 dev->sector, tx);
1184 wbi = r5_next_bio(wbi, dev->sector);
1189 return tx;
1192 static void ops_complete_reconstruct(void *stripe_head_ref)
1194 struct stripe_head *sh = stripe_head_ref;
1195 int disks = sh->disks;
1196 int pd_idx = sh->pd_idx;
1197 int qd_idx = sh->qd_idx;
1198 int i;
1199 bool fua = false, sync = false, discard = false;
1201 pr_debug("%s: stripe %llu\n", __func__,
1202 (unsigned long long)sh->sector);
1204 for (i = disks; i--; ) {
1205 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1206 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1207 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1210 for (i = disks; i--; ) {
1211 struct r5dev *dev = &sh->dev[i];
1213 if (dev->written || i == pd_idx || i == qd_idx) {
1214 if (!discard)
1215 set_bit(R5_UPTODATE, &dev->flags);
1216 if (fua)
1217 set_bit(R5_WantFUA, &dev->flags);
1218 if (sync)
1219 set_bit(R5_SyncIO, &dev->flags);
1223 if (sh->reconstruct_state == reconstruct_state_drain_run)
1224 sh->reconstruct_state = reconstruct_state_drain_result;
1225 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1226 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1227 else {
1228 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1229 sh->reconstruct_state = reconstruct_state_result;
1232 set_bit(STRIPE_HANDLE, &sh->state);
1233 release_stripe(sh);
1236 static void
1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1238 struct dma_async_tx_descriptor *tx)
1240 int disks = sh->disks;
1241 struct page **xor_srcs = percpu->scribble;
1242 struct async_submit_ctl submit;
1243 int count = 0, pd_idx = sh->pd_idx, i;
1244 struct page *xor_dest;
1245 int prexor = 0;
1246 unsigned long flags;
1248 pr_debug("%s: stripe %llu\n", __func__,
1249 (unsigned long long)sh->sector);
1251 for (i = 0; i < sh->disks; i++) {
1252 if (pd_idx == i)
1253 continue;
1254 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1255 break;
1257 if (i >= sh->disks) {
1258 atomic_inc(&sh->count);
1259 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1260 ops_complete_reconstruct(sh);
1261 return;
1263 /* check if prexor is active which means only process blocks
1264 * that are part of a read-modify-write (written)
1266 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1267 prexor = 1;
1268 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1269 for (i = disks; i--; ) {
1270 struct r5dev *dev = &sh->dev[i];
1271 if (dev->written)
1272 xor_srcs[count++] = dev->page;
1274 } else {
1275 xor_dest = sh->dev[pd_idx].page;
1276 for (i = disks; i--; ) {
1277 struct r5dev *dev = &sh->dev[i];
1278 if (i != pd_idx)
1279 xor_srcs[count++] = dev->page;
1283 /* 1/ if we prexor'd then the dest is reused as a source
1284 * 2/ if we did not prexor then we are redoing the parity
1285 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1286 * for the synchronous xor case
1288 flags = ASYNC_TX_ACK |
1289 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1291 atomic_inc(&sh->count);
1293 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1294 to_addr_conv(sh, percpu));
1295 if (unlikely(count == 1))
1296 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1297 else
1298 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1301 static void
1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1303 struct dma_async_tx_descriptor *tx)
1305 struct async_submit_ctl submit;
1306 struct page **blocks = percpu->scribble;
1307 int count, i;
1309 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1311 for (i = 0; i < sh->disks; i++) {
1312 if (sh->pd_idx == i || sh->qd_idx == i)
1313 continue;
1314 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1315 break;
1317 if (i >= sh->disks) {
1318 atomic_inc(&sh->count);
1319 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1320 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1321 ops_complete_reconstruct(sh);
1322 return;
1325 count = set_syndrome_sources(blocks, sh);
1327 atomic_inc(&sh->count);
1329 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1330 sh, to_addr_conv(sh, percpu));
1331 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1334 static void ops_complete_check(void *stripe_head_ref)
1336 struct stripe_head *sh = stripe_head_ref;
1338 pr_debug("%s: stripe %llu\n", __func__,
1339 (unsigned long long)sh->sector);
1341 sh->check_state = check_state_check_result;
1342 set_bit(STRIPE_HANDLE, &sh->state);
1343 release_stripe(sh);
1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1348 int disks = sh->disks;
1349 int pd_idx = sh->pd_idx;
1350 int qd_idx = sh->qd_idx;
1351 struct page *xor_dest;
1352 struct page **xor_srcs = percpu->scribble;
1353 struct dma_async_tx_descriptor *tx;
1354 struct async_submit_ctl submit;
1355 int count;
1356 int i;
1358 pr_debug("%s: stripe %llu\n", __func__,
1359 (unsigned long long)sh->sector);
1361 count = 0;
1362 xor_dest = sh->dev[pd_idx].page;
1363 xor_srcs[count++] = xor_dest;
1364 for (i = disks; i--; ) {
1365 if (i == pd_idx || i == qd_idx)
1366 continue;
1367 xor_srcs[count++] = sh->dev[i].page;
1370 init_async_submit(&submit, 0, NULL, NULL, NULL,
1371 to_addr_conv(sh, percpu));
1372 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1373 &sh->ops.zero_sum_result, &submit);
1375 atomic_inc(&sh->count);
1376 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1377 tx = async_trigger_callback(&submit);
1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1382 struct page **srcs = percpu->scribble;
1383 struct async_submit_ctl submit;
1384 int count;
1386 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1387 (unsigned long long)sh->sector, checkp);
1389 count = set_syndrome_sources(srcs, sh);
1390 if (!checkp)
1391 srcs[count] = NULL;
1393 atomic_inc(&sh->count);
1394 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1395 sh, to_addr_conv(sh, percpu));
1396 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1397 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1402 int overlap_clear = 0, i, disks = sh->disks;
1403 struct dma_async_tx_descriptor *tx = NULL;
1404 struct r5conf *conf = sh->raid_conf;
1405 int level = conf->level;
1406 struct raid5_percpu *percpu;
1407 unsigned long cpu;
1409 cpu = get_cpu();
1410 percpu = per_cpu_ptr(conf->percpu, cpu);
1411 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1412 ops_run_biofill(sh);
1413 overlap_clear++;
1416 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1417 if (level < 6)
1418 tx = ops_run_compute5(sh, percpu);
1419 else {
1420 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1421 tx = ops_run_compute6_1(sh, percpu);
1422 else
1423 tx = ops_run_compute6_2(sh, percpu);
1425 /* terminate the chain if reconstruct is not set to be run */
1426 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1427 async_tx_ack(tx);
1430 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1431 tx = ops_run_prexor(sh, percpu, tx);
1433 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1434 tx = ops_run_biodrain(sh, tx);
1435 overlap_clear++;
1438 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1439 if (level < 6)
1440 ops_run_reconstruct5(sh, percpu, tx);
1441 else
1442 ops_run_reconstruct6(sh, percpu, tx);
1445 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1446 if (sh->check_state == check_state_run)
1447 ops_run_check_p(sh, percpu);
1448 else if (sh->check_state == check_state_run_q)
1449 ops_run_check_pq(sh, percpu, 0);
1450 else if (sh->check_state == check_state_run_pq)
1451 ops_run_check_pq(sh, percpu, 1);
1452 else
1453 BUG();
1456 if (overlap_clear)
1457 for (i = disks; i--; ) {
1458 struct r5dev *dev = &sh->dev[i];
1459 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1460 wake_up(&sh->raid_conf->wait_for_overlap);
1462 put_cpu();
1465 #ifdef CONFIG_MULTICORE_RAID456
1466 static void async_run_ops(void *param, async_cookie_t cookie)
1468 struct stripe_head *sh = param;
1469 unsigned long ops_request = sh->ops.request;
1471 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1472 wake_up(&sh->ops.wait_for_ops);
1474 __raid_run_ops(sh, ops_request);
1475 release_stripe(sh);
1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1480 /* since handle_stripe can be called outside of raid5d context
1481 * we need to ensure sh->ops.request is de-staged before another
1482 * request arrives
1484 wait_event(sh->ops.wait_for_ops,
1485 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1486 sh->ops.request = ops_request;
1488 atomic_inc(&sh->count);
1489 async_schedule(async_run_ops, sh);
1491 #else
1492 #define raid_run_ops __raid_run_ops
1493 #endif
1495 static int grow_one_stripe(struct r5conf *conf)
1497 struct stripe_head *sh;
1498 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1499 if (!sh)
1500 return 0;
1502 sh->raid_conf = conf;
1503 #ifdef CONFIG_MULTICORE_RAID456
1504 init_waitqueue_head(&sh->ops.wait_for_ops);
1505 #endif
1507 spin_lock_init(&sh->stripe_lock);
1509 if (grow_buffers(sh)) {
1510 shrink_buffers(sh);
1511 kmem_cache_free(conf->slab_cache, sh);
1512 return 0;
1514 /* we just created an active stripe so... */
1515 atomic_set(&sh->count, 1);
1516 atomic_inc(&conf->active_stripes);
1517 INIT_LIST_HEAD(&sh->lru);
1518 release_stripe(sh);
1519 return 1;
1522 static int grow_stripes(struct r5conf *conf, int num)
1524 struct kmem_cache *sc;
1525 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1527 if (conf->mddev->gendisk)
1528 sprintf(conf->cache_name[0],
1529 "raid%d-%s", conf->level, mdname(conf->mddev));
1530 else
1531 sprintf(conf->cache_name[0],
1532 "raid%d-%p", conf->level, conf->mddev);
1533 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1535 conf->active_name = 0;
1536 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1537 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1538 0, 0, NULL);
1539 if (!sc)
1540 return 1;
1541 conf->slab_cache = sc;
1542 conf->pool_size = devs;
1543 while (num--)
1544 if (!grow_one_stripe(conf))
1545 return 1;
1546 return 0;
1550 * scribble_len - return the required size of the scribble region
1551 * @num - total number of disks in the array
1553 * The size must be enough to contain:
1554 * 1/ a struct page pointer for each device in the array +2
1555 * 2/ room to convert each entry in (1) to its corresponding dma
1556 * (dma_map_page()) or page (page_address()) address.
1558 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1559 * calculate over all devices (not just the data blocks), using zeros in place
1560 * of the P and Q blocks.
1562 static size_t scribble_len(int num)
1564 size_t len;
1566 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1568 return len;
1571 static int resize_stripes(struct r5conf *conf, int newsize)
1573 /* Make all the stripes able to hold 'newsize' devices.
1574 * New slots in each stripe get 'page' set to a new page.
1576 * This happens in stages:
1577 * 1/ create a new kmem_cache and allocate the required number of
1578 * stripe_heads.
1579 * 2/ gather all the old stripe_heads and tranfer the pages across
1580 * to the new stripe_heads. This will have the side effect of
1581 * freezing the array as once all stripe_heads have been collected,
1582 * no IO will be possible. Old stripe heads are freed once their
1583 * pages have been transferred over, and the old kmem_cache is
1584 * freed when all stripes are done.
1585 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1586 * we simple return a failre status - no need to clean anything up.
1587 * 4/ allocate new pages for the new slots in the new stripe_heads.
1588 * If this fails, we don't bother trying the shrink the
1589 * stripe_heads down again, we just leave them as they are.
1590 * As each stripe_head is processed the new one is released into
1591 * active service.
1593 * Once step2 is started, we cannot afford to wait for a write,
1594 * so we use GFP_NOIO allocations.
1596 struct stripe_head *osh, *nsh;
1597 LIST_HEAD(newstripes);
1598 struct disk_info *ndisks;
1599 unsigned long cpu;
1600 int err;
1601 struct kmem_cache *sc;
1602 int i;
1604 if (newsize <= conf->pool_size)
1605 return 0; /* never bother to shrink */
1607 err = md_allow_write(conf->mddev);
1608 if (err)
1609 return err;
1611 /* Step 1 */
1612 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1613 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1614 0, 0, NULL);
1615 if (!sc)
1616 return -ENOMEM;
1618 for (i = conf->max_nr_stripes; i; i--) {
1619 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1620 if (!nsh)
1621 break;
1623 nsh->raid_conf = conf;
1624 #ifdef CONFIG_MULTICORE_RAID456
1625 init_waitqueue_head(&nsh->ops.wait_for_ops);
1626 #endif
1627 spin_lock_init(&nsh->stripe_lock);
1629 list_add(&nsh->lru, &newstripes);
1631 if (i) {
1632 /* didn't get enough, give up */
1633 while (!list_empty(&newstripes)) {
1634 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1635 list_del(&nsh->lru);
1636 kmem_cache_free(sc, nsh);
1638 kmem_cache_destroy(sc);
1639 return -ENOMEM;
1641 /* Step 2 - Must use GFP_NOIO now.
1642 * OK, we have enough stripes, start collecting inactive
1643 * stripes and copying them over
1645 list_for_each_entry(nsh, &newstripes, lru) {
1646 spin_lock_irq(&conf->device_lock);
1647 wait_event_lock_irq(conf->wait_for_stripe,
1648 !list_empty(&conf->inactive_list),
1649 conf->device_lock,
1651 osh = get_free_stripe(conf);
1652 spin_unlock_irq(&conf->device_lock);
1653 atomic_set(&nsh->count, 1);
1654 for(i=0; i<conf->pool_size; i++)
1655 nsh->dev[i].page = osh->dev[i].page;
1656 for( ; i<newsize; i++)
1657 nsh->dev[i].page = NULL;
1658 kmem_cache_free(conf->slab_cache, osh);
1660 kmem_cache_destroy(conf->slab_cache);
1662 /* Step 3.
1663 * At this point, we are holding all the stripes so the array
1664 * is completely stalled, so now is a good time to resize
1665 * conf->disks and the scribble region
1667 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1668 if (ndisks) {
1669 for (i=0; i<conf->raid_disks; i++)
1670 ndisks[i] = conf->disks[i];
1671 kfree(conf->disks);
1672 conf->disks = ndisks;
1673 } else
1674 err = -ENOMEM;
1676 get_online_cpus();
1677 conf->scribble_len = scribble_len(newsize);
1678 for_each_present_cpu(cpu) {
1679 struct raid5_percpu *percpu;
1680 void *scribble;
1682 percpu = per_cpu_ptr(conf->percpu, cpu);
1683 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1685 if (scribble) {
1686 kfree(percpu->scribble);
1687 percpu->scribble = scribble;
1688 } else {
1689 err = -ENOMEM;
1690 break;
1693 put_online_cpus();
1695 /* Step 4, return new stripes to service */
1696 while(!list_empty(&newstripes)) {
1697 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1698 list_del_init(&nsh->lru);
1700 for (i=conf->raid_disks; i < newsize; i++)
1701 if (nsh->dev[i].page == NULL) {
1702 struct page *p = alloc_page(GFP_NOIO);
1703 nsh->dev[i].page = p;
1704 if (!p)
1705 err = -ENOMEM;
1707 release_stripe(nsh);
1709 /* critical section pass, GFP_NOIO no longer needed */
1711 conf->slab_cache = sc;
1712 conf->active_name = 1-conf->active_name;
1713 conf->pool_size = newsize;
1714 return err;
1717 static int drop_one_stripe(struct r5conf *conf)
1719 struct stripe_head *sh;
1721 spin_lock_irq(&conf->device_lock);
1722 sh = get_free_stripe(conf);
1723 spin_unlock_irq(&conf->device_lock);
1724 if (!sh)
1725 return 0;
1726 BUG_ON(atomic_read(&sh->count));
1727 shrink_buffers(sh);
1728 kmem_cache_free(conf->slab_cache, sh);
1729 atomic_dec(&conf->active_stripes);
1730 return 1;
1733 static void shrink_stripes(struct r5conf *conf)
1735 while (drop_one_stripe(conf))
1738 if (conf->slab_cache)
1739 kmem_cache_destroy(conf->slab_cache);
1740 conf->slab_cache = NULL;
1743 static void raid5_end_read_request(struct bio * bi, int error)
1745 struct stripe_head *sh = bi->bi_private;
1746 struct r5conf *conf = sh->raid_conf;
1747 int disks = sh->disks, i;
1748 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1749 char b[BDEVNAME_SIZE];
1750 struct md_rdev *rdev = NULL;
1751 sector_t s;
1753 for (i=0 ; i<disks; i++)
1754 if (bi == &sh->dev[i].req)
1755 break;
1757 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1758 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1759 uptodate);
1760 if (i == disks) {
1761 BUG();
1762 return;
1764 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1765 /* If replacement finished while this request was outstanding,
1766 * 'replacement' might be NULL already.
1767 * In that case it moved down to 'rdev'.
1768 * rdev is not removed until all requests are finished.
1770 rdev = conf->disks[i].replacement;
1771 if (!rdev)
1772 rdev = conf->disks[i].rdev;
1774 if (use_new_offset(conf, sh))
1775 s = sh->sector + rdev->new_data_offset;
1776 else
1777 s = sh->sector + rdev->data_offset;
1778 if (uptodate) {
1779 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1780 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1781 /* Note that this cannot happen on a
1782 * replacement device. We just fail those on
1783 * any error
1785 printk_ratelimited(
1786 KERN_INFO
1787 "md/raid:%s: read error corrected"
1788 " (%lu sectors at %llu on %s)\n",
1789 mdname(conf->mddev), STRIPE_SECTORS,
1790 (unsigned long long)s,
1791 bdevname(rdev->bdev, b));
1792 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1793 clear_bit(R5_ReadError, &sh->dev[i].flags);
1794 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1796 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1798 if (atomic_read(&rdev->read_errors))
1799 atomic_set(&rdev->read_errors, 0);
1800 } else {
1801 const char *bdn = bdevname(rdev->bdev, b);
1802 int retry = 0;
1803 int set_bad = 0;
1805 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1806 atomic_inc(&rdev->read_errors);
1807 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1808 printk_ratelimited(
1809 KERN_WARNING
1810 "md/raid:%s: read error on replacement device "
1811 "(sector %llu on %s).\n",
1812 mdname(conf->mddev),
1813 (unsigned long long)s,
1814 bdn);
1815 else if (conf->mddev->degraded >= conf->max_degraded) {
1816 set_bad = 1;
1817 printk_ratelimited(
1818 KERN_WARNING
1819 "md/raid:%s: read error not correctable "
1820 "(sector %llu on %s).\n",
1821 mdname(conf->mddev),
1822 (unsigned long long)s,
1823 bdn);
1824 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1825 /* Oh, no!!! */
1826 set_bad = 1;
1827 printk_ratelimited(
1828 KERN_WARNING
1829 "md/raid:%s: read error NOT corrected!! "
1830 "(sector %llu on %s).\n",
1831 mdname(conf->mddev),
1832 (unsigned long long)s,
1833 bdn);
1834 } else if (atomic_read(&rdev->read_errors)
1835 > conf->max_nr_stripes)
1836 printk(KERN_WARNING
1837 "md/raid:%s: Too many read errors, failing device %s.\n",
1838 mdname(conf->mddev), bdn);
1839 else
1840 retry = 1;
1841 if (retry)
1842 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1843 set_bit(R5_ReadError, &sh->dev[i].flags);
1844 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1845 } else
1846 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1847 else {
1848 clear_bit(R5_ReadError, &sh->dev[i].flags);
1849 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1850 if (!(set_bad
1851 && test_bit(In_sync, &rdev->flags)
1852 && rdev_set_badblocks(
1853 rdev, sh->sector, STRIPE_SECTORS, 0)))
1854 md_error(conf->mddev, rdev);
1857 rdev_dec_pending(rdev, conf->mddev);
1858 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1859 set_bit(STRIPE_HANDLE, &sh->state);
1860 release_stripe(sh);
1863 static void raid5_end_write_request(struct bio *bi, int error)
1865 struct stripe_head *sh = bi->bi_private;
1866 struct r5conf *conf = sh->raid_conf;
1867 int disks = sh->disks, i;
1868 struct md_rdev *uninitialized_var(rdev);
1869 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1870 sector_t first_bad;
1871 int bad_sectors;
1872 int replacement = 0;
1874 for (i = 0 ; i < disks; i++) {
1875 if (bi == &sh->dev[i].req) {
1876 rdev = conf->disks[i].rdev;
1877 break;
1879 if (bi == &sh->dev[i].rreq) {
1880 rdev = conf->disks[i].replacement;
1881 if (rdev)
1882 replacement = 1;
1883 else
1884 /* rdev was removed and 'replacement'
1885 * replaced it. rdev is not removed
1886 * until all requests are finished.
1888 rdev = conf->disks[i].rdev;
1889 break;
1892 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1893 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1894 uptodate);
1895 if (i == disks) {
1896 BUG();
1897 return;
1900 if (replacement) {
1901 if (!uptodate)
1902 md_error(conf->mddev, rdev);
1903 else if (is_badblock(rdev, sh->sector,
1904 STRIPE_SECTORS,
1905 &first_bad, &bad_sectors))
1906 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1907 } else {
1908 if (!uptodate) {
1909 set_bit(WriteErrorSeen, &rdev->flags);
1910 set_bit(R5_WriteError, &sh->dev[i].flags);
1911 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1912 set_bit(MD_RECOVERY_NEEDED,
1913 &rdev->mddev->recovery);
1914 } else if (is_badblock(rdev, sh->sector,
1915 STRIPE_SECTORS,
1916 &first_bad, &bad_sectors))
1917 set_bit(R5_MadeGood, &sh->dev[i].flags);
1919 rdev_dec_pending(rdev, conf->mddev);
1921 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923 set_bit(STRIPE_HANDLE, &sh->state);
1924 release_stripe(sh);
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1931 struct r5dev *dev = &sh->dev[i];
1933 bio_init(&dev->req);
1934 dev->req.bi_io_vec = &dev->vec;
1935 dev->req.bi_vcnt++;
1936 dev->req.bi_max_vecs++;
1937 dev->req.bi_private = sh;
1938 dev->vec.bv_page = dev->page;
1940 bio_init(&dev->rreq);
1941 dev->rreq.bi_io_vec = &dev->rvec;
1942 dev->rreq.bi_vcnt++;
1943 dev->rreq.bi_max_vecs++;
1944 dev->rreq.bi_private = sh;
1945 dev->rvec.bv_page = dev->page;
1947 dev->flags = 0;
1948 dev->sector = compute_blocknr(sh, i, previous);
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1953 char b[BDEVNAME_SIZE];
1954 struct r5conf *conf = mddev->private;
1955 unsigned long flags;
1956 pr_debug("raid456: error called\n");
1958 spin_lock_irqsave(&conf->device_lock, flags);
1959 clear_bit(In_sync, &rdev->flags);
1960 mddev->degraded = calc_degraded(conf);
1961 spin_unlock_irqrestore(&conf->device_lock, flags);
1962 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1964 set_bit(Blocked, &rdev->flags);
1965 set_bit(Faulty, &rdev->flags);
1966 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1967 printk(KERN_ALERT
1968 "md/raid:%s: Disk failure on %s, disabling device.\n"
1969 "md/raid:%s: Operation continuing on %d devices.\n",
1970 mdname(mddev),
1971 bdevname(rdev->bdev, b),
1972 mdname(mddev),
1973 conf->raid_disks - mddev->degraded);
1977 * Input: a 'big' sector number,
1978 * Output: index of the data and parity disk, and the sector # in them.
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981 int previous, int *dd_idx,
1982 struct stripe_head *sh)
1984 sector_t stripe, stripe2;
1985 sector_t chunk_number;
1986 unsigned int chunk_offset;
1987 int pd_idx, qd_idx;
1988 int ddf_layout = 0;
1989 sector_t new_sector;
1990 int algorithm = previous ? conf->prev_algo
1991 : conf->algorithm;
1992 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993 : conf->chunk_sectors;
1994 int raid_disks = previous ? conf->previous_raid_disks
1995 : conf->raid_disks;
1996 int data_disks = raid_disks - conf->max_degraded;
1998 /* First compute the information on this sector */
2001 * Compute the chunk number and the sector offset inside the chunk
2003 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004 chunk_number = r_sector;
2007 * Compute the stripe number
2009 stripe = chunk_number;
2010 *dd_idx = sector_div(stripe, data_disks);
2011 stripe2 = stripe;
2013 * Select the parity disk based on the user selected algorithm.
2015 pd_idx = qd_idx = -1;
2016 switch(conf->level) {
2017 case 4:
2018 pd_idx = data_disks;
2019 break;
2020 case 5:
2021 switch (algorithm) {
2022 case ALGORITHM_LEFT_ASYMMETRIC:
2023 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024 if (*dd_idx >= pd_idx)
2025 (*dd_idx)++;
2026 break;
2027 case ALGORITHM_RIGHT_ASYMMETRIC:
2028 pd_idx = sector_div(stripe2, raid_disks);
2029 if (*dd_idx >= pd_idx)
2030 (*dd_idx)++;
2031 break;
2032 case ALGORITHM_LEFT_SYMMETRIC:
2033 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035 break;
2036 case ALGORITHM_RIGHT_SYMMETRIC:
2037 pd_idx = sector_div(stripe2, raid_disks);
2038 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039 break;
2040 case ALGORITHM_PARITY_0:
2041 pd_idx = 0;
2042 (*dd_idx)++;
2043 break;
2044 case ALGORITHM_PARITY_N:
2045 pd_idx = data_disks;
2046 break;
2047 default:
2048 BUG();
2050 break;
2051 case 6:
2053 switch (algorithm) {
2054 case ALGORITHM_LEFT_ASYMMETRIC:
2055 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056 qd_idx = pd_idx + 1;
2057 if (pd_idx == raid_disks-1) {
2058 (*dd_idx)++; /* Q D D D P */
2059 qd_idx = 0;
2060 } else if (*dd_idx >= pd_idx)
2061 (*dd_idx) += 2; /* D D P Q D */
2062 break;
2063 case ALGORITHM_RIGHT_ASYMMETRIC:
2064 pd_idx = sector_div(stripe2, raid_disks);
2065 qd_idx = pd_idx + 1;
2066 if (pd_idx == raid_disks-1) {
2067 (*dd_idx)++; /* Q D D D P */
2068 qd_idx = 0;
2069 } else if (*dd_idx >= pd_idx)
2070 (*dd_idx) += 2; /* D D P Q D */
2071 break;
2072 case ALGORITHM_LEFT_SYMMETRIC:
2073 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074 qd_idx = (pd_idx + 1) % raid_disks;
2075 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076 break;
2077 case ALGORITHM_RIGHT_SYMMETRIC:
2078 pd_idx = sector_div(stripe2, raid_disks);
2079 qd_idx = (pd_idx + 1) % raid_disks;
2080 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081 break;
2083 case ALGORITHM_PARITY_0:
2084 pd_idx = 0;
2085 qd_idx = 1;
2086 (*dd_idx) += 2;
2087 break;
2088 case ALGORITHM_PARITY_N:
2089 pd_idx = data_disks;
2090 qd_idx = data_disks + 1;
2091 break;
2093 case ALGORITHM_ROTATING_ZERO_RESTART:
2094 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2095 * of blocks for computing Q is different.
2097 pd_idx = sector_div(stripe2, raid_disks);
2098 qd_idx = pd_idx + 1;
2099 if (pd_idx == raid_disks-1) {
2100 (*dd_idx)++; /* Q D D D P */
2101 qd_idx = 0;
2102 } else if (*dd_idx >= pd_idx)
2103 (*dd_idx) += 2; /* D D P Q D */
2104 ddf_layout = 1;
2105 break;
2107 case ALGORITHM_ROTATING_N_RESTART:
2108 /* Same a left_asymmetric, by first stripe is
2109 * D D D P Q rather than
2110 * Q D D D P
2112 stripe2 += 1;
2113 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114 qd_idx = pd_idx + 1;
2115 if (pd_idx == raid_disks-1) {
2116 (*dd_idx)++; /* Q D D D P */
2117 qd_idx = 0;
2118 } else if (*dd_idx >= pd_idx)
2119 (*dd_idx) += 2; /* D D P Q D */
2120 ddf_layout = 1;
2121 break;
2123 case ALGORITHM_ROTATING_N_CONTINUE:
2124 /* Same as left_symmetric but Q is before P */
2125 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128 ddf_layout = 1;
2129 break;
2131 case ALGORITHM_LEFT_ASYMMETRIC_6:
2132 /* RAID5 left_asymmetric, with Q on last device */
2133 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134 if (*dd_idx >= pd_idx)
2135 (*dd_idx)++;
2136 qd_idx = raid_disks - 1;
2137 break;
2139 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2140 pd_idx = sector_div(stripe2, raid_disks-1);
2141 if (*dd_idx >= pd_idx)
2142 (*dd_idx)++;
2143 qd_idx = raid_disks - 1;
2144 break;
2146 case ALGORITHM_LEFT_SYMMETRIC_6:
2147 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149 qd_idx = raid_disks - 1;
2150 break;
2152 case ALGORITHM_RIGHT_SYMMETRIC_6:
2153 pd_idx = sector_div(stripe2, raid_disks-1);
2154 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155 qd_idx = raid_disks - 1;
2156 break;
2158 case ALGORITHM_PARITY_0_6:
2159 pd_idx = 0;
2160 (*dd_idx)++;
2161 qd_idx = raid_disks - 1;
2162 break;
2164 default:
2165 BUG();
2167 break;
2170 if (sh) {
2171 sh->pd_idx = pd_idx;
2172 sh->qd_idx = qd_idx;
2173 sh->ddf_layout = ddf_layout;
2176 * Finally, compute the new sector number
2178 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179 return new_sector;
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2185 struct r5conf *conf = sh->raid_conf;
2186 int raid_disks = sh->disks;
2187 int data_disks = raid_disks - conf->max_degraded;
2188 sector_t new_sector = sh->sector, check;
2189 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190 : conf->chunk_sectors;
2191 int algorithm = previous ? conf->prev_algo
2192 : conf->algorithm;
2193 sector_t stripe;
2194 int chunk_offset;
2195 sector_t chunk_number;
2196 int dummy1, dd_idx = i;
2197 sector_t r_sector;
2198 struct stripe_head sh2;
2201 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202 stripe = new_sector;
2204 if (i == sh->pd_idx)
2205 return 0;
2206 switch(conf->level) {
2207 case 4: break;
2208 case 5:
2209 switch (algorithm) {
2210 case ALGORITHM_LEFT_ASYMMETRIC:
2211 case ALGORITHM_RIGHT_ASYMMETRIC:
2212 if (i > sh->pd_idx)
2213 i--;
2214 break;
2215 case ALGORITHM_LEFT_SYMMETRIC:
2216 case ALGORITHM_RIGHT_SYMMETRIC:
2217 if (i < sh->pd_idx)
2218 i += raid_disks;
2219 i -= (sh->pd_idx + 1);
2220 break;
2221 case ALGORITHM_PARITY_0:
2222 i -= 1;
2223 break;
2224 case ALGORITHM_PARITY_N:
2225 break;
2226 default:
2227 BUG();
2229 break;
2230 case 6:
2231 if (i == sh->qd_idx)
2232 return 0; /* It is the Q disk */
2233 switch (algorithm) {
2234 case ALGORITHM_LEFT_ASYMMETRIC:
2235 case ALGORITHM_RIGHT_ASYMMETRIC:
2236 case ALGORITHM_ROTATING_ZERO_RESTART:
2237 case ALGORITHM_ROTATING_N_RESTART:
2238 if (sh->pd_idx == raid_disks-1)
2239 i--; /* Q D D D P */
2240 else if (i > sh->pd_idx)
2241 i -= 2; /* D D P Q D */
2242 break;
2243 case ALGORITHM_LEFT_SYMMETRIC:
2244 case ALGORITHM_RIGHT_SYMMETRIC:
2245 if (sh->pd_idx == raid_disks-1)
2246 i--; /* Q D D D P */
2247 else {
2248 /* D D P Q D */
2249 if (i < sh->pd_idx)
2250 i += raid_disks;
2251 i -= (sh->pd_idx + 2);
2253 break;
2254 case ALGORITHM_PARITY_0:
2255 i -= 2;
2256 break;
2257 case ALGORITHM_PARITY_N:
2258 break;
2259 case ALGORITHM_ROTATING_N_CONTINUE:
2260 /* Like left_symmetric, but P is before Q */
2261 if (sh->pd_idx == 0)
2262 i--; /* P D D D Q */
2263 else {
2264 /* D D Q P D */
2265 if (i < sh->pd_idx)
2266 i += raid_disks;
2267 i -= (sh->pd_idx + 1);
2269 break;
2270 case ALGORITHM_LEFT_ASYMMETRIC_6:
2271 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2272 if (i > sh->pd_idx)
2273 i--;
2274 break;
2275 case ALGORITHM_LEFT_SYMMETRIC_6:
2276 case ALGORITHM_RIGHT_SYMMETRIC_6:
2277 if (i < sh->pd_idx)
2278 i += data_disks + 1;
2279 i -= (sh->pd_idx + 1);
2280 break;
2281 case ALGORITHM_PARITY_0_6:
2282 i -= 1;
2283 break;
2284 default:
2285 BUG();
2287 break;
2290 chunk_number = stripe * data_disks + i;
2291 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2293 check = raid5_compute_sector(conf, r_sector,
2294 previous, &dummy1, &sh2);
2295 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296 || sh2.qd_idx != sh->qd_idx) {
2297 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298 mdname(conf->mddev));
2299 return 0;
2301 return r_sector;
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307 int rcw, int expand)
2309 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310 struct r5conf *conf = sh->raid_conf;
2311 int level = conf->level;
2313 if (rcw) {
2314 /* if we are not expanding this is a proper write request, and
2315 * there will be bios with new data to be drained into the
2316 * stripe cache
2318 if (!expand) {
2319 sh->reconstruct_state = reconstruct_state_drain_run;
2320 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2321 } else
2322 sh->reconstruct_state = reconstruct_state_run;
2324 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2326 for (i = disks; i--; ) {
2327 struct r5dev *dev = &sh->dev[i];
2329 if (dev->towrite) {
2330 set_bit(R5_LOCKED, &dev->flags);
2331 set_bit(R5_Wantdrain, &dev->flags);
2332 if (!expand)
2333 clear_bit(R5_UPTODATE, &dev->flags);
2334 s->locked++;
2337 if (s->locked + conf->max_degraded == disks)
2338 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2339 atomic_inc(&conf->pending_full_writes);
2340 } else {
2341 BUG_ON(level == 6);
2342 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2343 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2345 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2346 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2347 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2348 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2350 for (i = disks; i--; ) {
2351 struct r5dev *dev = &sh->dev[i];
2352 if (i == pd_idx)
2353 continue;
2355 if (dev->towrite &&
2356 (test_bit(R5_UPTODATE, &dev->flags) ||
2357 test_bit(R5_Wantcompute, &dev->flags))) {
2358 set_bit(R5_Wantdrain, &dev->flags);
2359 set_bit(R5_LOCKED, &dev->flags);
2360 clear_bit(R5_UPTODATE, &dev->flags);
2361 s->locked++;
2366 /* keep the parity disk(s) locked while asynchronous operations
2367 * are in flight
2369 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2370 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2371 s->locked++;
2373 if (level == 6) {
2374 int qd_idx = sh->qd_idx;
2375 struct r5dev *dev = &sh->dev[qd_idx];
2377 set_bit(R5_LOCKED, &dev->flags);
2378 clear_bit(R5_UPTODATE, &dev->flags);
2379 s->locked++;
2382 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2383 __func__, (unsigned long long)sh->sector,
2384 s->locked, s->ops_request);
2388 * Each stripe/dev can have one or more bion attached.
2389 * toread/towrite point to the first in a chain.
2390 * The bi_next chain must be in order.
2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2394 struct bio **bip;
2395 struct r5conf *conf = sh->raid_conf;
2396 int firstwrite=0;
2398 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2399 (unsigned long long)bi->bi_sector,
2400 (unsigned long long)sh->sector);
2403 * If several bio share a stripe. The bio bi_phys_segments acts as a
2404 * reference count to avoid race. The reference count should already be
2405 * increased before this function is called (for example, in
2406 * make_request()), so other bio sharing this stripe will not free the
2407 * stripe. If a stripe is owned by one stripe, the stripe lock will
2408 * protect it.
2410 spin_lock_irq(&sh->stripe_lock);
2411 if (forwrite) {
2412 bip = &sh->dev[dd_idx].towrite;
2413 if (*bip == NULL)
2414 firstwrite = 1;
2415 } else
2416 bip = &sh->dev[dd_idx].toread;
2417 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2418 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2419 goto overlap;
2420 bip = & (*bip)->bi_next;
2422 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2423 goto overlap;
2425 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2426 if (*bip)
2427 bi->bi_next = *bip;
2428 *bip = bi;
2429 raid5_inc_bi_active_stripes(bi);
2431 if (forwrite) {
2432 /* check if page is covered */
2433 sector_t sector = sh->dev[dd_idx].sector;
2434 for (bi=sh->dev[dd_idx].towrite;
2435 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2436 bi && bi->bi_sector <= sector;
2437 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2438 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2439 sector = bi->bi_sector + (bi->bi_size>>9);
2441 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2442 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2445 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2446 (unsigned long long)(*bip)->bi_sector,
2447 (unsigned long long)sh->sector, dd_idx);
2448 spin_unlock_irq(&sh->stripe_lock);
2450 if (conf->mddev->bitmap && firstwrite) {
2451 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2452 STRIPE_SECTORS, 0);
2453 sh->bm_seq = conf->seq_flush+1;
2454 set_bit(STRIPE_BIT_DELAY, &sh->state);
2456 return 1;
2458 overlap:
2459 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2460 spin_unlock_irq(&sh->stripe_lock);
2461 return 0;
2464 static void end_reshape(struct r5conf *conf);
2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2467 struct stripe_head *sh)
2469 int sectors_per_chunk =
2470 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2471 int dd_idx;
2472 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2473 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2475 raid5_compute_sector(conf,
2476 stripe * (disks - conf->max_degraded)
2477 *sectors_per_chunk + chunk_offset,
2478 previous,
2479 &dd_idx, sh);
2482 static void
2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2484 struct stripe_head_state *s, int disks,
2485 struct bio **return_bi)
2487 int i;
2488 for (i = disks; i--; ) {
2489 struct bio *bi;
2490 int bitmap_end = 0;
2492 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2493 struct md_rdev *rdev;
2494 rcu_read_lock();
2495 rdev = rcu_dereference(conf->disks[i].rdev);
2496 if (rdev && test_bit(In_sync, &rdev->flags))
2497 atomic_inc(&rdev->nr_pending);
2498 else
2499 rdev = NULL;
2500 rcu_read_unlock();
2501 if (rdev) {
2502 if (!rdev_set_badblocks(
2503 rdev,
2504 sh->sector,
2505 STRIPE_SECTORS, 0))
2506 md_error(conf->mddev, rdev);
2507 rdev_dec_pending(rdev, conf->mddev);
2510 spin_lock_irq(&sh->stripe_lock);
2511 /* fail all writes first */
2512 bi = sh->dev[i].towrite;
2513 sh->dev[i].towrite = NULL;
2514 spin_unlock_irq(&sh->stripe_lock);
2515 if (bi)
2516 bitmap_end = 1;
2518 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2519 wake_up(&conf->wait_for_overlap);
2521 while (bi && bi->bi_sector <
2522 sh->dev[i].sector + STRIPE_SECTORS) {
2523 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2524 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2525 if (!raid5_dec_bi_active_stripes(bi)) {
2526 md_write_end(conf->mddev);
2527 bi->bi_next = *return_bi;
2528 *return_bi = bi;
2530 bi = nextbi;
2532 if (bitmap_end)
2533 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2534 STRIPE_SECTORS, 0, 0);
2535 bitmap_end = 0;
2536 /* and fail all 'written' */
2537 bi = sh->dev[i].written;
2538 sh->dev[i].written = NULL;
2539 if (bi) bitmap_end = 1;
2540 while (bi && bi->bi_sector <
2541 sh->dev[i].sector + STRIPE_SECTORS) {
2542 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2543 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2544 if (!raid5_dec_bi_active_stripes(bi)) {
2545 md_write_end(conf->mddev);
2546 bi->bi_next = *return_bi;
2547 *return_bi = bi;
2549 bi = bi2;
2552 /* fail any reads if this device is non-operational and
2553 * the data has not reached the cache yet.
2555 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2556 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2557 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2558 spin_lock_irq(&sh->stripe_lock);
2559 bi = sh->dev[i].toread;
2560 sh->dev[i].toread = NULL;
2561 spin_unlock_irq(&sh->stripe_lock);
2562 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2563 wake_up(&conf->wait_for_overlap);
2564 while (bi && bi->bi_sector <
2565 sh->dev[i].sector + STRIPE_SECTORS) {
2566 struct bio *nextbi =
2567 r5_next_bio(bi, sh->dev[i].sector);
2568 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2569 if (!raid5_dec_bi_active_stripes(bi)) {
2570 bi->bi_next = *return_bi;
2571 *return_bi = bi;
2573 bi = nextbi;
2576 if (bitmap_end)
2577 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2578 STRIPE_SECTORS, 0, 0);
2579 /* If we were in the middle of a write the parity block might
2580 * still be locked - so just clear all R5_LOCKED flags
2582 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2585 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2586 if (atomic_dec_and_test(&conf->pending_full_writes))
2587 md_wakeup_thread(conf->mddev->thread);
2590 static void
2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2592 struct stripe_head_state *s)
2594 int abort = 0;
2595 int i;
2597 clear_bit(STRIPE_SYNCING, &sh->state);
2598 s->syncing = 0;
2599 s->replacing = 0;
2600 /* There is nothing more to do for sync/check/repair.
2601 * Don't even need to abort as that is handled elsewhere
2602 * if needed, and not always wanted e.g. if there is a known
2603 * bad block here.
2604 * For recover/replace we need to record a bad block on all
2605 * non-sync devices, or abort the recovery
2607 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2608 /* During recovery devices cannot be removed, so
2609 * locking and refcounting of rdevs is not needed
2611 for (i = 0; i < conf->raid_disks; i++) {
2612 struct md_rdev *rdev = conf->disks[i].rdev;
2613 if (rdev
2614 && !test_bit(Faulty, &rdev->flags)
2615 && !test_bit(In_sync, &rdev->flags)
2616 && !rdev_set_badblocks(rdev, sh->sector,
2617 STRIPE_SECTORS, 0))
2618 abort = 1;
2619 rdev = conf->disks[i].replacement;
2620 if (rdev
2621 && !test_bit(Faulty, &rdev->flags)
2622 && !test_bit(In_sync, &rdev->flags)
2623 && !rdev_set_badblocks(rdev, sh->sector,
2624 STRIPE_SECTORS, 0))
2625 abort = 1;
2627 if (abort)
2628 conf->recovery_disabled =
2629 conf->mddev->recovery_disabled;
2631 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2634 static int want_replace(struct stripe_head *sh, int disk_idx)
2636 struct md_rdev *rdev;
2637 int rv = 0;
2638 /* Doing recovery so rcu locking not required */
2639 rdev = sh->raid_conf->disks[disk_idx].replacement;
2640 if (rdev
2641 && !test_bit(Faulty, &rdev->flags)
2642 && !test_bit(In_sync, &rdev->flags)
2643 && (rdev->recovery_offset <= sh->sector
2644 || rdev->mddev->recovery_cp <= sh->sector))
2645 rv = 1;
2647 return rv;
2650 /* fetch_block - checks the given member device to see if its data needs
2651 * to be read or computed to satisfy a request.
2653 * Returns 1 when no more member devices need to be checked, otherwise returns
2654 * 0 to tell the loop in handle_stripe_fill to continue
2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2657 int disk_idx, int disks)
2659 struct r5dev *dev = &sh->dev[disk_idx];
2660 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2661 &sh->dev[s->failed_num[1]] };
2663 /* is the data in this block needed, and can we get it? */
2664 if (!test_bit(R5_LOCKED, &dev->flags) &&
2665 !test_bit(R5_UPTODATE, &dev->flags) &&
2666 (dev->toread ||
2667 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2668 s->syncing || s->expanding ||
2669 (s->replacing && want_replace(sh, disk_idx)) ||
2670 (s->failed >= 1 && fdev[0]->toread) ||
2671 (s->failed >= 2 && fdev[1]->toread) ||
2672 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2673 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2674 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2675 /* we would like to get this block, possibly by computing it,
2676 * otherwise read it if the backing disk is insync
2678 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2679 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2680 if ((s->uptodate == disks - 1) &&
2681 (s->failed && (disk_idx == s->failed_num[0] ||
2682 disk_idx == s->failed_num[1]))) {
2683 /* have disk failed, and we're requested to fetch it;
2684 * do compute it
2686 pr_debug("Computing stripe %llu block %d\n",
2687 (unsigned long long)sh->sector, disk_idx);
2688 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2689 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2690 set_bit(R5_Wantcompute, &dev->flags);
2691 sh->ops.target = disk_idx;
2692 sh->ops.target2 = -1; /* no 2nd target */
2693 s->req_compute = 1;
2694 /* Careful: from this point on 'uptodate' is in the eye
2695 * of raid_run_ops which services 'compute' operations
2696 * before writes. R5_Wantcompute flags a block that will
2697 * be R5_UPTODATE by the time it is needed for a
2698 * subsequent operation.
2700 s->uptodate++;
2701 return 1;
2702 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2703 /* Computing 2-failure is *very* expensive; only
2704 * do it if failed >= 2
2706 int other;
2707 for (other = disks; other--; ) {
2708 if (other == disk_idx)
2709 continue;
2710 if (!test_bit(R5_UPTODATE,
2711 &sh->dev[other].flags))
2712 break;
2714 BUG_ON(other < 0);
2715 pr_debug("Computing stripe %llu blocks %d,%d\n",
2716 (unsigned long long)sh->sector,
2717 disk_idx, other);
2718 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2721 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2722 sh->ops.target = disk_idx;
2723 sh->ops.target2 = other;
2724 s->uptodate += 2;
2725 s->req_compute = 1;
2726 return 1;
2727 } else if (test_bit(R5_Insync, &dev->flags)) {
2728 set_bit(R5_LOCKED, &dev->flags);
2729 set_bit(R5_Wantread, &dev->flags);
2730 s->locked++;
2731 pr_debug("Reading block %d (sync=%d)\n",
2732 disk_idx, s->syncing);
2736 return 0;
2740 * handle_stripe_fill - read or compute data to satisfy pending requests.
2742 static void handle_stripe_fill(struct stripe_head *sh,
2743 struct stripe_head_state *s,
2744 int disks)
2746 int i;
2748 /* look for blocks to read/compute, skip this if a compute
2749 * is already in flight, or if the stripe contents are in the
2750 * midst of changing due to a write
2752 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2753 !sh->reconstruct_state)
2754 for (i = disks; i--; )
2755 if (fetch_block(sh, s, i, disks))
2756 break;
2757 set_bit(STRIPE_HANDLE, &sh->state);
2761 /* handle_stripe_clean_event
2762 * any written block on an uptodate or failed drive can be returned.
2763 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2764 * never LOCKED, so we don't need to test 'failed' directly.
2766 static void handle_stripe_clean_event(struct r5conf *conf,
2767 struct stripe_head *sh, int disks, struct bio **return_bi)
2769 int i;
2770 struct r5dev *dev;
2772 for (i = disks; i--; )
2773 if (sh->dev[i].written) {
2774 dev = &sh->dev[i];
2775 if (!test_bit(R5_LOCKED, &dev->flags) &&
2776 (test_bit(R5_UPTODATE, &dev->flags) ||
2777 test_and_clear_bit(R5_Discard, &dev->flags))) {
2778 /* We can return any write requests */
2779 struct bio *wbi, *wbi2;
2780 pr_debug("Return write for disc %d\n", i);
2781 wbi = dev->written;
2782 dev->written = NULL;
2783 while (wbi && wbi->bi_sector <
2784 dev->sector + STRIPE_SECTORS) {
2785 wbi2 = r5_next_bio(wbi, dev->sector);
2786 if (!raid5_dec_bi_active_stripes(wbi)) {
2787 md_write_end(conf->mddev);
2788 wbi->bi_next = *return_bi;
2789 *return_bi = wbi;
2791 wbi = wbi2;
2793 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2794 STRIPE_SECTORS,
2795 !test_bit(STRIPE_DEGRADED, &sh->state),
2800 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2801 if (atomic_dec_and_test(&conf->pending_full_writes))
2802 md_wakeup_thread(conf->mddev->thread);
2805 static void handle_stripe_dirtying(struct r5conf *conf,
2806 struct stripe_head *sh,
2807 struct stripe_head_state *s,
2808 int disks)
2810 int rmw = 0, rcw = 0, i;
2811 sector_t recovery_cp = conf->mddev->recovery_cp;
2813 /* RAID6 requires 'rcw' in current implementation.
2814 * Otherwise, check whether resync is now happening or should start.
2815 * If yes, then the array is dirty (after unclean shutdown or
2816 * initial creation), so parity in some stripes might be inconsistent.
2817 * In this case, we need to always do reconstruct-write, to ensure
2818 * that in case of drive failure or read-error correction, we
2819 * generate correct data from the parity.
2821 if (conf->max_degraded == 2 ||
2822 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2823 /* Calculate the real rcw later - for now make it
2824 * look like rcw is cheaper
2826 rcw = 1; rmw = 2;
2827 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2828 conf->max_degraded, (unsigned long long)recovery_cp,
2829 (unsigned long long)sh->sector);
2830 } else for (i = disks; i--; ) {
2831 /* would I have to read this buffer for read_modify_write */
2832 struct r5dev *dev = &sh->dev[i];
2833 if ((dev->towrite || i == sh->pd_idx) &&
2834 !test_bit(R5_LOCKED, &dev->flags) &&
2835 !(test_bit(R5_UPTODATE, &dev->flags) ||
2836 test_bit(R5_Wantcompute, &dev->flags))) {
2837 if (test_bit(R5_Insync, &dev->flags))
2838 rmw++;
2839 else
2840 rmw += 2*disks; /* cannot read it */
2842 /* Would I have to read this buffer for reconstruct_write */
2843 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2844 !test_bit(R5_LOCKED, &dev->flags) &&
2845 !(test_bit(R5_UPTODATE, &dev->flags) ||
2846 test_bit(R5_Wantcompute, &dev->flags))) {
2847 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2848 else
2849 rcw += 2*disks;
2852 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2853 (unsigned long long)sh->sector, rmw, rcw);
2854 set_bit(STRIPE_HANDLE, &sh->state);
2855 if (rmw < rcw && rmw > 0)
2856 /* prefer read-modify-write, but need to get some data */
2857 for (i = disks; i--; ) {
2858 struct r5dev *dev = &sh->dev[i];
2859 if ((dev->towrite || i == sh->pd_idx) &&
2860 !test_bit(R5_LOCKED, &dev->flags) &&
2861 !(test_bit(R5_UPTODATE, &dev->flags) ||
2862 test_bit(R5_Wantcompute, &dev->flags)) &&
2863 test_bit(R5_Insync, &dev->flags)) {
2864 if (
2865 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2866 pr_debug("Read_old block "
2867 "%d for r-m-w\n", i);
2868 set_bit(R5_LOCKED, &dev->flags);
2869 set_bit(R5_Wantread, &dev->flags);
2870 s->locked++;
2871 } else {
2872 set_bit(STRIPE_DELAYED, &sh->state);
2873 set_bit(STRIPE_HANDLE, &sh->state);
2877 if (rcw <= rmw && rcw > 0) {
2878 /* want reconstruct write, but need to get some data */
2879 rcw = 0;
2880 for (i = disks; i--; ) {
2881 struct r5dev *dev = &sh->dev[i];
2882 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2883 i != sh->pd_idx && i != sh->qd_idx &&
2884 !test_bit(R5_LOCKED, &dev->flags) &&
2885 !(test_bit(R5_UPTODATE, &dev->flags) ||
2886 test_bit(R5_Wantcompute, &dev->flags))) {
2887 rcw++;
2888 if (!test_bit(R5_Insync, &dev->flags))
2889 continue; /* it's a failed drive */
2890 if (
2891 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2892 pr_debug("Read_old block "
2893 "%d for Reconstruct\n", i);
2894 set_bit(R5_LOCKED, &dev->flags);
2895 set_bit(R5_Wantread, &dev->flags);
2896 s->locked++;
2897 } else {
2898 set_bit(STRIPE_DELAYED, &sh->state);
2899 set_bit(STRIPE_HANDLE, &sh->state);
2904 /* now if nothing is locked, and if we have enough data,
2905 * we can start a write request
2907 /* since handle_stripe can be called at any time we need to handle the
2908 * case where a compute block operation has been submitted and then a
2909 * subsequent call wants to start a write request. raid_run_ops only
2910 * handles the case where compute block and reconstruct are requested
2911 * simultaneously. If this is not the case then new writes need to be
2912 * held off until the compute completes.
2914 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2915 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2916 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2917 schedule_reconstruction(sh, s, rcw == 0, 0);
2920 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2921 struct stripe_head_state *s, int disks)
2923 struct r5dev *dev = NULL;
2925 set_bit(STRIPE_HANDLE, &sh->state);
2927 switch (sh->check_state) {
2928 case check_state_idle:
2929 /* start a new check operation if there are no failures */
2930 if (s->failed == 0) {
2931 BUG_ON(s->uptodate != disks);
2932 sh->check_state = check_state_run;
2933 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2934 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2935 s->uptodate--;
2936 break;
2938 dev = &sh->dev[s->failed_num[0]];
2939 /* fall through */
2940 case check_state_compute_result:
2941 sh->check_state = check_state_idle;
2942 if (!dev)
2943 dev = &sh->dev[sh->pd_idx];
2945 /* check that a write has not made the stripe insync */
2946 if (test_bit(STRIPE_INSYNC, &sh->state))
2947 break;
2949 /* either failed parity check, or recovery is happening */
2950 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2951 BUG_ON(s->uptodate != disks);
2953 set_bit(R5_LOCKED, &dev->flags);
2954 s->locked++;
2955 set_bit(R5_Wantwrite, &dev->flags);
2957 clear_bit(STRIPE_DEGRADED, &sh->state);
2958 set_bit(STRIPE_INSYNC, &sh->state);
2959 break;
2960 case check_state_run:
2961 break; /* we will be called again upon completion */
2962 case check_state_check_result:
2963 sh->check_state = check_state_idle;
2965 /* if a failure occurred during the check operation, leave
2966 * STRIPE_INSYNC not set and let the stripe be handled again
2968 if (s->failed)
2969 break;
2971 /* handle a successful check operation, if parity is correct
2972 * we are done. Otherwise update the mismatch count and repair
2973 * parity if !MD_RECOVERY_CHECK
2975 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2976 /* parity is correct (on disc,
2977 * not in buffer any more)
2979 set_bit(STRIPE_INSYNC, &sh->state);
2980 else {
2981 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2982 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2983 /* don't try to repair!! */
2984 set_bit(STRIPE_INSYNC, &sh->state);
2985 else {
2986 sh->check_state = check_state_compute_run;
2987 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2988 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2989 set_bit(R5_Wantcompute,
2990 &sh->dev[sh->pd_idx].flags);
2991 sh->ops.target = sh->pd_idx;
2992 sh->ops.target2 = -1;
2993 s->uptodate++;
2996 break;
2997 case check_state_compute_run:
2998 break;
2999 default:
3000 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3001 __func__, sh->check_state,
3002 (unsigned long long) sh->sector);
3003 BUG();
3008 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3009 struct stripe_head_state *s,
3010 int disks)
3012 int pd_idx = sh->pd_idx;
3013 int qd_idx = sh->qd_idx;
3014 struct r5dev *dev;
3016 set_bit(STRIPE_HANDLE, &sh->state);
3018 BUG_ON(s->failed > 2);
3020 /* Want to check and possibly repair P and Q.
3021 * However there could be one 'failed' device, in which
3022 * case we can only check one of them, possibly using the
3023 * other to generate missing data
3026 switch (sh->check_state) {
3027 case check_state_idle:
3028 /* start a new check operation if there are < 2 failures */
3029 if (s->failed == s->q_failed) {
3030 /* The only possible failed device holds Q, so it
3031 * makes sense to check P (If anything else were failed,
3032 * we would have used P to recreate it).
3034 sh->check_state = check_state_run;
3036 if (!s->q_failed && s->failed < 2) {
3037 /* Q is not failed, and we didn't use it to generate
3038 * anything, so it makes sense to check it
3040 if (sh->check_state == check_state_run)
3041 sh->check_state = check_state_run_pq;
3042 else
3043 sh->check_state = check_state_run_q;
3046 /* discard potentially stale zero_sum_result */
3047 sh->ops.zero_sum_result = 0;
3049 if (sh->check_state == check_state_run) {
3050 /* async_xor_zero_sum destroys the contents of P */
3051 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3052 s->uptodate--;
3054 if (sh->check_state >= check_state_run &&
3055 sh->check_state <= check_state_run_pq) {
3056 /* async_syndrome_zero_sum preserves P and Q, so
3057 * no need to mark them !uptodate here
3059 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3060 break;
3063 /* we have 2-disk failure */
3064 BUG_ON(s->failed != 2);
3065 /* fall through */
3066 case check_state_compute_result:
3067 sh->check_state = check_state_idle;
3069 /* check that a write has not made the stripe insync */
3070 if (test_bit(STRIPE_INSYNC, &sh->state))
3071 break;
3073 /* now write out any block on a failed drive,
3074 * or P or Q if they were recomputed
3076 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3077 if (s->failed == 2) {
3078 dev = &sh->dev[s->failed_num[1]];
3079 s->locked++;
3080 set_bit(R5_LOCKED, &dev->flags);
3081 set_bit(R5_Wantwrite, &dev->flags);
3083 if (s->failed >= 1) {
3084 dev = &sh->dev[s->failed_num[0]];
3085 s->locked++;
3086 set_bit(R5_LOCKED, &dev->flags);
3087 set_bit(R5_Wantwrite, &dev->flags);
3089 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3090 dev = &sh->dev[pd_idx];
3091 s->locked++;
3092 set_bit(R5_LOCKED, &dev->flags);
3093 set_bit(R5_Wantwrite, &dev->flags);
3095 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3096 dev = &sh->dev[qd_idx];
3097 s->locked++;
3098 set_bit(R5_LOCKED, &dev->flags);
3099 set_bit(R5_Wantwrite, &dev->flags);
3101 clear_bit(STRIPE_DEGRADED, &sh->state);
3103 set_bit(STRIPE_INSYNC, &sh->state);
3104 break;
3105 case check_state_run:
3106 case check_state_run_q:
3107 case check_state_run_pq:
3108 break; /* we will be called again upon completion */
3109 case check_state_check_result:
3110 sh->check_state = check_state_idle;
3112 /* handle a successful check operation, if parity is correct
3113 * we are done. Otherwise update the mismatch count and repair
3114 * parity if !MD_RECOVERY_CHECK
3116 if (sh->ops.zero_sum_result == 0) {
3117 /* both parities are correct */
3118 if (!s->failed)
3119 set_bit(STRIPE_INSYNC, &sh->state);
3120 else {
3121 /* in contrast to the raid5 case we can validate
3122 * parity, but still have a failure to write
3123 * back
3125 sh->check_state = check_state_compute_result;
3126 /* Returning at this point means that we may go
3127 * off and bring p and/or q uptodate again so
3128 * we make sure to check zero_sum_result again
3129 * to verify if p or q need writeback
3132 } else {
3133 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3134 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3135 /* don't try to repair!! */
3136 set_bit(STRIPE_INSYNC, &sh->state);
3137 else {
3138 int *target = &sh->ops.target;
3140 sh->ops.target = -1;
3141 sh->ops.target2 = -1;
3142 sh->check_state = check_state_compute_run;
3143 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3144 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3145 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3146 set_bit(R5_Wantcompute,
3147 &sh->dev[pd_idx].flags);
3148 *target = pd_idx;
3149 target = &sh->ops.target2;
3150 s->uptodate++;
3152 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3153 set_bit(R5_Wantcompute,
3154 &sh->dev[qd_idx].flags);
3155 *target = qd_idx;
3156 s->uptodate++;
3160 break;
3161 case check_state_compute_run:
3162 break;
3163 default:
3164 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3165 __func__, sh->check_state,
3166 (unsigned long long) sh->sector);
3167 BUG();
3171 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3173 int i;
3175 /* We have read all the blocks in this stripe and now we need to
3176 * copy some of them into a target stripe for expand.
3178 struct dma_async_tx_descriptor *tx = NULL;
3179 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3180 for (i = 0; i < sh->disks; i++)
3181 if (i != sh->pd_idx && i != sh->qd_idx) {
3182 int dd_idx, j;
3183 struct stripe_head *sh2;
3184 struct async_submit_ctl submit;
3186 sector_t bn = compute_blocknr(sh, i, 1);
3187 sector_t s = raid5_compute_sector(conf, bn, 0,
3188 &dd_idx, NULL);
3189 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3190 if (sh2 == NULL)
3191 /* so far only the early blocks of this stripe
3192 * have been requested. When later blocks
3193 * get requested, we will try again
3195 continue;
3196 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3197 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3198 /* must have already done this block */
3199 release_stripe(sh2);
3200 continue;
3203 /* place all the copies on one channel */
3204 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3205 tx = async_memcpy(sh2->dev[dd_idx].page,
3206 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3207 &submit);
3209 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3210 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3211 for (j = 0; j < conf->raid_disks; j++)
3212 if (j != sh2->pd_idx &&
3213 j != sh2->qd_idx &&
3214 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3215 break;
3216 if (j == conf->raid_disks) {
3217 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3218 set_bit(STRIPE_HANDLE, &sh2->state);
3220 release_stripe(sh2);
3223 /* done submitting copies, wait for them to complete */
3224 if (tx) {
3225 async_tx_ack(tx);
3226 dma_wait_for_async_tx(tx);
3231 * handle_stripe - do things to a stripe.
3233 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3234 * state of various bits to see what needs to be done.
3235 * Possible results:
3236 * return some read requests which now have data
3237 * return some write requests which are safely on storage
3238 * schedule a read on some buffers
3239 * schedule a write of some buffers
3240 * return confirmation of parity correctness
3244 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3246 struct r5conf *conf = sh->raid_conf;
3247 int disks = sh->disks;
3248 struct r5dev *dev;
3249 int i;
3250 int do_recovery = 0;
3252 memset(s, 0, sizeof(*s));
3254 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3255 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3256 s->failed_num[0] = -1;
3257 s->failed_num[1] = -1;
3259 /* Now to look around and see what can be done */
3260 rcu_read_lock();
3261 for (i=disks; i--; ) {
3262 struct md_rdev *rdev;
3263 sector_t first_bad;
3264 int bad_sectors;
3265 int is_bad = 0;
3267 dev = &sh->dev[i];
3269 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3270 i, dev->flags,
3271 dev->toread, dev->towrite, dev->written);
3272 /* maybe we can reply to a read
3274 * new wantfill requests are only permitted while
3275 * ops_complete_biofill is guaranteed to be inactive
3277 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3278 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3279 set_bit(R5_Wantfill, &dev->flags);
3281 /* now count some things */
3282 if (test_bit(R5_LOCKED, &dev->flags))
3283 s->locked++;
3284 if (test_bit(R5_UPTODATE, &dev->flags))
3285 s->uptodate++;
3286 if (test_bit(R5_Wantcompute, &dev->flags)) {
3287 s->compute++;
3288 BUG_ON(s->compute > 2);
3291 if (test_bit(R5_Wantfill, &dev->flags))
3292 s->to_fill++;
3293 else if (dev->toread)
3294 s->to_read++;
3295 if (dev->towrite) {
3296 s->to_write++;
3297 if (!test_bit(R5_OVERWRITE, &dev->flags))
3298 s->non_overwrite++;
3300 if (dev->written)
3301 s->written++;
3302 /* Prefer to use the replacement for reads, but only
3303 * if it is recovered enough and has no bad blocks.
3305 rdev = rcu_dereference(conf->disks[i].replacement);
3306 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3307 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3308 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3309 &first_bad, &bad_sectors))
3310 set_bit(R5_ReadRepl, &dev->flags);
3311 else {
3312 if (rdev)
3313 set_bit(R5_NeedReplace, &dev->flags);
3314 rdev = rcu_dereference(conf->disks[i].rdev);
3315 clear_bit(R5_ReadRepl, &dev->flags);
3317 if (rdev && test_bit(Faulty, &rdev->flags))
3318 rdev = NULL;
3319 if (rdev) {
3320 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3321 &first_bad, &bad_sectors);
3322 if (s->blocked_rdev == NULL
3323 && (test_bit(Blocked, &rdev->flags)
3324 || is_bad < 0)) {
3325 if (is_bad < 0)
3326 set_bit(BlockedBadBlocks,
3327 &rdev->flags);
3328 s->blocked_rdev = rdev;
3329 atomic_inc(&rdev->nr_pending);
3332 clear_bit(R5_Insync, &dev->flags);
3333 if (!rdev)
3334 /* Not in-sync */;
3335 else if (is_bad) {
3336 /* also not in-sync */
3337 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3338 test_bit(R5_UPTODATE, &dev->flags)) {
3339 /* treat as in-sync, but with a read error
3340 * which we can now try to correct
3342 set_bit(R5_Insync, &dev->flags);
3343 set_bit(R5_ReadError, &dev->flags);
3345 } else if (test_bit(In_sync, &rdev->flags))
3346 set_bit(R5_Insync, &dev->flags);
3347 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3348 /* in sync if before recovery_offset */
3349 set_bit(R5_Insync, &dev->flags);
3350 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3351 test_bit(R5_Expanded, &dev->flags))
3352 /* If we've reshaped into here, we assume it is Insync.
3353 * We will shortly update recovery_offset to make
3354 * it official.
3356 set_bit(R5_Insync, &dev->flags);
3358 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3359 /* This flag does not apply to '.replacement'
3360 * only to .rdev, so make sure to check that*/
3361 struct md_rdev *rdev2 = rcu_dereference(
3362 conf->disks[i].rdev);
3363 if (rdev2 == rdev)
3364 clear_bit(R5_Insync, &dev->flags);
3365 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3366 s->handle_bad_blocks = 1;
3367 atomic_inc(&rdev2->nr_pending);
3368 } else
3369 clear_bit(R5_WriteError, &dev->flags);
3371 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3372 /* This flag does not apply to '.replacement'
3373 * only to .rdev, so make sure to check that*/
3374 struct md_rdev *rdev2 = rcu_dereference(
3375 conf->disks[i].rdev);
3376 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3377 s->handle_bad_blocks = 1;
3378 atomic_inc(&rdev2->nr_pending);
3379 } else
3380 clear_bit(R5_MadeGood, &dev->flags);
3382 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3383 struct md_rdev *rdev2 = rcu_dereference(
3384 conf->disks[i].replacement);
3385 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3386 s->handle_bad_blocks = 1;
3387 atomic_inc(&rdev2->nr_pending);
3388 } else
3389 clear_bit(R5_MadeGoodRepl, &dev->flags);
3391 if (!test_bit(R5_Insync, &dev->flags)) {
3392 /* The ReadError flag will just be confusing now */
3393 clear_bit(R5_ReadError, &dev->flags);
3394 clear_bit(R5_ReWrite, &dev->flags);
3396 if (test_bit(R5_ReadError, &dev->flags))
3397 clear_bit(R5_Insync, &dev->flags);
3398 if (!test_bit(R5_Insync, &dev->flags)) {
3399 if (s->failed < 2)
3400 s->failed_num[s->failed] = i;
3401 s->failed++;
3402 if (rdev && !test_bit(Faulty, &rdev->flags))
3403 do_recovery = 1;
3406 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3407 /* If there is a failed device being replaced,
3408 * we must be recovering.
3409 * else if we are after recovery_cp, we must be syncing
3410 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3411 * else we can only be replacing
3412 * sync and recovery both need to read all devices, and so
3413 * use the same flag.
3415 if (do_recovery ||
3416 sh->sector >= conf->mddev->recovery_cp ||
3417 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3418 s->syncing = 1;
3419 else
3420 s->replacing = 1;
3422 rcu_read_unlock();
3425 static void handle_stripe(struct stripe_head *sh)
3427 struct stripe_head_state s;
3428 struct r5conf *conf = sh->raid_conf;
3429 int i;
3430 int prexor;
3431 int disks = sh->disks;
3432 struct r5dev *pdev, *qdev;
3434 clear_bit(STRIPE_HANDLE, &sh->state);
3435 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3436 /* already being handled, ensure it gets handled
3437 * again when current action finishes */
3438 set_bit(STRIPE_HANDLE, &sh->state);
3439 return;
3442 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3443 set_bit(STRIPE_SYNCING, &sh->state);
3444 clear_bit(STRIPE_INSYNC, &sh->state);
3446 clear_bit(STRIPE_DELAYED, &sh->state);
3448 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3449 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3450 (unsigned long long)sh->sector, sh->state,
3451 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3452 sh->check_state, sh->reconstruct_state);
3454 analyse_stripe(sh, &s);
3456 if (s.handle_bad_blocks) {
3457 set_bit(STRIPE_HANDLE, &sh->state);
3458 goto finish;
3461 if (unlikely(s.blocked_rdev)) {
3462 if (s.syncing || s.expanding || s.expanded ||
3463 s.replacing || s.to_write || s.written) {
3464 set_bit(STRIPE_HANDLE, &sh->state);
3465 goto finish;
3467 /* There is nothing for the blocked_rdev to block */
3468 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3469 s.blocked_rdev = NULL;
3472 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3473 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3474 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3477 pr_debug("locked=%d uptodate=%d to_read=%d"
3478 " to_write=%d failed=%d failed_num=%d,%d\n",
3479 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3480 s.failed_num[0], s.failed_num[1]);
3481 /* check if the array has lost more than max_degraded devices and,
3482 * if so, some requests might need to be failed.
3484 if (s.failed > conf->max_degraded) {
3485 sh->check_state = 0;
3486 sh->reconstruct_state = 0;
3487 if (s.to_read+s.to_write+s.written)
3488 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3489 if (s.syncing + s.replacing)
3490 handle_failed_sync(conf, sh, &s);
3494 * might be able to return some write requests if the parity blocks
3495 * are safe, or on a failed drive
3497 pdev = &sh->dev[sh->pd_idx];
3498 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3499 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3500 qdev = &sh->dev[sh->qd_idx];
3501 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3502 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3503 || conf->level < 6;
3505 if (s.written &&
3506 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3507 && !test_bit(R5_LOCKED, &pdev->flags)
3508 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3509 test_bit(R5_Discard, &pdev->flags))))) &&
3510 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3511 && !test_bit(R5_LOCKED, &qdev->flags)
3512 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3513 test_bit(R5_Discard, &qdev->flags))))))
3514 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3516 /* Now we might consider reading some blocks, either to check/generate
3517 * parity, or to satisfy requests
3518 * or to load a block that is being partially written.
3520 if (s.to_read || s.non_overwrite
3521 || (conf->level == 6 && s.to_write && s.failed)
3522 || (s.syncing && (s.uptodate + s.compute < disks))
3523 || s.replacing
3524 || s.expanding)
3525 handle_stripe_fill(sh, &s, disks);
3527 /* Now we check to see if any write operations have recently
3528 * completed
3530 prexor = 0;
3531 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3532 prexor = 1;
3533 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3534 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3535 sh->reconstruct_state = reconstruct_state_idle;
3537 /* All the 'written' buffers and the parity block are ready to
3538 * be written back to disk
3540 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3541 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3542 BUG_ON(sh->qd_idx >= 0 &&
3543 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3544 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3545 for (i = disks; i--; ) {
3546 struct r5dev *dev = &sh->dev[i];
3547 if (test_bit(R5_LOCKED, &dev->flags) &&
3548 (i == sh->pd_idx || i == sh->qd_idx ||
3549 dev->written)) {
3550 pr_debug("Writing block %d\n", i);
3551 set_bit(R5_Wantwrite, &dev->flags);
3552 if (prexor)
3553 continue;
3554 if (!test_bit(R5_Insync, &dev->flags) ||
3555 ((i == sh->pd_idx || i == sh->qd_idx) &&
3556 s.failed == 0))
3557 set_bit(STRIPE_INSYNC, &sh->state);
3560 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3561 s.dec_preread_active = 1;
3564 /* Now to consider new write requests and what else, if anything
3565 * should be read. We do not handle new writes when:
3566 * 1/ A 'write' operation (copy+xor) is already in flight.
3567 * 2/ A 'check' operation is in flight, as it may clobber the parity
3568 * block.
3570 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3571 handle_stripe_dirtying(conf, sh, &s, disks);
3573 /* maybe we need to check and possibly fix the parity for this stripe
3574 * Any reads will already have been scheduled, so we just see if enough
3575 * data is available. The parity check is held off while parity
3576 * dependent operations are in flight.
3578 if (sh->check_state ||
3579 (s.syncing && s.locked == 0 &&
3580 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3581 !test_bit(STRIPE_INSYNC, &sh->state))) {
3582 if (conf->level == 6)
3583 handle_parity_checks6(conf, sh, &s, disks);
3584 else
3585 handle_parity_checks5(conf, sh, &s, disks);
3588 if (s.replacing && s.locked == 0
3589 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3590 /* Write out to replacement devices where possible */
3591 for (i = 0; i < conf->raid_disks; i++)
3592 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3593 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3594 set_bit(R5_WantReplace, &sh->dev[i].flags);
3595 set_bit(R5_LOCKED, &sh->dev[i].flags);
3596 s.locked++;
3598 set_bit(STRIPE_INSYNC, &sh->state);
3600 if ((s.syncing || s.replacing) && s.locked == 0 &&
3601 test_bit(STRIPE_INSYNC, &sh->state)) {
3602 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3603 clear_bit(STRIPE_SYNCING, &sh->state);
3606 /* If the failed drives are just a ReadError, then we might need
3607 * to progress the repair/check process
3609 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3610 for (i = 0; i < s.failed; i++) {
3611 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3612 if (test_bit(R5_ReadError, &dev->flags)
3613 && !test_bit(R5_LOCKED, &dev->flags)
3614 && test_bit(R5_UPTODATE, &dev->flags)
3616 if (!test_bit(R5_ReWrite, &dev->flags)) {
3617 set_bit(R5_Wantwrite, &dev->flags);
3618 set_bit(R5_ReWrite, &dev->flags);
3619 set_bit(R5_LOCKED, &dev->flags);
3620 s.locked++;
3621 } else {
3622 /* let's read it back */
3623 set_bit(R5_Wantread, &dev->flags);
3624 set_bit(R5_LOCKED, &dev->flags);
3625 s.locked++;
3631 /* Finish reconstruct operations initiated by the expansion process */
3632 if (sh->reconstruct_state == reconstruct_state_result) {
3633 struct stripe_head *sh_src
3634 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3635 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3636 /* sh cannot be written until sh_src has been read.
3637 * so arrange for sh to be delayed a little
3639 set_bit(STRIPE_DELAYED, &sh->state);
3640 set_bit(STRIPE_HANDLE, &sh->state);
3641 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3642 &sh_src->state))
3643 atomic_inc(&conf->preread_active_stripes);
3644 release_stripe(sh_src);
3645 goto finish;
3647 if (sh_src)
3648 release_stripe(sh_src);
3650 sh->reconstruct_state = reconstruct_state_idle;
3651 clear_bit(STRIPE_EXPANDING, &sh->state);
3652 for (i = conf->raid_disks; i--; ) {
3653 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3654 set_bit(R5_LOCKED, &sh->dev[i].flags);
3655 s.locked++;
3659 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3660 !sh->reconstruct_state) {
3661 /* Need to write out all blocks after computing parity */
3662 sh->disks = conf->raid_disks;
3663 stripe_set_idx(sh->sector, conf, 0, sh);
3664 schedule_reconstruction(sh, &s, 1, 1);
3665 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3666 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3667 atomic_dec(&conf->reshape_stripes);
3668 wake_up(&conf->wait_for_overlap);
3669 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3672 if (s.expanding && s.locked == 0 &&
3673 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3674 handle_stripe_expansion(conf, sh);
3676 finish:
3677 /* wait for this device to become unblocked */
3678 if (unlikely(s.blocked_rdev)) {
3679 if (conf->mddev->external)
3680 md_wait_for_blocked_rdev(s.blocked_rdev,
3681 conf->mddev);
3682 else
3683 /* Internal metadata will immediately
3684 * be written by raid5d, so we don't
3685 * need to wait here.
3687 rdev_dec_pending(s.blocked_rdev,
3688 conf->mddev);
3691 if (s.handle_bad_blocks)
3692 for (i = disks; i--; ) {
3693 struct md_rdev *rdev;
3694 struct r5dev *dev = &sh->dev[i];
3695 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3696 /* We own a safe reference to the rdev */
3697 rdev = conf->disks[i].rdev;
3698 if (!rdev_set_badblocks(rdev, sh->sector,
3699 STRIPE_SECTORS, 0))
3700 md_error(conf->mddev, rdev);
3701 rdev_dec_pending(rdev, conf->mddev);
3703 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3704 rdev = conf->disks[i].rdev;
3705 rdev_clear_badblocks(rdev, sh->sector,
3706 STRIPE_SECTORS, 0);
3707 rdev_dec_pending(rdev, conf->mddev);
3709 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3710 rdev = conf->disks[i].replacement;
3711 if (!rdev)
3712 /* rdev have been moved down */
3713 rdev = conf->disks[i].rdev;
3714 rdev_clear_badblocks(rdev, sh->sector,
3715 STRIPE_SECTORS, 0);
3716 rdev_dec_pending(rdev, conf->mddev);
3720 if (s.ops_request)
3721 raid_run_ops(sh, s.ops_request);
3723 ops_run_io(sh, &s);
3725 if (s.dec_preread_active) {
3726 /* We delay this until after ops_run_io so that if make_request
3727 * is waiting on a flush, it won't continue until the writes
3728 * have actually been submitted.
3730 atomic_dec(&conf->preread_active_stripes);
3731 if (atomic_read(&conf->preread_active_stripes) <
3732 IO_THRESHOLD)
3733 md_wakeup_thread(conf->mddev->thread);
3736 return_io(s.return_bi);
3738 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3741 static void raid5_activate_delayed(struct r5conf *conf)
3743 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3744 while (!list_empty(&conf->delayed_list)) {
3745 struct list_head *l = conf->delayed_list.next;
3746 struct stripe_head *sh;
3747 sh = list_entry(l, struct stripe_head, lru);
3748 list_del_init(l);
3749 clear_bit(STRIPE_DELAYED, &sh->state);
3750 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3751 atomic_inc(&conf->preread_active_stripes);
3752 list_add_tail(&sh->lru, &conf->hold_list);
3757 static void activate_bit_delay(struct r5conf *conf)
3759 /* device_lock is held */
3760 struct list_head head;
3761 list_add(&head, &conf->bitmap_list);
3762 list_del_init(&conf->bitmap_list);
3763 while (!list_empty(&head)) {
3764 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3765 list_del_init(&sh->lru);
3766 atomic_inc(&sh->count);
3767 __release_stripe(conf, sh);
3771 int md_raid5_congested(struct mddev *mddev, int bits)
3773 struct r5conf *conf = mddev->private;
3775 /* No difference between reads and writes. Just check
3776 * how busy the stripe_cache is
3779 if (conf->inactive_blocked)
3780 return 1;
3781 if (conf->quiesce)
3782 return 1;
3783 if (list_empty_careful(&conf->inactive_list))
3784 return 1;
3786 return 0;
3788 EXPORT_SYMBOL_GPL(md_raid5_congested);
3790 static int raid5_congested(void *data, int bits)
3792 struct mddev *mddev = data;
3794 return mddev_congested(mddev, bits) ||
3795 md_raid5_congested(mddev, bits);
3798 /* We want read requests to align with chunks where possible,
3799 * but write requests don't need to.
3801 static int raid5_mergeable_bvec(struct request_queue *q,
3802 struct bvec_merge_data *bvm,
3803 struct bio_vec *biovec)
3805 struct mddev *mddev = q->queuedata;
3806 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3807 int max;
3808 unsigned int chunk_sectors = mddev->chunk_sectors;
3809 unsigned int bio_sectors = bvm->bi_size >> 9;
3811 if ((bvm->bi_rw & 1) == WRITE)
3812 return biovec->bv_len; /* always allow writes to be mergeable */
3814 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3815 chunk_sectors = mddev->new_chunk_sectors;
3816 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3817 if (max < 0) max = 0;
3818 if (max <= biovec->bv_len && bio_sectors == 0)
3819 return biovec->bv_len;
3820 else
3821 return max;
3825 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3827 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3828 unsigned int chunk_sectors = mddev->chunk_sectors;
3829 unsigned int bio_sectors = bio->bi_size >> 9;
3831 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3832 chunk_sectors = mddev->new_chunk_sectors;
3833 return chunk_sectors >=
3834 ((sector & (chunk_sectors - 1)) + bio_sectors);
3838 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3839 * later sampled by raid5d.
3841 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3843 unsigned long flags;
3845 spin_lock_irqsave(&conf->device_lock, flags);
3847 bi->bi_next = conf->retry_read_aligned_list;
3848 conf->retry_read_aligned_list = bi;
3850 spin_unlock_irqrestore(&conf->device_lock, flags);
3851 md_wakeup_thread(conf->mddev->thread);
3855 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3857 struct bio *bi;
3859 bi = conf->retry_read_aligned;
3860 if (bi) {
3861 conf->retry_read_aligned = NULL;
3862 return bi;
3864 bi = conf->retry_read_aligned_list;
3865 if(bi) {
3866 conf->retry_read_aligned_list = bi->bi_next;
3867 bi->bi_next = NULL;
3869 * this sets the active strip count to 1 and the processed
3870 * strip count to zero (upper 8 bits)
3872 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3875 return bi;
3880 * The "raid5_align_endio" should check if the read succeeded and if it
3881 * did, call bio_endio on the original bio (having bio_put the new bio
3882 * first).
3883 * If the read failed..
3885 static void raid5_align_endio(struct bio *bi, int error)
3887 struct bio* raid_bi = bi->bi_private;
3888 struct mddev *mddev;
3889 struct r5conf *conf;
3890 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3891 struct md_rdev *rdev;
3893 bio_put(bi);
3895 rdev = (void*)raid_bi->bi_next;
3896 raid_bi->bi_next = NULL;
3897 mddev = rdev->mddev;
3898 conf = mddev->private;
3900 rdev_dec_pending(rdev, conf->mddev);
3902 if (!error && uptodate) {
3903 bio_endio(raid_bi, 0);
3904 if (atomic_dec_and_test(&conf->active_aligned_reads))
3905 wake_up(&conf->wait_for_stripe);
3906 return;
3910 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3912 add_bio_to_retry(raid_bi, conf);
3915 static int bio_fits_rdev(struct bio *bi)
3917 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3919 if ((bi->bi_size>>9) > queue_max_sectors(q))
3920 return 0;
3921 blk_recount_segments(q, bi);
3922 if (bi->bi_phys_segments > queue_max_segments(q))
3923 return 0;
3925 if (q->merge_bvec_fn)
3926 /* it's too hard to apply the merge_bvec_fn at this stage,
3927 * just just give up
3929 return 0;
3931 return 1;
3935 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3937 struct r5conf *conf = mddev->private;
3938 int dd_idx;
3939 struct bio* align_bi;
3940 struct md_rdev *rdev;
3941 sector_t end_sector;
3943 if (!in_chunk_boundary(mddev, raid_bio)) {
3944 pr_debug("chunk_aligned_read : non aligned\n");
3945 return 0;
3948 * use bio_clone_mddev to make a copy of the bio
3950 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3951 if (!align_bi)
3952 return 0;
3954 * set bi_end_io to a new function, and set bi_private to the
3955 * original bio.
3957 align_bi->bi_end_io = raid5_align_endio;
3958 align_bi->bi_private = raid_bio;
3960 * compute position
3962 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3964 &dd_idx, NULL);
3966 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3967 rcu_read_lock();
3968 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3969 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3970 rdev->recovery_offset < end_sector) {
3971 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3972 if (rdev &&
3973 (test_bit(Faulty, &rdev->flags) ||
3974 !(test_bit(In_sync, &rdev->flags) ||
3975 rdev->recovery_offset >= end_sector)))
3976 rdev = NULL;
3978 if (rdev) {
3979 sector_t first_bad;
3980 int bad_sectors;
3982 atomic_inc(&rdev->nr_pending);
3983 rcu_read_unlock();
3984 raid_bio->bi_next = (void*)rdev;
3985 align_bi->bi_bdev = rdev->bdev;
3986 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3988 if (!bio_fits_rdev(align_bi) ||
3989 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3990 &first_bad, &bad_sectors)) {
3991 /* too big in some way, or has a known bad block */
3992 bio_put(align_bi);
3993 rdev_dec_pending(rdev, mddev);
3994 return 0;
3997 /* No reshape active, so we can trust rdev->data_offset */
3998 align_bi->bi_sector += rdev->data_offset;
4000 spin_lock_irq(&conf->device_lock);
4001 wait_event_lock_irq(conf->wait_for_stripe,
4002 conf->quiesce == 0,
4003 conf->device_lock, /* nothing */);
4004 atomic_inc(&conf->active_aligned_reads);
4005 spin_unlock_irq(&conf->device_lock);
4007 generic_make_request(align_bi);
4008 return 1;
4009 } else {
4010 rcu_read_unlock();
4011 bio_put(align_bi);
4012 return 0;
4016 /* __get_priority_stripe - get the next stripe to process
4018 * Full stripe writes are allowed to pass preread active stripes up until
4019 * the bypass_threshold is exceeded. In general the bypass_count
4020 * increments when the handle_list is handled before the hold_list; however, it
4021 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4022 * stripe with in flight i/o. The bypass_count will be reset when the
4023 * head of the hold_list has changed, i.e. the head was promoted to the
4024 * handle_list.
4026 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4028 struct stripe_head *sh;
4030 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4031 __func__,
4032 list_empty(&conf->handle_list) ? "empty" : "busy",
4033 list_empty(&conf->hold_list) ? "empty" : "busy",
4034 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4036 if (!list_empty(&conf->handle_list)) {
4037 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4039 if (list_empty(&conf->hold_list))
4040 conf->bypass_count = 0;
4041 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4042 if (conf->hold_list.next == conf->last_hold)
4043 conf->bypass_count++;
4044 else {
4045 conf->last_hold = conf->hold_list.next;
4046 conf->bypass_count -= conf->bypass_threshold;
4047 if (conf->bypass_count < 0)
4048 conf->bypass_count = 0;
4051 } else if (!list_empty(&conf->hold_list) &&
4052 ((conf->bypass_threshold &&
4053 conf->bypass_count > conf->bypass_threshold) ||
4054 atomic_read(&conf->pending_full_writes) == 0)) {
4055 sh = list_entry(conf->hold_list.next,
4056 typeof(*sh), lru);
4057 conf->bypass_count -= conf->bypass_threshold;
4058 if (conf->bypass_count < 0)
4059 conf->bypass_count = 0;
4060 } else
4061 return NULL;
4063 list_del_init(&sh->lru);
4064 atomic_inc(&sh->count);
4065 BUG_ON(atomic_read(&sh->count) != 1);
4066 return sh;
4069 struct raid5_plug_cb {
4070 struct blk_plug_cb cb;
4071 struct list_head list;
4074 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4076 struct raid5_plug_cb *cb = container_of(
4077 blk_cb, struct raid5_plug_cb, cb);
4078 struct stripe_head *sh;
4079 struct mddev *mddev = cb->cb.data;
4080 struct r5conf *conf = mddev->private;
4082 if (cb->list.next && !list_empty(&cb->list)) {
4083 spin_lock_irq(&conf->device_lock);
4084 while (!list_empty(&cb->list)) {
4085 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4086 list_del_init(&sh->lru);
4088 * avoid race release_stripe_plug() sees
4089 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4090 * is still in our list
4092 smp_mb__before_clear_bit();
4093 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4094 __release_stripe(conf, sh);
4096 spin_unlock_irq(&conf->device_lock);
4098 kfree(cb);
4101 static void release_stripe_plug(struct mddev *mddev,
4102 struct stripe_head *sh)
4104 struct blk_plug_cb *blk_cb = blk_check_plugged(
4105 raid5_unplug, mddev,
4106 sizeof(struct raid5_plug_cb));
4107 struct raid5_plug_cb *cb;
4109 if (!blk_cb) {
4110 release_stripe(sh);
4111 return;
4114 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4116 if (cb->list.next == NULL)
4117 INIT_LIST_HEAD(&cb->list);
4119 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4120 list_add_tail(&sh->lru, &cb->list);
4121 else
4122 release_stripe(sh);
4125 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4127 struct r5conf *conf = mddev->private;
4128 sector_t logical_sector, last_sector;
4129 struct stripe_head *sh;
4130 int remaining;
4131 int stripe_sectors;
4133 if (mddev->reshape_position != MaxSector)
4134 /* Skip discard while reshape is happening */
4135 return;
4137 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4138 last_sector = bi->bi_sector + (bi->bi_size>>9);
4140 bi->bi_next = NULL;
4141 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4143 stripe_sectors = conf->chunk_sectors *
4144 (conf->raid_disks - conf->max_degraded);
4145 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4146 stripe_sectors);
4147 sector_div(last_sector, stripe_sectors);
4149 logical_sector *= conf->chunk_sectors;
4150 last_sector *= conf->chunk_sectors;
4152 for (; logical_sector < last_sector;
4153 logical_sector += STRIPE_SECTORS) {
4154 DEFINE_WAIT(w);
4155 int d;
4156 again:
4157 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4158 prepare_to_wait(&conf->wait_for_overlap, &w,
4159 TASK_UNINTERRUPTIBLE);
4160 spin_lock_irq(&sh->stripe_lock);
4161 for (d = 0; d < conf->raid_disks; d++) {
4162 if (d == sh->pd_idx || d == sh->qd_idx)
4163 continue;
4164 if (sh->dev[d].towrite || sh->dev[d].toread) {
4165 set_bit(R5_Overlap, &sh->dev[d].flags);
4166 spin_unlock_irq(&sh->stripe_lock);
4167 release_stripe(sh);
4168 schedule();
4169 goto again;
4172 finish_wait(&conf->wait_for_overlap, &w);
4173 for (d = 0; d < conf->raid_disks; d++) {
4174 if (d == sh->pd_idx || d == sh->qd_idx)
4175 continue;
4176 sh->dev[d].towrite = bi;
4177 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4178 raid5_inc_bi_active_stripes(bi);
4180 spin_unlock_irq(&sh->stripe_lock);
4181 if (conf->mddev->bitmap) {
4182 for (d = 0;
4183 d < conf->raid_disks - conf->max_degraded;
4184 d++)
4185 bitmap_startwrite(mddev->bitmap,
4186 sh->sector,
4187 STRIPE_SECTORS,
4189 sh->bm_seq = conf->seq_flush + 1;
4190 set_bit(STRIPE_BIT_DELAY, &sh->state);
4193 set_bit(STRIPE_HANDLE, &sh->state);
4194 clear_bit(STRIPE_DELAYED, &sh->state);
4195 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4196 atomic_inc(&conf->preread_active_stripes);
4197 release_stripe_plug(mddev, sh);
4200 remaining = raid5_dec_bi_active_stripes(bi);
4201 if (remaining == 0) {
4202 md_write_end(mddev);
4203 bio_endio(bi, 0);
4207 static void make_request(struct mddev *mddev, struct bio * bi)
4209 struct r5conf *conf = mddev->private;
4210 int dd_idx;
4211 sector_t new_sector;
4212 sector_t logical_sector, last_sector;
4213 struct stripe_head *sh;
4214 const int rw = bio_data_dir(bi);
4215 int remaining;
4217 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4218 md_flush_request(mddev, bi);
4219 return;
4222 md_write_start(mddev, bi);
4224 if (rw == READ &&
4225 mddev->reshape_position == MaxSector &&
4226 chunk_aligned_read(mddev,bi))
4227 return;
4229 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4230 make_discard_request(mddev, bi);
4231 return;
4234 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4235 last_sector = bi->bi_sector + (bi->bi_size>>9);
4236 bi->bi_next = NULL;
4237 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4239 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4240 DEFINE_WAIT(w);
4241 int previous;
4243 retry:
4244 previous = 0;
4245 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4246 if (unlikely(conf->reshape_progress != MaxSector)) {
4247 /* spinlock is needed as reshape_progress may be
4248 * 64bit on a 32bit platform, and so it might be
4249 * possible to see a half-updated value
4250 * Of course reshape_progress could change after
4251 * the lock is dropped, so once we get a reference
4252 * to the stripe that we think it is, we will have
4253 * to check again.
4255 spin_lock_irq(&conf->device_lock);
4256 if (mddev->reshape_backwards
4257 ? logical_sector < conf->reshape_progress
4258 : logical_sector >= conf->reshape_progress) {
4259 previous = 1;
4260 } else {
4261 if (mddev->reshape_backwards
4262 ? logical_sector < conf->reshape_safe
4263 : logical_sector >= conf->reshape_safe) {
4264 spin_unlock_irq(&conf->device_lock);
4265 schedule();
4266 goto retry;
4269 spin_unlock_irq(&conf->device_lock);
4272 new_sector = raid5_compute_sector(conf, logical_sector,
4273 previous,
4274 &dd_idx, NULL);
4275 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4276 (unsigned long long)new_sector,
4277 (unsigned long long)logical_sector);
4279 sh = get_active_stripe(conf, new_sector, previous,
4280 (bi->bi_rw&RWA_MASK), 0);
4281 if (sh) {
4282 if (unlikely(previous)) {
4283 /* expansion might have moved on while waiting for a
4284 * stripe, so we must do the range check again.
4285 * Expansion could still move past after this
4286 * test, but as we are holding a reference to
4287 * 'sh', we know that if that happens,
4288 * STRIPE_EXPANDING will get set and the expansion
4289 * won't proceed until we finish with the stripe.
4291 int must_retry = 0;
4292 spin_lock_irq(&conf->device_lock);
4293 if (mddev->reshape_backwards
4294 ? logical_sector >= conf->reshape_progress
4295 : logical_sector < conf->reshape_progress)
4296 /* mismatch, need to try again */
4297 must_retry = 1;
4298 spin_unlock_irq(&conf->device_lock);
4299 if (must_retry) {
4300 release_stripe(sh);
4301 schedule();
4302 goto retry;
4306 if (rw == WRITE &&
4307 logical_sector >= mddev->suspend_lo &&
4308 logical_sector < mddev->suspend_hi) {
4309 release_stripe(sh);
4310 /* As the suspend_* range is controlled by
4311 * userspace, we want an interruptible
4312 * wait.
4314 flush_signals(current);
4315 prepare_to_wait(&conf->wait_for_overlap,
4316 &w, TASK_INTERRUPTIBLE);
4317 if (logical_sector >= mddev->suspend_lo &&
4318 logical_sector < mddev->suspend_hi)
4319 schedule();
4320 goto retry;
4323 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4324 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4325 /* Stripe is busy expanding or
4326 * add failed due to overlap. Flush everything
4327 * and wait a while
4329 md_wakeup_thread(mddev->thread);
4330 release_stripe(sh);
4331 schedule();
4332 goto retry;
4334 finish_wait(&conf->wait_for_overlap, &w);
4335 set_bit(STRIPE_HANDLE, &sh->state);
4336 clear_bit(STRIPE_DELAYED, &sh->state);
4337 if ((bi->bi_rw & REQ_SYNC) &&
4338 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4339 atomic_inc(&conf->preread_active_stripes);
4340 release_stripe_plug(mddev, sh);
4341 } else {
4342 /* cannot get stripe for read-ahead, just give-up */
4343 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4344 finish_wait(&conf->wait_for_overlap, &w);
4345 break;
4349 remaining = raid5_dec_bi_active_stripes(bi);
4350 if (remaining == 0) {
4352 if ( rw == WRITE )
4353 md_write_end(mddev);
4355 bio_endio(bi, 0);
4359 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4361 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4363 /* reshaping is quite different to recovery/resync so it is
4364 * handled quite separately ... here.
4366 * On each call to sync_request, we gather one chunk worth of
4367 * destination stripes and flag them as expanding.
4368 * Then we find all the source stripes and request reads.
4369 * As the reads complete, handle_stripe will copy the data
4370 * into the destination stripe and release that stripe.
4372 struct r5conf *conf = mddev->private;
4373 struct stripe_head *sh;
4374 sector_t first_sector, last_sector;
4375 int raid_disks = conf->previous_raid_disks;
4376 int data_disks = raid_disks - conf->max_degraded;
4377 int new_data_disks = conf->raid_disks - conf->max_degraded;
4378 int i;
4379 int dd_idx;
4380 sector_t writepos, readpos, safepos;
4381 sector_t stripe_addr;
4382 int reshape_sectors;
4383 struct list_head stripes;
4385 if (sector_nr == 0) {
4386 /* If restarting in the middle, skip the initial sectors */
4387 if (mddev->reshape_backwards &&
4388 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4389 sector_nr = raid5_size(mddev, 0, 0)
4390 - conf->reshape_progress;
4391 } else if (!mddev->reshape_backwards &&
4392 conf->reshape_progress > 0)
4393 sector_nr = conf->reshape_progress;
4394 sector_div(sector_nr, new_data_disks);
4395 if (sector_nr) {
4396 mddev->curr_resync_completed = sector_nr;
4397 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4398 *skipped = 1;
4399 return sector_nr;
4403 /* We need to process a full chunk at a time.
4404 * If old and new chunk sizes differ, we need to process the
4405 * largest of these
4407 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4408 reshape_sectors = mddev->new_chunk_sectors;
4409 else
4410 reshape_sectors = mddev->chunk_sectors;
4412 /* We update the metadata at least every 10 seconds, or when
4413 * the data about to be copied would over-write the source of
4414 * the data at the front of the range. i.e. one new_stripe
4415 * along from reshape_progress new_maps to after where
4416 * reshape_safe old_maps to
4418 writepos = conf->reshape_progress;
4419 sector_div(writepos, new_data_disks);
4420 readpos = conf->reshape_progress;
4421 sector_div(readpos, data_disks);
4422 safepos = conf->reshape_safe;
4423 sector_div(safepos, data_disks);
4424 if (mddev->reshape_backwards) {
4425 writepos -= min_t(sector_t, reshape_sectors, writepos);
4426 readpos += reshape_sectors;
4427 safepos += reshape_sectors;
4428 } else {
4429 writepos += reshape_sectors;
4430 readpos -= min_t(sector_t, reshape_sectors, readpos);
4431 safepos -= min_t(sector_t, reshape_sectors, safepos);
4434 /* Having calculated the 'writepos' possibly use it
4435 * to set 'stripe_addr' which is where we will write to.
4437 if (mddev->reshape_backwards) {
4438 BUG_ON(conf->reshape_progress == 0);
4439 stripe_addr = writepos;
4440 BUG_ON((mddev->dev_sectors &
4441 ~((sector_t)reshape_sectors - 1))
4442 - reshape_sectors - stripe_addr
4443 != sector_nr);
4444 } else {
4445 BUG_ON(writepos != sector_nr + reshape_sectors);
4446 stripe_addr = sector_nr;
4449 /* 'writepos' is the most advanced device address we might write.
4450 * 'readpos' is the least advanced device address we might read.
4451 * 'safepos' is the least address recorded in the metadata as having
4452 * been reshaped.
4453 * If there is a min_offset_diff, these are adjusted either by
4454 * increasing the safepos/readpos if diff is negative, or
4455 * increasing writepos if diff is positive.
4456 * If 'readpos' is then behind 'writepos', there is no way that we can
4457 * ensure safety in the face of a crash - that must be done by userspace
4458 * making a backup of the data. So in that case there is no particular
4459 * rush to update metadata.
4460 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4461 * update the metadata to advance 'safepos' to match 'readpos' so that
4462 * we can be safe in the event of a crash.
4463 * So we insist on updating metadata if safepos is behind writepos and
4464 * readpos is beyond writepos.
4465 * In any case, update the metadata every 10 seconds.
4466 * Maybe that number should be configurable, but I'm not sure it is
4467 * worth it.... maybe it could be a multiple of safemode_delay???
4469 if (conf->min_offset_diff < 0) {
4470 safepos += -conf->min_offset_diff;
4471 readpos += -conf->min_offset_diff;
4472 } else
4473 writepos += conf->min_offset_diff;
4475 if ((mddev->reshape_backwards
4476 ? (safepos > writepos && readpos < writepos)
4477 : (safepos < writepos && readpos > writepos)) ||
4478 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4479 /* Cannot proceed until we've updated the superblock... */
4480 wait_event(conf->wait_for_overlap,
4481 atomic_read(&conf->reshape_stripes)==0);
4482 mddev->reshape_position = conf->reshape_progress;
4483 mddev->curr_resync_completed = sector_nr;
4484 conf->reshape_checkpoint = jiffies;
4485 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4486 md_wakeup_thread(mddev->thread);
4487 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4488 kthread_should_stop());
4489 spin_lock_irq(&conf->device_lock);
4490 conf->reshape_safe = mddev->reshape_position;
4491 spin_unlock_irq(&conf->device_lock);
4492 wake_up(&conf->wait_for_overlap);
4493 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4496 INIT_LIST_HEAD(&stripes);
4497 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4498 int j;
4499 int skipped_disk = 0;
4500 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4501 set_bit(STRIPE_EXPANDING, &sh->state);
4502 atomic_inc(&conf->reshape_stripes);
4503 /* If any of this stripe is beyond the end of the old
4504 * array, then we need to zero those blocks
4506 for (j=sh->disks; j--;) {
4507 sector_t s;
4508 if (j == sh->pd_idx)
4509 continue;
4510 if (conf->level == 6 &&
4511 j == sh->qd_idx)
4512 continue;
4513 s = compute_blocknr(sh, j, 0);
4514 if (s < raid5_size(mddev, 0, 0)) {
4515 skipped_disk = 1;
4516 continue;
4518 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4519 set_bit(R5_Expanded, &sh->dev[j].flags);
4520 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4522 if (!skipped_disk) {
4523 set_bit(STRIPE_EXPAND_READY, &sh->state);
4524 set_bit(STRIPE_HANDLE, &sh->state);
4526 list_add(&sh->lru, &stripes);
4528 spin_lock_irq(&conf->device_lock);
4529 if (mddev->reshape_backwards)
4530 conf->reshape_progress -= reshape_sectors * new_data_disks;
4531 else
4532 conf->reshape_progress += reshape_sectors * new_data_disks;
4533 spin_unlock_irq(&conf->device_lock);
4534 /* Ok, those stripe are ready. We can start scheduling
4535 * reads on the source stripes.
4536 * The source stripes are determined by mapping the first and last
4537 * block on the destination stripes.
4539 first_sector =
4540 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4541 1, &dd_idx, NULL);
4542 last_sector =
4543 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4544 * new_data_disks - 1),
4545 1, &dd_idx, NULL);
4546 if (last_sector >= mddev->dev_sectors)
4547 last_sector = mddev->dev_sectors - 1;
4548 while (first_sector <= last_sector) {
4549 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4550 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4551 set_bit(STRIPE_HANDLE, &sh->state);
4552 release_stripe(sh);
4553 first_sector += STRIPE_SECTORS;
4555 /* Now that the sources are clearly marked, we can release
4556 * the destination stripes
4558 while (!list_empty(&stripes)) {
4559 sh = list_entry(stripes.next, struct stripe_head, lru);
4560 list_del_init(&sh->lru);
4561 release_stripe(sh);
4563 /* If this takes us to the resync_max point where we have to pause,
4564 * then we need to write out the superblock.
4566 sector_nr += reshape_sectors;
4567 if ((sector_nr - mddev->curr_resync_completed) * 2
4568 >= mddev->resync_max - mddev->curr_resync_completed) {
4569 /* Cannot proceed until we've updated the superblock... */
4570 wait_event(conf->wait_for_overlap,
4571 atomic_read(&conf->reshape_stripes) == 0);
4572 mddev->reshape_position = conf->reshape_progress;
4573 mddev->curr_resync_completed = sector_nr;
4574 conf->reshape_checkpoint = jiffies;
4575 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4576 md_wakeup_thread(mddev->thread);
4577 wait_event(mddev->sb_wait,
4578 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4579 || kthread_should_stop());
4580 spin_lock_irq(&conf->device_lock);
4581 conf->reshape_safe = mddev->reshape_position;
4582 spin_unlock_irq(&conf->device_lock);
4583 wake_up(&conf->wait_for_overlap);
4584 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4586 return reshape_sectors;
4589 /* FIXME go_faster isn't used */
4590 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4592 struct r5conf *conf = mddev->private;
4593 struct stripe_head *sh;
4594 sector_t max_sector = mddev->dev_sectors;
4595 sector_t sync_blocks;
4596 int still_degraded = 0;
4597 int i;
4599 if (sector_nr >= max_sector) {
4600 /* just being told to finish up .. nothing much to do */
4602 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4603 end_reshape(conf);
4604 return 0;
4607 if (mddev->curr_resync < max_sector) /* aborted */
4608 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4609 &sync_blocks, 1);
4610 else /* completed sync */
4611 conf->fullsync = 0;
4612 bitmap_close_sync(mddev->bitmap);
4614 return 0;
4617 /* Allow raid5_quiesce to complete */
4618 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4620 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4621 return reshape_request(mddev, sector_nr, skipped);
4623 /* No need to check resync_max as we never do more than one
4624 * stripe, and as resync_max will always be on a chunk boundary,
4625 * if the check in md_do_sync didn't fire, there is no chance
4626 * of overstepping resync_max here
4629 /* if there is too many failed drives and we are trying
4630 * to resync, then assert that we are finished, because there is
4631 * nothing we can do.
4633 if (mddev->degraded >= conf->max_degraded &&
4634 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4635 sector_t rv = mddev->dev_sectors - sector_nr;
4636 *skipped = 1;
4637 return rv;
4639 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4640 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4641 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4642 /* we can skip this block, and probably more */
4643 sync_blocks /= STRIPE_SECTORS;
4644 *skipped = 1;
4645 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4648 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4650 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4651 if (sh == NULL) {
4652 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4653 /* make sure we don't swamp the stripe cache if someone else
4654 * is trying to get access
4656 schedule_timeout_uninterruptible(1);
4658 /* Need to check if array will still be degraded after recovery/resync
4659 * We don't need to check the 'failed' flag as when that gets set,
4660 * recovery aborts.
4662 for (i = 0; i < conf->raid_disks; i++)
4663 if (conf->disks[i].rdev == NULL)
4664 still_degraded = 1;
4666 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4668 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4670 handle_stripe(sh);
4671 release_stripe(sh);
4673 return STRIPE_SECTORS;
4676 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4678 /* We may not be able to submit a whole bio at once as there
4679 * may not be enough stripe_heads available.
4680 * We cannot pre-allocate enough stripe_heads as we may need
4681 * more than exist in the cache (if we allow ever large chunks).
4682 * So we do one stripe head at a time and record in
4683 * ->bi_hw_segments how many have been done.
4685 * We *know* that this entire raid_bio is in one chunk, so
4686 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4688 struct stripe_head *sh;
4689 int dd_idx;
4690 sector_t sector, logical_sector, last_sector;
4691 int scnt = 0;
4692 int remaining;
4693 int handled = 0;
4695 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4696 sector = raid5_compute_sector(conf, logical_sector,
4697 0, &dd_idx, NULL);
4698 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4700 for (; logical_sector < last_sector;
4701 logical_sector += STRIPE_SECTORS,
4702 sector += STRIPE_SECTORS,
4703 scnt++) {
4705 if (scnt < raid5_bi_processed_stripes(raid_bio))
4706 /* already done this stripe */
4707 continue;
4709 sh = get_active_stripe(conf, sector, 0, 1, 0);
4711 if (!sh) {
4712 /* failed to get a stripe - must wait */
4713 raid5_set_bi_processed_stripes(raid_bio, scnt);
4714 conf->retry_read_aligned = raid_bio;
4715 return handled;
4718 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4719 release_stripe(sh);
4720 raid5_set_bi_processed_stripes(raid_bio, scnt);
4721 conf->retry_read_aligned = raid_bio;
4722 return handled;
4725 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4726 handle_stripe(sh);
4727 release_stripe(sh);
4728 handled++;
4730 remaining = raid5_dec_bi_active_stripes(raid_bio);
4731 if (remaining == 0)
4732 bio_endio(raid_bio, 0);
4733 if (atomic_dec_and_test(&conf->active_aligned_reads))
4734 wake_up(&conf->wait_for_stripe);
4735 return handled;
4738 #define MAX_STRIPE_BATCH 8
4739 static int handle_active_stripes(struct r5conf *conf)
4741 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4742 int i, batch_size = 0;
4744 while (batch_size < MAX_STRIPE_BATCH &&
4745 (sh = __get_priority_stripe(conf)) != NULL)
4746 batch[batch_size++] = sh;
4748 if (batch_size == 0)
4749 return batch_size;
4750 spin_unlock_irq(&conf->device_lock);
4752 for (i = 0; i < batch_size; i++)
4753 handle_stripe(batch[i]);
4755 cond_resched();
4757 spin_lock_irq(&conf->device_lock);
4758 for (i = 0; i < batch_size; i++)
4759 __release_stripe(conf, batch[i]);
4760 return batch_size;
4764 * This is our raid5 kernel thread.
4766 * We scan the hash table for stripes which can be handled now.
4767 * During the scan, completed stripes are saved for us by the interrupt
4768 * handler, so that they will not have to wait for our next wakeup.
4770 static void raid5d(struct md_thread *thread)
4772 struct mddev *mddev = thread->mddev;
4773 struct r5conf *conf = mddev->private;
4774 int handled;
4775 struct blk_plug plug;
4777 pr_debug("+++ raid5d active\n");
4779 md_check_recovery(mddev);
4781 blk_start_plug(&plug);
4782 handled = 0;
4783 spin_lock_irq(&conf->device_lock);
4784 while (1) {
4785 struct bio *bio;
4786 int batch_size;
4788 if (
4789 !list_empty(&conf->bitmap_list)) {
4790 /* Now is a good time to flush some bitmap updates */
4791 conf->seq_flush++;
4792 spin_unlock_irq(&conf->device_lock);
4793 bitmap_unplug(mddev->bitmap);
4794 spin_lock_irq(&conf->device_lock);
4795 conf->seq_write = conf->seq_flush;
4796 activate_bit_delay(conf);
4798 raid5_activate_delayed(conf);
4800 while ((bio = remove_bio_from_retry(conf))) {
4801 int ok;
4802 spin_unlock_irq(&conf->device_lock);
4803 ok = retry_aligned_read(conf, bio);
4804 spin_lock_irq(&conf->device_lock);
4805 if (!ok)
4806 break;
4807 handled++;
4810 batch_size = handle_active_stripes(conf);
4811 if (!batch_size)
4812 break;
4813 handled += batch_size;
4815 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4816 spin_unlock_irq(&conf->device_lock);
4817 md_check_recovery(mddev);
4818 spin_lock_irq(&conf->device_lock);
4821 pr_debug("%d stripes handled\n", handled);
4823 spin_unlock_irq(&conf->device_lock);
4825 async_tx_issue_pending_all();
4826 blk_finish_plug(&plug);
4828 pr_debug("--- raid5d inactive\n");
4831 static ssize_t
4832 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4834 struct r5conf *conf = mddev->private;
4835 if (conf)
4836 return sprintf(page, "%d\n", conf->max_nr_stripes);
4837 else
4838 return 0;
4842 raid5_set_cache_size(struct mddev *mddev, int size)
4844 struct r5conf *conf = mddev->private;
4845 int err;
4847 if (size <= 16 || size > 32768)
4848 return -EINVAL;
4849 while (size < conf->max_nr_stripes) {
4850 if (drop_one_stripe(conf))
4851 conf->max_nr_stripes--;
4852 else
4853 break;
4855 err = md_allow_write(mddev);
4856 if (err)
4857 return err;
4858 while (size > conf->max_nr_stripes) {
4859 if (grow_one_stripe(conf))
4860 conf->max_nr_stripes++;
4861 else break;
4863 return 0;
4865 EXPORT_SYMBOL(raid5_set_cache_size);
4867 static ssize_t
4868 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4870 struct r5conf *conf = mddev->private;
4871 unsigned long new;
4872 int err;
4874 if (len >= PAGE_SIZE)
4875 return -EINVAL;
4876 if (!conf)
4877 return -ENODEV;
4879 if (strict_strtoul(page, 10, &new))
4880 return -EINVAL;
4881 err = raid5_set_cache_size(mddev, new);
4882 if (err)
4883 return err;
4884 return len;
4887 static struct md_sysfs_entry
4888 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4889 raid5_show_stripe_cache_size,
4890 raid5_store_stripe_cache_size);
4892 static ssize_t
4893 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4895 struct r5conf *conf = mddev->private;
4896 if (conf)
4897 return sprintf(page, "%d\n", conf->bypass_threshold);
4898 else
4899 return 0;
4902 static ssize_t
4903 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4905 struct r5conf *conf = mddev->private;
4906 unsigned long new;
4907 if (len >= PAGE_SIZE)
4908 return -EINVAL;
4909 if (!conf)
4910 return -ENODEV;
4912 if (strict_strtoul(page, 10, &new))
4913 return -EINVAL;
4914 if (new > conf->max_nr_stripes)
4915 return -EINVAL;
4916 conf->bypass_threshold = new;
4917 return len;
4920 static struct md_sysfs_entry
4921 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4922 S_IRUGO | S_IWUSR,
4923 raid5_show_preread_threshold,
4924 raid5_store_preread_threshold);
4926 static ssize_t
4927 stripe_cache_active_show(struct mddev *mddev, char *page)
4929 struct r5conf *conf = mddev->private;
4930 if (conf)
4931 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4932 else
4933 return 0;
4936 static struct md_sysfs_entry
4937 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4939 static struct attribute *raid5_attrs[] = {
4940 &raid5_stripecache_size.attr,
4941 &raid5_stripecache_active.attr,
4942 &raid5_preread_bypass_threshold.attr,
4943 NULL,
4945 static struct attribute_group raid5_attrs_group = {
4946 .name = NULL,
4947 .attrs = raid5_attrs,
4950 static sector_t
4951 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4953 struct r5conf *conf = mddev->private;
4955 if (!sectors)
4956 sectors = mddev->dev_sectors;
4957 if (!raid_disks)
4958 /* size is defined by the smallest of previous and new size */
4959 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4961 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4962 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4963 return sectors * (raid_disks - conf->max_degraded);
4966 static void raid5_free_percpu(struct r5conf *conf)
4968 struct raid5_percpu *percpu;
4969 unsigned long cpu;
4971 if (!conf->percpu)
4972 return;
4974 get_online_cpus();
4975 for_each_possible_cpu(cpu) {
4976 percpu = per_cpu_ptr(conf->percpu, cpu);
4977 safe_put_page(percpu->spare_page);
4978 kfree(percpu->scribble);
4980 #ifdef CONFIG_HOTPLUG_CPU
4981 unregister_cpu_notifier(&conf->cpu_notify);
4982 #endif
4983 put_online_cpus();
4985 free_percpu(conf->percpu);
4988 static void free_conf(struct r5conf *conf)
4990 shrink_stripes(conf);
4991 raid5_free_percpu(conf);
4992 kfree(conf->disks);
4993 kfree(conf->stripe_hashtbl);
4994 kfree(conf);
4997 #ifdef CONFIG_HOTPLUG_CPU
4998 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4999 void *hcpu)
5001 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5002 long cpu = (long)hcpu;
5003 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5005 switch (action) {
5006 case CPU_UP_PREPARE:
5007 case CPU_UP_PREPARE_FROZEN:
5008 if (conf->level == 6 && !percpu->spare_page)
5009 percpu->spare_page = alloc_page(GFP_KERNEL);
5010 if (!percpu->scribble)
5011 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5013 if (!percpu->scribble ||
5014 (conf->level == 6 && !percpu->spare_page)) {
5015 safe_put_page(percpu->spare_page);
5016 kfree(percpu->scribble);
5017 pr_err("%s: failed memory allocation for cpu%ld\n",
5018 __func__, cpu);
5019 return notifier_from_errno(-ENOMEM);
5021 break;
5022 case CPU_DEAD:
5023 case CPU_DEAD_FROZEN:
5024 safe_put_page(percpu->spare_page);
5025 kfree(percpu->scribble);
5026 percpu->spare_page = NULL;
5027 percpu->scribble = NULL;
5028 break;
5029 default:
5030 break;
5032 return NOTIFY_OK;
5034 #endif
5036 static int raid5_alloc_percpu(struct r5conf *conf)
5038 unsigned long cpu;
5039 struct page *spare_page;
5040 struct raid5_percpu __percpu *allcpus;
5041 void *scribble;
5042 int err;
5044 allcpus = alloc_percpu(struct raid5_percpu);
5045 if (!allcpus)
5046 return -ENOMEM;
5047 conf->percpu = allcpus;
5049 get_online_cpus();
5050 err = 0;
5051 for_each_present_cpu(cpu) {
5052 if (conf->level == 6) {
5053 spare_page = alloc_page(GFP_KERNEL);
5054 if (!spare_page) {
5055 err = -ENOMEM;
5056 break;
5058 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5060 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5061 if (!scribble) {
5062 err = -ENOMEM;
5063 break;
5065 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5067 #ifdef CONFIG_HOTPLUG_CPU
5068 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5069 conf->cpu_notify.priority = 0;
5070 if (err == 0)
5071 err = register_cpu_notifier(&conf->cpu_notify);
5072 #endif
5073 put_online_cpus();
5075 return err;
5078 static struct r5conf *setup_conf(struct mddev *mddev)
5080 struct r5conf *conf;
5081 int raid_disk, memory, max_disks;
5082 struct md_rdev *rdev;
5083 struct disk_info *disk;
5084 char pers_name[6];
5086 if (mddev->new_level != 5
5087 && mddev->new_level != 4
5088 && mddev->new_level != 6) {
5089 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5090 mdname(mddev), mddev->new_level);
5091 return ERR_PTR(-EIO);
5093 if ((mddev->new_level == 5
5094 && !algorithm_valid_raid5(mddev->new_layout)) ||
5095 (mddev->new_level == 6
5096 && !algorithm_valid_raid6(mddev->new_layout))) {
5097 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5098 mdname(mddev), mddev->new_layout);
5099 return ERR_PTR(-EIO);
5101 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5102 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5103 mdname(mddev), mddev->raid_disks);
5104 return ERR_PTR(-EINVAL);
5107 if (!mddev->new_chunk_sectors ||
5108 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5109 !is_power_of_2(mddev->new_chunk_sectors)) {
5110 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5111 mdname(mddev), mddev->new_chunk_sectors << 9);
5112 return ERR_PTR(-EINVAL);
5115 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5116 if (conf == NULL)
5117 goto abort;
5118 spin_lock_init(&conf->device_lock);
5119 init_waitqueue_head(&conf->wait_for_stripe);
5120 init_waitqueue_head(&conf->wait_for_overlap);
5121 INIT_LIST_HEAD(&conf->handle_list);
5122 INIT_LIST_HEAD(&conf->hold_list);
5123 INIT_LIST_HEAD(&conf->delayed_list);
5124 INIT_LIST_HEAD(&conf->bitmap_list);
5125 INIT_LIST_HEAD(&conf->inactive_list);
5126 atomic_set(&conf->active_stripes, 0);
5127 atomic_set(&conf->preread_active_stripes, 0);
5128 atomic_set(&conf->active_aligned_reads, 0);
5129 conf->bypass_threshold = BYPASS_THRESHOLD;
5130 conf->recovery_disabled = mddev->recovery_disabled - 1;
5132 conf->raid_disks = mddev->raid_disks;
5133 if (mddev->reshape_position == MaxSector)
5134 conf->previous_raid_disks = mddev->raid_disks;
5135 else
5136 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5137 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5138 conf->scribble_len = scribble_len(max_disks);
5140 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5141 GFP_KERNEL);
5142 if (!conf->disks)
5143 goto abort;
5145 conf->mddev = mddev;
5147 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5148 goto abort;
5150 conf->level = mddev->new_level;
5151 if (raid5_alloc_percpu(conf) != 0)
5152 goto abort;
5154 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5156 rdev_for_each(rdev, mddev) {
5157 raid_disk = rdev->raid_disk;
5158 if (raid_disk >= max_disks
5159 || raid_disk < 0)
5160 continue;
5161 disk = conf->disks + raid_disk;
5163 if (test_bit(Replacement, &rdev->flags)) {
5164 if (disk->replacement)
5165 goto abort;
5166 disk->replacement = rdev;
5167 } else {
5168 if (disk->rdev)
5169 goto abort;
5170 disk->rdev = rdev;
5173 if (test_bit(In_sync, &rdev->flags)) {
5174 char b[BDEVNAME_SIZE];
5175 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5176 " disk %d\n",
5177 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5178 } else if (rdev->saved_raid_disk != raid_disk)
5179 /* Cannot rely on bitmap to complete recovery */
5180 conf->fullsync = 1;
5183 conf->chunk_sectors = mddev->new_chunk_sectors;
5184 conf->level = mddev->new_level;
5185 if (conf->level == 6)
5186 conf->max_degraded = 2;
5187 else
5188 conf->max_degraded = 1;
5189 conf->algorithm = mddev->new_layout;
5190 conf->max_nr_stripes = NR_STRIPES;
5191 conf->reshape_progress = mddev->reshape_position;
5192 if (conf->reshape_progress != MaxSector) {
5193 conf->prev_chunk_sectors = mddev->chunk_sectors;
5194 conf->prev_algo = mddev->layout;
5197 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5198 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5199 if (grow_stripes(conf, conf->max_nr_stripes)) {
5200 printk(KERN_ERR
5201 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5202 mdname(mddev), memory);
5203 goto abort;
5204 } else
5205 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5206 mdname(mddev), memory);
5208 sprintf(pers_name, "raid%d", mddev->new_level);
5209 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5210 if (!conf->thread) {
5211 printk(KERN_ERR
5212 "md/raid:%s: couldn't allocate thread.\n",
5213 mdname(mddev));
5214 goto abort;
5217 return conf;
5219 abort:
5220 if (conf) {
5221 free_conf(conf);
5222 return ERR_PTR(-EIO);
5223 } else
5224 return ERR_PTR(-ENOMEM);
5228 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5230 switch (algo) {
5231 case ALGORITHM_PARITY_0:
5232 if (raid_disk < max_degraded)
5233 return 1;
5234 break;
5235 case ALGORITHM_PARITY_N:
5236 if (raid_disk >= raid_disks - max_degraded)
5237 return 1;
5238 break;
5239 case ALGORITHM_PARITY_0_6:
5240 if (raid_disk == 0 ||
5241 raid_disk == raid_disks - 1)
5242 return 1;
5243 break;
5244 case ALGORITHM_LEFT_ASYMMETRIC_6:
5245 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5246 case ALGORITHM_LEFT_SYMMETRIC_6:
5247 case ALGORITHM_RIGHT_SYMMETRIC_6:
5248 if (raid_disk == raid_disks - 1)
5249 return 1;
5251 return 0;
5254 static int run(struct mddev *mddev)
5256 struct r5conf *conf;
5257 int working_disks = 0;
5258 int dirty_parity_disks = 0;
5259 struct md_rdev *rdev;
5260 sector_t reshape_offset = 0;
5261 int i;
5262 long long min_offset_diff = 0;
5263 int first = 1;
5265 if (mddev->recovery_cp != MaxSector)
5266 printk(KERN_NOTICE "md/raid:%s: not clean"
5267 " -- starting background reconstruction\n",
5268 mdname(mddev));
5270 rdev_for_each(rdev, mddev) {
5271 long long diff;
5272 if (rdev->raid_disk < 0)
5273 continue;
5274 diff = (rdev->new_data_offset - rdev->data_offset);
5275 if (first) {
5276 min_offset_diff = diff;
5277 first = 0;
5278 } else if (mddev->reshape_backwards &&
5279 diff < min_offset_diff)
5280 min_offset_diff = diff;
5281 else if (!mddev->reshape_backwards &&
5282 diff > min_offset_diff)
5283 min_offset_diff = diff;
5286 if (mddev->reshape_position != MaxSector) {
5287 /* Check that we can continue the reshape.
5288 * Difficulties arise if the stripe we would write to
5289 * next is at or after the stripe we would read from next.
5290 * For a reshape that changes the number of devices, this
5291 * is only possible for a very short time, and mdadm makes
5292 * sure that time appears to have past before assembling
5293 * the array. So we fail if that time hasn't passed.
5294 * For a reshape that keeps the number of devices the same
5295 * mdadm must be monitoring the reshape can keeping the
5296 * critical areas read-only and backed up. It will start
5297 * the array in read-only mode, so we check for that.
5299 sector_t here_new, here_old;
5300 int old_disks;
5301 int max_degraded = (mddev->level == 6 ? 2 : 1);
5303 if (mddev->new_level != mddev->level) {
5304 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5305 "required - aborting.\n",
5306 mdname(mddev));
5307 return -EINVAL;
5309 old_disks = mddev->raid_disks - mddev->delta_disks;
5310 /* reshape_position must be on a new-stripe boundary, and one
5311 * further up in new geometry must map after here in old
5312 * geometry.
5314 here_new = mddev->reshape_position;
5315 if (sector_div(here_new, mddev->new_chunk_sectors *
5316 (mddev->raid_disks - max_degraded))) {
5317 printk(KERN_ERR "md/raid:%s: reshape_position not "
5318 "on a stripe boundary\n", mdname(mddev));
5319 return -EINVAL;
5321 reshape_offset = here_new * mddev->new_chunk_sectors;
5322 /* here_new is the stripe we will write to */
5323 here_old = mddev->reshape_position;
5324 sector_div(here_old, mddev->chunk_sectors *
5325 (old_disks-max_degraded));
5326 /* here_old is the first stripe that we might need to read
5327 * from */
5328 if (mddev->delta_disks == 0) {
5329 if ((here_new * mddev->new_chunk_sectors !=
5330 here_old * mddev->chunk_sectors)) {
5331 printk(KERN_ERR "md/raid:%s: reshape position is"
5332 " confused - aborting\n", mdname(mddev));
5333 return -EINVAL;
5335 /* We cannot be sure it is safe to start an in-place
5336 * reshape. It is only safe if user-space is monitoring
5337 * and taking constant backups.
5338 * mdadm always starts a situation like this in
5339 * readonly mode so it can take control before
5340 * allowing any writes. So just check for that.
5342 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5343 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5344 /* not really in-place - so OK */;
5345 else if (mddev->ro == 0) {
5346 printk(KERN_ERR "md/raid:%s: in-place reshape "
5347 "must be started in read-only mode "
5348 "- aborting\n",
5349 mdname(mddev));
5350 return -EINVAL;
5352 } else if (mddev->reshape_backwards
5353 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5354 here_old * mddev->chunk_sectors)
5355 : (here_new * mddev->new_chunk_sectors >=
5356 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5357 /* Reading from the same stripe as writing to - bad */
5358 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5359 "auto-recovery - aborting.\n",
5360 mdname(mddev));
5361 return -EINVAL;
5363 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5364 mdname(mddev));
5365 /* OK, we should be able to continue; */
5366 } else {
5367 BUG_ON(mddev->level != mddev->new_level);
5368 BUG_ON(mddev->layout != mddev->new_layout);
5369 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5370 BUG_ON(mddev->delta_disks != 0);
5373 if (mddev->private == NULL)
5374 conf = setup_conf(mddev);
5375 else
5376 conf = mddev->private;
5378 if (IS_ERR(conf))
5379 return PTR_ERR(conf);
5381 conf->min_offset_diff = min_offset_diff;
5382 mddev->thread = conf->thread;
5383 conf->thread = NULL;
5384 mddev->private = conf;
5386 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5387 i++) {
5388 rdev = conf->disks[i].rdev;
5389 if (!rdev && conf->disks[i].replacement) {
5390 /* The replacement is all we have yet */
5391 rdev = conf->disks[i].replacement;
5392 conf->disks[i].replacement = NULL;
5393 clear_bit(Replacement, &rdev->flags);
5394 conf->disks[i].rdev = rdev;
5396 if (!rdev)
5397 continue;
5398 if (conf->disks[i].replacement &&
5399 conf->reshape_progress != MaxSector) {
5400 /* replacements and reshape simply do not mix. */
5401 printk(KERN_ERR "md: cannot handle concurrent "
5402 "replacement and reshape.\n");
5403 goto abort;
5405 if (test_bit(In_sync, &rdev->flags)) {
5406 working_disks++;
5407 continue;
5409 /* This disc is not fully in-sync. However if it
5410 * just stored parity (beyond the recovery_offset),
5411 * when we don't need to be concerned about the
5412 * array being dirty.
5413 * When reshape goes 'backwards', we never have
5414 * partially completed devices, so we only need
5415 * to worry about reshape going forwards.
5417 /* Hack because v0.91 doesn't store recovery_offset properly. */
5418 if (mddev->major_version == 0 &&
5419 mddev->minor_version > 90)
5420 rdev->recovery_offset = reshape_offset;
5422 if (rdev->recovery_offset < reshape_offset) {
5423 /* We need to check old and new layout */
5424 if (!only_parity(rdev->raid_disk,
5425 conf->algorithm,
5426 conf->raid_disks,
5427 conf->max_degraded))
5428 continue;
5430 if (!only_parity(rdev->raid_disk,
5431 conf->prev_algo,
5432 conf->previous_raid_disks,
5433 conf->max_degraded))
5434 continue;
5435 dirty_parity_disks++;
5439 * 0 for a fully functional array, 1 or 2 for a degraded array.
5441 mddev->degraded = calc_degraded(conf);
5443 if (has_failed(conf)) {
5444 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5445 " (%d/%d failed)\n",
5446 mdname(mddev), mddev->degraded, conf->raid_disks);
5447 goto abort;
5450 /* device size must be a multiple of chunk size */
5451 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5452 mddev->resync_max_sectors = mddev->dev_sectors;
5454 if (mddev->degraded > dirty_parity_disks &&
5455 mddev->recovery_cp != MaxSector) {
5456 if (mddev->ok_start_degraded)
5457 printk(KERN_WARNING
5458 "md/raid:%s: starting dirty degraded array"
5459 " - data corruption possible.\n",
5460 mdname(mddev));
5461 else {
5462 printk(KERN_ERR
5463 "md/raid:%s: cannot start dirty degraded array.\n",
5464 mdname(mddev));
5465 goto abort;
5469 if (mddev->degraded == 0)
5470 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5471 " devices, algorithm %d\n", mdname(mddev), conf->level,
5472 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5473 mddev->new_layout);
5474 else
5475 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5476 " out of %d devices, algorithm %d\n",
5477 mdname(mddev), conf->level,
5478 mddev->raid_disks - mddev->degraded,
5479 mddev->raid_disks, mddev->new_layout);
5481 print_raid5_conf(conf);
5483 if (conf->reshape_progress != MaxSector) {
5484 conf->reshape_safe = conf->reshape_progress;
5485 atomic_set(&conf->reshape_stripes, 0);
5486 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5487 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5488 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5489 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5490 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5491 "reshape");
5495 /* Ok, everything is just fine now */
5496 if (mddev->to_remove == &raid5_attrs_group)
5497 mddev->to_remove = NULL;
5498 else if (mddev->kobj.sd &&
5499 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5500 printk(KERN_WARNING
5501 "raid5: failed to create sysfs attributes for %s\n",
5502 mdname(mddev));
5503 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5505 if (mddev->queue) {
5506 int chunk_size;
5507 bool discard_supported = true;
5508 /* read-ahead size must cover two whole stripes, which
5509 * is 2 * (datadisks) * chunksize where 'n' is the
5510 * number of raid devices
5512 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5513 int stripe = data_disks *
5514 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5515 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5516 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5518 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5520 mddev->queue->backing_dev_info.congested_data = mddev;
5521 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5523 chunk_size = mddev->chunk_sectors << 9;
5524 blk_queue_io_min(mddev->queue, chunk_size);
5525 blk_queue_io_opt(mddev->queue, chunk_size *
5526 (conf->raid_disks - conf->max_degraded));
5528 * We can only discard a whole stripe. It doesn't make sense to
5529 * discard data disk but write parity disk
5531 stripe = stripe * PAGE_SIZE;
5532 mddev->queue->limits.discard_alignment = stripe;
5533 mddev->queue->limits.discard_granularity = stripe;
5535 * unaligned part of discard request will be ignored, so can't
5536 * guarantee discard_zerors_data
5538 mddev->queue->limits.discard_zeroes_data = 0;
5540 rdev_for_each(rdev, mddev) {
5541 disk_stack_limits(mddev->gendisk, rdev->bdev,
5542 rdev->data_offset << 9);
5543 disk_stack_limits(mddev->gendisk, rdev->bdev,
5544 rdev->new_data_offset << 9);
5546 * discard_zeroes_data is required, otherwise data
5547 * could be lost. Consider a scenario: discard a stripe
5548 * (the stripe could be inconsistent if
5549 * discard_zeroes_data is 0); write one disk of the
5550 * stripe (the stripe could be inconsistent again
5551 * depending on which disks are used to calculate
5552 * parity); the disk is broken; The stripe data of this
5553 * disk is lost.
5555 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5556 !bdev_get_queue(rdev->bdev)->
5557 limits.discard_zeroes_data)
5558 discard_supported = false;
5561 if (discard_supported &&
5562 mddev->queue->limits.max_discard_sectors >= stripe &&
5563 mddev->queue->limits.discard_granularity >= stripe)
5564 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5565 mddev->queue);
5566 else
5567 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5568 mddev->queue);
5571 return 0;
5572 abort:
5573 md_unregister_thread(&mddev->thread);
5574 print_raid5_conf(conf);
5575 free_conf(conf);
5576 mddev->private = NULL;
5577 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5578 return -EIO;
5581 static int stop(struct mddev *mddev)
5583 struct r5conf *conf = mddev->private;
5585 md_unregister_thread(&mddev->thread);
5586 if (mddev->queue)
5587 mddev->queue->backing_dev_info.congested_fn = NULL;
5588 free_conf(conf);
5589 mddev->private = NULL;
5590 mddev->to_remove = &raid5_attrs_group;
5591 return 0;
5594 static void status(struct seq_file *seq, struct mddev *mddev)
5596 struct r5conf *conf = mddev->private;
5597 int i;
5599 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5600 mddev->chunk_sectors / 2, mddev->layout);
5601 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5602 for (i = 0; i < conf->raid_disks; i++)
5603 seq_printf (seq, "%s",
5604 conf->disks[i].rdev &&
5605 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5606 seq_printf (seq, "]");
5609 static void print_raid5_conf (struct r5conf *conf)
5611 int i;
5612 struct disk_info *tmp;
5614 printk(KERN_DEBUG "RAID conf printout:\n");
5615 if (!conf) {
5616 printk("(conf==NULL)\n");
5617 return;
5619 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5620 conf->raid_disks,
5621 conf->raid_disks - conf->mddev->degraded);
5623 for (i = 0; i < conf->raid_disks; i++) {
5624 char b[BDEVNAME_SIZE];
5625 tmp = conf->disks + i;
5626 if (tmp->rdev)
5627 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5628 i, !test_bit(Faulty, &tmp->rdev->flags),
5629 bdevname(tmp->rdev->bdev, b));
5633 static int raid5_spare_active(struct mddev *mddev)
5635 int i;
5636 struct r5conf *conf = mddev->private;
5637 struct disk_info *tmp;
5638 int count = 0;
5639 unsigned long flags;
5641 for (i = 0; i < conf->raid_disks; i++) {
5642 tmp = conf->disks + i;
5643 if (tmp->replacement
5644 && tmp->replacement->recovery_offset == MaxSector
5645 && !test_bit(Faulty, &tmp->replacement->flags)
5646 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5647 /* Replacement has just become active. */
5648 if (!tmp->rdev
5649 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5650 count++;
5651 if (tmp->rdev) {
5652 /* Replaced device not technically faulty,
5653 * but we need to be sure it gets removed
5654 * and never re-added.
5656 set_bit(Faulty, &tmp->rdev->flags);
5657 sysfs_notify_dirent_safe(
5658 tmp->rdev->sysfs_state);
5660 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5661 } else if (tmp->rdev
5662 && tmp->rdev->recovery_offset == MaxSector
5663 && !test_bit(Faulty, &tmp->rdev->flags)
5664 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5665 count++;
5666 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5669 spin_lock_irqsave(&conf->device_lock, flags);
5670 mddev->degraded = calc_degraded(conf);
5671 spin_unlock_irqrestore(&conf->device_lock, flags);
5672 print_raid5_conf(conf);
5673 return count;
5676 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5678 struct r5conf *conf = mddev->private;
5679 int err = 0;
5680 int number = rdev->raid_disk;
5681 struct md_rdev **rdevp;
5682 struct disk_info *p = conf->disks + number;
5684 print_raid5_conf(conf);
5685 if (rdev == p->rdev)
5686 rdevp = &p->rdev;
5687 else if (rdev == p->replacement)
5688 rdevp = &p->replacement;
5689 else
5690 return 0;
5692 if (number >= conf->raid_disks &&
5693 conf->reshape_progress == MaxSector)
5694 clear_bit(In_sync, &rdev->flags);
5696 if (test_bit(In_sync, &rdev->flags) ||
5697 atomic_read(&rdev->nr_pending)) {
5698 err = -EBUSY;
5699 goto abort;
5701 /* Only remove non-faulty devices if recovery
5702 * isn't possible.
5704 if (!test_bit(Faulty, &rdev->flags) &&
5705 mddev->recovery_disabled != conf->recovery_disabled &&
5706 !has_failed(conf) &&
5707 (!p->replacement || p->replacement == rdev) &&
5708 number < conf->raid_disks) {
5709 err = -EBUSY;
5710 goto abort;
5712 *rdevp = NULL;
5713 synchronize_rcu();
5714 if (atomic_read(&rdev->nr_pending)) {
5715 /* lost the race, try later */
5716 err = -EBUSY;
5717 *rdevp = rdev;
5718 } else if (p->replacement) {
5719 /* We must have just cleared 'rdev' */
5720 p->rdev = p->replacement;
5721 clear_bit(Replacement, &p->replacement->flags);
5722 smp_mb(); /* Make sure other CPUs may see both as identical
5723 * but will never see neither - if they are careful
5725 p->replacement = NULL;
5726 clear_bit(WantReplacement, &rdev->flags);
5727 } else
5728 /* We might have just removed the Replacement as faulty-
5729 * clear the bit just in case
5731 clear_bit(WantReplacement, &rdev->flags);
5732 abort:
5734 print_raid5_conf(conf);
5735 return err;
5738 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5740 struct r5conf *conf = mddev->private;
5741 int err = -EEXIST;
5742 int disk;
5743 struct disk_info *p;
5744 int first = 0;
5745 int last = conf->raid_disks - 1;
5747 if (mddev->recovery_disabled == conf->recovery_disabled)
5748 return -EBUSY;
5750 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5751 /* no point adding a device */
5752 return -EINVAL;
5754 if (rdev->raid_disk >= 0)
5755 first = last = rdev->raid_disk;
5758 * find the disk ... but prefer rdev->saved_raid_disk
5759 * if possible.
5761 if (rdev->saved_raid_disk >= 0 &&
5762 rdev->saved_raid_disk >= first &&
5763 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5764 first = rdev->saved_raid_disk;
5766 for (disk = first; disk <= last; disk++) {
5767 p = conf->disks + disk;
5768 if (p->rdev == NULL) {
5769 clear_bit(In_sync, &rdev->flags);
5770 rdev->raid_disk = disk;
5771 err = 0;
5772 if (rdev->saved_raid_disk != disk)
5773 conf->fullsync = 1;
5774 rcu_assign_pointer(p->rdev, rdev);
5775 goto out;
5778 for (disk = first; disk <= last; disk++) {
5779 p = conf->disks + disk;
5780 if (test_bit(WantReplacement, &p->rdev->flags) &&
5781 p->replacement == NULL) {
5782 clear_bit(In_sync, &rdev->flags);
5783 set_bit(Replacement, &rdev->flags);
5784 rdev->raid_disk = disk;
5785 err = 0;
5786 conf->fullsync = 1;
5787 rcu_assign_pointer(p->replacement, rdev);
5788 break;
5791 out:
5792 print_raid5_conf(conf);
5793 return err;
5796 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5798 /* no resync is happening, and there is enough space
5799 * on all devices, so we can resize.
5800 * We need to make sure resync covers any new space.
5801 * If the array is shrinking we should possibly wait until
5802 * any io in the removed space completes, but it hardly seems
5803 * worth it.
5805 sector_t newsize;
5806 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5807 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5808 if (mddev->external_size &&
5809 mddev->array_sectors > newsize)
5810 return -EINVAL;
5811 if (mddev->bitmap) {
5812 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5813 if (ret)
5814 return ret;
5816 md_set_array_sectors(mddev, newsize);
5817 set_capacity(mddev->gendisk, mddev->array_sectors);
5818 revalidate_disk(mddev->gendisk);
5819 if (sectors > mddev->dev_sectors &&
5820 mddev->recovery_cp > mddev->dev_sectors) {
5821 mddev->recovery_cp = mddev->dev_sectors;
5822 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5824 mddev->dev_sectors = sectors;
5825 mddev->resync_max_sectors = sectors;
5826 return 0;
5829 static int check_stripe_cache(struct mddev *mddev)
5831 /* Can only proceed if there are plenty of stripe_heads.
5832 * We need a minimum of one full stripe,, and for sensible progress
5833 * it is best to have about 4 times that.
5834 * If we require 4 times, then the default 256 4K stripe_heads will
5835 * allow for chunk sizes up to 256K, which is probably OK.
5836 * If the chunk size is greater, user-space should request more
5837 * stripe_heads first.
5839 struct r5conf *conf = mddev->private;
5840 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5841 > conf->max_nr_stripes ||
5842 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5843 > conf->max_nr_stripes) {
5844 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5845 mdname(mddev),
5846 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5847 / STRIPE_SIZE)*4);
5848 return 0;
5850 return 1;
5853 static int check_reshape(struct mddev *mddev)
5855 struct r5conf *conf = mddev->private;
5857 if (mddev->delta_disks == 0 &&
5858 mddev->new_layout == mddev->layout &&
5859 mddev->new_chunk_sectors == mddev->chunk_sectors)
5860 return 0; /* nothing to do */
5861 if (has_failed(conf))
5862 return -EINVAL;
5863 if (mddev->delta_disks < 0) {
5864 /* We might be able to shrink, but the devices must
5865 * be made bigger first.
5866 * For raid6, 4 is the minimum size.
5867 * Otherwise 2 is the minimum
5869 int min = 2;
5870 if (mddev->level == 6)
5871 min = 4;
5872 if (mddev->raid_disks + mddev->delta_disks < min)
5873 return -EINVAL;
5876 if (!check_stripe_cache(mddev))
5877 return -ENOSPC;
5879 return resize_stripes(conf, (conf->previous_raid_disks
5880 + mddev->delta_disks));
5883 static int raid5_start_reshape(struct mddev *mddev)
5885 struct r5conf *conf = mddev->private;
5886 struct md_rdev *rdev;
5887 int spares = 0;
5888 unsigned long flags;
5890 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5891 return -EBUSY;
5893 if (!check_stripe_cache(mddev))
5894 return -ENOSPC;
5896 if (has_failed(conf))
5897 return -EINVAL;
5899 rdev_for_each(rdev, mddev) {
5900 if (!test_bit(In_sync, &rdev->flags)
5901 && !test_bit(Faulty, &rdev->flags))
5902 spares++;
5905 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5906 /* Not enough devices even to make a degraded array
5907 * of that size
5909 return -EINVAL;
5911 /* Refuse to reduce size of the array. Any reductions in
5912 * array size must be through explicit setting of array_size
5913 * attribute.
5915 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5916 < mddev->array_sectors) {
5917 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5918 "before number of disks\n", mdname(mddev));
5919 return -EINVAL;
5922 atomic_set(&conf->reshape_stripes, 0);
5923 spin_lock_irq(&conf->device_lock);
5924 conf->previous_raid_disks = conf->raid_disks;
5925 conf->raid_disks += mddev->delta_disks;
5926 conf->prev_chunk_sectors = conf->chunk_sectors;
5927 conf->chunk_sectors = mddev->new_chunk_sectors;
5928 conf->prev_algo = conf->algorithm;
5929 conf->algorithm = mddev->new_layout;
5930 conf->generation++;
5931 /* Code that selects data_offset needs to see the generation update
5932 * if reshape_progress has been set - so a memory barrier needed.
5934 smp_mb();
5935 if (mddev->reshape_backwards)
5936 conf->reshape_progress = raid5_size(mddev, 0, 0);
5937 else
5938 conf->reshape_progress = 0;
5939 conf->reshape_safe = conf->reshape_progress;
5940 spin_unlock_irq(&conf->device_lock);
5942 /* Add some new drives, as many as will fit.
5943 * We know there are enough to make the newly sized array work.
5944 * Don't add devices if we are reducing the number of
5945 * devices in the array. This is because it is not possible
5946 * to correctly record the "partially reconstructed" state of
5947 * such devices during the reshape and confusion could result.
5949 if (mddev->delta_disks >= 0) {
5950 rdev_for_each(rdev, mddev)
5951 if (rdev->raid_disk < 0 &&
5952 !test_bit(Faulty, &rdev->flags)) {
5953 if (raid5_add_disk(mddev, rdev) == 0) {
5954 if (rdev->raid_disk
5955 >= conf->previous_raid_disks)
5956 set_bit(In_sync, &rdev->flags);
5957 else
5958 rdev->recovery_offset = 0;
5960 if (sysfs_link_rdev(mddev, rdev))
5961 /* Failure here is OK */;
5963 } else if (rdev->raid_disk >= conf->previous_raid_disks
5964 && !test_bit(Faulty, &rdev->flags)) {
5965 /* This is a spare that was manually added */
5966 set_bit(In_sync, &rdev->flags);
5969 /* When a reshape changes the number of devices,
5970 * ->degraded is measured against the larger of the
5971 * pre and post number of devices.
5973 spin_lock_irqsave(&conf->device_lock, flags);
5974 mddev->degraded = calc_degraded(conf);
5975 spin_unlock_irqrestore(&conf->device_lock, flags);
5977 mddev->raid_disks = conf->raid_disks;
5978 mddev->reshape_position = conf->reshape_progress;
5979 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5981 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5982 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5983 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5984 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5985 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5986 "reshape");
5987 if (!mddev->sync_thread) {
5988 mddev->recovery = 0;
5989 spin_lock_irq(&conf->device_lock);
5990 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5991 rdev_for_each(rdev, mddev)
5992 rdev->new_data_offset = rdev->data_offset;
5993 smp_wmb();
5994 conf->reshape_progress = MaxSector;
5995 mddev->reshape_position = MaxSector;
5996 spin_unlock_irq(&conf->device_lock);
5997 return -EAGAIN;
5999 conf->reshape_checkpoint = jiffies;
6000 md_wakeup_thread(mddev->sync_thread);
6001 md_new_event(mddev);
6002 return 0;
6005 /* This is called from the reshape thread and should make any
6006 * changes needed in 'conf'
6008 static void end_reshape(struct r5conf *conf)
6011 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6012 struct md_rdev *rdev;
6014 spin_lock_irq(&conf->device_lock);
6015 conf->previous_raid_disks = conf->raid_disks;
6016 rdev_for_each(rdev, conf->mddev)
6017 rdev->data_offset = rdev->new_data_offset;
6018 smp_wmb();
6019 conf->reshape_progress = MaxSector;
6020 spin_unlock_irq(&conf->device_lock);
6021 wake_up(&conf->wait_for_overlap);
6023 /* read-ahead size must cover two whole stripes, which is
6024 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6026 if (conf->mddev->queue) {
6027 int data_disks = conf->raid_disks - conf->max_degraded;
6028 int stripe = data_disks * ((conf->chunk_sectors << 9)
6029 / PAGE_SIZE);
6030 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6031 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6036 /* This is called from the raid5d thread with mddev_lock held.
6037 * It makes config changes to the device.
6039 static void raid5_finish_reshape(struct mddev *mddev)
6041 struct r5conf *conf = mddev->private;
6043 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6045 if (mddev->delta_disks > 0) {
6046 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6047 set_capacity(mddev->gendisk, mddev->array_sectors);
6048 revalidate_disk(mddev->gendisk);
6049 } else {
6050 int d;
6051 spin_lock_irq(&conf->device_lock);
6052 mddev->degraded = calc_degraded(conf);
6053 spin_unlock_irq(&conf->device_lock);
6054 for (d = conf->raid_disks ;
6055 d < conf->raid_disks - mddev->delta_disks;
6056 d++) {
6057 struct md_rdev *rdev = conf->disks[d].rdev;
6058 if (rdev)
6059 clear_bit(In_sync, &rdev->flags);
6060 rdev = conf->disks[d].replacement;
6061 if (rdev)
6062 clear_bit(In_sync, &rdev->flags);
6065 mddev->layout = conf->algorithm;
6066 mddev->chunk_sectors = conf->chunk_sectors;
6067 mddev->reshape_position = MaxSector;
6068 mddev->delta_disks = 0;
6069 mddev->reshape_backwards = 0;
6073 static void raid5_quiesce(struct mddev *mddev, int state)
6075 struct r5conf *conf = mddev->private;
6077 switch(state) {
6078 case 2: /* resume for a suspend */
6079 wake_up(&conf->wait_for_overlap);
6080 break;
6082 case 1: /* stop all writes */
6083 spin_lock_irq(&conf->device_lock);
6084 /* '2' tells resync/reshape to pause so that all
6085 * active stripes can drain
6087 conf->quiesce = 2;
6088 wait_event_lock_irq(conf->wait_for_stripe,
6089 atomic_read(&conf->active_stripes) == 0 &&
6090 atomic_read(&conf->active_aligned_reads) == 0,
6091 conf->device_lock, /* nothing */);
6092 conf->quiesce = 1;
6093 spin_unlock_irq(&conf->device_lock);
6094 /* allow reshape to continue */
6095 wake_up(&conf->wait_for_overlap);
6096 break;
6098 case 0: /* re-enable writes */
6099 spin_lock_irq(&conf->device_lock);
6100 conf->quiesce = 0;
6101 wake_up(&conf->wait_for_stripe);
6102 wake_up(&conf->wait_for_overlap);
6103 spin_unlock_irq(&conf->device_lock);
6104 break;
6109 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6111 struct r0conf *raid0_conf = mddev->private;
6112 sector_t sectors;
6114 /* for raid0 takeover only one zone is supported */
6115 if (raid0_conf->nr_strip_zones > 1) {
6116 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6117 mdname(mddev));
6118 return ERR_PTR(-EINVAL);
6121 sectors = raid0_conf->strip_zone[0].zone_end;
6122 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6123 mddev->dev_sectors = sectors;
6124 mddev->new_level = level;
6125 mddev->new_layout = ALGORITHM_PARITY_N;
6126 mddev->new_chunk_sectors = mddev->chunk_sectors;
6127 mddev->raid_disks += 1;
6128 mddev->delta_disks = 1;
6129 /* make sure it will be not marked as dirty */
6130 mddev->recovery_cp = MaxSector;
6132 return setup_conf(mddev);
6136 static void *raid5_takeover_raid1(struct mddev *mddev)
6138 int chunksect;
6140 if (mddev->raid_disks != 2 ||
6141 mddev->degraded > 1)
6142 return ERR_PTR(-EINVAL);
6144 /* Should check if there are write-behind devices? */
6146 chunksect = 64*2; /* 64K by default */
6148 /* The array must be an exact multiple of chunksize */
6149 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6150 chunksect >>= 1;
6152 if ((chunksect<<9) < STRIPE_SIZE)
6153 /* array size does not allow a suitable chunk size */
6154 return ERR_PTR(-EINVAL);
6156 mddev->new_level = 5;
6157 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6158 mddev->new_chunk_sectors = chunksect;
6160 return setup_conf(mddev);
6163 static void *raid5_takeover_raid6(struct mddev *mddev)
6165 int new_layout;
6167 switch (mddev->layout) {
6168 case ALGORITHM_LEFT_ASYMMETRIC_6:
6169 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6170 break;
6171 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6172 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6173 break;
6174 case ALGORITHM_LEFT_SYMMETRIC_6:
6175 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6176 break;
6177 case ALGORITHM_RIGHT_SYMMETRIC_6:
6178 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6179 break;
6180 case ALGORITHM_PARITY_0_6:
6181 new_layout = ALGORITHM_PARITY_0;
6182 break;
6183 case ALGORITHM_PARITY_N:
6184 new_layout = ALGORITHM_PARITY_N;
6185 break;
6186 default:
6187 return ERR_PTR(-EINVAL);
6189 mddev->new_level = 5;
6190 mddev->new_layout = new_layout;
6191 mddev->delta_disks = -1;
6192 mddev->raid_disks -= 1;
6193 return setup_conf(mddev);
6197 static int raid5_check_reshape(struct mddev *mddev)
6199 /* For a 2-drive array, the layout and chunk size can be changed
6200 * immediately as not restriping is needed.
6201 * For larger arrays we record the new value - after validation
6202 * to be used by a reshape pass.
6204 struct r5conf *conf = mddev->private;
6205 int new_chunk = mddev->new_chunk_sectors;
6207 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6208 return -EINVAL;
6209 if (new_chunk > 0) {
6210 if (!is_power_of_2(new_chunk))
6211 return -EINVAL;
6212 if (new_chunk < (PAGE_SIZE>>9))
6213 return -EINVAL;
6214 if (mddev->array_sectors & (new_chunk-1))
6215 /* not factor of array size */
6216 return -EINVAL;
6219 /* They look valid */
6221 if (mddev->raid_disks == 2) {
6222 /* can make the change immediately */
6223 if (mddev->new_layout >= 0) {
6224 conf->algorithm = mddev->new_layout;
6225 mddev->layout = mddev->new_layout;
6227 if (new_chunk > 0) {
6228 conf->chunk_sectors = new_chunk ;
6229 mddev->chunk_sectors = new_chunk;
6231 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6232 md_wakeup_thread(mddev->thread);
6234 return check_reshape(mddev);
6237 static int raid6_check_reshape(struct mddev *mddev)
6239 int new_chunk = mddev->new_chunk_sectors;
6241 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6242 return -EINVAL;
6243 if (new_chunk > 0) {
6244 if (!is_power_of_2(new_chunk))
6245 return -EINVAL;
6246 if (new_chunk < (PAGE_SIZE >> 9))
6247 return -EINVAL;
6248 if (mddev->array_sectors & (new_chunk-1))
6249 /* not factor of array size */
6250 return -EINVAL;
6253 /* They look valid */
6254 return check_reshape(mddev);
6257 static void *raid5_takeover(struct mddev *mddev)
6259 /* raid5 can take over:
6260 * raid0 - if there is only one strip zone - make it a raid4 layout
6261 * raid1 - if there are two drives. We need to know the chunk size
6262 * raid4 - trivial - just use a raid4 layout.
6263 * raid6 - Providing it is a *_6 layout
6265 if (mddev->level == 0)
6266 return raid45_takeover_raid0(mddev, 5);
6267 if (mddev->level == 1)
6268 return raid5_takeover_raid1(mddev);
6269 if (mddev->level == 4) {
6270 mddev->new_layout = ALGORITHM_PARITY_N;
6271 mddev->new_level = 5;
6272 return setup_conf(mddev);
6274 if (mddev->level == 6)
6275 return raid5_takeover_raid6(mddev);
6277 return ERR_PTR(-EINVAL);
6280 static void *raid4_takeover(struct mddev *mddev)
6282 /* raid4 can take over:
6283 * raid0 - if there is only one strip zone
6284 * raid5 - if layout is right
6286 if (mddev->level == 0)
6287 return raid45_takeover_raid0(mddev, 4);
6288 if (mddev->level == 5 &&
6289 mddev->layout == ALGORITHM_PARITY_N) {
6290 mddev->new_layout = 0;
6291 mddev->new_level = 4;
6292 return setup_conf(mddev);
6294 return ERR_PTR(-EINVAL);
6297 static struct md_personality raid5_personality;
6299 static void *raid6_takeover(struct mddev *mddev)
6301 /* Currently can only take over a raid5. We map the
6302 * personality to an equivalent raid6 personality
6303 * with the Q block at the end.
6305 int new_layout;
6307 if (mddev->pers != &raid5_personality)
6308 return ERR_PTR(-EINVAL);
6309 if (mddev->degraded > 1)
6310 return ERR_PTR(-EINVAL);
6311 if (mddev->raid_disks > 253)
6312 return ERR_PTR(-EINVAL);
6313 if (mddev->raid_disks < 3)
6314 return ERR_PTR(-EINVAL);
6316 switch (mddev->layout) {
6317 case ALGORITHM_LEFT_ASYMMETRIC:
6318 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6319 break;
6320 case ALGORITHM_RIGHT_ASYMMETRIC:
6321 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6322 break;
6323 case ALGORITHM_LEFT_SYMMETRIC:
6324 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6325 break;
6326 case ALGORITHM_RIGHT_SYMMETRIC:
6327 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6328 break;
6329 case ALGORITHM_PARITY_0:
6330 new_layout = ALGORITHM_PARITY_0_6;
6331 break;
6332 case ALGORITHM_PARITY_N:
6333 new_layout = ALGORITHM_PARITY_N;
6334 break;
6335 default:
6336 return ERR_PTR(-EINVAL);
6338 mddev->new_level = 6;
6339 mddev->new_layout = new_layout;
6340 mddev->delta_disks = 1;
6341 mddev->raid_disks += 1;
6342 return setup_conf(mddev);
6346 static struct md_personality raid6_personality =
6348 .name = "raid6",
6349 .level = 6,
6350 .owner = THIS_MODULE,
6351 .make_request = make_request,
6352 .run = run,
6353 .stop = stop,
6354 .status = status,
6355 .error_handler = error,
6356 .hot_add_disk = raid5_add_disk,
6357 .hot_remove_disk= raid5_remove_disk,
6358 .spare_active = raid5_spare_active,
6359 .sync_request = sync_request,
6360 .resize = raid5_resize,
6361 .size = raid5_size,
6362 .check_reshape = raid6_check_reshape,
6363 .start_reshape = raid5_start_reshape,
6364 .finish_reshape = raid5_finish_reshape,
6365 .quiesce = raid5_quiesce,
6366 .takeover = raid6_takeover,
6368 static struct md_personality raid5_personality =
6370 .name = "raid5",
6371 .level = 5,
6372 .owner = THIS_MODULE,
6373 .make_request = make_request,
6374 .run = run,
6375 .stop = stop,
6376 .status = status,
6377 .error_handler = error,
6378 .hot_add_disk = raid5_add_disk,
6379 .hot_remove_disk= raid5_remove_disk,
6380 .spare_active = raid5_spare_active,
6381 .sync_request = sync_request,
6382 .resize = raid5_resize,
6383 .size = raid5_size,
6384 .check_reshape = raid5_check_reshape,
6385 .start_reshape = raid5_start_reshape,
6386 .finish_reshape = raid5_finish_reshape,
6387 .quiesce = raid5_quiesce,
6388 .takeover = raid5_takeover,
6391 static struct md_personality raid4_personality =
6393 .name = "raid4",
6394 .level = 4,
6395 .owner = THIS_MODULE,
6396 .make_request = make_request,
6397 .run = run,
6398 .stop = stop,
6399 .status = status,
6400 .error_handler = error,
6401 .hot_add_disk = raid5_add_disk,
6402 .hot_remove_disk= raid5_remove_disk,
6403 .spare_active = raid5_spare_active,
6404 .sync_request = sync_request,
6405 .resize = raid5_resize,
6406 .size = raid5_size,
6407 .check_reshape = raid5_check_reshape,
6408 .start_reshape = raid5_start_reshape,
6409 .finish_reshape = raid5_finish_reshape,
6410 .quiesce = raid5_quiesce,
6411 .takeover = raid4_takeover,
6414 static int __init raid5_init(void)
6416 register_md_personality(&raid6_personality);
6417 register_md_personality(&raid5_personality);
6418 register_md_personality(&raid4_personality);
6419 return 0;
6422 static void raid5_exit(void)
6424 unregister_md_personality(&raid6_personality);
6425 unregister_md_personality(&raid5_personality);
6426 unregister_md_personality(&raid4_personality);
6429 module_init(raid5_init);
6430 module_exit(raid5_exit);
6431 MODULE_LICENSE("GPL");
6432 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6433 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6434 MODULE_ALIAS("md-raid5");
6435 MODULE_ALIAS("md-raid4");
6436 MODULE_ALIAS("md-level-5");
6437 MODULE_ALIAS("md-level-4");
6438 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6439 MODULE_ALIAS("md-raid6");
6440 MODULE_ALIAS("md-level-6");
6442 /* This used to be two separate modules, they were: */
6443 MODULE_ALIAS("raid5");
6444 MODULE_ALIAS("raid6");