hw-breakpoints, x86: Fix modular KVM build
[linux-2.6/cjktty.git] / kernel / perf_event.c
blob98dc56b2ebe4806d0d8492b87c91e9908f1645ba
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
253 static void
254 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
256 struct perf_event *group_leader = event->group_leader;
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
280 static void
281 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
283 struct perf_event *sibling, *tmp;
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
309 static void
310 event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
333 static void
334 group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
338 struct perf_event *event;
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
343 event_sched_out(group_event, cpuctx, ctx);
346 * Schedule out siblings (if any):
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
356 * Cross CPU call to remove a performance event
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
361 static void __perf_event_remove_from_context(void *info)
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
375 spin_lock(&ctx->lock);
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
380 perf_disable();
382 event_sched_out(event, cpuctx, ctx);
384 list_del_event(event, ctx);
386 if (!ctx->task) {
388 * Allow more per task events with respect to the
389 * reservation:
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
396 perf_enable();
397 spin_unlock(&ctx->lock);
402 * Remove the event from a task's (or a CPU's) list of events.
404 * Must be called with ctx->mutex held.
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
416 static void perf_event_remove_from_context(struct perf_event *event)
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
421 if (!task) {
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
432 retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
436 spin_lock_irq(&ctx->lock);
438 * If the context is active we need to retry the smp call.
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
453 spin_unlock_irq(&ctx->lock);
456 static inline u64 perf_clock(void)
458 return cpu_clock(smp_processor_id());
462 * Update the record of the current time in a context.
464 static void update_context_time(struct perf_event_context *ctx)
466 u64 now = perf_clock();
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
473 * Update the total_time_enabled and total_time_running fields for a event.
475 static void update_event_times(struct perf_event *event)
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
491 event->total_time_running = run_end - event->tstamp_running;
495 * Update total_time_enabled and total_time_running for all events in a group.
497 static void update_group_times(struct perf_event *leader)
499 struct perf_event *event;
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
507 * Cross CPU call to disable a performance event
509 static void __perf_event_disable(void *info)
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
522 spin_lock(&ctx->lock);
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
538 spin_unlock(&ctx->lock);
542 * Disable a event.
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
554 static void perf_event_disable(struct perf_event *event)
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
559 if (!task) {
561 * Disable the event on the cpu that it's on
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
571 spin_lock_irq(&ctx->lock);
573 * If the event is still active, we need to retry the cross-call.
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
589 spin_unlock_irq(&ctx->lock);
592 static int
593 event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
604 * The new state must be visible before we turn it on in the hardware:
606 smp_wmb();
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
623 return 0;
626 static int
627 group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
632 struct perf_event *event, *partial_group;
633 int ret;
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
646 * Schedule in siblings as one group (if any):
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
655 return 0;
657 group_error:
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
667 event_sched_out(group_event, cpuctx, ctx);
669 return -EAGAIN;
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
676 static int is_software_only_group(struct perf_event *leader)
678 struct perf_event *event;
680 if (!is_software_event(leader))
681 return 0;
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
687 return 1;
691 * Work out whether we can put this event group on the CPU now.
693 static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
698 * Groups consisting entirely of software events can always go on.
700 if (is_software_only_group(event))
701 return 1;
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
706 if (cpuctx->exclusive)
707 return 0;
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
718 return can_add_hw;
721 static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
731 * Cross CPU call to install and enable a performance event
733 * Must be called with ctx->mutex held
735 static void __perf_install_in_context(void *info)
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
765 perf_disable();
767 add_event_to_ctx(event, ctx);
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
787 if (err) {
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
804 unlock:
805 perf_enable();
807 spin_unlock(&ctx->lock);
811 * Attach a performance event to a context
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
820 * Must be called with ctx->mutex held.
822 static void
823 perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
827 struct task_struct *task = ctx->task;
829 if (!task) {
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
839 retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
843 spin_lock_irq(&ctx->lock);
845 * we need to retry the smp call.
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
870 static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
873 struct perf_event *sub;
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
884 * Cross CPU call to enable a performance event
886 static void __perf_event_enable(void *info)
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
932 if (err) {
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
945 unlock:
946 spin_unlock(&ctx->lock);
950 * Enable a event.
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
958 static void perf_event_enable(struct perf_event *event)
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
963 if (!task) {
965 * Enable the event on the cpu that it's on
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
990 spin_lock_irq(&ctx->lock);
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1013 * not supported on inherited events
1015 if (event->attr.inherit)
1016 return -EINVAL;
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1021 return 0;
1024 void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1027 struct perf_event *event;
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1035 perf_disable();
1036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1056 static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1064 static void __perf_event_read(void *event);
1066 static void __perf_event_sync_stat(struct perf_event *event,
1067 struct perf_event *next_event)
1069 u64 value;
1071 if (!event->attr.inherit_stat)
1072 return;
1075 * Update the event value, we cannot use perf_event_read()
1076 * because we're in the middle of a context switch and have IRQs
1077 * disabled, which upsets smp_call_function_single(), however
1078 * we know the event must be on the current CPU, therefore we
1079 * don't need to use it.
1081 switch (event->state) {
1082 case PERF_EVENT_STATE_ACTIVE:
1083 __perf_event_read(event);
1084 break;
1086 case PERF_EVENT_STATE_INACTIVE:
1087 update_event_times(event);
1088 break;
1090 default:
1091 break;
1095 * In order to keep per-task stats reliable we need to flip the event
1096 * values when we flip the contexts.
1098 value = atomic64_read(&next_event->count);
1099 value = atomic64_xchg(&event->count, value);
1100 atomic64_set(&next_event->count, value);
1102 swap(event->total_time_enabled, next_event->total_time_enabled);
1103 swap(event->total_time_running, next_event->total_time_running);
1106 * Since we swizzled the values, update the user visible data too.
1108 perf_event_update_userpage(event);
1109 perf_event_update_userpage(next_event);
1112 #define list_next_entry(pos, member) \
1113 list_entry(pos->member.next, typeof(*pos), member)
1115 static void perf_event_sync_stat(struct perf_event_context *ctx,
1116 struct perf_event_context *next_ctx)
1118 struct perf_event *event, *next_event;
1120 if (!ctx->nr_stat)
1121 return;
1123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1132 __perf_event_sync_stat(event, next_event);
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1143 * We stop each event and update the event value in event->count.
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1150 void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1166 update_context_time(ctx);
1168 rcu_read_lock();
1169 parent = rcu_dereference(ctx->parent_ctx);
1170 next_ctx = next->perf_event_ctxp;
1171 if (parent && next_ctx &&
1172 rcu_dereference(next_ctx->parent_ctx) == parent) {
1174 * Looks like the two contexts are clones, so we might be
1175 * able to optimize the context switch. We lock both
1176 * contexts and check that they are clones under the
1177 * lock (including re-checking that neither has been
1178 * uncloned in the meantime). It doesn't matter which
1179 * order we take the locks because no other cpu could
1180 * be trying to lock both of these tasks.
1182 spin_lock(&ctx->lock);
1183 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1184 if (context_equiv(ctx, next_ctx)) {
1186 * XXX do we need a memory barrier of sorts
1187 * wrt to rcu_dereference() of perf_event_ctxp
1189 task->perf_event_ctxp = next_ctx;
1190 next->perf_event_ctxp = ctx;
1191 ctx->task = next;
1192 next_ctx->task = task;
1193 do_switch = 0;
1195 perf_event_sync_stat(ctx, next_ctx);
1197 spin_unlock(&next_ctx->lock);
1198 spin_unlock(&ctx->lock);
1200 rcu_read_unlock();
1202 if (do_switch) {
1203 __perf_event_sched_out(ctx, cpuctx);
1204 cpuctx->task_ctx = NULL;
1209 * Called with IRQs disabled
1211 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1213 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1215 if (!cpuctx->task_ctx)
1216 return;
1218 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1219 return;
1221 __perf_event_sched_out(ctx, cpuctx);
1222 cpuctx->task_ctx = NULL;
1226 * Called with IRQs disabled
1228 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1230 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1233 static void
1234 __perf_event_sched_in(struct perf_event_context *ctx,
1235 struct perf_cpu_context *cpuctx, int cpu)
1237 struct perf_event *event;
1238 int can_add_hw = 1;
1240 spin_lock(&ctx->lock);
1241 ctx->is_active = 1;
1242 if (likely(!ctx->nr_events))
1243 goto out;
1245 ctx->timestamp = perf_clock();
1247 perf_disable();
1250 * First go through the list and put on any pinned groups
1251 * in order to give them the best chance of going on.
1253 list_for_each_entry(event, &ctx->group_list, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF ||
1255 !event->attr.pinned)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != cpu)
1258 continue;
1260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx, cpu);
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1275 * Ignore events in OFF or ERROR state, and
1276 * ignore pinned events since we did them already.
1278 if (event->state <= PERF_EVENT_STATE_OFF ||
1279 event->attr.pinned)
1280 continue;
1283 * Listen to the 'cpu' scheduling filter constraint
1284 * of events:
1286 if (event->cpu != -1 && event->cpu != cpu)
1287 continue;
1289 if (group_can_go_on(event, cpuctx, can_add_hw))
1290 if (group_sched_in(event, cpuctx, ctx, cpu))
1291 can_add_hw = 0;
1293 perf_enable();
1294 out:
1295 spin_unlock(&ctx->lock);
1299 * Called from scheduler to add the events of the current task
1300 * with interrupts disabled.
1302 * We restore the event value and then enable it.
1304 * This does not protect us against NMI, but enable()
1305 * sets the enabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * keep the event running.
1309 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1311 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312 struct perf_event_context *ctx = task->perf_event_ctxp;
1314 if (likely(!ctx))
1315 return;
1316 if (cpuctx->task_ctx == ctx)
1317 return;
1318 __perf_event_sched_in(ctx, cpuctx, cpu);
1319 cpuctx->task_ctx = ctx;
1322 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1324 struct perf_event_context *ctx = &cpuctx->ctx;
1326 __perf_event_sched_in(ctx, cpuctx, cpu);
1329 #define MAX_INTERRUPTS (~0ULL)
1331 static void perf_log_throttle(struct perf_event *event, int enable);
1333 static void perf_adjust_period(struct perf_event *event, u64 events)
1335 struct hw_perf_event *hwc = &event->hw;
1336 u64 period, sample_period;
1337 s64 delta;
1339 events *= hwc->sample_period;
1340 period = div64_u64(events, event->attr.sample_freq);
1342 delta = (s64)(period - hwc->sample_period);
1343 delta = (delta + 7) / 8; /* low pass filter */
1345 sample_period = hwc->sample_period + delta;
1347 if (!sample_period)
1348 sample_period = 1;
1350 hwc->sample_period = sample_period;
1353 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1355 struct perf_event *event;
1356 struct hw_perf_event *hwc;
1357 u64 interrupts, freq;
1359 spin_lock(&ctx->lock);
1360 list_for_each_entry(event, &ctx->group_list, group_entry) {
1361 if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 continue;
1364 hwc = &event->hw;
1366 interrupts = hwc->interrupts;
1367 hwc->interrupts = 0;
1370 * unthrottle events on the tick
1372 if (interrupts == MAX_INTERRUPTS) {
1373 perf_log_throttle(event, 1);
1374 event->pmu->unthrottle(event);
1375 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1378 if (!event->attr.freq || !event->attr.sample_freq)
1379 continue;
1382 * if the specified freq < HZ then we need to skip ticks
1384 if (event->attr.sample_freq < HZ) {
1385 freq = event->attr.sample_freq;
1387 hwc->freq_count += freq;
1388 hwc->freq_interrupts += interrupts;
1390 if (hwc->freq_count < HZ)
1391 continue;
1393 interrupts = hwc->freq_interrupts;
1394 hwc->freq_interrupts = 0;
1395 hwc->freq_count -= HZ;
1396 } else
1397 freq = HZ;
1399 perf_adjust_period(event, freq * interrupts);
1402 * In order to avoid being stalled by an (accidental) huge
1403 * sample period, force reset the sample period if we didn't
1404 * get any events in this freq period.
1406 if (!interrupts) {
1407 perf_disable();
1408 event->pmu->disable(event);
1409 atomic64_set(&hwc->period_left, 0);
1410 event->pmu->enable(event);
1411 perf_enable();
1414 spin_unlock(&ctx->lock);
1418 * Round-robin a context's events:
1420 static void rotate_ctx(struct perf_event_context *ctx)
1422 struct perf_event *event;
1424 if (!ctx->nr_events)
1425 return;
1427 spin_lock(&ctx->lock);
1429 * Rotate the first entry last (works just fine for group events too):
1431 perf_disable();
1432 list_for_each_entry(event, &ctx->group_list, group_entry) {
1433 list_move_tail(&event->group_entry, &ctx->group_list);
1434 break;
1436 perf_enable();
1438 spin_unlock(&ctx->lock);
1441 void perf_event_task_tick(struct task_struct *curr, int cpu)
1443 struct perf_cpu_context *cpuctx;
1444 struct perf_event_context *ctx;
1446 if (!atomic_read(&nr_events))
1447 return;
1449 cpuctx = &per_cpu(perf_cpu_context, cpu);
1450 ctx = curr->perf_event_ctxp;
1452 perf_ctx_adjust_freq(&cpuctx->ctx);
1453 if (ctx)
1454 perf_ctx_adjust_freq(ctx);
1456 perf_event_cpu_sched_out(cpuctx);
1457 if (ctx)
1458 __perf_event_task_sched_out(ctx);
1460 rotate_ctx(&cpuctx->ctx);
1461 if (ctx)
1462 rotate_ctx(ctx);
1464 perf_event_cpu_sched_in(cpuctx, cpu);
1465 if (ctx)
1466 perf_event_task_sched_in(curr, cpu);
1470 * Enable all of a task's events that have been marked enable-on-exec.
1471 * This expects task == current.
1473 static void perf_event_enable_on_exec(struct task_struct *task)
1475 struct perf_event_context *ctx;
1476 struct perf_event *event;
1477 unsigned long flags;
1478 int enabled = 0;
1480 local_irq_save(flags);
1481 ctx = task->perf_event_ctxp;
1482 if (!ctx || !ctx->nr_events)
1483 goto out;
1485 __perf_event_task_sched_out(ctx);
1487 spin_lock(&ctx->lock);
1489 list_for_each_entry(event, &ctx->group_list, group_entry) {
1490 if (!event->attr.enable_on_exec)
1491 continue;
1492 event->attr.enable_on_exec = 0;
1493 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494 continue;
1495 __perf_event_mark_enabled(event, ctx);
1496 enabled = 1;
1500 * Unclone this context if we enabled any event.
1502 if (enabled)
1503 unclone_ctx(ctx);
1505 spin_unlock(&ctx->lock);
1507 perf_event_task_sched_in(task, smp_processor_id());
1508 out:
1509 local_irq_restore(flags);
1513 * Cross CPU call to read the hardware event
1515 static void __perf_event_read(void *info)
1517 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
1520 unsigned long flags;
1523 * If this is a task context, we need to check whether it is
1524 * the current task context of this cpu. If not it has been
1525 * scheduled out before the smp call arrived. In that case
1526 * event->count would have been updated to a recent sample
1527 * when the event was scheduled out.
1529 if (ctx->task && cpuctx->task_ctx != ctx)
1530 return;
1532 local_irq_save(flags);
1533 if (ctx->is_active)
1534 update_context_time(ctx);
1535 event->pmu->read(event);
1536 update_event_times(event);
1537 local_irq_restore(flags);
1540 static u64 perf_event_read(struct perf_event *event)
1543 * If event is enabled and currently active on a CPU, update the
1544 * value in the event structure:
1546 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1547 smp_call_function_single(event->oncpu,
1548 __perf_event_read, event, 1);
1549 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1550 update_event_times(event);
1553 return atomic64_read(&event->count);
1557 * Initialize the perf_event context in a task_struct:
1559 static void
1560 __perf_event_init_context(struct perf_event_context *ctx,
1561 struct task_struct *task)
1563 memset(ctx, 0, sizeof(*ctx));
1564 spin_lock_init(&ctx->lock);
1565 mutex_init(&ctx->mutex);
1566 INIT_LIST_HEAD(&ctx->group_list);
1567 INIT_LIST_HEAD(&ctx->event_list);
1568 atomic_set(&ctx->refcount, 1);
1569 ctx->task = task;
1572 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1574 struct perf_event_context *ctx;
1575 struct perf_cpu_context *cpuctx;
1576 struct task_struct *task;
1577 unsigned long flags;
1578 int err;
1581 * If cpu is not a wildcard then this is a percpu event:
1583 if (cpu != -1) {
1584 /* Must be root to operate on a CPU event: */
1585 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1586 return ERR_PTR(-EACCES);
1588 if (cpu < 0 || cpu > num_possible_cpus())
1589 return ERR_PTR(-EINVAL);
1592 * We could be clever and allow to attach a event to an
1593 * offline CPU and activate it when the CPU comes up, but
1594 * that's for later.
1596 if (!cpu_isset(cpu, cpu_online_map))
1597 return ERR_PTR(-ENODEV);
1599 cpuctx = &per_cpu(perf_cpu_context, cpu);
1600 ctx = &cpuctx->ctx;
1601 get_ctx(ctx);
1603 return ctx;
1606 rcu_read_lock();
1607 if (!pid)
1608 task = current;
1609 else
1610 task = find_task_by_vpid(pid);
1611 if (task)
1612 get_task_struct(task);
1613 rcu_read_unlock();
1615 if (!task)
1616 return ERR_PTR(-ESRCH);
1619 * Can't attach events to a dying task.
1621 err = -ESRCH;
1622 if (task->flags & PF_EXITING)
1623 goto errout;
1625 /* Reuse ptrace permission checks for now. */
1626 err = -EACCES;
1627 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1628 goto errout;
1630 retry:
1631 ctx = perf_lock_task_context(task, &flags);
1632 if (ctx) {
1633 unclone_ctx(ctx);
1634 spin_unlock_irqrestore(&ctx->lock, flags);
1637 if (!ctx) {
1638 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1639 err = -ENOMEM;
1640 if (!ctx)
1641 goto errout;
1642 __perf_event_init_context(ctx, task);
1643 get_ctx(ctx);
1644 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1646 * We raced with some other task; use
1647 * the context they set.
1649 kfree(ctx);
1650 goto retry;
1652 get_task_struct(task);
1655 put_task_struct(task);
1656 return ctx;
1658 errout:
1659 put_task_struct(task);
1660 return ERR_PTR(err);
1663 static void perf_event_free_filter(struct perf_event *event);
1665 static void free_event_rcu(struct rcu_head *head)
1667 struct perf_event *event;
1669 event = container_of(head, struct perf_event, rcu_head);
1670 if (event->ns)
1671 put_pid_ns(event->ns);
1672 perf_event_free_filter(event);
1673 kfree(event);
1676 static void perf_pending_sync(struct perf_event *event);
1678 static void free_event(struct perf_event *event)
1680 perf_pending_sync(event);
1682 if (!event->parent) {
1683 atomic_dec(&nr_events);
1684 if (event->attr.mmap)
1685 atomic_dec(&nr_mmap_events);
1686 if (event->attr.comm)
1687 atomic_dec(&nr_comm_events);
1688 if (event->attr.task)
1689 atomic_dec(&nr_task_events);
1692 if (event->output) {
1693 fput(event->output->filp);
1694 event->output = NULL;
1697 if (event->destroy)
1698 event->destroy(event);
1700 put_ctx(event->ctx);
1701 call_rcu(&event->rcu_head, free_event_rcu);
1705 * Called when the last reference to the file is gone.
1707 static int perf_release(struct inode *inode, struct file *file)
1709 struct perf_event *event = file->private_data;
1710 struct perf_event_context *ctx = event->ctx;
1712 file->private_data = NULL;
1714 WARN_ON_ONCE(ctx->parent_ctx);
1715 mutex_lock(&ctx->mutex);
1716 perf_event_remove_from_context(event);
1717 mutex_unlock(&ctx->mutex);
1719 mutex_lock(&event->owner->perf_event_mutex);
1720 list_del_init(&event->owner_entry);
1721 mutex_unlock(&event->owner->perf_event_mutex);
1722 put_task_struct(event->owner);
1724 free_event(event);
1726 return 0;
1729 int perf_event_release_kernel(struct perf_event *event)
1731 struct perf_event_context *ctx = event->ctx;
1733 WARN_ON_ONCE(ctx->parent_ctx);
1734 mutex_lock(&ctx->mutex);
1735 perf_event_remove_from_context(event);
1736 mutex_unlock(&ctx->mutex);
1738 mutex_lock(&event->owner->perf_event_mutex);
1739 list_del_init(&event->owner_entry);
1740 mutex_unlock(&event->owner->perf_event_mutex);
1741 put_task_struct(event->owner);
1743 free_event(event);
1745 return 0;
1747 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1749 static int perf_event_read_size(struct perf_event *event)
1751 int entry = sizeof(u64); /* value */
1752 int size = 0;
1753 int nr = 1;
1755 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1756 size += sizeof(u64);
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1759 size += sizeof(u64);
1761 if (event->attr.read_format & PERF_FORMAT_ID)
1762 entry += sizeof(u64);
1764 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1765 nr += event->group_leader->nr_siblings;
1766 size += sizeof(u64);
1769 size += entry * nr;
1771 return size;
1774 u64 perf_event_read_value(struct perf_event *event)
1776 struct perf_event *child;
1777 u64 total = 0;
1779 total += perf_event_read(event);
1780 list_for_each_entry(child, &event->child_list, child_list)
1781 total += perf_event_read(child);
1783 return total;
1785 EXPORT_SYMBOL_GPL(perf_event_read_value);
1787 static int perf_event_read_entry(struct perf_event *event,
1788 u64 read_format, char __user *buf)
1790 int n = 0, count = 0;
1791 u64 values[2];
1793 values[n++] = perf_event_read_value(event);
1794 if (read_format & PERF_FORMAT_ID)
1795 values[n++] = primary_event_id(event);
1797 count = n * sizeof(u64);
1799 if (copy_to_user(buf, values, count))
1800 return -EFAULT;
1802 return count;
1805 static int perf_event_read_group(struct perf_event *event,
1806 u64 read_format, char __user *buf)
1808 struct perf_event *leader = event->group_leader, *sub;
1809 int n = 0, size = 0, err = -EFAULT;
1810 u64 values[3];
1812 values[n++] = 1 + leader->nr_siblings;
1813 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1814 values[n++] = leader->total_time_enabled +
1815 atomic64_read(&leader->child_total_time_enabled);
1817 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1818 values[n++] = leader->total_time_running +
1819 atomic64_read(&leader->child_total_time_running);
1822 size = n * sizeof(u64);
1824 if (copy_to_user(buf, values, size))
1825 return -EFAULT;
1827 err = perf_event_read_entry(leader, read_format, buf + size);
1828 if (err < 0)
1829 return err;
1831 size += err;
1833 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1834 err = perf_event_read_entry(sub, read_format,
1835 buf + size);
1836 if (err < 0)
1837 return err;
1839 size += err;
1842 return size;
1845 static int perf_event_read_one(struct perf_event *event,
1846 u64 read_format, char __user *buf)
1848 u64 values[4];
1849 int n = 0;
1851 values[n++] = perf_event_read_value(event);
1852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1853 values[n++] = event->total_time_enabled +
1854 atomic64_read(&event->child_total_time_enabled);
1856 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1857 values[n++] = event->total_time_running +
1858 atomic64_read(&event->child_total_time_running);
1860 if (read_format & PERF_FORMAT_ID)
1861 values[n++] = primary_event_id(event);
1863 if (copy_to_user(buf, values, n * sizeof(u64)))
1864 return -EFAULT;
1866 return n * sizeof(u64);
1870 * Read the performance event - simple non blocking version for now
1872 static ssize_t
1873 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1875 u64 read_format = event->attr.read_format;
1876 int ret;
1879 * Return end-of-file for a read on a event that is in
1880 * error state (i.e. because it was pinned but it couldn't be
1881 * scheduled on to the CPU at some point).
1883 if (event->state == PERF_EVENT_STATE_ERROR)
1884 return 0;
1886 if (count < perf_event_read_size(event))
1887 return -ENOSPC;
1889 WARN_ON_ONCE(event->ctx->parent_ctx);
1890 mutex_lock(&event->child_mutex);
1891 if (read_format & PERF_FORMAT_GROUP)
1892 ret = perf_event_read_group(event, read_format, buf);
1893 else
1894 ret = perf_event_read_one(event, read_format, buf);
1895 mutex_unlock(&event->child_mutex);
1897 return ret;
1900 static ssize_t
1901 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1903 struct perf_event *event = file->private_data;
1905 return perf_read_hw(event, buf, count);
1908 static unsigned int perf_poll(struct file *file, poll_table *wait)
1910 struct perf_event *event = file->private_data;
1911 struct perf_mmap_data *data;
1912 unsigned int events = POLL_HUP;
1914 rcu_read_lock();
1915 data = rcu_dereference(event->data);
1916 if (data)
1917 events = atomic_xchg(&data->poll, 0);
1918 rcu_read_unlock();
1920 poll_wait(file, &event->waitq, wait);
1922 return events;
1925 static void perf_event_reset(struct perf_event *event)
1927 (void)perf_event_read(event);
1928 atomic64_set(&event->count, 0);
1929 perf_event_update_userpage(event);
1933 * Holding the top-level event's child_mutex means that any
1934 * descendant process that has inherited this event will block
1935 * in sync_child_event if it goes to exit, thus satisfying the
1936 * task existence requirements of perf_event_enable/disable.
1938 static void perf_event_for_each_child(struct perf_event *event,
1939 void (*func)(struct perf_event *))
1941 struct perf_event *child;
1943 WARN_ON_ONCE(event->ctx->parent_ctx);
1944 mutex_lock(&event->child_mutex);
1945 func(event);
1946 list_for_each_entry(child, &event->child_list, child_list)
1947 func(child);
1948 mutex_unlock(&event->child_mutex);
1951 static void perf_event_for_each(struct perf_event *event,
1952 void (*func)(struct perf_event *))
1954 struct perf_event_context *ctx = event->ctx;
1955 struct perf_event *sibling;
1957 WARN_ON_ONCE(ctx->parent_ctx);
1958 mutex_lock(&ctx->mutex);
1959 event = event->group_leader;
1961 perf_event_for_each_child(event, func);
1962 func(event);
1963 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1964 perf_event_for_each_child(event, func);
1965 mutex_unlock(&ctx->mutex);
1968 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1970 struct perf_event_context *ctx = event->ctx;
1971 unsigned long size;
1972 int ret = 0;
1973 u64 value;
1975 if (!event->attr.sample_period)
1976 return -EINVAL;
1978 size = copy_from_user(&value, arg, sizeof(value));
1979 if (size != sizeof(value))
1980 return -EFAULT;
1982 if (!value)
1983 return -EINVAL;
1985 spin_lock_irq(&ctx->lock);
1986 if (event->attr.freq) {
1987 if (value > sysctl_perf_event_sample_rate) {
1988 ret = -EINVAL;
1989 goto unlock;
1992 event->attr.sample_freq = value;
1993 } else {
1994 event->attr.sample_period = value;
1995 event->hw.sample_period = value;
1997 unlock:
1998 spin_unlock_irq(&ctx->lock);
2000 return ret;
2003 static int perf_event_set_output(struct perf_event *event, int output_fd);
2004 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2006 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2008 struct perf_event *event = file->private_data;
2009 void (*func)(struct perf_event *);
2010 u32 flags = arg;
2012 switch (cmd) {
2013 case PERF_EVENT_IOC_ENABLE:
2014 func = perf_event_enable;
2015 break;
2016 case PERF_EVENT_IOC_DISABLE:
2017 func = perf_event_disable;
2018 break;
2019 case PERF_EVENT_IOC_RESET:
2020 func = perf_event_reset;
2021 break;
2023 case PERF_EVENT_IOC_REFRESH:
2024 return perf_event_refresh(event, arg);
2026 case PERF_EVENT_IOC_PERIOD:
2027 return perf_event_period(event, (u64 __user *)arg);
2029 case PERF_EVENT_IOC_SET_OUTPUT:
2030 return perf_event_set_output(event, arg);
2032 case PERF_EVENT_IOC_SET_FILTER:
2033 return perf_event_set_filter(event, (void __user *)arg);
2035 default:
2036 return -ENOTTY;
2039 if (flags & PERF_IOC_FLAG_GROUP)
2040 perf_event_for_each(event, func);
2041 else
2042 perf_event_for_each_child(event, func);
2044 return 0;
2047 int perf_event_task_enable(void)
2049 struct perf_event *event;
2051 mutex_lock(&current->perf_event_mutex);
2052 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2053 perf_event_for_each_child(event, perf_event_enable);
2054 mutex_unlock(&current->perf_event_mutex);
2056 return 0;
2059 int perf_event_task_disable(void)
2061 struct perf_event *event;
2063 mutex_lock(&current->perf_event_mutex);
2064 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2065 perf_event_for_each_child(event, perf_event_disable);
2066 mutex_unlock(&current->perf_event_mutex);
2068 return 0;
2071 #ifndef PERF_EVENT_INDEX_OFFSET
2072 # define PERF_EVENT_INDEX_OFFSET 0
2073 #endif
2075 static int perf_event_index(struct perf_event *event)
2077 if (event->state != PERF_EVENT_STATE_ACTIVE)
2078 return 0;
2080 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2084 * Callers need to ensure there can be no nesting of this function, otherwise
2085 * the seqlock logic goes bad. We can not serialize this because the arch
2086 * code calls this from NMI context.
2088 void perf_event_update_userpage(struct perf_event *event)
2090 struct perf_event_mmap_page *userpg;
2091 struct perf_mmap_data *data;
2093 rcu_read_lock();
2094 data = rcu_dereference(event->data);
2095 if (!data)
2096 goto unlock;
2098 userpg = data->user_page;
2101 * Disable preemption so as to not let the corresponding user-space
2102 * spin too long if we get preempted.
2104 preempt_disable();
2105 ++userpg->lock;
2106 barrier();
2107 userpg->index = perf_event_index(event);
2108 userpg->offset = atomic64_read(&event->count);
2109 if (event->state == PERF_EVENT_STATE_ACTIVE)
2110 userpg->offset -= atomic64_read(&event->hw.prev_count);
2112 userpg->time_enabled = event->total_time_enabled +
2113 atomic64_read(&event->child_total_time_enabled);
2115 userpg->time_running = event->total_time_running +
2116 atomic64_read(&event->child_total_time_running);
2118 barrier();
2119 ++userpg->lock;
2120 preempt_enable();
2121 unlock:
2122 rcu_read_unlock();
2125 static unsigned long perf_data_size(struct perf_mmap_data *data)
2127 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2130 #ifndef CONFIG_PERF_USE_VMALLOC
2133 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2136 static struct page *
2137 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2139 if (pgoff > data->nr_pages)
2140 return NULL;
2142 if (pgoff == 0)
2143 return virt_to_page(data->user_page);
2145 return virt_to_page(data->data_pages[pgoff - 1]);
2148 static struct perf_mmap_data *
2149 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2151 struct perf_mmap_data *data;
2152 unsigned long size;
2153 int i;
2155 WARN_ON(atomic_read(&event->mmap_count));
2157 size = sizeof(struct perf_mmap_data);
2158 size += nr_pages * sizeof(void *);
2160 data = kzalloc(size, GFP_KERNEL);
2161 if (!data)
2162 goto fail;
2164 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2165 if (!data->user_page)
2166 goto fail_user_page;
2168 for (i = 0; i < nr_pages; i++) {
2169 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2170 if (!data->data_pages[i])
2171 goto fail_data_pages;
2174 data->data_order = 0;
2175 data->nr_pages = nr_pages;
2177 return data;
2179 fail_data_pages:
2180 for (i--; i >= 0; i--)
2181 free_page((unsigned long)data->data_pages[i]);
2183 free_page((unsigned long)data->user_page);
2185 fail_user_page:
2186 kfree(data);
2188 fail:
2189 return NULL;
2192 static void perf_mmap_free_page(unsigned long addr)
2194 struct page *page = virt_to_page((void *)addr);
2196 page->mapping = NULL;
2197 __free_page(page);
2200 static void perf_mmap_data_free(struct perf_mmap_data *data)
2202 int i;
2204 perf_mmap_free_page((unsigned long)data->user_page);
2205 for (i = 0; i < data->nr_pages; i++)
2206 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2209 #else
2212 * Back perf_mmap() with vmalloc memory.
2214 * Required for architectures that have d-cache aliasing issues.
2217 static struct page *
2218 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2220 if (pgoff > (1UL << data->data_order))
2221 return NULL;
2223 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2226 static void perf_mmap_unmark_page(void *addr)
2228 struct page *page = vmalloc_to_page(addr);
2230 page->mapping = NULL;
2233 static void perf_mmap_data_free_work(struct work_struct *work)
2235 struct perf_mmap_data *data;
2236 void *base;
2237 int i, nr;
2239 data = container_of(work, struct perf_mmap_data, work);
2240 nr = 1 << data->data_order;
2242 base = data->user_page;
2243 for (i = 0; i < nr + 1; i++)
2244 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2246 vfree(base);
2249 static void perf_mmap_data_free(struct perf_mmap_data *data)
2251 schedule_work(&data->work);
2254 static struct perf_mmap_data *
2255 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2257 struct perf_mmap_data *data;
2258 unsigned long size;
2259 void *all_buf;
2261 WARN_ON(atomic_read(&event->mmap_count));
2263 size = sizeof(struct perf_mmap_data);
2264 size += sizeof(void *);
2266 data = kzalloc(size, GFP_KERNEL);
2267 if (!data)
2268 goto fail;
2270 INIT_WORK(&data->work, perf_mmap_data_free_work);
2272 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2273 if (!all_buf)
2274 goto fail_all_buf;
2276 data->user_page = all_buf;
2277 data->data_pages[0] = all_buf + PAGE_SIZE;
2278 data->data_order = ilog2(nr_pages);
2279 data->nr_pages = 1;
2281 return data;
2283 fail_all_buf:
2284 kfree(data);
2286 fail:
2287 return NULL;
2290 #endif
2292 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2294 struct perf_event *event = vma->vm_file->private_data;
2295 struct perf_mmap_data *data;
2296 int ret = VM_FAULT_SIGBUS;
2298 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2299 if (vmf->pgoff == 0)
2300 ret = 0;
2301 return ret;
2304 rcu_read_lock();
2305 data = rcu_dereference(event->data);
2306 if (!data)
2307 goto unlock;
2309 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2310 goto unlock;
2312 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2313 if (!vmf->page)
2314 goto unlock;
2316 get_page(vmf->page);
2317 vmf->page->mapping = vma->vm_file->f_mapping;
2318 vmf->page->index = vmf->pgoff;
2320 ret = 0;
2321 unlock:
2322 rcu_read_unlock();
2324 return ret;
2327 static void
2328 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2330 long max_size = perf_data_size(data);
2332 atomic_set(&data->lock, -1);
2334 if (event->attr.watermark) {
2335 data->watermark = min_t(long, max_size,
2336 event->attr.wakeup_watermark);
2339 if (!data->watermark)
2340 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2343 rcu_assign_pointer(event->data, data);
2346 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2348 struct perf_mmap_data *data;
2350 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2351 perf_mmap_data_free(data);
2352 kfree(data);
2355 static void perf_mmap_data_release(struct perf_event *event)
2357 struct perf_mmap_data *data = event->data;
2359 WARN_ON(atomic_read(&event->mmap_count));
2361 rcu_assign_pointer(event->data, NULL);
2362 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2365 static void perf_mmap_open(struct vm_area_struct *vma)
2367 struct perf_event *event = vma->vm_file->private_data;
2369 atomic_inc(&event->mmap_count);
2372 static void perf_mmap_close(struct vm_area_struct *vma)
2374 struct perf_event *event = vma->vm_file->private_data;
2376 WARN_ON_ONCE(event->ctx->parent_ctx);
2377 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2378 unsigned long size = perf_data_size(event->data);
2379 struct user_struct *user = current_user();
2381 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2382 vma->vm_mm->locked_vm -= event->data->nr_locked;
2383 perf_mmap_data_release(event);
2384 mutex_unlock(&event->mmap_mutex);
2388 static const struct vm_operations_struct perf_mmap_vmops = {
2389 .open = perf_mmap_open,
2390 .close = perf_mmap_close,
2391 .fault = perf_mmap_fault,
2392 .page_mkwrite = perf_mmap_fault,
2395 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2397 struct perf_event *event = file->private_data;
2398 unsigned long user_locked, user_lock_limit;
2399 struct user_struct *user = current_user();
2400 unsigned long locked, lock_limit;
2401 struct perf_mmap_data *data;
2402 unsigned long vma_size;
2403 unsigned long nr_pages;
2404 long user_extra, extra;
2405 int ret = 0;
2407 if (!(vma->vm_flags & VM_SHARED))
2408 return -EINVAL;
2410 vma_size = vma->vm_end - vma->vm_start;
2411 nr_pages = (vma_size / PAGE_SIZE) - 1;
2414 * If we have data pages ensure they're a power-of-two number, so we
2415 * can do bitmasks instead of modulo.
2417 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2418 return -EINVAL;
2420 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2421 return -EINVAL;
2423 if (vma->vm_pgoff != 0)
2424 return -EINVAL;
2426 WARN_ON_ONCE(event->ctx->parent_ctx);
2427 mutex_lock(&event->mmap_mutex);
2428 if (event->output) {
2429 ret = -EINVAL;
2430 goto unlock;
2433 if (atomic_inc_not_zero(&event->mmap_count)) {
2434 if (nr_pages != event->data->nr_pages)
2435 ret = -EINVAL;
2436 goto unlock;
2439 user_extra = nr_pages + 1;
2440 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2443 * Increase the limit linearly with more CPUs:
2445 user_lock_limit *= num_online_cpus();
2447 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2449 extra = 0;
2450 if (user_locked > user_lock_limit)
2451 extra = user_locked - user_lock_limit;
2453 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2454 lock_limit >>= PAGE_SHIFT;
2455 locked = vma->vm_mm->locked_vm + extra;
2457 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2458 !capable(CAP_IPC_LOCK)) {
2459 ret = -EPERM;
2460 goto unlock;
2463 WARN_ON(event->data);
2465 data = perf_mmap_data_alloc(event, nr_pages);
2466 ret = -ENOMEM;
2467 if (!data)
2468 goto unlock;
2470 ret = 0;
2471 perf_mmap_data_init(event, data);
2473 atomic_set(&event->mmap_count, 1);
2474 atomic_long_add(user_extra, &user->locked_vm);
2475 vma->vm_mm->locked_vm += extra;
2476 event->data->nr_locked = extra;
2477 if (vma->vm_flags & VM_WRITE)
2478 event->data->writable = 1;
2480 unlock:
2481 mutex_unlock(&event->mmap_mutex);
2483 vma->vm_flags |= VM_RESERVED;
2484 vma->vm_ops = &perf_mmap_vmops;
2486 return ret;
2489 static int perf_fasync(int fd, struct file *filp, int on)
2491 struct inode *inode = filp->f_path.dentry->d_inode;
2492 struct perf_event *event = filp->private_data;
2493 int retval;
2495 mutex_lock(&inode->i_mutex);
2496 retval = fasync_helper(fd, filp, on, &event->fasync);
2497 mutex_unlock(&inode->i_mutex);
2499 if (retval < 0)
2500 return retval;
2502 return 0;
2505 static const struct file_operations perf_fops = {
2506 .release = perf_release,
2507 .read = perf_read,
2508 .poll = perf_poll,
2509 .unlocked_ioctl = perf_ioctl,
2510 .compat_ioctl = perf_ioctl,
2511 .mmap = perf_mmap,
2512 .fasync = perf_fasync,
2516 * Perf event wakeup
2518 * If there's data, ensure we set the poll() state and publish everything
2519 * to user-space before waking everybody up.
2522 void perf_event_wakeup(struct perf_event *event)
2524 wake_up_all(&event->waitq);
2526 if (event->pending_kill) {
2527 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2528 event->pending_kill = 0;
2533 * Pending wakeups
2535 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2537 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2538 * single linked list and use cmpxchg() to add entries lockless.
2541 static void perf_pending_event(struct perf_pending_entry *entry)
2543 struct perf_event *event = container_of(entry,
2544 struct perf_event, pending);
2546 if (event->pending_disable) {
2547 event->pending_disable = 0;
2548 __perf_event_disable(event);
2551 if (event->pending_wakeup) {
2552 event->pending_wakeup = 0;
2553 perf_event_wakeup(event);
2557 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2559 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2560 PENDING_TAIL,
2563 static void perf_pending_queue(struct perf_pending_entry *entry,
2564 void (*func)(struct perf_pending_entry *))
2566 struct perf_pending_entry **head;
2568 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2569 return;
2571 entry->func = func;
2573 head = &get_cpu_var(perf_pending_head);
2575 do {
2576 entry->next = *head;
2577 } while (cmpxchg(head, entry->next, entry) != entry->next);
2579 set_perf_event_pending();
2581 put_cpu_var(perf_pending_head);
2584 static int __perf_pending_run(void)
2586 struct perf_pending_entry *list;
2587 int nr = 0;
2589 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2590 while (list != PENDING_TAIL) {
2591 void (*func)(struct perf_pending_entry *);
2592 struct perf_pending_entry *entry = list;
2594 list = list->next;
2596 func = entry->func;
2597 entry->next = NULL;
2599 * Ensure we observe the unqueue before we issue the wakeup,
2600 * so that we won't be waiting forever.
2601 * -- see perf_not_pending().
2603 smp_wmb();
2605 func(entry);
2606 nr++;
2609 return nr;
2612 static inline int perf_not_pending(struct perf_event *event)
2615 * If we flush on whatever cpu we run, there is a chance we don't
2616 * need to wait.
2618 get_cpu();
2619 __perf_pending_run();
2620 put_cpu();
2623 * Ensure we see the proper queue state before going to sleep
2624 * so that we do not miss the wakeup. -- see perf_pending_handle()
2626 smp_rmb();
2627 return event->pending.next == NULL;
2630 static void perf_pending_sync(struct perf_event *event)
2632 wait_event(event->waitq, perf_not_pending(event));
2635 void perf_event_do_pending(void)
2637 __perf_pending_run();
2641 * Callchain support -- arch specific
2644 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2646 return NULL;
2650 * Output
2652 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2653 unsigned long offset, unsigned long head)
2655 unsigned long mask;
2657 if (!data->writable)
2658 return true;
2660 mask = perf_data_size(data) - 1;
2662 offset = (offset - tail) & mask;
2663 head = (head - tail) & mask;
2665 if ((int)(head - offset) < 0)
2666 return false;
2668 return true;
2671 static void perf_output_wakeup(struct perf_output_handle *handle)
2673 atomic_set(&handle->data->poll, POLL_IN);
2675 if (handle->nmi) {
2676 handle->event->pending_wakeup = 1;
2677 perf_pending_queue(&handle->event->pending,
2678 perf_pending_event);
2679 } else
2680 perf_event_wakeup(handle->event);
2684 * Curious locking construct.
2686 * We need to ensure a later event_id doesn't publish a head when a former
2687 * event_id isn't done writing. However since we need to deal with NMIs we
2688 * cannot fully serialize things.
2690 * What we do is serialize between CPUs so we only have to deal with NMI
2691 * nesting on a single CPU.
2693 * We only publish the head (and generate a wakeup) when the outer-most
2694 * event_id completes.
2696 static void perf_output_lock(struct perf_output_handle *handle)
2698 struct perf_mmap_data *data = handle->data;
2699 int cpu;
2701 handle->locked = 0;
2703 local_irq_save(handle->flags);
2704 cpu = smp_processor_id();
2706 if (in_nmi() && atomic_read(&data->lock) == cpu)
2707 return;
2709 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2710 cpu_relax();
2712 handle->locked = 1;
2715 static void perf_output_unlock(struct perf_output_handle *handle)
2717 struct perf_mmap_data *data = handle->data;
2718 unsigned long head;
2719 int cpu;
2721 data->done_head = data->head;
2723 if (!handle->locked)
2724 goto out;
2726 again:
2728 * The xchg implies a full barrier that ensures all writes are done
2729 * before we publish the new head, matched by a rmb() in userspace when
2730 * reading this position.
2732 while ((head = atomic_long_xchg(&data->done_head, 0)))
2733 data->user_page->data_head = head;
2736 * NMI can happen here, which means we can miss a done_head update.
2739 cpu = atomic_xchg(&data->lock, -1);
2740 WARN_ON_ONCE(cpu != smp_processor_id());
2743 * Therefore we have to validate we did not indeed do so.
2745 if (unlikely(atomic_long_read(&data->done_head))) {
2747 * Since we had it locked, we can lock it again.
2749 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2750 cpu_relax();
2752 goto again;
2755 if (atomic_xchg(&data->wakeup, 0))
2756 perf_output_wakeup(handle);
2757 out:
2758 local_irq_restore(handle->flags);
2761 void perf_output_copy(struct perf_output_handle *handle,
2762 const void *buf, unsigned int len)
2764 unsigned int pages_mask;
2765 unsigned long offset;
2766 unsigned int size;
2767 void **pages;
2769 offset = handle->offset;
2770 pages_mask = handle->data->nr_pages - 1;
2771 pages = handle->data->data_pages;
2773 do {
2774 unsigned long page_offset;
2775 unsigned long page_size;
2776 int nr;
2778 nr = (offset >> PAGE_SHIFT) & pages_mask;
2779 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2780 page_offset = offset & (page_size - 1);
2781 size = min_t(unsigned int, page_size - page_offset, len);
2783 memcpy(pages[nr] + page_offset, buf, size);
2785 len -= size;
2786 buf += size;
2787 offset += size;
2788 } while (len);
2790 handle->offset = offset;
2793 * Check we didn't copy past our reservation window, taking the
2794 * possible unsigned int wrap into account.
2796 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2799 int perf_output_begin(struct perf_output_handle *handle,
2800 struct perf_event *event, unsigned int size,
2801 int nmi, int sample)
2803 struct perf_event *output_event;
2804 struct perf_mmap_data *data;
2805 unsigned long tail, offset, head;
2806 int have_lost;
2807 struct {
2808 struct perf_event_header header;
2809 u64 id;
2810 u64 lost;
2811 } lost_event;
2813 rcu_read_lock();
2815 * For inherited events we send all the output towards the parent.
2817 if (event->parent)
2818 event = event->parent;
2820 output_event = rcu_dereference(event->output);
2821 if (output_event)
2822 event = output_event;
2824 data = rcu_dereference(event->data);
2825 if (!data)
2826 goto out;
2828 handle->data = data;
2829 handle->event = event;
2830 handle->nmi = nmi;
2831 handle->sample = sample;
2833 if (!data->nr_pages)
2834 goto fail;
2836 have_lost = atomic_read(&data->lost);
2837 if (have_lost)
2838 size += sizeof(lost_event);
2840 perf_output_lock(handle);
2842 do {
2844 * Userspace could choose to issue a mb() before updating the
2845 * tail pointer. So that all reads will be completed before the
2846 * write is issued.
2848 tail = ACCESS_ONCE(data->user_page->data_tail);
2849 smp_rmb();
2850 offset = head = atomic_long_read(&data->head);
2851 head += size;
2852 if (unlikely(!perf_output_space(data, tail, offset, head)))
2853 goto fail;
2854 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2856 handle->offset = offset;
2857 handle->head = head;
2859 if (head - tail > data->watermark)
2860 atomic_set(&data->wakeup, 1);
2862 if (have_lost) {
2863 lost_event.header.type = PERF_RECORD_LOST;
2864 lost_event.header.misc = 0;
2865 lost_event.header.size = sizeof(lost_event);
2866 lost_event.id = event->id;
2867 lost_event.lost = atomic_xchg(&data->lost, 0);
2869 perf_output_put(handle, lost_event);
2872 return 0;
2874 fail:
2875 atomic_inc(&data->lost);
2876 perf_output_unlock(handle);
2877 out:
2878 rcu_read_unlock();
2880 return -ENOSPC;
2883 void perf_output_end(struct perf_output_handle *handle)
2885 struct perf_event *event = handle->event;
2886 struct perf_mmap_data *data = handle->data;
2888 int wakeup_events = event->attr.wakeup_events;
2890 if (handle->sample && wakeup_events) {
2891 int events = atomic_inc_return(&data->events);
2892 if (events >= wakeup_events) {
2893 atomic_sub(wakeup_events, &data->events);
2894 atomic_set(&data->wakeup, 1);
2898 perf_output_unlock(handle);
2899 rcu_read_unlock();
2902 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2905 * only top level events have the pid namespace they were created in
2907 if (event->parent)
2908 event = event->parent;
2910 return task_tgid_nr_ns(p, event->ns);
2913 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2916 * only top level events have the pid namespace they were created in
2918 if (event->parent)
2919 event = event->parent;
2921 return task_pid_nr_ns(p, event->ns);
2924 static void perf_output_read_one(struct perf_output_handle *handle,
2925 struct perf_event *event)
2927 u64 read_format = event->attr.read_format;
2928 u64 values[4];
2929 int n = 0;
2931 values[n++] = atomic64_read(&event->count);
2932 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2933 values[n++] = event->total_time_enabled +
2934 atomic64_read(&event->child_total_time_enabled);
2936 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2937 values[n++] = event->total_time_running +
2938 atomic64_read(&event->child_total_time_running);
2940 if (read_format & PERF_FORMAT_ID)
2941 values[n++] = primary_event_id(event);
2943 perf_output_copy(handle, values, n * sizeof(u64));
2947 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2949 static void perf_output_read_group(struct perf_output_handle *handle,
2950 struct perf_event *event)
2952 struct perf_event *leader = event->group_leader, *sub;
2953 u64 read_format = event->attr.read_format;
2954 u64 values[5];
2955 int n = 0;
2957 values[n++] = 1 + leader->nr_siblings;
2959 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2960 values[n++] = leader->total_time_enabled;
2962 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2963 values[n++] = leader->total_time_running;
2965 if (leader != event)
2966 leader->pmu->read(leader);
2968 values[n++] = atomic64_read(&leader->count);
2969 if (read_format & PERF_FORMAT_ID)
2970 values[n++] = primary_event_id(leader);
2972 perf_output_copy(handle, values, n * sizeof(u64));
2974 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2975 n = 0;
2977 if (sub != event)
2978 sub->pmu->read(sub);
2980 values[n++] = atomic64_read(&sub->count);
2981 if (read_format & PERF_FORMAT_ID)
2982 values[n++] = primary_event_id(sub);
2984 perf_output_copy(handle, values, n * sizeof(u64));
2988 static void perf_output_read(struct perf_output_handle *handle,
2989 struct perf_event *event)
2991 if (event->attr.read_format & PERF_FORMAT_GROUP)
2992 perf_output_read_group(handle, event);
2993 else
2994 perf_output_read_one(handle, event);
2997 void perf_output_sample(struct perf_output_handle *handle,
2998 struct perf_event_header *header,
2999 struct perf_sample_data *data,
3000 struct perf_event *event)
3002 u64 sample_type = data->type;
3004 perf_output_put(handle, *header);
3006 if (sample_type & PERF_SAMPLE_IP)
3007 perf_output_put(handle, data->ip);
3009 if (sample_type & PERF_SAMPLE_TID)
3010 perf_output_put(handle, data->tid_entry);
3012 if (sample_type & PERF_SAMPLE_TIME)
3013 perf_output_put(handle, data->time);
3015 if (sample_type & PERF_SAMPLE_ADDR)
3016 perf_output_put(handle, data->addr);
3018 if (sample_type & PERF_SAMPLE_ID)
3019 perf_output_put(handle, data->id);
3021 if (sample_type & PERF_SAMPLE_STREAM_ID)
3022 perf_output_put(handle, data->stream_id);
3024 if (sample_type & PERF_SAMPLE_CPU)
3025 perf_output_put(handle, data->cpu_entry);
3027 if (sample_type & PERF_SAMPLE_PERIOD)
3028 perf_output_put(handle, data->period);
3030 if (sample_type & PERF_SAMPLE_READ)
3031 perf_output_read(handle, event);
3033 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3034 if (data->callchain) {
3035 int size = 1;
3037 if (data->callchain)
3038 size += data->callchain->nr;
3040 size *= sizeof(u64);
3042 perf_output_copy(handle, data->callchain, size);
3043 } else {
3044 u64 nr = 0;
3045 perf_output_put(handle, nr);
3049 if (sample_type & PERF_SAMPLE_RAW) {
3050 if (data->raw) {
3051 perf_output_put(handle, data->raw->size);
3052 perf_output_copy(handle, data->raw->data,
3053 data->raw->size);
3054 } else {
3055 struct {
3056 u32 size;
3057 u32 data;
3058 } raw = {
3059 .size = sizeof(u32),
3060 .data = 0,
3062 perf_output_put(handle, raw);
3067 void perf_prepare_sample(struct perf_event_header *header,
3068 struct perf_sample_data *data,
3069 struct perf_event *event,
3070 struct pt_regs *regs)
3072 u64 sample_type = event->attr.sample_type;
3074 data->type = sample_type;
3076 header->type = PERF_RECORD_SAMPLE;
3077 header->size = sizeof(*header);
3079 header->misc = 0;
3080 header->misc |= perf_misc_flags(regs);
3082 if (sample_type & PERF_SAMPLE_IP) {
3083 data->ip = perf_instruction_pointer(regs);
3085 header->size += sizeof(data->ip);
3088 if (sample_type & PERF_SAMPLE_TID) {
3089 /* namespace issues */
3090 data->tid_entry.pid = perf_event_pid(event, current);
3091 data->tid_entry.tid = perf_event_tid(event, current);
3093 header->size += sizeof(data->tid_entry);
3096 if (sample_type & PERF_SAMPLE_TIME) {
3097 data->time = perf_clock();
3099 header->size += sizeof(data->time);
3102 if (sample_type & PERF_SAMPLE_ADDR)
3103 header->size += sizeof(data->addr);
3105 if (sample_type & PERF_SAMPLE_ID) {
3106 data->id = primary_event_id(event);
3108 header->size += sizeof(data->id);
3111 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3112 data->stream_id = event->id;
3114 header->size += sizeof(data->stream_id);
3117 if (sample_type & PERF_SAMPLE_CPU) {
3118 data->cpu_entry.cpu = raw_smp_processor_id();
3119 data->cpu_entry.reserved = 0;
3121 header->size += sizeof(data->cpu_entry);
3124 if (sample_type & PERF_SAMPLE_PERIOD)
3125 header->size += sizeof(data->period);
3127 if (sample_type & PERF_SAMPLE_READ)
3128 header->size += perf_event_read_size(event);
3130 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3131 int size = 1;
3133 data->callchain = perf_callchain(regs);
3135 if (data->callchain)
3136 size += data->callchain->nr;
3138 header->size += size * sizeof(u64);
3141 if (sample_type & PERF_SAMPLE_RAW) {
3142 int size = sizeof(u32);
3144 if (data->raw)
3145 size += data->raw->size;
3146 else
3147 size += sizeof(u32);
3149 WARN_ON_ONCE(size & (sizeof(u64)-1));
3150 header->size += size;
3154 static void perf_event_output(struct perf_event *event, int nmi,
3155 struct perf_sample_data *data,
3156 struct pt_regs *regs)
3158 struct perf_output_handle handle;
3159 struct perf_event_header header;
3161 perf_prepare_sample(&header, data, event, regs);
3163 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3164 return;
3166 perf_output_sample(&handle, &header, data, event);
3168 perf_output_end(&handle);
3172 * read event_id
3175 struct perf_read_event {
3176 struct perf_event_header header;
3178 u32 pid;
3179 u32 tid;
3182 static void
3183 perf_event_read_event(struct perf_event *event,
3184 struct task_struct *task)
3186 struct perf_output_handle handle;
3187 struct perf_read_event read_event = {
3188 .header = {
3189 .type = PERF_RECORD_READ,
3190 .misc = 0,
3191 .size = sizeof(read_event) + perf_event_read_size(event),
3193 .pid = perf_event_pid(event, task),
3194 .tid = perf_event_tid(event, task),
3196 int ret;
3198 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3199 if (ret)
3200 return;
3202 perf_output_put(&handle, read_event);
3203 perf_output_read(&handle, event);
3205 perf_output_end(&handle);
3209 * task tracking -- fork/exit
3211 * enabled by: attr.comm | attr.mmap | attr.task
3214 struct perf_task_event {
3215 struct task_struct *task;
3216 struct perf_event_context *task_ctx;
3218 struct {
3219 struct perf_event_header header;
3221 u32 pid;
3222 u32 ppid;
3223 u32 tid;
3224 u32 ptid;
3225 u64 time;
3226 } event_id;
3229 static void perf_event_task_output(struct perf_event *event,
3230 struct perf_task_event *task_event)
3232 struct perf_output_handle handle;
3233 int size;
3234 struct task_struct *task = task_event->task;
3235 int ret;
3237 size = task_event->event_id.header.size;
3238 ret = perf_output_begin(&handle, event, size, 0, 0);
3240 if (ret)
3241 return;
3243 task_event->event_id.pid = perf_event_pid(event, task);
3244 task_event->event_id.ppid = perf_event_pid(event, current);
3246 task_event->event_id.tid = perf_event_tid(event, task);
3247 task_event->event_id.ptid = perf_event_tid(event, current);
3249 task_event->event_id.time = perf_clock();
3251 perf_output_put(&handle, task_event->event_id);
3253 perf_output_end(&handle);
3256 static int perf_event_task_match(struct perf_event *event)
3258 if (event->attr.comm || event->attr.mmap || event->attr.task)
3259 return 1;
3261 return 0;
3264 static void perf_event_task_ctx(struct perf_event_context *ctx,
3265 struct perf_task_event *task_event)
3267 struct perf_event *event;
3269 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3270 return;
3272 rcu_read_lock();
3273 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3274 if (perf_event_task_match(event))
3275 perf_event_task_output(event, task_event);
3277 rcu_read_unlock();
3280 static void perf_event_task_event(struct perf_task_event *task_event)
3282 struct perf_cpu_context *cpuctx;
3283 struct perf_event_context *ctx = task_event->task_ctx;
3285 cpuctx = &get_cpu_var(perf_cpu_context);
3286 perf_event_task_ctx(&cpuctx->ctx, task_event);
3287 put_cpu_var(perf_cpu_context);
3289 rcu_read_lock();
3290 if (!ctx)
3291 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3292 if (ctx)
3293 perf_event_task_ctx(ctx, task_event);
3294 rcu_read_unlock();
3297 static void perf_event_task(struct task_struct *task,
3298 struct perf_event_context *task_ctx,
3299 int new)
3301 struct perf_task_event task_event;
3303 if (!atomic_read(&nr_comm_events) &&
3304 !atomic_read(&nr_mmap_events) &&
3305 !atomic_read(&nr_task_events))
3306 return;
3308 task_event = (struct perf_task_event){
3309 .task = task,
3310 .task_ctx = task_ctx,
3311 .event_id = {
3312 .header = {
3313 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3314 .misc = 0,
3315 .size = sizeof(task_event.event_id),
3317 /* .pid */
3318 /* .ppid */
3319 /* .tid */
3320 /* .ptid */
3324 perf_event_task_event(&task_event);
3327 void perf_event_fork(struct task_struct *task)
3329 perf_event_task(task, NULL, 1);
3333 * comm tracking
3336 struct perf_comm_event {
3337 struct task_struct *task;
3338 char *comm;
3339 int comm_size;
3341 struct {
3342 struct perf_event_header header;
3344 u32 pid;
3345 u32 tid;
3346 } event_id;
3349 static void perf_event_comm_output(struct perf_event *event,
3350 struct perf_comm_event *comm_event)
3352 struct perf_output_handle handle;
3353 int size = comm_event->event_id.header.size;
3354 int ret = perf_output_begin(&handle, event, size, 0, 0);
3356 if (ret)
3357 return;
3359 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3360 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3362 perf_output_put(&handle, comm_event->event_id);
3363 perf_output_copy(&handle, comm_event->comm,
3364 comm_event->comm_size);
3365 perf_output_end(&handle);
3368 static int perf_event_comm_match(struct perf_event *event)
3370 if (event->attr.comm)
3371 return 1;
3373 return 0;
3376 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3377 struct perf_comm_event *comm_event)
3379 struct perf_event *event;
3381 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3382 return;
3384 rcu_read_lock();
3385 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3386 if (perf_event_comm_match(event))
3387 perf_event_comm_output(event, comm_event);
3389 rcu_read_unlock();
3392 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3394 struct perf_cpu_context *cpuctx;
3395 struct perf_event_context *ctx;
3396 unsigned int size;
3397 char comm[TASK_COMM_LEN];
3399 memset(comm, 0, sizeof(comm));
3400 strncpy(comm, comm_event->task->comm, sizeof(comm));
3401 size = ALIGN(strlen(comm)+1, sizeof(u64));
3403 comm_event->comm = comm;
3404 comm_event->comm_size = size;
3406 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3408 cpuctx = &get_cpu_var(perf_cpu_context);
3409 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3410 put_cpu_var(perf_cpu_context);
3412 rcu_read_lock();
3414 * doesn't really matter which of the child contexts the
3415 * events ends up in.
3417 ctx = rcu_dereference(current->perf_event_ctxp);
3418 if (ctx)
3419 perf_event_comm_ctx(ctx, comm_event);
3420 rcu_read_unlock();
3423 void perf_event_comm(struct task_struct *task)
3425 struct perf_comm_event comm_event;
3427 if (task->perf_event_ctxp)
3428 perf_event_enable_on_exec(task);
3430 if (!atomic_read(&nr_comm_events))
3431 return;
3433 comm_event = (struct perf_comm_event){
3434 .task = task,
3435 /* .comm */
3436 /* .comm_size */
3437 .event_id = {
3438 .header = {
3439 .type = PERF_RECORD_COMM,
3440 .misc = 0,
3441 /* .size */
3443 /* .pid */
3444 /* .tid */
3448 perf_event_comm_event(&comm_event);
3452 * mmap tracking
3455 struct perf_mmap_event {
3456 struct vm_area_struct *vma;
3458 const char *file_name;
3459 int file_size;
3461 struct {
3462 struct perf_event_header header;
3464 u32 pid;
3465 u32 tid;
3466 u64 start;
3467 u64 len;
3468 u64 pgoff;
3469 } event_id;
3472 static void perf_event_mmap_output(struct perf_event *event,
3473 struct perf_mmap_event *mmap_event)
3475 struct perf_output_handle handle;
3476 int size = mmap_event->event_id.header.size;
3477 int ret = perf_output_begin(&handle, event, size, 0, 0);
3479 if (ret)
3480 return;
3482 mmap_event->event_id.pid = perf_event_pid(event, current);
3483 mmap_event->event_id.tid = perf_event_tid(event, current);
3485 perf_output_put(&handle, mmap_event->event_id);
3486 perf_output_copy(&handle, mmap_event->file_name,
3487 mmap_event->file_size);
3488 perf_output_end(&handle);
3491 static int perf_event_mmap_match(struct perf_event *event,
3492 struct perf_mmap_event *mmap_event)
3494 if (event->attr.mmap)
3495 return 1;
3497 return 0;
3500 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3501 struct perf_mmap_event *mmap_event)
3503 struct perf_event *event;
3505 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3506 return;
3508 rcu_read_lock();
3509 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3510 if (perf_event_mmap_match(event, mmap_event))
3511 perf_event_mmap_output(event, mmap_event);
3513 rcu_read_unlock();
3516 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3518 struct perf_cpu_context *cpuctx;
3519 struct perf_event_context *ctx;
3520 struct vm_area_struct *vma = mmap_event->vma;
3521 struct file *file = vma->vm_file;
3522 unsigned int size;
3523 char tmp[16];
3524 char *buf = NULL;
3525 const char *name;
3527 memset(tmp, 0, sizeof(tmp));
3529 if (file) {
3531 * d_path works from the end of the buffer backwards, so we
3532 * need to add enough zero bytes after the string to handle
3533 * the 64bit alignment we do later.
3535 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3536 if (!buf) {
3537 name = strncpy(tmp, "//enomem", sizeof(tmp));
3538 goto got_name;
3540 name = d_path(&file->f_path, buf, PATH_MAX);
3541 if (IS_ERR(name)) {
3542 name = strncpy(tmp, "//toolong", sizeof(tmp));
3543 goto got_name;
3545 } else {
3546 if (arch_vma_name(mmap_event->vma)) {
3547 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3548 sizeof(tmp));
3549 goto got_name;
3552 if (!vma->vm_mm) {
3553 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3554 goto got_name;
3557 name = strncpy(tmp, "//anon", sizeof(tmp));
3558 goto got_name;
3561 got_name:
3562 size = ALIGN(strlen(name)+1, sizeof(u64));
3564 mmap_event->file_name = name;
3565 mmap_event->file_size = size;
3567 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3569 cpuctx = &get_cpu_var(perf_cpu_context);
3570 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3571 put_cpu_var(perf_cpu_context);
3573 rcu_read_lock();
3575 * doesn't really matter which of the child contexts the
3576 * events ends up in.
3578 ctx = rcu_dereference(current->perf_event_ctxp);
3579 if (ctx)
3580 perf_event_mmap_ctx(ctx, mmap_event);
3581 rcu_read_unlock();
3583 kfree(buf);
3586 void __perf_event_mmap(struct vm_area_struct *vma)
3588 struct perf_mmap_event mmap_event;
3590 if (!atomic_read(&nr_mmap_events))
3591 return;
3593 mmap_event = (struct perf_mmap_event){
3594 .vma = vma,
3595 /* .file_name */
3596 /* .file_size */
3597 .event_id = {
3598 .header = {
3599 .type = PERF_RECORD_MMAP,
3600 .misc = 0,
3601 /* .size */
3603 /* .pid */
3604 /* .tid */
3605 .start = vma->vm_start,
3606 .len = vma->vm_end - vma->vm_start,
3607 .pgoff = vma->vm_pgoff,
3611 perf_event_mmap_event(&mmap_event);
3615 * IRQ throttle logging
3618 static void perf_log_throttle(struct perf_event *event, int enable)
3620 struct perf_output_handle handle;
3621 int ret;
3623 struct {
3624 struct perf_event_header header;
3625 u64 time;
3626 u64 id;
3627 u64 stream_id;
3628 } throttle_event = {
3629 .header = {
3630 .type = PERF_RECORD_THROTTLE,
3631 .misc = 0,
3632 .size = sizeof(throttle_event),
3634 .time = perf_clock(),
3635 .id = primary_event_id(event),
3636 .stream_id = event->id,
3639 if (enable)
3640 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3642 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3643 if (ret)
3644 return;
3646 perf_output_put(&handle, throttle_event);
3647 perf_output_end(&handle);
3651 * Generic event overflow handling, sampling.
3654 static int __perf_event_overflow(struct perf_event *event, int nmi,
3655 int throttle, struct perf_sample_data *data,
3656 struct pt_regs *regs)
3658 int events = atomic_read(&event->event_limit);
3659 struct hw_perf_event *hwc = &event->hw;
3660 int ret = 0;
3662 throttle = (throttle && event->pmu->unthrottle != NULL);
3664 if (!throttle) {
3665 hwc->interrupts++;
3666 } else {
3667 if (hwc->interrupts != MAX_INTERRUPTS) {
3668 hwc->interrupts++;
3669 if (HZ * hwc->interrupts >
3670 (u64)sysctl_perf_event_sample_rate) {
3671 hwc->interrupts = MAX_INTERRUPTS;
3672 perf_log_throttle(event, 0);
3673 ret = 1;
3675 } else {
3677 * Keep re-disabling events even though on the previous
3678 * pass we disabled it - just in case we raced with a
3679 * sched-in and the event got enabled again:
3681 ret = 1;
3685 if (event->attr.freq) {
3686 u64 now = perf_clock();
3687 s64 delta = now - hwc->freq_stamp;
3689 hwc->freq_stamp = now;
3691 if (delta > 0 && delta < TICK_NSEC)
3692 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3696 * XXX event_limit might not quite work as expected on inherited
3697 * events
3700 event->pending_kill = POLL_IN;
3701 if (events && atomic_dec_and_test(&event->event_limit)) {
3702 ret = 1;
3703 event->pending_kill = POLL_HUP;
3704 if (nmi) {
3705 event->pending_disable = 1;
3706 perf_pending_queue(&event->pending,
3707 perf_pending_event);
3708 } else
3709 perf_event_disable(event);
3712 perf_event_output(event, nmi, data, regs);
3713 return ret;
3716 int perf_event_overflow(struct perf_event *event, int nmi,
3717 struct perf_sample_data *data,
3718 struct pt_regs *regs)
3720 return __perf_event_overflow(event, nmi, 1, data, regs);
3724 * Generic software event infrastructure
3728 * We directly increment event->count and keep a second value in
3729 * event->hw.period_left to count intervals. This period event
3730 * is kept in the range [-sample_period, 0] so that we can use the
3731 * sign as trigger.
3734 static u64 perf_swevent_set_period(struct perf_event *event)
3736 struct hw_perf_event *hwc = &event->hw;
3737 u64 period = hwc->last_period;
3738 u64 nr, offset;
3739 s64 old, val;
3741 hwc->last_period = hwc->sample_period;
3743 again:
3744 old = val = atomic64_read(&hwc->period_left);
3745 if (val < 0)
3746 return 0;
3748 nr = div64_u64(period + val, period);
3749 offset = nr * period;
3750 val -= offset;
3751 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3752 goto again;
3754 return nr;
3757 static void perf_swevent_overflow(struct perf_event *event,
3758 int nmi, struct perf_sample_data *data,
3759 struct pt_regs *regs)
3761 struct hw_perf_event *hwc = &event->hw;
3762 int throttle = 0;
3763 u64 overflow;
3765 data->period = event->hw.last_period;
3766 overflow = perf_swevent_set_period(event);
3768 if (hwc->interrupts == MAX_INTERRUPTS)
3769 return;
3771 for (; overflow; overflow--) {
3772 if (__perf_event_overflow(event, nmi, throttle,
3773 data, regs)) {
3775 * We inhibit the overflow from happening when
3776 * hwc->interrupts == MAX_INTERRUPTS.
3778 break;
3780 throttle = 1;
3784 static void perf_swevent_unthrottle(struct perf_event *event)
3787 * Nothing to do, we already reset hwc->interrupts.
3791 static void perf_swevent_add(struct perf_event *event, u64 nr,
3792 int nmi, struct perf_sample_data *data,
3793 struct pt_regs *regs)
3795 struct hw_perf_event *hwc = &event->hw;
3797 atomic64_add(nr, &event->count);
3799 if (!hwc->sample_period)
3800 return;
3802 if (!regs)
3803 return;
3805 if (!atomic64_add_negative(nr, &hwc->period_left))
3806 perf_swevent_overflow(event, nmi, data, regs);
3809 static int perf_swevent_is_counting(struct perf_event *event)
3812 * The event is active, we're good!
3814 if (event->state == PERF_EVENT_STATE_ACTIVE)
3815 return 1;
3818 * The event is off/error, not counting.
3820 if (event->state != PERF_EVENT_STATE_INACTIVE)
3821 return 0;
3824 * The event is inactive, if the context is active
3825 * we're part of a group that didn't make it on the 'pmu',
3826 * not counting.
3828 if (event->ctx->is_active)
3829 return 0;
3832 * We're inactive and the context is too, this means the
3833 * task is scheduled out, we're counting events that happen
3834 * to us, like migration events.
3836 return 1;
3839 static int perf_tp_event_match(struct perf_event *event,
3840 struct perf_sample_data *data);
3842 static int perf_swevent_match(struct perf_event *event,
3843 enum perf_type_id type,
3844 u32 event_id,
3845 struct perf_sample_data *data,
3846 struct pt_regs *regs)
3848 if (!perf_swevent_is_counting(event))
3849 return 0;
3851 if (event->attr.type != type)
3852 return 0;
3853 if (event->attr.config != event_id)
3854 return 0;
3856 if (regs) {
3857 if (event->attr.exclude_user && user_mode(regs))
3858 return 0;
3860 if (event->attr.exclude_kernel && !user_mode(regs))
3861 return 0;
3864 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3865 !perf_tp_event_match(event, data))
3866 return 0;
3868 return 1;
3871 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3872 enum perf_type_id type,
3873 u32 event_id, u64 nr, int nmi,
3874 struct perf_sample_data *data,
3875 struct pt_regs *regs)
3877 struct perf_event *event;
3879 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3880 return;
3882 rcu_read_lock();
3883 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3884 if (perf_swevent_match(event, type, event_id, data, regs))
3885 perf_swevent_add(event, nr, nmi, data, regs);
3887 rcu_read_unlock();
3890 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3892 if (in_nmi())
3893 return &cpuctx->recursion[3];
3895 if (in_irq())
3896 return &cpuctx->recursion[2];
3898 if (in_softirq())
3899 return &cpuctx->recursion[1];
3901 return &cpuctx->recursion[0];
3904 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3905 u64 nr, int nmi,
3906 struct perf_sample_data *data,
3907 struct pt_regs *regs)
3909 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3910 int *recursion = perf_swevent_recursion_context(cpuctx);
3911 struct perf_event_context *ctx;
3913 if (*recursion)
3914 goto out;
3916 (*recursion)++;
3917 barrier();
3919 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3920 nr, nmi, data, regs);
3921 rcu_read_lock();
3923 * doesn't really matter which of the child contexts the
3924 * events ends up in.
3926 ctx = rcu_dereference(current->perf_event_ctxp);
3927 if (ctx)
3928 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3929 rcu_read_unlock();
3931 barrier();
3932 (*recursion)--;
3934 out:
3935 put_cpu_var(perf_cpu_context);
3938 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3939 struct pt_regs *regs, u64 addr)
3941 struct perf_sample_data data = {
3942 .addr = addr,
3945 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3946 &data, regs);
3949 static void perf_swevent_read(struct perf_event *event)
3953 static int perf_swevent_enable(struct perf_event *event)
3955 struct hw_perf_event *hwc = &event->hw;
3957 if (hwc->sample_period) {
3958 hwc->last_period = hwc->sample_period;
3959 perf_swevent_set_period(event);
3961 return 0;
3964 static void perf_swevent_disable(struct perf_event *event)
3968 static const struct pmu perf_ops_generic = {
3969 .enable = perf_swevent_enable,
3970 .disable = perf_swevent_disable,
3971 .read = perf_swevent_read,
3972 .unthrottle = perf_swevent_unthrottle,
3976 * hrtimer based swevent callback
3979 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3981 enum hrtimer_restart ret = HRTIMER_RESTART;
3982 struct perf_sample_data data;
3983 struct pt_regs *regs;
3984 struct perf_event *event;
3985 u64 period;
3987 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3988 event->pmu->read(event);
3990 data.addr = 0;
3991 regs = get_irq_regs();
3993 * In case we exclude kernel IPs or are somehow not in interrupt
3994 * context, provide the next best thing, the user IP.
3996 if ((event->attr.exclude_kernel || !regs) &&
3997 !event->attr.exclude_user)
3998 regs = task_pt_regs(current);
4000 if (regs) {
4001 if (perf_event_overflow(event, 0, &data, regs))
4002 ret = HRTIMER_NORESTART;
4005 period = max_t(u64, 10000, event->hw.sample_period);
4006 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4008 return ret;
4012 * Software event: cpu wall time clock
4015 static void cpu_clock_perf_event_update(struct perf_event *event)
4017 int cpu = raw_smp_processor_id();
4018 s64 prev;
4019 u64 now;
4021 now = cpu_clock(cpu);
4022 prev = atomic64_read(&event->hw.prev_count);
4023 atomic64_set(&event->hw.prev_count, now);
4024 atomic64_add(now - prev, &event->count);
4027 static int cpu_clock_perf_event_enable(struct perf_event *event)
4029 struct hw_perf_event *hwc = &event->hw;
4030 int cpu = raw_smp_processor_id();
4032 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4033 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4034 hwc->hrtimer.function = perf_swevent_hrtimer;
4035 if (hwc->sample_period) {
4036 u64 period = max_t(u64, 10000, hwc->sample_period);
4037 __hrtimer_start_range_ns(&hwc->hrtimer,
4038 ns_to_ktime(period), 0,
4039 HRTIMER_MODE_REL, 0);
4042 return 0;
4045 static void cpu_clock_perf_event_disable(struct perf_event *event)
4047 if (event->hw.sample_period)
4048 hrtimer_cancel(&event->hw.hrtimer);
4049 cpu_clock_perf_event_update(event);
4052 static void cpu_clock_perf_event_read(struct perf_event *event)
4054 cpu_clock_perf_event_update(event);
4057 static const struct pmu perf_ops_cpu_clock = {
4058 .enable = cpu_clock_perf_event_enable,
4059 .disable = cpu_clock_perf_event_disable,
4060 .read = cpu_clock_perf_event_read,
4064 * Software event: task time clock
4067 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4069 u64 prev;
4070 s64 delta;
4072 prev = atomic64_xchg(&event->hw.prev_count, now);
4073 delta = now - prev;
4074 atomic64_add(delta, &event->count);
4077 static int task_clock_perf_event_enable(struct perf_event *event)
4079 struct hw_perf_event *hwc = &event->hw;
4080 u64 now;
4082 now = event->ctx->time;
4084 atomic64_set(&hwc->prev_count, now);
4085 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4086 hwc->hrtimer.function = perf_swevent_hrtimer;
4087 if (hwc->sample_period) {
4088 u64 period = max_t(u64, 10000, hwc->sample_period);
4089 __hrtimer_start_range_ns(&hwc->hrtimer,
4090 ns_to_ktime(period), 0,
4091 HRTIMER_MODE_REL, 0);
4094 return 0;
4097 static void task_clock_perf_event_disable(struct perf_event *event)
4099 if (event->hw.sample_period)
4100 hrtimer_cancel(&event->hw.hrtimer);
4101 task_clock_perf_event_update(event, event->ctx->time);
4105 static void task_clock_perf_event_read(struct perf_event *event)
4107 u64 time;
4109 if (!in_nmi()) {
4110 update_context_time(event->ctx);
4111 time = event->ctx->time;
4112 } else {
4113 u64 now = perf_clock();
4114 u64 delta = now - event->ctx->timestamp;
4115 time = event->ctx->time + delta;
4118 task_clock_perf_event_update(event, time);
4121 static const struct pmu perf_ops_task_clock = {
4122 .enable = task_clock_perf_event_enable,
4123 .disable = task_clock_perf_event_disable,
4124 .read = task_clock_perf_event_read,
4127 #ifdef CONFIG_EVENT_PROFILE
4129 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4130 int entry_size)
4132 struct perf_raw_record raw = {
4133 .size = entry_size,
4134 .data = record,
4137 struct perf_sample_data data = {
4138 .addr = addr,
4139 .raw = &raw,
4142 struct pt_regs *regs = get_irq_regs();
4144 if (!regs)
4145 regs = task_pt_regs(current);
4147 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4148 &data, regs);
4150 EXPORT_SYMBOL_GPL(perf_tp_event);
4152 static int perf_tp_event_match(struct perf_event *event,
4153 struct perf_sample_data *data)
4155 void *record = data->raw->data;
4157 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4158 return 1;
4159 return 0;
4162 static void tp_perf_event_destroy(struct perf_event *event)
4164 ftrace_profile_disable(event->attr.config);
4167 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4170 * Raw tracepoint data is a severe data leak, only allow root to
4171 * have these.
4173 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4174 perf_paranoid_tracepoint_raw() &&
4175 !capable(CAP_SYS_ADMIN))
4176 return ERR_PTR(-EPERM);
4178 if (ftrace_profile_enable(event->attr.config))
4179 return NULL;
4181 event->destroy = tp_perf_event_destroy;
4183 return &perf_ops_generic;
4186 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4188 char *filter_str;
4189 int ret;
4191 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4192 return -EINVAL;
4194 filter_str = strndup_user(arg, PAGE_SIZE);
4195 if (IS_ERR(filter_str))
4196 return PTR_ERR(filter_str);
4198 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4200 kfree(filter_str);
4201 return ret;
4204 static void perf_event_free_filter(struct perf_event *event)
4206 ftrace_profile_free_filter(event);
4209 #else
4211 static int perf_tp_event_match(struct perf_event *event,
4212 struct perf_sample_data *data)
4214 return 1;
4217 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4219 return NULL;
4222 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4224 return -ENOENT;
4227 static void perf_event_free_filter(struct perf_event *event)
4231 #endif /* CONFIG_EVENT_PROFILE */
4233 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4234 static void bp_perf_event_destroy(struct perf_event *event)
4236 release_bp_slot(event);
4239 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4241 int err;
4243 * The breakpoint is already filled if we haven't created the counter
4244 * through perf syscall
4245 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4247 if (!bp->callback)
4248 err = register_perf_hw_breakpoint(bp);
4249 else
4250 err = __register_perf_hw_breakpoint(bp);
4251 if (err)
4252 return ERR_PTR(err);
4254 bp->destroy = bp_perf_event_destroy;
4256 return &perf_ops_bp;
4259 void perf_bp_event(struct perf_event *bp, void *regs)
4261 /* TODO */
4263 #else
4264 static void bp_perf_event_destroy(struct perf_event *event)
4268 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4270 return NULL;
4273 void perf_bp_event(struct perf_event *bp, void *regs)
4276 #endif
4278 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4280 static void sw_perf_event_destroy(struct perf_event *event)
4282 u64 event_id = event->attr.config;
4284 WARN_ON(event->parent);
4286 atomic_dec(&perf_swevent_enabled[event_id]);
4289 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4291 const struct pmu *pmu = NULL;
4292 u64 event_id = event->attr.config;
4295 * Software events (currently) can't in general distinguish
4296 * between user, kernel and hypervisor events.
4297 * However, context switches and cpu migrations are considered
4298 * to be kernel events, and page faults are never hypervisor
4299 * events.
4301 switch (event_id) {
4302 case PERF_COUNT_SW_CPU_CLOCK:
4303 pmu = &perf_ops_cpu_clock;
4305 break;
4306 case PERF_COUNT_SW_TASK_CLOCK:
4308 * If the user instantiates this as a per-cpu event,
4309 * use the cpu_clock event instead.
4311 if (event->ctx->task)
4312 pmu = &perf_ops_task_clock;
4313 else
4314 pmu = &perf_ops_cpu_clock;
4316 break;
4317 case PERF_COUNT_SW_PAGE_FAULTS:
4318 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4319 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4320 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4321 case PERF_COUNT_SW_CPU_MIGRATIONS:
4322 if (!event->parent) {
4323 atomic_inc(&perf_swevent_enabled[event_id]);
4324 event->destroy = sw_perf_event_destroy;
4326 pmu = &perf_ops_generic;
4327 break;
4330 return pmu;
4334 * Allocate and initialize a event structure
4336 static struct perf_event *
4337 perf_event_alloc(struct perf_event_attr *attr,
4338 int cpu,
4339 struct perf_event_context *ctx,
4340 struct perf_event *group_leader,
4341 struct perf_event *parent_event,
4342 perf_callback_t callback,
4343 gfp_t gfpflags)
4345 const struct pmu *pmu;
4346 struct perf_event *event;
4347 struct hw_perf_event *hwc;
4348 long err;
4350 event = kzalloc(sizeof(*event), gfpflags);
4351 if (!event)
4352 return ERR_PTR(-ENOMEM);
4355 * Single events are their own group leaders, with an
4356 * empty sibling list:
4358 if (!group_leader)
4359 group_leader = event;
4361 mutex_init(&event->child_mutex);
4362 INIT_LIST_HEAD(&event->child_list);
4364 INIT_LIST_HEAD(&event->group_entry);
4365 INIT_LIST_HEAD(&event->event_entry);
4366 INIT_LIST_HEAD(&event->sibling_list);
4367 init_waitqueue_head(&event->waitq);
4369 mutex_init(&event->mmap_mutex);
4371 event->cpu = cpu;
4372 event->attr = *attr;
4373 event->group_leader = group_leader;
4374 event->pmu = NULL;
4375 event->ctx = ctx;
4376 event->oncpu = -1;
4378 event->parent = parent_event;
4380 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4381 event->id = atomic64_inc_return(&perf_event_id);
4383 event->state = PERF_EVENT_STATE_INACTIVE;
4385 if (!callback && parent_event)
4386 callback = parent_event->callback;
4388 event->callback = callback;
4390 if (attr->disabled)
4391 event->state = PERF_EVENT_STATE_OFF;
4393 pmu = NULL;
4395 hwc = &event->hw;
4396 hwc->sample_period = attr->sample_period;
4397 if (attr->freq && attr->sample_freq)
4398 hwc->sample_period = 1;
4399 hwc->last_period = hwc->sample_period;
4401 atomic64_set(&hwc->period_left, hwc->sample_period);
4404 * we currently do not support PERF_FORMAT_GROUP on inherited events
4406 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4407 goto done;
4409 switch (attr->type) {
4410 case PERF_TYPE_RAW:
4411 case PERF_TYPE_HARDWARE:
4412 case PERF_TYPE_HW_CACHE:
4413 pmu = hw_perf_event_init(event);
4414 break;
4416 case PERF_TYPE_SOFTWARE:
4417 pmu = sw_perf_event_init(event);
4418 break;
4420 case PERF_TYPE_TRACEPOINT:
4421 pmu = tp_perf_event_init(event);
4422 break;
4424 case PERF_TYPE_BREAKPOINT:
4425 pmu = bp_perf_event_init(event);
4426 break;
4429 default:
4430 break;
4432 done:
4433 err = 0;
4434 if (!pmu)
4435 err = -EINVAL;
4436 else if (IS_ERR(pmu))
4437 err = PTR_ERR(pmu);
4439 if (err) {
4440 if (event->ns)
4441 put_pid_ns(event->ns);
4442 kfree(event);
4443 return ERR_PTR(err);
4446 event->pmu = pmu;
4448 if (!event->parent) {
4449 atomic_inc(&nr_events);
4450 if (event->attr.mmap)
4451 atomic_inc(&nr_mmap_events);
4452 if (event->attr.comm)
4453 atomic_inc(&nr_comm_events);
4454 if (event->attr.task)
4455 atomic_inc(&nr_task_events);
4458 return event;
4461 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4462 struct perf_event_attr *attr)
4464 u32 size;
4465 int ret;
4467 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4468 return -EFAULT;
4471 * zero the full structure, so that a short copy will be nice.
4473 memset(attr, 0, sizeof(*attr));
4475 ret = get_user(size, &uattr->size);
4476 if (ret)
4477 return ret;
4479 if (size > PAGE_SIZE) /* silly large */
4480 goto err_size;
4482 if (!size) /* abi compat */
4483 size = PERF_ATTR_SIZE_VER0;
4485 if (size < PERF_ATTR_SIZE_VER0)
4486 goto err_size;
4489 * If we're handed a bigger struct than we know of,
4490 * ensure all the unknown bits are 0 - i.e. new
4491 * user-space does not rely on any kernel feature
4492 * extensions we dont know about yet.
4494 if (size > sizeof(*attr)) {
4495 unsigned char __user *addr;
4496 unsigned char __user *end;
4497 unsigned char val;
4499 addr = (void __user *)uattr + sizeof(*attr);
4500 end = (void __user *)uattr + size;
4502 for (; addr < end; addr++) {
4503 ret = get_user(val, addr);
4504 if (ret)
4505 return ret;
4506 if (val)
4507 goto err_size;
4509 size = sizeof(*attr);
4512 ret = copy_from_user(attr, uattr, size);
4513 if (ret)
4514 return -EFAULT;
4517 * If the type exists, the corresponding creation will verify
4518 * the attr->config.
4520 if (attr->type >= PERF_TYPE_MAX)
4521 return -EINVAL;
4523 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4524 return -EINVAL;
4526 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4527 return -EINVAL;
4529 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4530 return -EINVAL;
4532 out:
4533 return ret;
4535 err_size:
4536 put_user(sizeof(*attr), &uattr->size);
4537 ret = -E2BIG;
4538 goto out;
4541 static int perf_event_set_output(struct perf_event *event, int output_fd)
4543 struct perf_event *output_event = NULL;
4544 struct file *output_file = NULL;
4545 struct perf_event *old_output;
4546 int fput_needed = 0;
4547 int ret = -EINVAL;
4549 if (!output_fd)
4550 goto set;
4552 output_file = fget_light(output_fd, &fput_needed);
4553 if (!output_file)
4554 return -EBADF;
4556 if (output_file->f_op != &perf_fops)
4557 goto out;
4559 output_event = output_file->private_data;
4561 /* Don't chain output fds */
4562 if (output_event->output)
4563 goto out;
4565 /* Don't set an output fd when we already have an output channel */
4566 if (event->data)
4567 goto out;
4569 atomic_long_inc(&output_file->f_count);
4571 set:
4572 mutex_lock(&event->mmap_mutex);
4573 old_output = event->output;
4574 rcu_assign_pointer(event->output, output_event);
4575 mutex_unlock(&event->mmap_mutex);
4577 if (old_output) {
4579 * we need to make sure no existing perf_output_*()
4580 * is still referencing this event.
4582 synchronize_rcu();
4583 fput(old_output->filp);
4586 ret = 0;
4587 out:
4588 fput_light(output_file, fput_needed);
4589 return ret;
4593 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4595 * @attr_uptr: event_id type attributes for monitoring/sampling
4596 * @pid: target pid
4597 * @cpu: target cpu
4598 * @group_fd: group leader event fd
4600 SYSCALL_DEFINE5(perf_event_open,
4601 struct perf_event_attr __user *, attr_uptr,
4602 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4604 struct perf_event *event, *group_leader;
4605 struct perf_event_attr attr;
4606 struct perf_event_context *ctx;
4607 struct file *event_file = NULL;
4608 struct file *group_file = NULL;
4609 int fput_needed = 0;
4610 int fput_needed2 = 0;
4611 int err;
4613 /* for future expandability... */
4614 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4615 return -EINVAL;
4617 err = perf_copy_attr(attr_uptr, &attr);
4618 if (err)
4619 return err;
4621 if (!attr.exclude_kernel) {
4622 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4623 return -EACCES;
4626 if (attr.freq) {
4627 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4628 return -EINVAL;
4632 * Get the target context (task or percpu):
4634 ctx = find_get_context(pid, cpu);
4635 if (IS_ERR(ctx))
4636 return PTR_ERR(ctx);
4639 * Look up the group leader (we will attach this event to it):
4641 group_leader = NULL;
4642 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4643 err = -EINVAL;
4644 group_file = fget_light(group_fd, &fput_needed);
4645 if (!group_file)
4646 goto err_put_context;
4647 if (group_file->f_op != &perf_fops)
4648 goto err_put_context;
4650 group_leader = group_file->private_data;
4652 * Do not allow a recursive hierarchy (this new sibling
4653 * becoming part of another group-sibling):
4655 if (group_leader->group_leader != group_leader)
4656 goto err_put_context;
4658 * Do not allow to attach to a group in a different
4659 * task or CPU context:
4661 if (group_leader->ctx != ctx)
4662 goto err_put_context;
4664 * Only a group leader can be exclusive or pinned
4666 if (attr.exclusive || attr.pinned)
4667 goto err_put_context;
4670 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4671 NULL, NULL, GFP_KERNEL);
4672 err = PTR_ERR(event);
4673 if (IS_ERR(event))
4674 goto err_put_context;
4676 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4677 if (err < 0)
4678 goto err_free_put_context;
4680 event_file = fget_light(err, &fput_needed2);
4681 if (!event_file)
4682 goto err_free_put_context;
4684 if (flags & PERF_FLAG_FD_OUTPUT) {
4685 err = perf_event_set_output(event, group_fd);
4686 if (err)
4687 goto err_fput_free_put_context;
4690 event->filp = event_file;
4691 WARN_ON_ONCE(ctx->parent_ctx);
4692 mutex_lock(&ctx->mutex);
4693 perf_install_in_context(ctx, event, cpu);
4694 ++ctx->generation;
4695 mutex_unlock(&ctx->mutex);
4697 event->owner = current;
4698 get_task_struct(current);
4699 mutex_lock(&current->perf_event_mutex);
4700 list_add_tail(&event->owner_entry, &current->perf_event_list);
4701 mutex_unlock(&current->perf_event_mutex);
4703 err_fput_free_put_context:
4704 fput_light(event_file, fput_needed2);
4706 err_free_put_context:
4707 if (err < 0)
4708 kfree(event);
4710 err_put_context:
4711 if (err < 0)
4712 put_ctx(ctx);
4714 fput_light(group_file, fput_needed);
4716 return err;
4720 * perf_event_create_kernel_counter
4722 * @attr: attributes of the counter to create
4723 * @cpu: cpu in which the counter is bound
4724 * @pid: task to profile
4726 struct perf_event *
4727 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4728 pid_t pid, perf_callback_t callback)
4730 struct perf_event *event;
4731 struct perf_event_context *ctx;
4732 int err;
4735 * Get the target context (task or percpu):
4738 ctx = find_get_context(pid, cpu);
4739 if (IS_ERR(ctx))
4740 return NULL;
4742 event = perf_event_alloc(attr, cpu, ctx, NULL,
4743 NULL, callback, GFP_KERNEL);
4744 err = PTR_ERR(event);
4745 if (IS_ERR(event))
4746 goto err_put_context;
4748 event->filp = NULL;
4749 WARN_ON_ONCE(ctx->parent_ctx);
4750 mutex_lock(&ctx->mutex);
4751 perf_install_in_context(ctx, event, cpu);
4752 ++ctx->generation;
4753 mutex_unlock(&ctx->mutex);
4755 event->owner = current;
4756 get_task_struct(current);
4757 mutex_lock(&current->perf_event_mutex);
4758 list_add_tail(&event->owner_entry, &current->perf_event_list);
4759 mutex_unlock(&current->perf_event_mutex);
4761 return event;
4763 err_put_context:
4764 if (err < 0)
4765 put_ctx(ctx);
4767 return NULL;
4769 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4772 * inherit a event from parent task to child task:
4774 static struct perf_event *
4775 inherit_event(struct perf_event *parent_event,
4776 struct task_struct *parent,
4777 struct perf_event_context *parent_ctx,
4778 struct task_struct *child,
4779 struct perf_event *group_leader,
4780 struct perf_event_context *child_ctx)
4782 struct perf_event *child_event;
4785 * Instead of creating recursive hierarchies of events,
4786 * we link inherited events back to the original parent,
4787 * which has a filp for sure, which we use as the reference
4788 * count:
4790 if (parent_event->parent)
4791 parent_event = parent_event->parent;
4793 child_event = perf_event_alloc(&parent_event->attr,
4794 parent_event->cpu, child_ctx,
4795 group_leader, parent_event,
4796 NULL, GFP_KERNEL);
4797 if (IS_ERR(child_event))
4798 return child_event;
4799 get_ctx(child_ctx);
4802 * Make the child state follow the state of the parent event,
4803 * not its attr.disabled bit. We hold the parent's mutex,
4804 * so we won't race with perf_event_{en, dis}able_family.
4806 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4807 child_event->state = PERF_EVENT_STATE_INACTIVE;
4808 else
4809 child_event->state = PERF_EVENT_STATE_OFF;
4811 if (parent_event->attr.freq)
4812 child_event->hw.sample_period = parent_event->hw.sample_period;
4815 * Link it up in the child's context:
4817 add_event_to_ctx(child_event, child_ctx);
4820 * Get a reference to the parent filp - we will fput it
4821 * when the child event exits. This is safe to do because
4822 * we are in the parent and we know that the filp still
4823 * exists and has a nonzero count:
4825 atomic_long_inc(&parent_event->filp->f_count);
4828 * Link this into the parent event's child list
4830 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4831 mutex_lock(&parent_event->child_mutex);
4832 list_add_tail(&child_event->child_list, &parent_event->child_list);
4833 mutex_unlock(&parent_event->child_mutex);
4835 return child_event;
4838 static int inherit_group(struct perf_event *parent_event,
4839 struct task_struct *parent,
4840 struct perf_event_context *parent_ctx,
4841 struct task_struct *child,
4842 struct perf_event_context *child_ctx)
4844 struct perf_event *leader;
4845 struct perf_event *sub;
4846 struct perf_event *child_ctr;
4848 leader = inherit_event(parent_event, parent, parent_ctx,
4849 child, NULL, child_ctx);
4850 if (IS_ERR(leader))
4851 return PTR_ERR(leader);
4852 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4853 child_ctr = inherit_event(sub, parent, parent_ctx,
4854 child, leader, child_ctx);
4855 if (IS_ERR(child_ctr))
4856 return PTR_ERR(child_ctr);
4858 return 0;
4861 static void sync_child_event(struct perf_event *child_event,
4862 struct task_struct *child)
4864 struct perf_event *parent_event = child_event->parent;
4865 u64 child_val;
4867 if (child_event->attr.inherit_stat)
4868 perf_event_read_event(child_event, child);
4870 child_val = atomic64_read(&child_event->count);
4873 * Add back the child's count to the parent's count:
4875 atomic64_add(child_val, &parent_event->count);
4876 atomic64_add(child_event->total_time_enabled,
4877 &parent_event->child_total_time_enabled);
4878 atomic64_add(child_event->total_time_running,
4879 &parent_event->child_total_time_running);
4882 * Remove this event from the parent's list
4884 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4885 mutex_lock(&parent_event->child_mutex);
4886 list_del_init(&child_event->child_list);
4887 mutex_unlock(&parent_event->child_mutex);
4890 * Release the parent event, if this was the last
4891 * reference to it.
4893 fput(parent_event->filp);
4896 static void
4897 __perf_event_exit_task(struct perf_event *child_event,
4898 struct perf_event_context *child_ctx,
4899 struct task_struct *child)
4901 struct perf_event *parent_event;
4903 update_event_times(child_event);
4904 perf_event_remove_from_context(child_event);
4906 parent_event = child_event->parent;
4908 * It can happen that parent exits first, and has events
4909 * that are still around due to the child reference. These
4910 * events need to be zapped - but otherwise linger.
4912 if (parent_event) {
4913 sync_child_event(child_event, child);
4914 free_event(child_event);
4919 * When a child task exits, feed back event values to parent events.
4921 void perf_event_exit_task(struct task_struct *child)
4923 struct perf_event *child_event, *tmp;
4924 struct perf_event_context *child_ctx;
4925 unsigned long flags;
4927 if (likely(!child->perf_event_ctxp)) {
4928 perf_event_task(child, NULL, 0);
4929 return;
4932 local_irq_save(flags);
4934 * We can't reschedule here because interrupts are disabled,
4935 * and either child is current or it is a task that can't be
4936 * scheduled, so we are now safe from rescheduling changing
4937 * our context.
4939 child_ctx = child->perf_event_ctxp;
4940 __perf_event_task_sched_out(child_ctx);
4943 * Take the context lock here so that if find_get_context is
4944 * reading child->perf_event_ctxp, we wait until it has
4945 * incremented the context's refcount before we do put_ctx below.
4947 spin_lock(&child_ctx->lock);
4948 child->perf_event_ctxp = NULL;
4950 * If this context is a clone; unclone it so it can't get
4951 * swapped to another process while we're removing all
4952 * the events from it.
4954 unclone_ctx(child_ctx);
4955 spin_unlock_irqrestore(&child_ctx->lock, flags);
4958 * Report the task dead after unscheduling the events so that we
4959 * won't get any samples after PERF_RECORD_EXIT. We can however still
4960 * get a few PERF_RECORD_READ events.
4962 perf_event_task(child, child_ctx, 0);
4965 * We can recurse on the same lock type through:
4967 * __perf_event_exit_task()
4968 * sync_child_event()
4969 * fput(parent_event->filp)
4970 * perf_release()
4971 * mutex_lock(&ctx->mutex)
4973 * But since its the parent context it won't be the same instance.
4975 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4977 again:
4978 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4979 group_entry)
4980 __perf_event_exit_task(child_event, child_ctx, child);
4983 * If the last event was a group event, it will have appended all
4984 * its siblings to the list, but we obtained 'tmp' before that which
4985 * will still point to the list head terminating the iteration.
4987 if (!list_empty(&child_ctx->group_list))
4988 goto again;
4990 mutex_unlock(&child_ctx->mutex);
4992 put_ctx(child_ctx);
4996 * free an unexposed, unused context as created by inheritance by
4997 * init_task below, used by fork() in case of fail.
4999 void perf_event_free_task(struct task_struct *task)
5001 struct perf_event_context *ctx = task->perf_event_ctxp;
5002 struct perf_event *event, *tmp;
5004 if (!ctx)
5005 return;
5007 mutex_lock(&ctx->mutex);
5008 again:
5009 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5010 struct perf_event *parent = event->parent;
5012 if (WARN_ON_ONCE(!parent))
5013 continue;
5015 mutex_lock(&parent->child_mutex);
5016 list_del_init(&event->child_list);
5017 mutex_unlock(&parent->child_mutex);
5019 fput(parent->filp);
5021 list_del_event(event, ctx);
5022 free_event(event);
5025 if (!list_empty(&ctx->group_list))
5026 goto again;
5028 mutex_unlock(&ctx->mutex);
5030 put_ctx(ctx);
5034 * Initialize the perf_event context in task_struct
5036 int perf_event_init_task(struct task_struct *child)
5038 struct perf_event_context *child_ctx, *parent_ctx;
5039 struct perf_event_context *cloned_ctx;
5040 struct perf_event *event;
5041 struct task_struct *parent = current;
5042 int inherited_all = 1;
5043 int ret = 0;
5045 child->perf_event_ctxp = NULL;
5047 mutex_init(&child->perf_event_mutex);
5048 INIT_LIST_HEAD(&child->perf_event_list);
5050 if (likely(!parent->perf_event_ctxp))
5051 return 0;
5054 * This is executed from the parent task context, so inherit
5055 * events that have been marked for cloning.
5056 * First allocate and initialize a context for the child.
5059 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5060 if (!child_ctx)
5061 return -ENOMEM;
5063 __perf_event_init_context(child_ctx, child);
5064 child->perf_event_ctxp = child_ctx;
5065 get_task_struct(child);
5068 * If the parent's context is a clone, pin it so it won't get
5069 * swapped under us.
5071 parent_ctx = perf_pin_task_context(parent);
5074 * No need to check if parent_ctx != NULL here; since we saw
5075 * it non-NULL earlier, the only reason for it to become NULL
5076 * is if we exit, and since we're currently in the middle of
5077 * a fork we can't be exiting at the same time.
5081 * Lock the parent list. No need to lock the child - not PID
5082 * hashed yet and not running, so nobody can access it.
5084 mutex_lock(&parent_ctx->mutex);
5087 * We dont have to disable NMIs - we are only looking at
5088 * the list, not manipulating it:
5090 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5092 if (!event->attr.inherit) {
5093 inherited_all = 0;
5094 continue;
5097 ret = inherit_group(event, parent, parent_ctx,
5098 child, child_ctx);
5099 if (ret) {
5100 inherited_all = 0;
5101 break;
5105 if (inherited_all) {
5107 * Mark the child context as a clone of the parent
5108 * context, or of whatever the parent is a clone of.
5109 * Note that if the parent is a clone, it could get
5110 * uncloned at any point, but that doesn't matter
5111 * because the list of events and the generation
5112 * count can't have changed since we took the mutex.
5114 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5115 if (cloned_ctx) {
5116 child_ctx->parent_ctx = cloned_ctx;
5117 child_ctx->parent_gen = parent_ctx->parent_gen;
5118 } else {
5119 child_ctx->parent_ctx = parent_ctx;
5120 child_ctx->parent_gen = parent_ctx->generation;
5122 get_ctx(child_ctx->parent_ctx);
5125 mutex_unlock(&parent_ctx->mutex);
5127 perf_unpin_context(parent_ctx);
5129 return ret;
5132 static void __cpuinit perf_event_init_cpu(int cpu)
5134 struct perf_cpu_context *cpuctx;
5136 cpuctx = &per_cpu(perf_cpu_context, cpu);
5137 __perf_event_init_context(&cpuctx->ctx, NULL);
5139 spin_lock(&perf_resource_lock);
5140 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5141 spin_unlock(&perf_resource_lock);
5143 hw_perf_event_setup(cpu);
5146 #ifdef CONFIG_HOTPLUG_CPU
5147 static void __perf_event_exit_cpu(void *info)
5149 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5150 struct perf_event_context *ctx = &cpuctx->ctx;
5151 struct perf_event *event, *tmp;
5153 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5154 __perf_event_remove_from_context(event);
5156 static void perf_event_exit_cpu(int cpu)
5158 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5159 struct perf_event_context *ctx = &cpuctx->ctx;
5161 mutex_lock(&ctx->mutex);
5162 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5163 mutex_unlock(&ctx->mutex);
5165 #else
5166 static inline void perf_event_exit_cpu(int cpu) { }
5167 #endif
5169 static int __cpuinit
5170 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5172 unsigned int cpu = (long)hcpu;
5174 switch (action) {
5176 case CPU_UP_PREPARE:
5177 case CPU_UP_PREPARE_FROZEN:
5178 perf_event_init_cpu(cpu);
5179 break;
5181 case CPU_ONLINE:
5182 case CPU_ONLINE_FROZEN:
5183 hw_perf_event_setup_online(cpu);
5184 break;
5186 case CPU_DOWN_PREPARE:
5187 case CPU_DOWN_PREPARE_FROZEN:
5188 perf_event_exit_cpu(cpu);
5189 break;
5191 default:
5192 break;
5195 return NOTIFY_OK;
5199 * This has to have a higher priority than migration_notifier in sched.c.
5201 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5202 .notifier_call = perf_cpu_notify,
5203 .priority = 20,
5206 void __init perf_event_init(void)
5208 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5209 (void *)(long)smp_processor_id());
5210 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5211 (void *)(long)smp_processor_id());
5212 register_cpu_notifier(&perf_cpu_nb);
5215 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5217 return sprintf(buf, "%d\n", perf_reserved_percpu);
5220 static ssize_t
5221 perf_set_reserve_percpu(struct sysdev_class *class,
5222 const char *buf,
5223 size_t count)
5225 struct perf_cpu_context *cpuctx;
5226 unsigned long val;
5227 int err, cpu, mpt;
5229 err = strict_strtoul(buf, 10, &val);
5230 if (err)
5231 return err;
5232 if (val > perf_max_events)
5233 return -EINVAL;
5235 spin_lock(&perf_resource_lock);
5236 perf_reserved_percpu = val;
5237 for_each_online_cpu(cpu) {
5238 cpuctx = &per_cpu(perf_cpu_context, cpu);
5239 spin_lock_irq(&cpuctx->ctx.lock);
5240 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5241 perf_max_events - perf_reserved_percpu);
5242 cpuctx->max_pertask = mpt;
5243 spin_unlock_irq(&cpuctx->ctx.lock);
5245 spin_unlock(&perf_resource_lock);
5247 return count;
5250 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5252 return sprintf(buf, "%d\n", perf_overcommit);
5255 static ssize_t
5256 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5258 unsigned long val;
5259 int err;
5261 err = strict_strtoul(buf, 10, &val);
5262 if (err)
5263 return err;
5264 if (val > 1)
5265 return -EINVAL;
5267 spin_lock(&perf_resource_lock);
5268 perf_overcommit = val;
5269 spin_unlock(&perf_resource_lock);
5271 return count;
5274 static SYSDEV_CLASS_ATTR(
5275 reserve_percpu,
5276 0644,
5277 perf_show_reserve_percpu,
5278 perf_set_reserve_percpu
5281 static SYSDEV_CLASS_ATTR(
5282 overcommit,
5283 0644,
5284 perf_show_overcommit,
5285 perf_set_overcommit
5288 static struct attribute *perfclass_attrs[] = {
5289 &attr_reserve_percpu.attr,
5290 &attr_overcommit.attr,
5291 NULL
5294 static struct attribute_group perfclass_attr_group = {
5295 .attrs = perfclass_attrs,
5296 .name = "perf_events",
5299 static int __init perf_event_sysfs_init(void)
5301 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5302 &perfclass_attr_group);
5304 device_initcall(perf_event_sysfs_init);