2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
41 int perf_max_events __read_mostly
= 1;
42 static int perf_reserved_percpu __read_mostly
;
43 static int perf_overcommit __read_mostly
= 1;
45 static atomic_t nr_events __read_mostly
;
46 static atomic_t nr_mmap_events __read_mostly
;
47 static atomic_t nr_comm_events __read_mostly
;
48 static atomic_t nr_task_events __read_mostly
;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly
= 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid
> -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid
> 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid
> 1;
74 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
81 static atomic64_t perf_event_id
;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock
);
89 * Architecture provided APIs - weak aliases:
91 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
96 void __weak
hw_perf_disable(void) { barrier(); }
97 void __weak
hw_perf_enable(void) { barrier(); }
99 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
100 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
103 hw_perf_group_sched_in(struct perf_event
*group_leader
,
104 struct perf_cpu_context
*cpuctx
,
105 struct perf_event_context
*ctx
, int cpu
)
110 void __weak
perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count
);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count
)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count
);
124 void perf_disable(void)
130 void perf_enable(void)
136 static void get_ctx(struct perf_event_context
*ctx
)
138 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
141 static void free_ctx(struct rcu_head
*head
)
143 struct perf_event_context
*ctx
;
145 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
149 static void put_ctx(struct perf_event_context
*ctx
)
151 if (atomic_dec_and_test(&ctx
->refcount
)) {
153 put_ctx(ctx
->parent_ctx
);
155 put_task_struct(ctx
->task
);
156 call_rcu(&ctx
->rcu_head
, free_ctx
);
160 static void unclone_ctx(struct perf_event_context
*ctx
)
162 if (ctx
->parent_ctx
) {
163 put_ctx(ctx
->parent_ctx
);
164 ctx
->parent_ctx
= NULL
;
169 * If we inherit events we want to return the parent event id
172 static u64
primary_event_id(struct perf_event
*event
)
177 id
= event
->parent
->id
;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context
*
188 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
190 struct perf_event_context
*ctx
;
194 ctx
= rcu_dereference(task
->perf_event_ctxp
);
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx
->lock
, *flags
);
207 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
208 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
212 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
213 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
228 struct perf_event_context
*ctx
;
231 ctx
= perf_lock_task_context(task
, &flags
);
234 spin_unlock_irqrestore(&ctx
->lock
, flags
);
239 static void perf_unpin_context(struct perf_event_context
*ctx
)
243 spin_lock_irqsave(&ctx
->lock
, flags
);
245 spin_unlock_irqrestore(&ctx
->lock
, flags
);
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
254 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
256 struct perf_event
*group_leader
= event
->group_leader
;
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
263 if (group_leader
== event
)
264 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
266 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
267 group_leader
->nr_siblings
++;
270 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
272 if (event
->attr
.inherit_stat
)
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
281 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
283 struct perf_event
*sibling
, *tmp
;
285 if (list_empty(&event
->group_entry
))
288 if (event
->attr
.inherit_stat
)
291 list_del_init(&event
->group_entry
);
292 list_del_rcu(&event
->event_entry
);
294 if (event
->group_leader
!= event
)
295 event
->group_leader
->nr_siblings
--;
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
302 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
304 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
305 sibling
->group_leader
= sibling
;
310 event_sched_out(struct perf_event
*event
,
311 struct perf_cpu_context
*cpuctx
,
312 struct perf_event_context
*ctx
)
314 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
317 event
->state
= PERF_EVENT_STATE_INACTIVE
;
318 if (event
->pending_disable
) {
319 event
->pending_disable
= 0;
320 event
->state
= PERF_EVENT_STATE_OFF
;
322 event
->tstamp_stopped
= ctx
->time
;
323 event
->pmu
->disable(event
);
326 if (!is_software_event(event
))
327 cpuctx
->active_oncpu
--;
329 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
330 cpuctx
->exclusive
= 0;
334 group_sched_out(struct perf_event
*group_event
,
335 struct perf_cpu_context
*cpuctx
,
336 struct perf_event_context
*ctx
)
338 struct perf_event
*event
;
340 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
343 event_sched_out(group_event
, cpuctx
, ctx
);
346 * Schedule out siblings (if any):
348 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
349 event_sched_out(event
, cpuctx
, ctx
);
351 if (group_event
->attr
.exclusive
)
352 cpuctx
->exclusive
= 0;
356 * Cross CPU call to remove a performance event
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
361 static void __perf_event_remove_from_context(void *info
)
363 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
364 struct perf_event
*event
= info
;
365 struct perf_event_context
*ctx
= event
->ctx
;
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
372 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
375 spin_lock(&ctx
->lock
);
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
382 event_sched_out(event
, cpuctx
, ctx
);
384 list_del_event(event
, ctx
);
388 * Allow more per task events with respect to the
391 cpuctx
->max_pertask
=
392 min(perf_max_events
- ctx
->nr_events
,
393 perf_max_events
- perf_reserved_percpu
);
397 spin_unlock(&ctx
->lock
);
402 * Remove the event from a task's (or a CPU's) list of events.
404 * Must be called with ctx->mutex held.
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
416 static void perf_event_remove_from_context(struct perf_event
*event
)
418 struct perf_event_context
*ctx
= event
->ctx
;
419 struct task_struct
*task
= ctx
->task
;
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
426 smp_call_function_single(event
->cpu
,
427 __perf_event_remove_from_context
,
433 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
436 spin_lock_irq(&ctx
->lock
);
438 * If the context is active we need to retry the smp call.
440 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
441 spin_unlock_irq(&ctx
->lock
);
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
450 if (!list_empty(&event
->group_entry
)) {
451 list_del_event(event
, ctx
);
453 spin_unlock_irq(&ctx
->lock
);
456 static inline u64
perf_clock(void)
458 return cpu_clock(smp_processor_id());
462 * Update the record of the current time in a context.
464 static void update_context_time(struct perf_event_context
*ctx
)
466 u64 now
= perf_clock();
468 ctx
->time
+= now
- ctx
->timestamp
;
469 ctx
->timestamp
= now
;
473 * Update the total_time_enabled and total_time_running fields for a event.
475 static void update_event_times(struct perf_event
*event
)
477 struct perf_event_context
*ctx
= event
->ctx
;
480 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
481 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
484 event
->total_time_enabled
= ctx
->time
- event
->tstamp_enabled
;
486 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
487 run_end
= event
->tstamp_stopped
;
491 event
->total_time_running
= run_end
- event
->tstamp_running
;
495 * Update total_time_enabled and total_time_running for all events in a group.
497 static void update_group_times(struct perf_event
*leader
)
499 struct perf_event
*event
;
501 update_event_times(leader
);
502 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
503 update_event_times(event
);
507 * Cross CPU call to disable a performance event
509 static void __perf_event_disable(void *info
)
511 struct perf_event
*event
= info
;
512 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
513 struct perf_event_context
*ctx
= event
->ctx
;
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
519 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
522 spin_lock(&ctx
->lock
);
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
528 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
529 update_context_time(ctx
);
530 update_group_times(event
);
531 if (event
== event
->group_leader
)
532 group_sched_out(event
, cpuctx
, ctx
);
534 event_sched_out(event
, cpuctx
, ctx
);
535 event
->state
= PERF_EVENT_STATE_OFF
;
538 spin_unlock(&ctx
->lock
);
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
554 static void perf_event_disable(struct perf_event
*event
)
556 struct perf_event_context
*ctx
= event
->ctx
;
557 struct task_struct
*task
= ctx
->task
;
561 * Disable the event on the cpu that it's on
563 smp_call_function_single(event
->cpu
, __perf_event_disable
,
569 task_oncpu_function_call(task
, __perf_event_disable
, event
);
571 spin_lock_irq(&ctx
->lock
);
573 * If the event is still active, we need to retry the cross-call.
575 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
576 spin_unlock_irq(&ctx
->lock
);
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
584 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
585 update_group_times(event
);
586 event
->state
= PERF_EVENT_STATE_OFF
;
589 spin_unlock_irq(&ctx
->lock
);
593 event_sched_in(struct perf_event
*event
,
594 struct perf_cpu_context
*cpuctx
,
595 struct perf_event_context
*ctx
,
598 if (event
->state
<= PERF_EVENT_STATE_OFF
)
601 event
->state
= PERF_EVENT_STATE_ACTIVE
;
602 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
604 * The new state must be visible before we turn it on in the hardware:
608 if (event
->pmu
->enable(event
)) {
609 event
->state
= PERF_EVENT_STATE_INACTIVE
;
614 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
616 if (!is_software_event(event
))
617 cpuctx
->active_oncpu
++;
620 if (event
->attr
.exclusive
)
621 cpuctx
->exclusive
= 1;
627 group_sched_in(struct perf_event
*group_event
,
628 struct perf_cpu_context
*cpuctx
,
629 struct perf_event_context
*ctx
,
632 struct perf_event
*event
, *partial_group
;
635 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
638 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
640 return ret
< 0 ? ret
: 0;
642 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
646 * Schedule in siblings as one group (if any):
648 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
649 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
650 partial_group
= event
;
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
662 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
663 if (event
== partial_group
)
665 event_sched_out(event
, cpuctx
, ctx
);
667 event_sched_out(group_event
, cpuctx
, ctx
);
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
676 static int is_software_only_group(struct perf_event
*leader
)
678 struct perf_event
*event
;
680 if (!is_software_event(leader
))
683 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
684 if (!is_software_event(event
))
691 * Work out whether we can put this event group on the CPU now.
693 static int group_can_go_on(struct perf_event
*event
,
694 struct perf_cpu_context
*cpuctx
,
698 * Groups consisting entirely of software events can always go on.
700 if (is_software_only_group(event
))
703 * If an exclusive group is already on, no other hardware
706 if (cpuctx
->exclusive
)
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
712 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
715 * Otherwise, try to add it if all previous groups were able
721 static void add_event_to_ctx(struct perf_event
*event
,
722 struct perf_event_context
*ctx
)
724 list_add_event(event
, ctx
);
725 event
->tstamp_enabled
= ctx
->time
;
726 event
->tstamp_running
= ctx
->time
;
727 event
->tstamp_stopped
= ctx
->time
;
731 * Cross CPU call to install and enable a performance event
733 * Must be called with ctx->mutex held
735 static void __perf_install_in_context(void *info
)
737 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
738 struct perf_event
*event
= info
;
739 struct perf_event_context
*ctx
= event
->ctx
;
740 struct perf_event
*leader
= event
->group_leader
;
741 int cpu
= smp_processor_id();
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
751 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
752 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
754 cpuctx
->task_ctx
= ctx
;
757 spin_lock(&ctx
->lock
);
759 update_context_time(ctx
);
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
767 add_event_to_ctx(event
, ctx
);
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
773 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
774 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
782 if (!group_can_go_on(event
, cpuctx
, 1))
785 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
794 group_sched_out(leader
, cpuctx
, ctx
);
795 if (leader
->attr
.pinned
) {
796 update_group_times(leader
);
797 leader
->state
= PERF_EVENT_STATE_ERROR
;
801 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
802 cpuctx
->max_pertask
--;
807 spin_unlock(&ctx
->lock
);
811 * Attach a performance event to a context
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
820 * Must be called with ctx->mutex held.
823 perf_install_in_context(struct perf_event_context
*ctx
,
824 struct perf_event
*event
,
827 struct task_struct
*task
= ctx
->task
;
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
834 smp_call_function_single(cpu
, __perf_install_in_context
,
840 task_oncpu_function_call(task
, __perf_install_in_context
,
843 spin_lock_irq(&ctx
->lock
);
845 * we need to retry the smp call.
847 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
848 spin_unlock_irq(&ctx
->lock
);
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
857 if (list_empty(&event
->group_entry
))
858 add_event_to_ctx(event
, ctx
);
859 spin_unlock_irq(&ctx
->lock
);
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
870 static void __perf_event_mark_enabled(struct perf_event
*event
,
871 struct perf_event_context
*ctx
)
873 struct perf_event
*sub
;
875 event
->state
= PERF_EVENT_STATE_INACTIVE
;
876 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
877 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
878 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
879 sub
->tstamp_enabled
=
880 ctx
->time
- sub
->total_time_enabled
;
884 * Cross CPU call to enable a performance event
886 static void __perf_event_enable(void *info
)
888 struct perf_event
*event
= info
;
889 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
890 struct perf_event_context
*ctx
= event
->ctx
;
891 struct perf_event
*leader
= event
->group_leader
;
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
898 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
899 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
901 cpuctx
->task_ctx
= ctx
;
904 spin_lock(&ctx
->lock
);
906 update_context_time(ctx
);
908 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
910 __perf_event_mark_enabled(event
, ctx
);
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
916 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
919 if (!group_can_go_on(event
, cpuctx
, 1)) {
924 err
= group_sched_in(event
, cpuctx
, ctx
,
927 err
= event_sched_in(event
, cpuctx
, ctx
,
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
938 group_sched_out(leader
, cpuctx
, ctx
);
939 if (leader
->attr
.pinned
) {
940 update_group_times(leader
);
941 leader
->state
= PERF_EVENT_STATE_ERROR
;
946 spin_unlock(&ctx
->lock
);
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
958 static void perf_event_enable(struct perf_event
*event
)
960 struct perf_event_context
*ctx
= event
->ctx
;
961 struct task_struct
*task
= ctx
->task
;
965 * Enable the event on the cpu that it's on
967 smp_call_function_single(event
->cpu
, __perf_event_enable
,
972 spin_lock_irq(&ctx
->lock
);
973 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
983 if (event
->state
== PERF_EVENT_STATE_ERROR
)
984 event
->state
= PERF_EVENT_STATE_OFF
;
987 spin_unlock_irq(&ctx
->lock
);
988 task_oncpu_function_call(task
, __perf_event_enable
, event
);
990 spin_lock_irq(&ctx
->lock
);
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
996 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1003 if (event
->state
== PERF_EVENT_STATE_OFF
)
1004 __perf_event_mark_enabled(event
, ctx
);
1007 spin_unlock_irq(&ctx
->lock
);
1010 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1013 * not supported on inherited events
1015 if (event
->attr
.inherit
)
1018 atomic_add(refresh
, &event
->event_limit
);
1019 perf_event_enable(event
);
1024 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1025 struct perf_cpu_context
*cpuctx
)
1027 struct perf_event
*event
;
1029 spin_lock(&ctx
->lock
);
1031 if (likely(!ctx
->nr_events
))
1033 update_context_time(ctx
);
1037 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1038 group_sched_out(event
, cpuctx
, ctx
);
1042 spin_unlock(&ctx
->lock
);
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1056 static int context_equiv(struct perf_event_context
*ctx1
,
1057 struct perf_event_context
*ctx2
)
1059 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1060 && ctx1
->parent_gen
== ctx2
->parent_gen
1061 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1064 static void __perf_event_read(void *event
);
1066 static void __perf_event_sync_stat(struct perf_event
*event
,
1067 struct perf_event
*next_event
)
1071 if (!event
->attr
.inherit_stat
)
1075 * Update the event value, we cannot use perf_event_read()
1076 * because we're in the middle of a context switch and have IRQs
1077 * disabled, which upsets smp_call_function_single(), however
1078 * we know the event must be on the current CPU, therefore we
1079 * don't need to use it.
1081 switch (event
->state
) {
1082 case PERF_EVENT_STATE_ACTIVE
:
1083 __perf_event_read(event
);
1086 case PERF_EVENT_STATE_INACTIVE
:
1087 update_event_times(event
);
1095 * In order to keep per-task stats reliable we need to flip the event
1096 * values when we flip the contexts.
1098 value
= atomic64_read(&next_event
->count
);
1099 value
= atomic64_xchg(&event
->count
, value
);
1100 atomic64_set(&next_event
->count
, value
);
1102 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1103 swap(event
->total_time_running
, next_event
->total_time_running
);
1106 * Since we swizzled the values, update the user visible data too.
1108 perf_event_update_userpage(event
);
1109 perf_event_update_userpage(next_event
);
1112 #define list_next_entry(pos, member) \
1113 list_entry(pos->member.next, typeof(*pos), member)
1115 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1116 struct perf_event_context
*next_ctx
)
1118 struct perf_event
*event
, *next_event
;
1123 event
= list_first_entry(&ctx
->event_list
,
1124 struct perf_event
, event_entry
);
1126 next_event
= list_first_entry(&next_ctx
->event_list
,
1127 struct perf_event
, event_entry
);
1129 while (&event
->event_entry
!= &ctx
->event_list
&&
1130 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1132 __perf_event_sync_stat(event
, next_event
);
1134 event
= list_next_entry(event
, event_entry
);
1135 next_event
= list_next_entry(next_event
, event_entry
);
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1143 * We stop each event and update the event value in event->count.
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1150 void perf_event_task_sched_out(struct task_struct
*task
,
1151 struct task_struct
*next
, int cpu
)
1153 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1154 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1155 struct perf_event_context
*next_ctx
;
1156 struct perf_event_context
*parent
;
1157 struct pt_regs
*regs
;
1160 regs
= task_pt_regs(task
);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1163 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1166 update_context_time(ctx
);
1169 parent
= rcu_dereference(ctx
->parent_ctx
);
1170 next_ctx
= next
->perf_event_ctxp
;
1171 if (parent
&& next_ctx
&&
1172 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1174 * Looks like the two contexts are clones, so we might be
1175 * able to optimize the context switch. We lock both
1176 * contexts and check that they are clones under the
1177 * lock (including re-checking that neither has been
1178 * uncloned in the meantime). It doesn't matter which
1179 * order we take the locks because no other cpu could
1180 * be trying to lock both of these tasks.
1182 spin_lock(&ctx
->lock
);
1183 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1184 if (context_equiv(ctx
, next_ctx
)) {
1186 * XXX do we need a memory barrier of sorts
1187 * wrt to rcu_dereference() of perf_event_ctxp
1189 task
->perf_event_ctxp
= next_ctx
;
1190 next
->perf_event_ctxp
= ctx
;
1192 next_ctx
->task
= task
;
1195 perf_event_sync_stat(ctx
, next_ctx
);
1197 spin_unlock(&next_ctx
->lock
);
1198 spin_unlock(&ctx
->lock
);
1203 __perf_event_sched_out(ctx
, cpuctx
);
1204 cpuctx
->task_ctx
= NULL
;
1209 * Called with IRQs disabled
1211 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1213 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1215 if (!cpuctx
->task_ctx
)
1218 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1221 __perf_event_sched_out(ctx
, cpuctx
);
1222 cpuctx
->task_ctx
= NULL
;
1226 * Called with IRQs disabled
1228 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1230 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1234 __perf_event_sched_in(struct perf_event_context
*ctx
,
1235 struct perf_cpu_context
*cpuctx
, int cpu
)
1237 struct perf_event
*event
;
1240 spin_lock(&ctx
->lock
);
1242 if (likely(!ctx
->nr_events
))
1245 ctx
->timestamp
= perf_clock();
1250 * First go through the list and put on any pinned groups
1251 * in order to give them the best chance of going on.
1253 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1254 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1255 !event
->attr
.pinned
)
1257 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1260 if (group_can_go_on(event
, cpuctx
, 1))
1261 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1267 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1268 update_group_times(event
);
1269 event
->state
= PERF_EVENT_STATE_ERROR
;
1273 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1275 * Ignore events in OFF or ERROR state, and
1276 * ignore pinned events since we did them already.
1278 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1283 * Listen to the 'cpu' scheduling filter constraint
1286 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1289 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1290 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1295 spin_unlock(&ctx
->lock
);
1299 * Called from scheduler to add the events of the current task
1300 * with interrupts disabled.
1302 * We restore the event value and then enable it.
1304 * This does not protect us against NMI, but enable()
1305 * sets the enabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * keep the event running.
1309 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1311 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1312 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1316 if (cpuctx
->task_ctx
== ctx
)
1318 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1319 cpuctx
->task_ctx
= ctx
;
1322 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1324 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1326 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1329 #define MAX_INTERRUPTS (~0ULL)
1331 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1333 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1335 struct hw_perf_event
*hwc
= &event
->hw
;
1336 u64 period
, sample_period
;
1339 events
*= hwc
->sample_period
;
1340 period
= div64_u64(events
, event
->attr
.sample_freq
);
1342 delta
= (s64
)(period
- hwc
->sample_period
);
1343 delta
= (delta
+ 7) / 8; /* low pass filter */
1345 sample_period
= hwc
->sample_period
+ delta
;
1350 hwc
->sample_period
= sample_period
;
1353 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1355 struct perf_event
*event
;
1356 struct hw_perf_event
*hwc
;
1357 u64 interrupts
, freq
;
1359 spin_lock(&ctx
->lock
);
1360 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1361 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1366 interrupts
= hwc
->interrupts
;
1367 hwc
->interrupts
= 0;
1370 * unthrottle events on the tick
1372 if (interrupts
== MAX_INTERRUPTS
) {
1373 perf_log_throttle(event
, 1);
1374 event
->pmu
->unthrottle(event
);
1375 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1378 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1382 * if the specified freq < HZ then we need to skip ticks
1384 if (event
->attr
.sample_freq
< HZ
) {
1385 freq
= event
->attr
.sample_freq
;
1387 hwc
->freq_count
+= freq
;
1388 hwc
->freq_interrupts
+= interrupts
;
1390 if (hwc
->freq_count
< HZ
)
1393 interrupts
= hwc
->freq_interrupts
;
1394 hwc
->freq_interrupts
= 0;
1395 hwc
->freq_count
-= HZ
;
1399 perf_adjust_period(event
, freq
* interrupts
);
1402 * In order to avoid being stalled by an (accidental) huge
1403 * sample period, force reset the sample period if we didn't
1404 * get any events in this freq period.
1408 event
->pmu
->disable(event
);
1409 atomic64_set(&hwc
->period_left
, 0);
1410 event
->pmu
->enable(event
);
1414 spin_unlock(&ctx
->lock
);
1418 * Round-robin a context's events:
1420 static void rotate_ctx(struct perf_event_context
*ctx
)
1422 struct perf_event
*event
;
1424 if (!ctx
->nr_events
)
1427 spin_lock(&ctx
->lock
);
1429 * Rotate the first entry last (works just fine for group events too):
1432 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1433 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1438 spin_unlock(&ctx
->lock
);
1441 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1443 struct perf_cpu_context
*cpuctx
;
1444 struct perf_event_context
*ctx
;
1446 if (!atomic_read(&nr_events
))
1449 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1450 ctx
= curr
->perf_event_ctxp
;
1452 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1454 perf_ctx_adjust_freq(ctx
);
1456 perf_event_cpu_sched_out(cpuctx
);
1458 __perf_event_task_sched_out(ctx
);
1460 rotate_ctx(&cpuctx
->ctx
);
1464 perf_event_cpu_sched_in(cpuctx
, cpu
);
1466 perf_event_task_sched_in(curr
, cpu
);
1470 * Enable all of a task's events that have been marked enable-on-exec.
1471 * This expects task == current.
1473 static void perf_event_enable_on_exec(struct task_struct
*task
)
1475 struct perf_event_context
*ctx
;
1476 struct perf_event
*event
;
1477 unsigned long flags
;
1480 local_irq_save(flags
);
1481 ctx
= task
->perf_event_ctxp
;
1482 if (!ctx
|| !ctx
->nr_events
)
1485 __perf_event_task_sched_out(ctx
);
1487 spin_lock(&ctx
->lock
);
1489 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1490 if (!event
->attr
.enable_on_exec
)
1492 event
->attr
.enable_on_exec
= 0;
1493 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1495 __perf_event_mark_enabled(event
, ctx
);
1500 * Unclone this context if we enabled any event.
1505 spin_unlock(&ctx
->lock
);
1507 perf_event_task_sched_in(task
, smp_processor_id());
1509 local_irq_restore(flags
);
1513 * Cross CPU call to read the hardware event
1515 static void __perf_event_read(void *info
)
1517 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1518 struct perf_event
*event
= info
;
1519 struct perf_event_context
*ctx
= event
->ctx
;
1520 unsigned long flags
;
1523 * If this is a task context, we need to check whether it is
1524 * the current task context of this cpu. If not it has been
1525 * scheduled out before the smp call arrived. In that case
1526 * event->count would have been updated to a recent sample
1527 * when the event was scheduled out.
1529 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1532 local_irq_save(flags
);
1534 update_context_time(ctx
);
1535 event
->pmu
->read(event
);
1536 update_event_times(event
);
1537 local_irq_restore(flags
);
1540 static u64
perf_event_read(struct perf_event
*event
)
1543 * If event is enabled and currently active on a CPU, update the
1544 * value in the event structure:
1546 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1547 smp_call_function_single(event
->oncpu
,
1548 __perf_event_read
, event
, 1);
1549 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1550 update_event_times(event
);
1553 return atomic64_read(&event
->count
);
1557 * Initialize the perf_event context in a task_struct:
1560 __perf_event_init_context(struct perf_event_context
*ctx
,
1561 struct task_struct
*task
)
1563 memset(ctx
, 0, sizeof(*ctx
));
1564 spin_lock_init(&ctx
->lock
);
1565 mutex_init(&ctx
->mutex
);
1566 INIT_LIST_HEAD(&ctx
->group_list
);
1567 INIT_LIST_HEAD(&ctx
->event_list
);
1568 atomic_set(&ctx
->refcount
, 1);
1572 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1574 struct perf_event_context
*ctx
;
1575 struct perf_cpu_context
*cpuctx
;
1576 struct task_struct
*task
;
1577 unsigned long flags
;
1581 * If cpu is not a wildcard then this is a percpu event:
1584 /* Must be root to operate on a CPU event: */
1585 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1586 return ERR_PTR(-EACCES
);
1588 if (cpu
< 0 || cpu
> num_possible_cpus())
1589 return ERR_PTR(-EINVAL
);
1592 * We could be clever and allow to attach a event to an
1593 * offline CPU and activate it when the CPU comes up, but
1596 if (!cpu_isset(cpu
, cpu_online_map
))
1597 return ERR_PTR(-ENODEV
);
1599 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1610 task
= find_task_by_vpid(pid
);
1612 get_task_struct(task
);
1616 return ERR_PTR(-ESRCH
);
1619 * Can't attach events to a dying task.
1622 if (task
->flags
& PF_EXITING
)
1625 /* Reuse ptrace permission checks for now. */
1627 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1631 ctx
= perf_lock_task_context(task
, &flags
);
1634 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1638 ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1642 __perf_event_init_context(ctx
, task
);
1644 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1646 * We raced with some other task; use
1647 * the context they set.
1652 get_task_struct(task
);
1655 put_task_struct(task
);
1659 put_task_struct(task
);
1660 return ERR_PTR(err
);
1663 static void perf_event_free_filter(struct perf_event
*event
);
1665 static void free_event_rcu(struct rcu_head
*head
)
1667 struct perf_event
*event
;
1669 event
= container_of(head
, struct perf_event
, rcu_head
);
1671 put_pid_ns(event
->ns
);
1672 perf_event_free_filter(event
);
1676 static void perf_pending_sync(struct perf_event
*event
);
1678 static void free_event(struct perf_event
*event
)
1680 perf_pending_sync(event
);
1682 if (!event
->parent
) {
1683 atomic_dec(&nr_events
);
1684 if (event
->attr
.mmap
)
1685 atomic_dec(&nr_mmap_events
);
1686 if (event
->attr
.comm
)
1687 atomic_dec(&nr_comm_events
);
1688 if (event
->attr
.task
)
1689 atomic_dec(&nr_task_events
);
1692 if (event
->output
) {
1693 fput(event
->output
->filp
);
1694 event
->output
= NULL
;
1698 event
->destroy(event
);
1700 put_ctx(event
->ctx
);
1701 call_rcu(&event
->rcu_head
, free_event_rcu
);
1705 * Called when the last reference to the file is gone.
1707 static int perf_release(struct inode
*inode
, struct file
*file
)
1709 struct perf_event
*event
= file
->private_data
;
1710 struct perf_event_context
*ctx
= event
->ctx
;
1712 file
->private_data
= NULL
;
1714 WARN_ON_ONCE(ctx
->parent_ctx
);
1715 mutex_lock(&ctx
->mutex
);
1716 perf_event_remove_from_context(event
);
1717 mutex_unlock(&ctx
->mutex
);
1719 mutex_lock(&event
->owner
->perf_event_mutex
);
1720 list_del_init(&event
->owner_entry
);
1721 mutex_unlock(&event
->owner
->perf_event_mutex
);
1722 put_task_struct(event
->owner
);
1729 int perf_event_release_kernel(struct perf_event
*event
)
1731 struct perf_event_context
*ctx
= event
->ctx
;
1733 WARN_ON_ONCE(ctx
->parent_ctx
);
1734 mutex_lock(&ctx
->mutex
);
1735 perf_event_remove_from_context(event
);
1736 mutex_unlock(&ctx
->mutex
);
1738 mutex_lock(&event
->owner
->perf_event_mutex
);
1739 list_del_init(&event
->owner_entry
);
1740 mutex_unlock(&event
->owner
->perf_event_mutex
);
1741 put_task_struct(event
->owner
);
1747 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1749 static int perf_event_read_size(struct perf_event
*event
)
1751 int entry
= sizeof(u64
); /* value */
1755 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1756 size
+= sizeof(u64
);
1758 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1759 size
+= sizeof(u64
);
1761 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1762 entry
+= sizeof(u64
);
1764 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1765 nr
+= event
->group_leader
->nr_siblings
;
1766 size
+= sizeof(u64
);
1774 u64
perf_event_read_value(struct perf_event
*event
)
1776 struct perf_event
*child
;
1779 total
+= perf_event_read(event
);
1780 list_for_each_entry(child
, &event
->child_list
, child_list
)
1781 total
+= perf_event_read(child
);
1785 EXPORT_SYMBOL_GPL(perf_event_read_value
);
1787 static int perf_event_read_entry(struct perf_event
*event
,
1788 u64 read_format
, char __user
*buf
)
1790 int n
= 0, count
= 0;
1793 values
[n
++] = perf_event_read_value(event
);
1794 if (read_format
& PERF_FORMAT_ID
)
1795 values
[n
++] = primary_event_id(event
);
1797 count
= n
* sizeof(u64
);
1799 if (copy_to_user(buf
, values
, count
))
1805 static int perf_event_read_group(struct perf_event
*event
,
1806 u64 read_format
, char __user
*buf
)
1808 struct perf_event
*leader
= event
->group_leader
, *sub
;
1809 int n
= 0, size
= 0, err
= -EFAULT
;
1812 values
[n
++] = 1 + leader
->nr_siblings
;
1813 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1814 values
[n
++] = leader
->total_time_enabled
+
1815 atomic64_read(&leader
->child_total_time_enabled
);
1817 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1818 values
[n
++] = leader
->total_time_running
+
1819 atomic64_read(&leader
->child_total_time_running
);
1822 size
= n
* sizeof(u64
);
1824 if (copy_to_user(buf
, values
, size
))
1827 err
= perf_event_read_entry(leader
, read_format
, buf
+ size
);
1833 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1834 err
= perf_event_read_entry(sub
, read_format
,
1845 static int perf_event_read_one(struct perf_event
*event
,
1846 u64 read_format
, char __user
*buf
)
1851 values
[n
++] = perf_event_read_value(event
);
1852 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1853 values
[n
++] = event
->total_time_enabled
+
1854 atomic64_read(&event
->child_total_time_enabled
);
1856 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1857 values
[n
++] = event
->total_time_running
+
1858 atomic64_read(&event
->child_total_time_running
);
1860 if (read_format
& PERF_FORMAT_ID
)
1861 values
[n
++] = primary_event_id(event
);
1863 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1866 return n
* sizeof(u64
);
1870 * Read the performance event - simple non blocking version for now
1873 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1875 u64 read_format
= event
->attr
.read_format
;
1879 * Return end-of-file for a read on a event that is in
1880 * error state (i.e. because it was pinned but it couldn't be
1881 * scheduled on to the CPU at some point).
1883 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1886 if (count
< perf_event_read_size(event
))
1889 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1890 mutex_lock(&event
->child_mutex
);
1891 if (read_format
& PERF_FORMAT_GROUP
)
1892 ret
= perf_event_read_group(event
, read_format
, buf
);
1894 ret
= perf_event_read_one(event
, read_format
, buf
);
1895 mutex_unlock(&event
->child_mutex
);
1901 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1903 struct perf_event
*event
= file
->private_data
;
1905 return perf_read_hw(event
, buf
, count
);
1908 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1910 struct perf_event
*event
= file
->private_data
;
1911 struct perf_mmap_data
*data
;
1912 unsigned int events
= POLL_HUP
;
1915 data
= rcu_dereference(event
->data
);
1917 events
= atomic_xchg(&data
->poll
, 0);
1920 poll_wait(file
, &event
->waitq
, wait
);
1925 static void perf_event_reset(struct perf_event
*event
)
1927 (void)perf_event_read(event
);
1928 atomic64_set(&event
->count
, 0);
1929 perf_event_update_userpage(event
);
1933 * Holding the top-level event's child_mutex means that any
1934 * descendant process that has inherited this event will block
1935 * in sync_child_event if it goes to exit, thus satisfying the
1936 * task existence requirements of perf_event_enable/disable.
1938 static void perf_event_for_each_child(struct perf_event
*event
,
1939 void (*func
)(struct perf_event
*))
1941 struct perf_event
*child
;
1943 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1944 mutex_lock(&event
->child_mutex
);
1946 list_for_each_entry(child
, &event
->child_list
, child_list
)
1948 mutex_unlock(&event
->child_mutex
);
1951 static void perf_event_for_each(struct perf_event
*event
,
1952 void (*func
)(struct perf_event
*))
1954 struct perf_event_context
*ctx
= event
->ctx
;
1955 struct perf_event
*sibling
;
1957 WARN_ON_ONCE(ctx
->parent_ctx
);
1958 mutex_lock(&ctx
->mutex
);
1959 event
= event
->group_leader
;
1961 perf_event_for_each_child(event
, func
);
1963 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1964 perf_event_for_each_child(event
, func
);
1965 mutex_unlock(&ctx
->mutex
);
1968 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1970 struct perf_event_context
*ctx
= event
->ctx
;
1975 if (!event
->attr
.sample_period
)
1978 size
= copy_from_user(&value
, arg
, sizeof(value
));
1979 if (size
!= sizeof(value
))
1985 spin_lock_irq(&ctx
->lock
);
1986 if (event
->attr
.freq
) {
1987 if (value
> sysctl_perf_event_sample_rate
) {
1992 event
->attr
.sample_freq
= value
;
1994 event
->attr
.sample_period
= value
;
1995 event
->hw
.sample_period
= value
;
1998 spin_unlock_irq(&ctx
->lock
);
2003 static int perf_event_set_output(struct perf_event
*event
, int output_fd
);
2004 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2006 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2008 struct perf_event
*event
= file
->private_data
;
2009 void (*func
)(struct perf_event
*);
2013 case PERF_EVENT_IOC_ENABLE
:
2014 func
= perf_event_enable
;
2016 case PERF_EVENT_IOC_DISABLE
:
2017 func
= perf_event_disable
;
2019 case PERF_EVENT_IOC_RESET
:
2020 func
= perf_event_reset
;
2023 case PERF_EVENT_IOC_REFRESH
:
2024 return perf_event_refresh(event
, arg
);
2026 case PERF_EVENT_IOC_PERIOD
:
2027 return perf_event_period(event
, (u64 __user
*)arg
);
2029 case PERF_EVENT_IOC_SET_OUTPUT
:
2030 return perf_event_set_output(event
, arg
);
2032 case PERF_EVENT_IOC_SET_FILTER
:
2033 return perf_event_set_filter(event
, (void __user
*)arg
);
2039 if (flags
& PERF_IOC_FLAG_GROUP
)
2040 perf_event_for_each(event
, func
);
2042 perf_event_for_each_child(event
, func
);
2047 int perf_event_task_enable(void)
2049 struct perf_event
*event
;
2051 mutex_lock(¤t
->perf_event_mutex
);
2052 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2053 perf_event_for_each_child(event
, perf_event_enable
);
2054 mutex_unlock(¤t
->perf_event_mutex
);
2059 int perf_event_task_disable(void)
2061 struct perf_event
*event
;
2063 mutex_lock(¤t
->perf_event_mutex
);
2064 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2065 perf_event_for_each_child(event
, perf_event_disable
);
2066 mutex_unlock(¤t
->perf_event_mutex
);
2071 #ifndef PERF_EVENT_INDEX_OFFSET
2072 # define PERF_EVENT_INDEX_OFFSET 0
2075 static int perf_event_index(struct perf_event
*event
)
2077 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2080 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2084 * Callers need to ensure there can be no nesting of this function, otherwise
2085 * the seqlock logic goes bad. We can not serialize this because the arch
2086 * code calls this from NMI context.
2088 void perf_event_update_userpage(struct perf_event
*event
)
2090 struct perf_event_mmap_page
*userpg
;
2091 struct perf_mmap_data
*data
;
2094 data
= rcu_dereference(event
->data
);
2098 userpg
= data
->user_page
;
2101 * Disable preemption so as to not let the corresponding user-space
2102 * spin too long if we get preempted.
2107 userpg
->index
= perf_event_index(event
);
2108 userpg
->offset
= atomic64_read(&event
->count
);
2109 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2110 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2112 userpg
->time_enabled
= event
->total_time_enabled
+
2113 atomic64_read(&event
->child_total_time_enabled
);
2115 userpg
->time_running
= event
->total_time_running
+
2116 atomic64_read(&event
->child_total_time_running
);
2125 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2127 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2130 #ifndef CONFIG_PERF_USE_VMALLOC
2133 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2136 static struct page
*
2137 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2139 if (pgoff
> data
->nr_pages
)
2143 return virt_to_page(data
->user_page
);
2145 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2148 static struct perf_mmap_data
*
2149 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2151 struct perf_mmap_data
*data
;
2155 WARN_ON(atomic_read(&event
->mmap_count
));
2157 size
= sizeof(struct perf_mmap_data
);
2158 size
+= nr_pages
* sizeof(void *);
2160 data
= kzalloc(size
, GFP_KERNEL
);
2164 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2165 if (!data
->user_page
)
2166 goto fail_user_page
;
2168 for (i
= 0; i
< nr_pages
; i
++) {
2169 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2170 if (!data
->data_pages
[i
])
2171 goto fail_data_pages
;
2174 data
->data_order
= 0;
2175 data
->nr_pages
= nr_pages
;
2180 for (i
--; i
>= 0; i
--)
2181 free_page((unsigned long)data
->data_pages
[i
]);
2183 free_page((unsigned long)data
->user_page
);
2192 static void perf_mmap_free_page(unsigned long addr
)
2194 struct page
*page
= virt_to_page((void *)addr
);
2196 page
->mapping
= NULL
;
2200 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2204 perf_mmap_free_page((unsigned long)data
->user_page
);
2205 for (i
= 0; i
< data
->nr_pages
; i
++)
2206 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2212 * Back perf_mmap() with vmalloc memory.
2214 * Required for architectures that have d-cache aliasing issues.
2217 static struct page
*
2218 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2220 if (pgoff
> (1UL << data
->data_order
))
2223 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2226 static void perf_mmap_unmark_page(void *addr
)
2228 struct page
*page
= vmalloc_to_page(addr
);
2230 page
->mapping
= NULL
;
2233 static void perf_mmap_data_free_work(struct work_struct
*work
)
2235 struct perf_mmap_data
*data
;
2239 data
= container_of(work
, struct perf_mmap_data
, work
);
2240 nr
= 1 << data
->data_order
;
2242 base
= data
->user_page
;
2243 for (i
= 0; i
< nr
+ 1; i
++)
2244 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2249 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2251 schedule_work(&data
->work
);
2254 static struct perf_mmap_data
*
2255 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2257 struct perf_mmap_data
*data
;
2261 WARN_ON(atomic_read(&event
->mmap_count
));
2263 size
= sizeof(struct perf_mmap_data
);
2264 size
+= sizeof(void *);
2266 data
= kzalloc(size
, GFP_KERNEL
);
2270 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2272 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2276 data
->user_page
= all_buf
;
2277 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2278 data
->data_order
= ilog2(nr_pages
);
2292 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2294 struct perf_event
*event
= vma
->vm_file
->private_data
;
2295 struct perf_mmap_data
*data
;
2296 int ret
= VM_FAULT_SIGBUS
;
2298 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2299 if (vmf
->pgoff
== 0)
2305 data
= rcu_dereference(event
->data
);
2309 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2312 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2316 get_page(vmf
->page
);
2317 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2318 vmf
->page
->index
= vmf
->pgoff
;
2328 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2330 long max_size
= perf_data_size(data
);
2332 atomic_set(&data
->lock
, -1);
2334 if (event
->attr
.watermark
) {
2335 data
->watermark
= min_t(long, max_size
,
2336 event
->attr
.wakeup_watermark
);
2339 if (!data
->watermark
)
2340 data
->watermark
= max_t(long, PAGE_SIZE
, max_size
/ 2);
2343 rcu_assign_pointer(event
->data
, data
);
2346 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2348 struct perf_mmap_data
*data
;
2350 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2351 perf_mmap_data_free(data
);
2355 static void perf_mmap_data_release(struct perf_event
*event
)
2357 struct perf_mmap_data
*data
= event
->data
;
2359 WARN_ON(atomic_read(&event
->mmap_count
));
2361 rcu_assign_pointer(event
->data
, NULL
);
2362 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2365 static void perf_mmap_open(struct vm_area_struct
*vma
)
2367 struct perf_event
*event
= vma
->vm_file
->private_data
;
2369 atomic_inc(&event
->mmap_count
);
2372 static void perf_mmap_close(struct vm_area_struct
*vma
)
2374 struct perf_event
*event
= vma
->vm_file
->private_data
;
2376 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2377 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2378 unsigned long size
= perf_data_size(event
->data
);
2379 struct user_struct
*user
= current_user();
2381 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2382 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2383 perf_mmap_data_release(event
);
2384 mutex_unlock(&event
->mmap_mutex
);
2388 static const struct vm_operations_struct perf_mmap_vmops
= {
2389 .open
= perf_mmap_open
,
2390 .close
= perf_mmap_close
,
2391 .fault
= perf_mmap_fault
,
2392 .page_mkwrite
= perf_mmap_fault
,
2395 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2397 struct perf_event
*event
= file
->private_data
;
2398 unsigned long user_locked
, user_lock_limit
;
2399 struct user_struct
*user
= current_user();
2400 unsigned long locked
, lock_limit
;
2401 struct perf_mmap_data
*data
;
2402 unsigned long vma_size
;
2403 unsigned long nr_pages
;
2404 long user_extra
, extra
;
2407 if (!(vma
->vm_flags
& VM_SHARED
))
2410 vma_size
= vma
->vm_end
- vma
->vm_start
;
2411 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2414 * If we have data pages ensure they're a power-of-two number, so we
2415 * can do bitmasks instead of modulo.
2417 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2420 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2423 if (vma
->vm_pgoff
!= 0)
2426 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2427 mutex_lock(&event
->mmap_mutex
);
2428 if (event
->output
) {
2433 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2434 if (nr_pages
!= event
->data
->nr_pages
)
2439 user_extra
= nr_pages
+ 1;
2440 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2443 * Increase the limit linearly with more CPUs:
2445 user_lock_limit
*= num_online_cpus();
2447 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2450 if (user_locked
> user_lock_limit
)
2451 extra
= user_locked
- user_lock_limit
;
2453 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2454 lock_limit
>>= PAGE_SHIFT
;
2455 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2457 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2458 !capable(CAP_IPC_LOCK
)) {
2463 WARN_ON(event
->data
);
2465 data
= perf_mmap_data_alloc(event
, nr_pages
);
2471 perf_mmap_data_init(event
, data
);
2473 atomic_set(&event
->mmap_count
, 1);
2474 atomic_long_add(user_extra
, &user
->locked_vm
);
2475 vma
->vm_mm
->locked_vm
+= extra
;
2476 event
->data
->nr_locked
= extra
;
2477 if (vma
->vm_flags
& VM_WRITE
)
2478 event
->data
->writable
= 1;
2481 mutex_unlock(&event
->mmap_mutex
);
2483 vma
->vm_flags
|= VM_RESERVED
;
2484 vma
->vm_ops
= &perf_mmap_vmops
;
2489 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2491 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2492 struct perf_event
*event
= filp
->private_data
;
2495 mutex_lock(&inode
->i_mutex
);
2496 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2497 mutex_unlock(&inode
->i_mutex
);
2505 static const struct file_operations perf_fops
= {
2506 .release
= perf_release
,
2509 .unlocked_ioctl
= perf_ioctl
,
2510 .compat_ioctl
= perf_ioctl
,
2512 .fasync
= perf_fasync
,
2518 * If there's data, ensure we set the poll() state and publish everything
2519 * to user-space before waking everybody up.
2522 void perf_event_wakeup(struct perf_event
*event
)
2524 wake_up_all(&event
->waitq
);
2526 if (event
->pending_kill
) {
2527 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2528 event
->pending_kill
= 0;
2535 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2537 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2538 * single linked list and use cmpxchg() to add entries lockless.
2541 static void perf_pending_event(struct perf_pending_entry
*entry
)
2543 struct perf_event
*event
= container_of(entry
,
2544 struct perf_event
, pending
);
2546 if (event
->pending_disable
) {
2547 event
->pending_disable
= 0;
2548 __perf_event_disable(event
);
2551 if (event
->pending_wakeup
) {
2552 event
->pending_wakeup
= 0;
2553 perf_event_wakeup(event
);
2557 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2559 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2563 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2564 void (*func
)(struct perf_pending_entry
*))
2566 struct perf_pending_entry
**head
;
2568 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2573 head
= &get_cpu_var(perf_pending_head
);
2576 entry
->next
= *head
;
2577 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2579 set_perf_event_pending();
2581 put_cpu_var(perf_pending_head
);
2584 static int __perf_pending_run(void)
2586 struct perf_pending_entry
*list
;
2589 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2590 while (list
!= PENDING_TAIL
) {
2591 void (*func
)(struct perf_pending_entry
*);
2592 struct perf_pending_entry
*entry
= list
;
2599 * Ensure we observe the unqueue before we issue the wakeup,
2600 * so that we won't be waiting forever.
2601 * -- see perf_not_pending().
2612 static inline int perf_not_pending(struct perf_event
*event
)
2615 * If we flush on whatever cpu we run, there is a chance we don't
2619 __perf_pending_run();
2623 * Ensure we see the proper queue state before going to sleep
2624 * so that we do not miss the wakeup. -- see perf_pending_handle()
2627 return event
->pending
.next
== NULL
;
2630 static void perf_pending_sync(struct perf_event
*event
)
2632 wait_event(event
->waitq
, perf_not_pending(event
));
2635 void perf_event_do_pending(void)
2637 __perf_pending_run();
2641 * Callchain support -- arch specific
2644 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2652 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2653 unsigned long offset
, unsigned long head
)
2657 if (!data
->writable
)
2660 mask
= perf_data_size(data
) - 1;
2662 offset
= (offset
- tail
) & mask
;
2663 head
= (head
- tail
) & mask
;
2665 if ((int)(head
- offset
) < 0)
2671 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2673 atomic_set(&handle
->data
->poll
, POLL_IN
);
2676 handle
->event
->pending_wakeup
= 1;
2677 perf_pending_queue(&handle
->event
->pending
,
2678 perf_pending_event
);
2680 perf_event_wakeup(handle
->event
);
2684 * Curious locking construct.
2686 * We need to ensure a later event_id doesn't publish a head when a former
2687 * event_id isn't done writing. However since we need to deal with NMIs we
2688 * cannot fully serialize things.
2690 * What we do is serialize between CPUs so we only have to deal with NMI
2691 * nesting on a single CPU.
2693 * We only publish the head (and generate a wakeup) when the outer-most
2694 * event_id completes.
2696 static void perf_output_lock(struct perf_output_handle
*handle
)
2698 struct perf_mmap_data
*data
= handle
->data
;
2703 local_irq_save(handle
->flags
);
2704 cpu
= smp_processor_id();
2706 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2709 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2715 static void perf_output_unlock(struct perf_output_handle
*handle
)
2717 struct perf_mmap_data
*data
= handle
->data
;
2721 data
->done_head
= data
->head
;
2723 if (!handle
->locked
)
2728 * The xchg implies a full barrier that ensures all writes are done
2729 * before we publish the new head, matched by a rmb() in userspace when
2730 * reading this position.
2732 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2733 data
->user_page
->data_head
= head
;
2736 * NMI can happen here, which means we can miss a done_head update.
2739 cpu
= atomic_xchg(&data
->lock
, -1);
2740 WARN_ON_ONCE(cpu
!= smp_processor_id());
2743 * Therefore we have to validate we did not indeed do so.
2745 if (unlikely(atomic_long_read(&data
->done_head
))) {
2747 * Since we had it locked, we can lock it again.
2749 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2755 if (atomic_xchg(&data
->wakeup
, 0))
2756 perf_output_wakeup(handle
);
2758 local_irq_restore(handle
->flags
);
2761 void perf_output_copy(struct perf_output_handle
*handle
,
2762 const void *buf
, unsigned int len
)
2764 unsigned int pages_mask
;
2765 unsigned long offset
;
2769 offset
= handle
->offset
;
2770 pages_mask
= handle
->data
->nr_pages
- 1;
2771 pages
= handle
->data
->data_pages
;
2774 unsigned long page_offset
;
2775 unsigned long page_size
;
2778 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2779 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2780 page_offset
= offset
& (page_size
- 1);
2781 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2783 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2790 handle
->offset
= offset
;
2793 * Check we didn't copy past our reservation window, taking the
2794 * possible unsigned int wrap into account.
2796 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2799 int perf_output_begin(struct perf_output_handle
*handle
,
2800 struct perf_event
*event
, unsigned int size
,
2801 int nmi
, int sample
)
2803 struct perf_event
*output_event
;
2804 struct perf_mmap_data
*data
;
2805 unsigned long tail
, offset
, head
;
2808 struct perf_event_header header
;
2815 * For inherited events we send all the output towards the parent.
2818 event
= event
->parent
;
2820 output_event
= rcu_dereference(event
->output
);
2822 event
= output_event
;
2824 data
= rcu_dereference(event
->data
);
2828 handle
->data
= data
;
2829 handle
->event
= event
;
2831 handle
->sample
= sample
;
2833 if (!data
->nr_pages
)
2836 have_lost
= atomic_read(&data
->lost
);
2838 size
+= sizeof(lost_event
);
2840 perf_output_lock(handle
);
2844 * Userspace could choose to issue a mb() before updating the
2845 * tail pointer. So that all reads will be completed before the
2848 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2850 offset
= head
= atomic_long_read(&data
->head
);
2852 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2854 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2856 handle
->offset
= offset
;
2857 handle
->head
= head
;
2859 if (head
- tail
> data
->watermark
)
2860 atomic_set(&data
->wakeup
, 1);
2863 lost_event
.header
.type
= PERF_RECORD_LOST
;
2864 lost_event
.header
.misc
= 0;
2865 lost_event
.header
.size
= sizeof(lost_event
);
2866 lost_event
.id
= event
->id
;
2867 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2869 perf_output_put(handle
, lost_event
);
2875 atomic_inc(&data
->lost
);
2876 perf_output_unlock(handle
);
2883 void perf_output_end(struct perf_output_handle
*handle
)
2885 struct perf_event
*event
= handle
->event
;
2886 struct perf_mmap_data
*data
= handle
->data
;
2888 int wakeup_events
= event
->attr
.wakeup_events
;
2890 if (handle
->sample
&& wakeup_events
) {
2891 int events
= atomic_inc_return(&data
->events
);
2892 if (events
>= wakeup_events
) {
2893 atomic_sub(wakeup_events
, &data
->events
);
2894 atomic_set(&data
->wakeup
, 1);
2898 perf_output_unlock(handle
);
2902 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2905 * only top level events have the pid namespace they were created in
2908 event
= event
->parent
;
2910 return task_tgid_nr_ns(p
, event
->ns
);
2913 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2916 * only top level events have the pid namespace they were created in
2919 event
= event
->parent
;
2921 return task_pid_nr_ns(p
, event
->ns
);
2924 static void perf_output_read_one(struct perf_output_handle
*handle
,
2925 struct perf_event
*event
)
2927 u64 read_format
= event
->attr
.read_format
;
2931 values
[n
++] = atomic64_read(&event
->count
);
2932 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2933 values
[n
++] = event
->total_time_enabled
+
2934 atomic64_read(&event
->child_total_time_enabled
);
2936 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2937 values
[n
++] = event
->total_time_running
+
2938 atomic64_read(&event
->child_total_time_running
);
2940 if (read_format
& PERF_FORMAT_ID
)
2941 values
[n
++] = primary_event_id(event
);
2943 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2947 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2949 static void perf_output_read_group(struct perf_output_handle
*handle
,
2950 struct perf_event
*event
)
2952 struct perf_event
*leader
= event
->group_leader
, *sub
;
2953 u64 read_format
= event
->attr
.read_format
;
2957 values
[n
++] = 1 + leader
->nr_siblings
;
2959 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2960 values
[n
++] = leader
->total_time_enabled
;
2962 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2963 values
[n
++] = leader
->total_time_running
;
2965 if (leader
!= event
)
2966 leader
->pmu
->read(leader
);
2968 values
[n
++] = atomic64_read(&leader
->count
);
2969 if (read_format
& PERF_FORMAT_ID
)
2970 values
[n
++] = primary_event_id(leader
);
2972 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2974 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2978 sub
->pmu
->read(sub
);
2980 values
[n
++] = atomic64_read(&sub
->count
);
2981 if (read_format
& PERF_FORMAT_ID
)
2982 values
[n
++] = primary_event_id(sub
);
2984 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2988 static void perf_output_read(struct perf_output_handle
*handle
,
2989 struct perf_event
*event
)
2991 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
2992 perf_output_read_group(handle
, event
);
2994 perf_output_read_one(handle
, event
);
2997 void perf_output_sample(struct perf_output_handle
*handle
,
2998 struct perf_event_header
*header
,
2999 struct perf_sample_data
*data
,
3000 struct perf_event
*event
)
3002 u64 sample_type
= data
->type
;
3004 perf_output_put(handle
, *header
);
3006 if (sample_type
& PERF_SAMPLE_IP
)
3007 perf_output_put(handle
, data
->ip
);
3009 if (sample_type
& PERF_SAMPLE_TID
)
3010 perf_output_put(handle
, data
->tid_entry
);
3012 if (sample_type
& PERF_SAMPLE_TIME
)
3013 perf_output_put(handle
, data
->time
);
3015 if (sample_type
& PERF_SAMPLE_ADDR
)
3016 perf_output_put(handle
, data
->addr
);
3018 if (sample_type
& PERF_SAMPLE_ID
)
3019 perf_output_put(handle
, data
->id
);
3021 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3022 perf_output_put(handle
, data
->stream_id
);
3024 if (sample_type
& PERF_SAMPLE_CPU
)
3025 perf_output_put(handle
, data
->cpu_entry
);
3027 if (sample_type
& PERF_SAMPLE_PERIOD
)
3028 perf_output_put(handle
, data
->period
);
3030 if (sample_type
& PERF_SAMPLE_READ
)
3031 perf_output_read(handle
, event
);
3033 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3034 if (data
->callchain
) {
3037 if (data
->callchain
)
3038 size
+= data
->callchain
->nr
;
3040 size
*= sizeof(u64
);
3042 perf_output_copy(handle
, data
->callchain
, size
);
3045 perf_output_put(handle
, nr
);
3049 if (sample_type
& PERF_SAMPLE_RAW
) {
3051 perf_output_put(handle
, data
->raw
->size
);
3052 perf_output_copy(handle
, data
->raw
->data
,
3059 .size
= sizeof(u32
),
3062 perf_output_put(handle
, raw
);
3067 void perf_prepare_sample(struct perf_event_header
*header
,
3068 struct perf_sample_data
*data
,
3069 struct perf_event
*event
,
3070 struct pt_regs
*regs
)
3072 u64 sample_type
= event
->attr
.sample_type
;
3074 data
->type
= sample_type
;
3076 header
->type
= PERF_RECORD_SAMPLE
;
3077 header
->size
= sizeof(*header
);
3080 header
->misc
|= perf_misc_flags(regs
);
3082 if (sample_type
& PERF_SAMPLE_IP
) {
3083 data
->ip
= perf_instruction_pointer(regs
);
3085 header
->size
+= sizeof(data
->ip
);
3088 if (sample_type
& PERF_SAMPLE_TID
) {
3089 /* namespace issues */
3090 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3091 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3093 header
->size
+= sizeof(data
->tid_entry
);
3096 if (sample_type
& PERF_SAMPLE_TIME
) {
3097 data
->time
= perf_clock();
3099 header
->size
+= sizeof(data
->time
);
3102 if (sample_type
& PERF_SAMPLE_ADDR
)
3103 header
->size
+= sizeof(data
->addr
);
3105 if (sample_type
& PERF_SAMPLE_ID
) {
3106 data
->id
= primary_event_id(event
);
3108 header
->size
+= sizeof(data
->id
);
3111 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3112 data
->stream_id
= event
->id
;
3114 header
->size
+= sizeof(data
->stream_id
);
3117 if (sample_type
& PERF_SAMPLE_CPU
) {
3118 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3119 data
->cpu_entry
.reserved
= 0;
3121 header
->size
+= sizeof(data
->cpu_entry
);
3124 if (sample_type
& PERF_SAMPLE_PERIOD
)
3125 header
->size
+= sizeof(data
->period
);
3127 if (sample_type
& PERF_SAMPLE_READ
)
3128 header
->size
+= perf_event_read_size(event
);
3130 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3133 data
->callchain
= perf_callchain(regs
);
3135 if (data
->callchain
)
3136 size
+= data
->callchain
->nr
;
3138 header
->size
+= size
* sizeof(u64
);
3141 if (sample_type
& PERF_SAMPLE_RAW
) {
3142 int size
= sizeof(u32
);
3145 size
+= data
->raw
->size
;
3147 size
+= sizeof(u32
);
3149 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3150 header
->size
+= size
;
3154 static void perf_event_output(struct perf_event
*event
, int nmi
,
3155 struct perf_sample_data
*data
,
3156 struct pt_regs
*regs
)
3158 struct perf_output_handle handle
;
3159 struct perf_event_header header
;
3161 perf_prepare_sample(&header
, data
, event
, regs
);
3163 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3166 perf_output_sample(&handle
, &header
, data
, event
);
3168 perf_output_end(&handle
);
3175 struct perf_read_event
{
3176 struct perf_event_header header
;
3183 perf_event_read_event(struct perf_event
*event
,
3184 struct task_struct
*task
)
3186 struct perf_output_handle handle
;
3187 struct perf_read_event read_event
= {
3189 .type
= PERF_RECORD_READ
,
3191 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3193 .pid
= perf_event_pid(event
, task
),
3194 .tid
= perf_event_tid(event
, task
),
3198 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3202 perf_output_put(&handle
, read_event
);
3203 perf_output_read(&handle
, event
);
3205 perf_output_end(&handle
);
3209 * task tracking -- fork/exit
3211 * enabled by: attr.comm | attr.mmap | attr.task
3214 struct perf_task_event
{
3215 struct task_struct
*task
;
3216 struct perf_event_context
*task_ctx
;
3219 struct perf_event_header header
;
3229 static void perf_event_task_output(struct perf_event
*event
,
3230 struct perf_task_event
*task_event
)
3232 struct perf_output_handle handle
;
3234 struct task_struct
*task
= task_event
->task
;
3237 size
= task_event
->event_id
.header
.size
;
3238 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3243 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3244 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3246 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3247 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3249 task_event
->event_id
.time
= perf_clock();
3251 perf_output_put(&handle
, task_event
->event_id
);
3253 perf_output_end(&handle
);
3256 static int perf_event_task_match(struct perf_event
*event
)
3258 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3264 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3265 struct perf_task_event
*task_event
)
3267 struct perf_event
*event
;
3269 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3273 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3274 if (perf_event_task_match(event
))
3275 perf_event_task_output(event
, task_event
);
3280 static void perf_event_task_event(struct perf_task_event
*task_event
)
3282 struct perf_cpu_context
*cpuctx
;
3283 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3285 cpuctx
= &get_cpu_var(perf_cpu_context
);
3286 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3287 put_cpu_var(perf_cpu_context
);
3291 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3293 perf_event_task_ctx(ctx
, task_event
);
3297 static void perf_event_task(struct task_struct
*task
,
3298 struct perf_event_context
*task_ctx
,
3301 struct perf_task_event task_event
;
3303 if (!atomic_read(&nr_comm_events
) &&
3304 !atomic_read(&nr_mmap_events
) &&
3305 !atomic_read(&nr_task_events
))
3308 task_event
= (struct perf_task_event
){
3310 .task_ctx
= task_ctx
,
3313 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3315 .size
= sizeof(task_event
.event_id
),
3324 perf_event_task_event(&task_event
);
3327 void perf_event_fork(struct task_struct
*task
)
3329 perf_event_task(task
, NULL
, 1);
3336 struct perf_comm_event
{
3337 struct task_struct
*task
;
3342 struct perf_event_header header
;
3349 static void perf_event_comm_output(struct perf_event
*event
,
3350 struct perf_comm_event
*comm_event
)
3352 struct perf_output_handle handle
;
3353 int size
= comm_event
->event_id
.header
.size
;
3354 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3359 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3360 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3362 perf_output_put(&handle
, comm_event
->event_id
);
3363 perf_output_copy(&handle
, comm_event
->comm
,
3364 comm_event
->comm_size
);
3365 perf_output_end(&handle
);
3368 static int perf_event_comm_match(struct perf_event
*event
)
3370 if (event
->attr
.comm
)
3376 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3377 struct perf_comm_event
*comm_event
)
3379 struct perf_event
*event
;
3381 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3385 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3386 if (perf_event_comm_match(event
))
3387 perf_event_comm_output(event
, comm_event
);
3392 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3394 struct perf_cpu_context
*cpuctx
;
3395 struct perf_event_context
*ctx
;
3397 char comm
[TASK_COMM_LEN
];
3399 memset(comm
, 0, sizeof(comm
));
3400 strncpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3401 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3403 comm_event
->comm
= comm
;
3404 comm_event
->comm_size
= size
;
3406 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3408 cpuctx
= &get_cpu_var(perf_cpu_context
);
3409 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3410 put_cpu_var(perf_cpu_context
);
3414 * doesn't really matter which of the child contexts the
3415 * events ends up in.
3417 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3419 perf_event_comm_ctx(ctx
, comm_event
);
3423 void perf_event_comm(struct task_struct
*task
)
3425 struct perf_comm_event comm_event
;
3427 if (task
->perf_event_ctxp
)
3428 perf_event_enable_on_exec(task
);
3430 if (!atomic_read(&nr_comm_events
))
3433 comm_event
= (struct perf_comm_event
){
3439 .type
= PERF_RECORD_COMM
,
3448 perf_event_comm_event(&comm_event
);
3455 struct perf_mmap_event
{
3456 struct vm_area_struct
*vma
;
3458 const char *file_name
;
3462 struct perf_event_header header
;
3472 static void perf_event_mmap_output(struct perf_event
*event
,
3473 struct perf_mmap_event
*mmap_event
)
3475 struct perf_output_handle handle
;
3476 int size
= mmap_event
->event_id
.header
.size
;
3477 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3482 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3483 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3485 perf_output_put(&handle
, mmap_event
->event_id
);
3486 perf_output_copy(&handle
, mmap_event
->file_name
,
3487 mmap_event
->file_size
);
3488 perf_output_end(&handle
);
3491 static int perf_event_mmap_match(struct perf_event
*event
,
3492 struct perf_mmap_event
*mmap_event
)
3494 if (event
->attr
.mmap
)
3500 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3501 struct perf_mmap_event
*mmap_event
)
3503 struct perf_event
*event
;
3505 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3509 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3510 if (perf_event_mmap_match(event
, mmap_event
))
3511 perf_event_mmap_output(event
, mmap_event
);
3516 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3518 struct perf_cpu_context
*cpuctx
;
3519 struct perf_event_context
*ctx
;
3520 struct vm_area_struct
*vma
= mmap_event
->vma
;
3521 struct file
*file
= vma
->vm_file
;
3527 memset(tmp
, 0, sizeof(tmp
));
3531 * d_path works from the end of the buffer backwards, so we
3532 * need to add enough zero bytes after the string to handle
3533 * the 64bit alignment we do later.
3535 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3537 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3540 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3542 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3546 if (arch_vma_name(mmap_event
->vma
)) {
3547 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3553 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3557 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3562 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3564 mmap_event
->file_name
= name
;
3565 mmap_event
->file_size
= size
;
3567 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3569 cpuctx
= &get_cpu_var(perf_cpu_context
);
3570 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3571 put_cpu_var(perf_cpu_context
);
3575 * doesn't really matter which of the child contexts the
3576 * events ends up in.
3578 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3580 perf_event_mmap_ctx(ctx
, mmap_event
);
3586 void __perf_event_mmap(struct vm_area_struct
*vma
)
3588 struct perf_mmap_event mmap_event
;
3590 if (!atomic_read(&nr_mmap_events
))
3593 mmap_event
= (struct perf_mmap_event
){
3599 .type
= PERF_RECORD_MMAP
,
3605 .start
= vma
->vm_start
,
3606 .len
= vma
->vm_end
- vma
->vm_start
,
3607 .pgoff
= vma
->vm_pgoff
,
3611 perf_event_mmap_event(&mmap_event
);
3615 * IRQ throttle logging
3618 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3620 struct perf_output_handle handle
;
3624 struct perf_event_header header
;
3628 } throttle_event
= {
3630 .type
= PERF_RECORD_THROTTLE
,
3632 .size
= sizeof(throttle_event
),
3634 .time
= perf_clock(),
3635 .id
= primary_event_id(event
),
3636 .stream_id
= event
->id
,
3640 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3642 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3646 perf_output_put(&handle
, throttle_event
);
3647 perf_output_end(&handle
);
3651 * Generic event overflow handling, sampling.
3654 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3655 int throttle
, struct perf_sample_data
*data
,
3656 struct pt_regs
*regs
)
3658 int events
= atomic_read(&event
->event_limit
);
3659 struct hw_perf_event
*hwc
= &event
->hw
;
3662 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3667 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3669 if (HZ
* hwc
->interrupts
>
3670 (u64
)sysctl_perf_event_sample_rate
) {
3671 hwc
->interrupts
= MAX_INTERRUPTS
;
3672 perf_log_throttle(event
, 0);
3677 * Keep re-disabling events even though on the previous
3678 * pass we disabled it - just in case we raced with a
3679 * sched-in and the event got enabled again:
3685 if (event
->attr
.freq
) {
3686 u64 now
= perf_clock();
3687 s64 delta
= now
- hwc
->freq_stamp
;
3689 hwc
->freq_stamp
= now
;
3691 if (delta
> 0 && delta
< TICK_NSEC
)
3692 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3696 * XXX event_limit might not quite work as expected on inherited
3700 event
->pending_kill
= POLL_IN
;
3701 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3703 event
->pending_kill
= POLL_HUP
;
3705 event
->pending_disable
= 1;
3706 perf_pending_queue(&event
->pending
,
3707 perf_pending_event
);
3709 perf_event_disable(event
);
3712 perf_event_output(event
, nmi
, data
, regs
);
3716 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3717 struct perf_sample_data
*data
,
3718 struct pt_regs
*regs
)
3720 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3724 * Generic software event infrastructure
3728 * We directly increment event->count and keep a second value in
3729 * event->hw.period_left to count intervals. This period event
3730 * is kept in the range [-sample_period, 0] so that we can use the
3734 static u64
perf_swevent_set_period(struct perf_event
*event
)
3736 struct hw_perf_event
*hwc
= &event
->hw
;
3737 u64 period
= hwc
->last_period
;
3741 hwc
->last_period
= hwc
->sample_period
;
3744 old
= val
= atomic64_read(&hwc
->period_left
);
3748 nr
= div64_u64(period
+ val
, period
);
3749 offset
= nr
* period
;
3751 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3757 static void perf_swevent_overflow(struct perf_event
*event
,
3758 int nmi
, struct perf_sample_data
*data
,
3759 struct pt_regs
*regs
)
3761 struct hw_perf_event
*hwc
= &event
->hw
;
3765 data
->period
= event
->hw
.last_period
;
3766 overflow
= perf_swevent_set_period(event
);
3768 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3771 for (; overflow
; overflow
--) {
3772 if (__perf_event_overflow(event
, nmi
, throttle
,
3775 * We inhibit the overflow from happening when
3776 * hwc->interrupts == MAX_INTERRUPTS.
3784 static void perf_swevent_unthrottle(struct perf_event
*event
)
3787 * Nothing to do, we already reset hwc->interrupts.
3791 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3792 int nmi
, struct perf_sample_data
*data
,
3793 struct pt_regs
*regs
)
3795 struct hw_perf_event
*hwc
= &event
->hw
;
3797 atomic64_add(nr
, &event
->count
);
3799 if (!hwc
->sample_period
)
3805 if (!atomic64_add_negative(nr
, &hwc
->period_left
))
3806 perf_swevent_overflow(event
, nmi
, data
, regs
);
3809 static int perf_swevent_is_counting(struct perf_event
*event
)
3812 * The event is active, we're good!
3814 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3818 * The event is off/error, not counting.
3820 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3824 * The event is inactive, if the context is active
3825 * we're part of a group that didn't make it on the 'pmu',
3828 if (event
->ctx
->is_active
)
3832 * We're inactive and the context is too, this means the
3833 * task is scheduled out, we're counting events that happen
3834 * to us, like migration events.
3839 static int perf_tp_event_match(struct perf_event
*event
,
3840 struct perf_sample_data
*data
);
3842 static int perf_swevent_match(struct perf_event
*event
,
3843 enum perf_type_id type
,
3845 struct perf_sample_data
*data
,
3846 struct pt_regs
*regs
)
3848 if (!perf_swevent_is_counting(event
))
3851 if (event
->attr
.type
!= type
)
3853 if (event
->attr
.config
!= event_id
)
3857 if (event
->attr
.exclude_user
&& user_mode(regs
))
3860 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3864 if (event
->attr
.type
== PERF_TYPE_TRACEPOINT
&&
3865 !perf_tp_event_match(event
, data
))
3871 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3872 enum perf_type_id type
,
3873 u32 event_id
, u64 nr
, int nmi
,
3874 struct perf_sample_data
*data
,
3875 struct pt_regs
*regs
)
3877 struct perf_event
*event
;
3879 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3883 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3884 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
3885 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3890 static int *perf_swevent_recursion_context(struct perf_cpu_context
*cpuctx
)
3893 return &cpuctx
->recursion
[3];
3896 return &cpuctx
->recursion
[2];
3899 return &cpuctx
->recursion
[1];
3901 return &cpuctx
->recursion
[0];
3904 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3906 struct perf_sample_data
*data
,
3907 struct pt_regs
*regs
)
3909 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3910 int *recursion
= perf_swevent_recursion_context(cpuctx
);
3911 struct perf_event_context
*ctx
;
3919 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3920 nr
, nmi
, data
, regs
);
3923 * doesn't really matter which of the child contexts the
3924 * events ends up in.
3926 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3928 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3935 put_cpu_var(perf_cpu_context
);
3938 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3939 struct pt_regs
*regs
, u64 addr
)
3941 struct perf_sample_data data
= {
3945 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
,
3949 static void perf_swevent_read(struct perf_event
*event
)
3953 static int perf_swevent_enable(struct perf_event
*event
)
3955 struct hw_perf_event
*hwc
= &event
->hw
;
3957 if (hwc
->sample_period
) {
3958 hwc
->last_period
= hwc
->sample_period
;
3959 perf_swevent_set_period(event
);
3964 static void perf_swevent_disable(struct perf_event
*event
)
3968 static const struct pmu perf_ops_generic
= {
3969 .enable
= perf_swevent_enable
,
3970 .disable
= perf_swevent_disable
,
3971 .read
= perf_swevent_read
,
3972 .unthrottle
= perf_swevent_unthrottle
,
3976 * hrtimer based swevent callback
3979 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
3981 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3982 struct perf_sample_data data
;
3983 struct pt_regs
*regs
;
3984 struct perf_event
*event
;
3987 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
3988 event
->pmu
->read(event
);
3991 regs
= get_irq_regs();
3993 * In case we exclude kernel IPs or are somehow not in interrupt
3994 * context, provide the next best thing, the user IP.
3996 if ((event
->attr
.exclude_kernel
|| !regs
) &&
3997 !event
->attr
.exclude_user
)
3998 regs
= task_pt_regs(current
);
4001 if (perf_event_overflow(event
, 0, &data
, regs
))
4002 ret
= HRTIMER_NORESTART
;
4005 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4006 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4012 * Software event: cpu wall time clock
4015 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4017 int cpu
= raw_smp_processor_id();
4021 now
= cpu_clock(cpu
);
4022 prev
= atomic64_read(&event
->hw
.prev_count
);
4023 atomic64_set(&event
->hw
.prev_count
, now
);
4024 atomic64_add(now
- prev
, &event
->count
);
4027 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4029 struct hw_perf_event
*hwc
= &event
->hw
;
4030 int cpu
= raw_smp_processor_id();
4032 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4033 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4034 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4035 if (hwc
->sample_period
) {
4036 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
4037 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4038 ns_to_ktime(period
), 0,
4039 HRTIMER_MODE_REL
, 0);
4045 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4047 if (event
->hw
.sample_period
)
4048 hrtimer_cancel(&event
->hw
.hrtimer
);
4049 cpu_clock_perf_event_update(event
);
4052 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4054 cpu_clock_perf_event_update(event
);
4057 static const struct pmu perf_ops_cpu_clock
= {
4058 .enable
= cpu_clock_perf_event_enable
,
4059 .disable
= cpu_clock_perf_event_disable
,
4060 .read
= cpu_clock_perf_event_read
,
4064 * Software event: task time clock
4067 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4072 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4074 atomic64_add(delta
, &event
->count
);
4077 static int task_clock_perf_event_enable(struct perf_event
*event
)
4079 struct hw_perf_event
*hwc
= &event
->hw
;
4082 now
= event
->ctx
->time
;
4084 atomic64_set(&hwc
->prev_count
, now
);
4085 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4086 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4087 if (hwc
->sample_period
) {
4088 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
4089 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4090 ns_to_ktime(period
), 0,
4091 HRTIMER_MODE_REL
, 0);
4097 static void task_clock_perf_event_disable(struct perf_event
*event
)
4099 if (event
->hw
.sample_period
)
4100 hrtimer_cancel(&event
->hw
.hrtimer
);
4101 task_clock_perf_event_update(event
, event
->ctx
->time
);
4105 static void task_clock_perf_event_read(struct perf_event
*event
)
4110 update_context_time(event
->ctx
);
4111 time
= event
->ctx
->time
;
4113 u64 now
= perf_clock();
4114 u64 delta
= now
- event
->ctx
->timestamp
;
4115 time
= event
->ctx
->time
+ delta
;
4118 task_clock_perf_event_update(event
, time
);
4121 static const struct pmu perf_ops_task_clock
= {
4122 .enable
= task_clock_perf_event_enable
,
4123 .disable
= task_clock_perf_event_disable
,
4124 .read
= task_clock_perf_event_read
,
4127 #ifdef CONFIG_EVENT_PROFILE
4129 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4132 struct perf_raw_record raw
= {
4137 struct perf_sample_data data
= {
4142 struct pt_regs
*regs
= get_irq_regs();
4145 regs
= task_pt_regs(current
);
4147 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4150 EXPORT_SYMBOL_GPL(perf_tp_event
);
4152 static int perf_tp_event_match(struct perf_event
*event
,
4153 struct perf_sample_data
*data
)
4155 void *record
= data
->raw
->data
;
4157 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4162 static void tp_perf_event_destroy(struct perf_event
*event
)
4164 ftrace_profile_disable(event
->attr
.config
);
4167 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4170 * Raw tracepoint data is a severe data leak, only allow root to
4173 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4174 perf_paranoid_tracepoint_raw() &&
4175 !capable(CAP_SYS_ADMIN
))
4176 return ERR_PTR(-EPERM
);
4178 if (ftrace_profile_enable(event
->attr
.config
))
4181 event
->destroy
= tp_perf_event_destroy
;
4183 return &perf_ops_generic
;
4186 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4191 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4194 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4195 if (IS_ERR(filter_str
))
4196 return PTR_ERR(filter_str
);
4198 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4204 static void perf_event_free_filter(struct perf_event
*event
)
4206 ftrace_profile_free_filter(event
);
4211 static int perf_tp_event_match(struct perf_event
*event
,
4212 struct perf_sample_data
*data
)
4217 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4222 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4227 static void perf_event_free_filter(struct perf_event
*event
)
4231 #endif /* CONFIG_EVENT_PROFILE */
4233 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4234 static void bp_perf_event_destroy(struct perf_event
*event
)
4236 release_bp_slot(event
);
4239 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4243 * The breakpoint is already filled if we haven't created the counter
4244 * through perf syscall
4245 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4248 err
= register_perf_hw_breakpoint(bp
);
4250 err
= __register_perf_hw_breakpoint(bp
);
4252 return ERR_PTR(err
);
4254 bp
->destroy
= bp_perf_event_destroy
;
4256 return &perf_ops_bp
;
4259 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4264 static void bp_perf_event_destroy(struct perf_event
*event
)
4268 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4273 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4278 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4280 static void sw_perf_event_destroy(struct perf_event
*event
)
4282 u64 event_id
= event
->attr
.config
;
4284 WARN_ON(event
->parent
);
4286 atomic_dec(&perf_swevent_enabled
[event_id
]);
4289 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4291 const struct pmu
*pmu
= NULL
;
4292 u64 event_id
= event
->attr
.config
;
4295 * Software events (currently) can't in general distinguish
4296 * between user, kernel and hypervisor events.
4297 * However, context switches and cpu migrations are considered
4298 * to be kernel events, and page faults are never hypervisor
4302 case PERF_COUNT_SW_CPU_CLOCK
:
4303 pmu
= &perf_ops_cpu_clock
;
4306 case PERF_COUNT_SW_TASK_CLOCK
:
4308 * If the user instantiates this as a per-cpu event,
4309 * use the cpu_clock event instead.
4311 if (event
->ctx
->task
)
4312 pmu
= &perf_ops_task_clock
;
4314 pmu
= &perf_ops_cpu_clock
;
4317 case PERF_COUNT_SW_PAGE_FAULTS
:
4318 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4319 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4320 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4321 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4322 if (!event
->parent
) {
4323 atomic_inc(&perf_swevent_enabled
[event_id
]);
4324 event
->destroy
= sw_perf_event_destroy
;
4326 pmu
= &perf_ops_generic
;
4334 * Allocate and initialize a event structure
4336 static struct perf_event
*
4337 perf_event_alloc(struct perf_event_attr
*attr
,
4339 struct perf_event_context
*ctx
,
4340 struct perf_event
*group_leader
,
4341 struct perf_event
*parent_event
,
4342 perf_callback_t callback
,
4345 const struct pmu
*pmu
;
4346 struct perf_event
*event
;
4347 struct hw_perf_event
*hwc
;
4350 event
= kzalloc(sizeof(*event
), gfpflags
);
4352 return ERR_PTR(-ENOMEM
);
4355 * Single events are their own group leaders, with an
4356 * empty sibling list:
4359 group_leader
= event
;
4361 mutex_init(&event
->child_mutex
);
4362 INIT_LIST_HEAD(&event
->child_list
);
4364 INIT_LIST_HEAD(&event
->group_entry
);
4365 INIT_LIST_HEAD(&event
->event_entry
);
4366 INIT_LIST_HEAD(&event
->sibling_list
);
4367 init_waitqueue_head(&event
->waitq
);
4369 mutex_init(&event
->mmap_mutex
);
4372 event
->attr
= *attr
;
4373 event
->group_leader
= group_leader
;
4378 event
->parent
= parent_event
;
4380 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4381 event
->id
= atomic64_inc_return(&perf_event_id
);
4383 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4385 if (!callback
&& parent_event
)
4386 callback
= parent_event
->callback
;
4388 event
->callback
= callback
;
4391 event
->state
= PERF_EVENT_STATE_OFF
;
4396 hwc
->sample_period
= attr
->sample_period
;
4397 if (attr
->freq
&& attr
->sample_freq
)
4398 hwc
->sample_period
= 1;
4399 hwc
->last_period
= hwc
->sample_period
;
4401 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4404 * we currently do not support PERF_FORMAT_GROUP on inherited events
4406 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4409 switch (attr
->type
) {
4411 case PERF_TYPE_HARDWARE
:
4412 case PERF_TYPE_HW_CACHE
:
4413 pmu
= hw_perf_event_init(event
);
4416 case PERF_TYPE_SOFTWARE
:
4417 pmu
= sw_perf_event_init(event
);
4420 case PERF_TYPE_TRACEPOINT
:
4421 pmu
= tp_perf_event_init(event
);
4424 case PERF_TYPE_BREAKPOINT
:
4425 pmu
= bp_perf_event_init(event
);
4436 else if (IS_ERR(pmu
))
4441 put_pid_ns(event
->ns
);
4443 return ERR_PTR(err
);
4448 if (!event
->parent
) {
4449 atomic_inc(&nr_events
);
4450 if (event
->attr
.mmap
)
4451 atomic_inc(&nr_mmap_events
);
4452 if (event
->attr
.comm
)
4453 atomic_inc(&nr_comm_events
);
4454 if (event
->attr
.task
)
4455 atomic_inc(&nr_task_events
);
4461 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4462 struct perf_event_attr
*attr
)
4467 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4471 * zero the full structure, so that a short copy will be nice.
4473 memset(attr
, 0, sizeof(*attr
));
4475 ret
= get_user(size
, &uattr
->size
);
4479 if (size
> PAGE_SIZE
) /* silly large */
4482 if (!size
) /* abi compat */
4483 size
= PERF_ATTR_SIZE_VER0
;
4485 if (size
< PERF_ATTR_SIZE_VER0
)
4489 * If we're handed a bigger struct than we know of,
4490 * ensure all the unknown bits are 0 - i.e. new
4491 * user-space does not rely on any kernel feature
4492 * extensions we dont know about yet.
4494 if (size
> sizeof(*attr
)) {
4495 unsigned char __user
*addr
;
4496 unsigned char __user
*end
;
4499 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4500 end
= (void __user
*)uattr
+ size
;
4502 for (; addr
< end
; addr
++) {
4503 ret
= get_user(val
, addr
);
4509 size
= sizeof(*attr
);
4512 ret
= copy_from_user(attr
, uattr
, size
);
4517 * If the type exists, the corresponding creation will verify
4520 if (attr
->type
>= PERF_TYPE_MAX
)
4523 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4526 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4529 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4536 put_user(sizeof(*attr
), &uattr
->size
);
4541 static int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4543 struct perf_event
*output_event
= NULL
;
4544 struct file
*output_file
= NULL
;
4545 struct perf_event
*old_output
;
4546 int fput_needed
= 0;
4552 output_file
= fget_light(output_fd
, &fput_needed
);
4556 if (output_file
->f_op
!= &perf_fops
)
4559 output_event
= output_file
->private_data
;
4561 /* Don't chain output fds */
4562 if (output_event
->output
)
4565 /* Don't set an output fd when we already have an output channel */
4569 atomic_long_inc(&output_file
->f_count
);
4572 mutex_lock(&event
->mmap_mutex
);
4573 old_output
= event
->output
;
4574 rcu_assign_pointer(event
->output
, output_event
);
4575 mutex_unlock(&event
->mmap_mutex
);
4579 * we need to make sure no existing perf_output_*()
4580 * is still referencing this event.
4583 fput(old_output
->filp
);
4588 fput_light(output_file
, fput_needed
);
4593 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4595 * @attr_uptr: event_id type attributes for monitoring/sampling
4598 * @group_fd: group leader event fd
4600 SYSCALL_DEFINE5(perf_event_open
,
4601 struct perf_event_attr __user
*, attr_uptr
,
4602 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4604 struct perf_event
*event
, *group_leader
;
4605 struct perf_event_attr attr
;
4606 struct perf_event_context
*ctx
;
4607 struct file
*event_file
= NULL
;
4608 struct file
*group_file
= NULL
;
4609 int fput_needed
= 0;
4610 int fput_needed2
= 0;
4613 /* for future expandability... */
4614 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4617 err
= perf_copy_attr(attr_uptr
, &attr
);
4621 if (!attr
.exclude_kernel
) {
4622 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4627 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4632 * Get the target context (task or percpu):
4634 ctx
= find_get_context(pid
, cpu
);
4636 return PTR_ERR(ctx
);
4639 * Look up the group leader (we will attach this event to it):
4641 group_leader
= NULL
;
4642 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4644 group_file
= fget_light(group_fd
, &fput_needed
);
4646 goto err_put_context
;
4647 if (group_file
->f_op
!= &perf_fops
)
4648 goto err_put_context
;
4650 group_leader
= group_file
->private_data
;
4652 * Do not allow a recursive hierarchy (this new sibling
4653 * becoming part of another group-sibling):
4655 if (group_leader
->group_leader
!= group_leader
)
4656 goto err_put_context
;
4658 * Do not allow to attach to a group in a different
4659 * task or CPU context:
4661 if (group_leader
->ctx
!= ctx
)
4662 goto err_put_context
;
4664 * Only a group leader can be exclusive or pinned
4666 if (attr
.exclusive
|| attr
.pinned
)
4667 goto err_put_context
;
4670 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4671 NULL
, NULL
, GFP_KERNEL
);
4672 err
= PTR_ERR(event
);
4674 goto err_put_context
;
4676 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, 0);
4678 goto err_free_put_context
;
4680 event_file
= fget_light(err
, &fput_needed2
);
4682 goto err_free_put_context
;
4684 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4685 err
= perf_event_set_output(event
, group_fd
);
4687 goto err_fput_free_put_context
;
4690 event
->filp
= event_file
;
4691 WARN_ON_ONCE(ctx
->parent_ctx
);
4692 mutex_lock(&ctx
->mutex
);
4693 perf_install_in_context(ctx
, event
, cpu
);
4695 mutex_unlock(&ctx
->mutex
);
4697 event
->owner
= current
;
4698 get_task_struct(current
);
4699 mutex_lock(¤t
->perf_event_mutex
);
4700 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4701 mutex_unlock(¤t
->perf_event_mutex
);
4703 err_fput_free_put_context
:
4704 fput_light(event_file
, fput_needed2
);
4706 err_free_put_context
:
4714 fput_light(group_file
, fput_needed
);
4720 * perf_event_create_kernel_counter
4722 * @attr: attributes of the counter to create
4723 * @cpu: cpu in which the counter is bound
4724 * @pid: task to profile
4727 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
4728 pid_t pid
, perf_callback_t callback
)
4730 struct perf_event
*event
;
4731 struct perf_event_context
*ctx
;
4735 * Get the target context (task or percpu):
4738 ctx
= find_get_context(pid
, cpu
);
4742 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
4743 NULL
, callback
, GFP_KERNEL
);
4744 err
= PTR_ERR(event
);
4746 goto err_put_context
;
4749 WARN_ON_ONCE(ctx
->parent_ctx
);
4750 mutex_lock(&ctx
->mutex
);
4751 perf_install_in_context(ctx
, event
, cpu
);
4753 mutex_unlock(&ctx
->mutex
);
4755 event
->owner
= current
;
4756 get_task_struct(current
);
4757 mutex_lock(¤t
->perf_event_mutex
);
4758 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4759 mutex_unlock(¤t
->perf_event_mutex
);
4769 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
4772 * inherit a event from parent task to child task:
4774 static struct perf_event
*
4775 inherit_event(struct perf_event
*parent_event
,
4776 struct task_struct
*parent
,
4777 struct perf_event_context
*parent_ctx
,
4778 struct task_struct
*child
,
4779 struct perf_event
*group_leader
,
4780 struct perf_event_context
*child_ctx
)
4782 struct perf_event
*child_event
;
4785 * Instead of creating recursive hierarchies of events,
4786 * we link inherited events back to the original parent,
4787 * which has a filp for sure, which we use as the reference
4790 if (parent_event
->parent
)
4791 parent_event
= parent_event
->parent
;
4793 child_event
= perf_event_alloc(&parent_event
->attr
,
4794 parent_event
->cpu
, child_ctx
,
4795 group_leader
, parent_event
,
4797 if (IS_ERR(child_event
))
4802 * Make the child state follow the state of the parent event,
4803 * not its attr.disabled bit. We hold the parent's mutex,
4804 * so we won't race with perf_event_{en, dis}able_family.
4806 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4807 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4809 child_event
->state
= PERF_EVENT_STATE_OFF
;
4811 if (parent_event
->attr
.freq
)
4812 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4815 * Link it up in the child's context:
4817 add_event_to_ctx(child_event
, child_ctx
);
4820 * Get a reference to the parent filp - we will fput it
4821 * when the child event exits. This is safe to do because
4822 * we are in the parent and we know that the filp still
4823 * exists and has a nonzero count:
4825 atomic_long_inc(&parent_event
->filp
->f_count
);
4828 * Link this into the parent event's child list
4830 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4831 mutex_lock(&parent_event
->child_mutex
);
4832 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4833 mutex_unlock(&parent_event
->child_mutex
);
4838 static int inherit_group(struct perf_event
*parent_event
,
4839 struct task_struct
*parent
,
4840 struct perf_event_context
*parent_ctx
,
4841 struct task_struct
*child
,
4842 struct perf_event_context
*child_ctx
)
4844 struct perf_event
*leader
;
4845 struct perf_event
*sub
;
4846 struct perf_event
*child_ctr
;
4848 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4849 child
, NULL
, child_ctx
);
4851 return PTR_ERR(leader
);
4852 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4853 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4854 child
, leader
, child_ctx
);
4855 if (IS_ERR(child_ctr
))
4856 return PTR_ERR(child_ctr
);
4861 static void sync_child_event(struct perf_event
*child_event
,
4862 struct task_struct
*child
)
4864 struct perf_event
*parent_event
= child_event
->parent
;
4867 if (child_event
->attr
.inherit_stat
)
4868 perf_event_read_event(child_event
, child
);
4870 child_val
= atomic64_read(&child_event
->count
);
4873 * Add back the child's count to the parent's count:
4875 atomic64_add(child_val
, &parent_event
->count
);
4876 atomic64_add(child_event
->total_time_enabled
,
4877 &parent_event
->child_total_time_enabled
);
4878 atomic64_add(child_event
->total_time_running
,
4879 &parent_event
->child_total_time_running
);
4882 * Remove this event from the parent's list
4884 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4885 mutex_lock(&parent_event
->child_mutex
);
4886 list_del_init(&child_event
->child_list
);
4887 mutex_unlock(&parent_event
->child_mutex
);
4890 * Release the parent event, if this was the last
4893 fput(parent_event
->filp
);
4897 __perf_event_exit_task(struct perf_event
*child_event
,
4898 struct perf_event_context
*child_ctx
,
4899 struct task_struct
*child
)
4901 struct perf_event
*parent_event
;
4903 update_event_times(child_event
);
4904 perf_event_remove_from_context(child_event
);
4906 parent_event
= child_event
->parent
;
4908 * It can happen that parent exits first, and has events
4909 * that are still around due to the child reference. These
4910 * events need to be zapped - but otherwise linger.
4913 sync_child_event(child_event
, child
);
4914 free_event(child_event
);
4919 * When a child task exits, feed back event values to parent events.
4921 void perf_event_exit_task(struct task_struct
*child
)
4923 struct perf_event
*child_event
, *tmp
;
4924 struct perf_event_context
*child_ctx
;
4925 unsigned long flags
;
4927 if (likely(!child
->perf_event_ctxp
)) {
4928 perf_event_task(child
, NULL
, 0);
4932 local_irq_save(flags
);
4934 * We can't reschedule here because interrupts are disabled,
4935 * and either child is current or it is a task that can't be
4936 * scheduled, so we are now safe from rescheduling changing
4939 child_ctx
= child
->perf_event_ctxp
;
4940 __perf_event_task_sched_out(child_ctx
);
4943 * Take the context lock here so that if find_get_context is
4944 * reading child->perf_event_ctxp, we wait until it has
4945 * incremented the context's refcount before we do put_ctx below.
4947 spin_lock(&child_ctx
->lock
);
4948 child
->perf_event_ctxp
= NULL
;
4950 * If this context is a clone; unclone it so it can't get
4951 * swapped to another process while we're removing all
4952 * the events from it.
4954 unclone_ctx(child_ctx
);
4955 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
4958 * Report the task dead after unscheduling the events so that we
4959 * won't get any samples after PERF_RECORD_EXIT. We can however still
4960 * get a few PERF_RECORD_READ events.
4962 perf_event_task(child
, child_ctx
, 0);
4965 * We can recurse on the same lock type through:
4967 * __perf_event_exit_task()
4968 * sync_child_event()
4969 * fput(parent_event->filp)
4971 * mutex_lock(&ctx->mutex)
4973 * But since its the parent context it won't be the same instance.
4975 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4978 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
4980 __perf_event_exit_task(child_event
, child_ctx
, child
);
4983 * If the last event was a group event, it will have appended all
4984 * its siblings to the list, but we obtained 'tmp' before that which
4985 * will still point to the list head terminating the iteration.
4987 if (!list_empty(&child_ctx
->group_list
))
4990 mutex_unlock(&child_ctx
->mutex
);
4996 * free an unexposed, unused context as created by inheritance by
4997 * init_task below, used by fork() in case of fail.
4999 void perf_event_free_task(struct task_struct
*task
)
5001 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5002 struct perf_event
*event
, *tmp
;
5007 mutex_lock(&ctx
->mutex
);
5009 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
5010 struct perf_event
*parent
= event
->parent
;
5012 if (WARN_ON_ONCE(!parent
))
5015 mutex_lock(&parent
->child_mutex
);
5016 list_del_init(&event
->child_list
);
5017 mutex_unlock(&parent
->child_mutex
);
5021 list_del_event(event
, ctx
);
5025 if (!list_empty(&ctx
->group_list
))
5028 mutex_unlock(&ctx
->mutex
);
5034 * Initialize the perf_event context in task_struct
5036 int perf_event_init_task(struct task_struct
*child
)
5038 struct perf_event_context
*child_ctx
, *parent_ctx
;
5039 struct perf_event_context
*cloned_ctx
;
5040 struct perf_event
*event
;
5041 struct task_struct
*parent
= current
;
5042 int inherited_all
= 1;
5045 child
->perf_event_ctxp
= NULL
;
5047 mutex_init(&child
->perf_event_mutex
);
5048 INIT_LIST_HEAD(&child
->perf_event_list
);
5050 if (likely(!parent
->perf_event_ctxp
))
5054 * This is executed from the parent task context, so inherit
5055 * events that have been marked for cloning.
5056 * First allocate and initialize a context for the child.
5059 child_ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
5063 __perf_event_init_context(child_ctx
, child
);
5064 child
->perf_event_ctxp
= child_ctx
;
5065 get_task_struct(child
);
5068 * If the parent's context is a clone, pin it so it won't get
5071 parent_ctx
= perf_pin_task_context(parent
);
5074 * No need to check if parent_ctx != NULL here; since we saw
5075 * it non-NULL earlier, the only reason for it to become NULL
5076 * is if we exit, and since we're currently in the middle of
5077 * a fork we can't be exiting at the same time.
5081 * Lock the parent list. No need to lock the child - not PID
5082 * hashed yet and not running, so nobody can access it.
5084 mutex_lock(&parent_ctx
->mutex
);
5087 * We dont have to disable NMIs - we are only looking at
5088 * the list, not manipulating it:
5090 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
5092 if (!event
->attr
.inherit
) {
5097 ret
= inherit_group(event
, parent
, parent_ctx
,
5105 if (inherited_all
) {
5107 * Mark the child context as a clone of the parent
5108 * context, or of whatever the parent is a clone of.
5109 * Note that if the parent is a clone, it could get
5110 * uncloned at any point, but that doesn't matter
5111 * because the list of events and the generation
5112 * count can't have changed since we took the mutex.
5114 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5116 child_ctx
->parent_ctx
= cloned_ctx
;
5117 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5119 child_ctx
->parent_ctx
= parent_ctx
;
5120 child_ctx
->parent_gen
= parent_ctx
->generation
;
5122 get_ctx(child_ctx
->parent_ctx
);
5125 mutex_unlock(&parent_ctx
->mutex
);
5127 perf_unpin_context(parent_ctx
);
5132 static void __cpuinit
perf_event_init_cpu(int cpu
)
5134 struct perf_cpu_context
*cpuctx
;
5136 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5137 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5139 spin_lock(&perf_resource_lock
);
5140 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5141 spin_unlock(&perf_resource_lock
);
5143 hw_perf_event_setup(cpu
);
5146 #ifdef CONFIG_HOTPLUG_CPU
5147 static void __perf_event_exit_cpu(void *info
)
5149 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5150 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5151 struct perf_event
*event
, *tmp
;
5153 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
5154 __perf_event_remove_from_context(event
);
5156 static void perf_event_exit_cpu(int cpu
)
5158 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5159 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5161 mutex_lock(&ctx
->mutex
);
5162 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5163 mutex_unlock(&ctx
->mutex
);
5166 static inline void perf_event_exit_cpu(int cpu
) { }
5169 static int __cpuinit
5170 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5172 unsigned int cpu
= (long)hcpu
;
5176 case CPU_UP_PREPARE
:
5177 case CPU_UP_PREPARE_FROZEN
:
5178 perf_event_init_cpu(cpu
);
5182 case CPU_ONLINE_FROZEN
:
5183 hw_perf_event_setup_online(cpu
);
5186 case CPU_DOWN_PREPARE
:
5187 case CPU_DOWN_PREPARE_FROZEN
:
5188 perf_event_exit_cpu(cpu
);
5199 * This has to have a higher priority than migration_notifier in sched.c.
5201 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5202 .notifier_call
= perf_cpu_notify
,
5206 void __init
perf_event_init(void)
5208 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5209 (void *)(long)smp_processor_id());
5210 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5211 (void *)(long)smp_processor_id());
5212 register_cpu_notifier(&perf_cpu_nb
);
5215 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5217 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5221 perf_set_reserve_percpu(struct sysdev_class
*class,
5225 struct perf_cpu_context
*cpuctx
;
5229 err
= strict_strtoul(buf
, 10, &val
);
5232 if (val
> perf_max_events
)
5235 spin_lock(&perf_resource_lock
);
5236 perf_reserved_percpu
= val
;
5237 for_each_online_cpu(cpu
) {
5238 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5239 spin_lock_irq(&cpuctx
->ctx
.lock
);
5240 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5241 perf_max_events
- perf_reserved_percpu
);
5242 cpuctx
->max_pertask
= mpt
;
5243 spin_unlock_irq(&cpuctx
->ctx
.lock
);
5245 spin_unlock(&perf_resource_lock
);
5250 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5252 return sprintf(buf
, "%d\n", perf_overcommit
);
5256 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5261 err
= strict_strtoul(buf
, 10, &val
);
5267 spin_lock(&perf_resource_lock
);
5268 perf_overcommit
= val
;
5269 spin_unlock(&perf_resource_lock
);
5274 static SYSDEV_CLASS_ATTR(
5277 perf_show_reserve_percpu
,
5278 perf_set_reserve_percpu
5281 static SYSDEV_CLASS_ATTR(
5284 perf_show_overcommit
,
5288 static struct attribute
*perfclass_attrs
[] = {
5289 &attr_reserve_percpu
.attr
,
5290 &attr_overcommit
.attr
,
5294 static struct attribute_group perfclass_attr_group
= {
5295 .attrs
= perfclass_attrs
,
5296 .name
= "perf_events",
5299 static int __init
perf_event_sysfs_init(void)
5301 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5302 &perfclass_attr_group
);
5304 device_initcall(perf_event_sysfs_init
);