2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <linux/slab.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
29 /* Stochastic Fairness Queuing algorithm.
30 =======================================
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
51 - It is very cheap. Both CPU and memory requirements are minimal.
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
69 This implementation limits maximal queue length to 128;
70 maximal mtu to 2^15-1; number of hash buckets to 1024.
71 The only goal of this restrictions was that all data
72 fit into one 4K page :-). Struct sfq_sched_data is
73 organized in anti-cache manner: all the data for a bucket
74 are scattered over different locations. This is not good,
75 but it allowed me to put it into 4K.
77 It is easy to increase these values, but not in flight. */
80 #define SFQ_HASH_DIVISOR 1024
82 /* This type should contain at least SFQ_DEPTH*2 values */
83 typedef unsigned char sfq_index
;
95 unsigned quantum
; /* Allotment per round: MUST BE >= MTU */
99 struct tcf_proto
*filter_list
;
100 struct timer_list perturb_timer
;
102 sfq_index tail
; /* Index of current slot in round */
103 sfq_index max_depth
; /* Maximal depth */
105 sfq_index ht
[SFQ_HASH_DIVISOR
]; /* Hash table */
106 sfq_index next
[SFQ_DEPTH
]; /* Active slots link */
107 short allot
[SFQ_DEPTH
]; /* Current allotment per slot */
108 unsigned short hash
[SFQ_DEPTH
]; /* Hash value indexed by slots */
109 struct sk_buff_head qs
[SFQ_DEPTH
]; /* Slot queue */
110 struct sfq_head dep
[SFQ_DEPTH
*2]; /* Linked list of slots, indexed by depth */
113 static __inline__
unsigned sfq_fold_hash(struct sfq_sched_data
*q
, u32 h
, u32 h1
)
115 return jhash_2words(h
, h1
, q
->perturbation
) & (SFQ_HASH_DIVISOR
- 1);
118 static unsigned sfq_hash(struct sfq_sched_data
*q
, struct sk_buff
*skb
)
122 switch (skb
->protocol
) {
123 case htons(ETH_P_IP
):
125 const struct iphdr
*iph
= ip_hdr(skb
);
127 h2
= iph
->saddr
^ iph
->protocol
;
128 if (!(iph
->frag_off
&htons(IP_MF
|IP_OFFSET
)) &&
129 (iph
->protocol
== IPPROTO_TCP
||
130 iph
->protocol
== IPPROTO_UDP
||
131 iph
->protocol
== IPPROTO_UDPLITE
||
132 iph
->protocol
== IPPROTO_SCTP
||
133 iph
->protocol
== IPPROTO_DCCP
||
134 iph
->protocol
== IPPROTO_ESP
))
135 h2
^= *(((u32
*)iph
) + iph
->ihl
);
138 case htons(ETH_P_IPV6
):
140 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
141 h
= iph
->daddr
.s6_addr32
[3];
142 h2
= iph
->saddr
.s6_addr32
[3] ^ iph
->nexthdr
;
143 if (iph
->nexthdr
== IPPROTO_TCP
||
144 iph
->nexthdr
== IPPROTO_UDP
||
145 iph
->nexthdr
== IPPROTO_UDPLITE
||
146 iph
->nexthdr
== IPPROTO_SCTP
||
147 iph
->nexthdr
== IPPROTO_DCCP
||
148 iph
->nexthdr
== IPPROTO_ESP
)
149 h2
^= *(u32
*)&iph
[1];
153 h
= (unsigned long)skb_dst(skb
) ^ skb
->protocol
;
154 h2
= (unsigned long)skb
->sk
;
157 return sfq_fold_hash(q
, h
, h2
);
160 static unsigned int sfq_classify(struct sk_buff
*skb
, struct Qdisc
*sch
,
163 struct sfq_sched_data
*q
= qdisc_priv(sch
);
164 struct tcf_result res
;
167 if (TC_H_MAJ(skb
->priority
) == sch
->handle
&&
168 TC_H_MIN(skb
->priority
) > 0 &&
169 TC_H_MIN(skb
->priority
) <= SFQ_HASH_DIVISOR
)
170 return TC_H_MIN(skb
->priority
);
173 return sfq_hash(q
, skb
) + 1;
175 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
176 result
= tc_classify(skb
, q
->filter_list
, &res
);
178 #ifdef CONFIG_NET_CLS_ACT
182 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
187 if (TC_H_MIN(res
.classid
) <= SFQ_HASH_DIVISOR
)
188 return TC_H_MIN(res
.classid
);
193 static inline void sfq_link(struct sfq_sched_data
*q
, sfq_index x
)
196 int d
= q
->qs
[x
].qlen
+ SFQ_DEPTH
;
202 q
->dep
[p
].next
= q
->dep
[n
].prev
= x
;
205 static inline void sfq_dec(struct sfq_sched_data
*q
, sfq_index x
)
214 if (n
== p
&& q
->max_depth
== q
->qs
[x
].qlen
+ 1)
220 static inline void sfq_inc(struct sfq_sched_data
*q
, sfq_index x
)
230 if (q
->max_depth
< d
)
236 static unsigned int sfq_drop(struct Qdisc
*sch
)
238 struct sfq_sched_data
*q
= qdisc_priv(sch
);
239 sfq_index d
= q
->max_depth
;
243 /* Queue is full! Find the longest slot and
244 drop a packet from it */
247 sfq_index x
= q
->dep
[d
+ SFQ_DEPTH
].next
;
249 len
= qdisc_pkt_len(skb
);
250 __skb_unlink(skb
, &q
->qs
[x
]);
255 sch
->qstats
.backlog
-= len
;
260 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
261 d
= q
->next
[q
->tail
];
262 q
->next
[q
->tail
] = q
->next
[d
];
263 q
->allot
[q
->next
[d
]] += q
->quantum
;
265 len
= qdisc_pkt_len(skb
);
266 __skb_unlink(skb
, &q
->qs
[d
]);
270 q
->ht
[q
->hash
[d
]] = SFQ_DEPTH
;
272 sch
->qstats
.backlog
-= len
;
280 sfq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
282 struct sfq_sched_data
*q
= qdisc_priv(sch
);
285 int uninitialized_var(ret
);
287 hash
= sfq_classify(skb
, sch
, &ret
);
289 if (ret
& __NET_XMIT_BYPASS
)
297 if (x
== SFQ_DEPTH
) {
298 q
->ht
[hash
] = x
= q
->dep
[SFQ_DEPTH
].next
;
302 /* If selected queue has length q->limit, this means that
303 * all another queues are empty and that we do simple tail drop,
304 * i.e. drop _this_ packet.
306 if (q
->qs
[x
].qlen
>= q
->limit
)
307 return qdisc_drop(skb
, sch
);
309 sch
->qstats
.backlog
+= qdisc_pkt_len(skb
);
310 __skb_queue_tail(&q
->qs
[x
], skb
);
312 if (q
->qs
[x
].qlen
== 1) { /* The flow is new */
313 if (q
->tail
== SFQ_DEPTH
) { /* It is the first flow */
316 q
->allot
[x
] = q
->quantum
;
318 q
->next
[x
] = q
->next
[q
->tail
];
319 q
->next
[q
->tail
] = x
;
323 if (++sch
->q
.qlen
<= q
->limit
) {
324 sch
->bstats
.bytes
+= qdisc_pkt_len(skb
);
325 sch
->bstats
.packets
++;
333 static struct sk_buff
*
334 sfq_peek(struct Qdisc
*sch
)
336 struct sfq_sched_data
*q
= qdisc_priv(sch
);
339 /* No active slots */
340 if (q
->tail
== SFQ_DEPTH
)
343 a
= q
->next
[q
->tail
];
344 return skb_peek(&q
->qs
[a
]);
347 static struct sk_buff
*
348 sfq_dequeue(struct Qdisc
*sch
)
350 struct sfq_sched_data
*q
= qdisc_priv(sch
);
354 /* No active slots */
355 if (q
->tail
== SFQ_DEPTH
)
358 a
= old_a
= q
->next
[q
->tail
];
361 skb
= __skb_dequeue(&q
->qs
[a
]);
364 sch
->qstats
.backlog
-= qdisc_pkt_len(skb
);
366 /* Is the slot empty? */
367 if (q
->qs
[a
].qlen
== 0) {
368 q
->ht
[q
->hash
[a
]] = SFQ_DEPTH
;
374 q
->next
[q
->tail
] = a
;
375 q
->allot
[a
] += q
->quantum
;
376 } else if ((q
->allot
[a
] -= qdisc_pkt_len(skb
)) <= 0) {
379 q
->allot
[a
] += q
->quantum
;
385 sfq_reset(struct Qdisc
*sch
)
389 while ((skb
= sfq_dequeue(sch
)) != NULL
)
393 static void sfq_perturbation(unsigned long arg
)
395 struct Qdisc
*sch
= (struct Qdisc
*)arg
;
396 struct sfq_sched_data
*q
= qdisc_priv(sch
);
398 q
->perturbation
= net_random();
400 if (q
->perturb_period
)
401 mod_timer(&q
->perturb_timer
, jiffies
+ q
->perturb_period
);
404 static int sfq_change(struct Qdisc
*sch
, struct nlattr
*opt
)
406 struct sfq_sched_data
*q
= qdisc_priv(sch
);
407 struct tc_sfq_qopt
*ctl
= nla_data(opt
);
410 if (opt
->nla_len
< nla_attr_size(sizeof(*ctl
)))
414 q
->quantum
= ctl
->quantum
? : psched_mtu(qdisc_dev(sch
));
415 q
->perturb_period
= ctl
->perturb_period
* HZ
;
417 q
->limit
= min_t(u32
, ctl
->limit
, SFQ_DEPTH
- 1);
420 while (sch
->q
.qlen
> q
->limit
)
422 qdisc_tree_decrease_qlen(sch
, qlen
- sch
->q
.qlen
);
424 del_timer(&q
->perturb_timer
);
425 if (q
->perturb_period
) {
426 mod_timer(&q
->perturb_timer
, jiffies
+ q
->perturb_period
);
427 q
->perturbation
= net_random();
429 sch_tree_unlock(sch
);
433 static int sfq_init(struct Qdisc
*sch
, struct nlattr
*opt
)
435 struct sfq_sched_data
*q
= qdisc_priv(sch
);
438 q
->perturb_timer
.function
= sfq_perturbation
;
439 q
->perturb_timer
.data
= (unsigned long)sch
;
440 init_timer_deferrable(&q
->perturb_timer
);
442 for (i
= 0; i
< SFQ_HASH_DIVISOR
; i
++)
443 q
->ht
[i
] = SFQ_DEPTH
;
445 for (i
= 0; i
< SFQ_DEPTH
; i
++) {
446 skb_queue_head_init(&q
->qs
[i
]);
447 q
->dep
[i
+ SFQ_DEPTH
].next
= i
+ SFQ_DEPTH
;
448 q
->dep
[i
+ SFQ_DEPTH
].prev
= i
+ SFQ_DEPTH
;
451 q
->limit
= SFQ_DEPTH
- 1;
455 q
->quantum
= psched_mtu(qdisc_dev(sch
));
456 q
->perturb_period
= 0;
457 q
->perturbation
= net_random();
459 int err
= sfq_change(sch
, opt
);
464 for (i
= 0; i
< SFQ_DEPTH
; i
++)
469 static void sfq_destroy(struct Qdisc
*sch
)
471 struct sfq_sched_data
*q
= qdisc_priv(sch
);
473 tcf_destroy_chain(&q
->filter_list
);
474 q
->perturb_period
= 0;
475 del_timer_sync(&q
->perturb_timer
);
478 static int sfq_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
480 struct sfq_sched_data
*q
= qdisc_priv(sch
);
481 unsigned char *b
= skb_tail_pointer(skb
);
482 struct tc_sfq_qopt opt
;
484 opt
.quantum
= q
->quantum
;
485 opt
.perturb_period
= q
->perturb_period
/ HZ
;
487 opt
.limit
= q
->limit
;
488 opt
.divisor
= SFQ_HASH_DIVISOR
;
489 opt
.flows
= q
->limit
;
491 NLA_PUT(skb
, TCA_OPTIONS
, sizeof(opt
), &opt
);
500 static unsigned long sfq_get(struct Qdisc
*sch
, u32 classid
)
505 static struct tcf_proto
**sfq_find_tcf(struct Qdisc
*sch
, unsigned long cl
)
507 struct sfq_sched_data
*q
= qdisc_priv(sch
);
511 return &q
->filter_list
;
514 static int sfq_dump_class(struct Qdisc
*sch
, unsigned long cl
,
515 struct sk_buff
*skb
, struct tcmsg
*tcm
)
517 tcm
->tcm_handle
|= TC_H_MIN(cl
);
521 static int sfq_dump_class_stats(struct Qdisc
*sch
, unsigned long cl
,
524 struct sfq_sched_data
*q
= qdisc_priv(sch
);
525 sfq_index idx
= q
->ht
[cl
-1];
526 struct gnet_stats_queue qs
= { .qlen
= q
->qs
[idx
].qlen
};
527 struct tc_sfq_xstats xstats
= { .allot
= q
->allot
[idx
] };
529 if (gnet_stats_copy_queue(d
, &qs
) < 0)
531 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
534 static void sfq_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
536 struct sfq_sched_data
*q
= qdisc_priv(sch
);
542 for (i
= 0; i
< SFQ_HASH_DIVISOR
; i
++) {
543 if (q
->ht
[i
] == SFQ_DEPTH
||
544 arg
->count
< arg
->skip
) {
548 if (arg
->fn(sch
, i
+ 1, arg
) < 0) {
556 static const struct Qdisc_class_ops sfq_class_ops
= {
558 .tcf_chain
= sfq_find_tcf
,
559 .dump
= sfq_dump_class
,
560 .dump_stats
= sfq_dump_class_stats
,
564 static struct Qdisc_ops sfq_qdisc_ops __read_mostly
= {
565 .cl_ops
= &sfq_class_ops
,
567 .priv_size
= sizeof(struct sfq_sched_data
),
568 .enqueue
= sfq_enqueue
,
569 .dequeue
= sfq_dequeue
,
574 .destroy
= sfq_destroy
,
577 .owner
= THIS_MODULE
,
580 static int __init
sfq_module_init(void)
582 return register_qdisc(&sfq_qdisc_ops
);
584 static void __exit
sfq_module_exit(void)
586 unregister_qdisc(&sfq_qdisc_ops
);
588 module_init(sfq_module_init
)
589 module_exit(sfq_module_exit
)
590 MODULE_LICENSE("GPL");