Staging: dream: fix dangling i2c pointers
[linux-2.6/cjktty.git] / net / sched / cls_rsvp.h
blobdd9414e442008cd88a218d1339be4a6540e8dac0
1 /*
2 * net/sched/cls_rsvp.h Template file for RSVPv[46] classifiers.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 Comparing to general packet classification problem,
14 RSVP needs only sevaral relatively simple rules:
16 * (dst, protocol) are always specified,
17 so that we are able to hash them.
18 * src may be exact, or may be wildcard, so that
19 we can keep a hash table plus one wildcard entry.
20 * source port (or flow label) is important only if src is given.
22 IMPLEMENTATION.
24 We use a two level hash table: The top level is keyed by
25 destination address and protocol ID, every bucket contains a list
26 of "rsvp sessions", identified by destination address, protocol and
27 DPI(="Destination Port ID"): triple (key, mask, offset).
29 Every bucket has a smaller hash table keyed by source address
30 (cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
31 Every bucket is again a list of "RSVP flows", selected by
32 source address and SPI(="Source Port ID" here rather than
33 "security parameter index"): triple (key, mask, offset).
36 NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
37 and all fragmented packets go to the best-effort traffic class.
40 NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
41 only one "Generalized Port Identifier". So that for classic
42 ah, esp (and udp,tcp) both *pi should coincide or one of them
43 should be wildcard.
45 At first sight, this redundancy is just a waste of CPU
46 resources. But DPI and SPI add the possibility to assign different
47 priorities to GPIs. Look also at note 4 about tunnels below.
50 NOTE 3. One complication is the case of tunneled packets.
51 We implement it as following: if the first lookup
52 matches a special session with "tunnelhdr" value not zero,
53 flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
54 In this case, we pull tunnelhdr bytes and restart lookup
55 with tunnel ID added to the list of keys. Simple and stupid 8)8)
56 It's enough for PIMREG and IPIP.
59 NOTE 4. Two GPIs make it possible to parse even GRE packets.
60 F.e. DPI can select ETH_P_IP (and necessary flags to make
61 tunnelhdr correct) in GRE protocol field and SPI matches
62 GRE key. Is it not nice? 8)8)
65 Well, as result, despite its simplicity, we get a pretty
66 powerful classification engine. */
69 struct rsvp_head
71 u32 tmap[256/32];
72 u32 hgenerator;
73 u8 tgenerator;
74 struct rsvp_session *ht[256];
77 struct rsvp_session
79 struct rsvp_session *next;
80 __be32 dst[RSVP_DST_LEN];
81 struct tc_rsvp_gpi dpi;
82 u8 protocol;
83 u8 tunnelid;
84 /* 16 (src,sport) hash slots, and one wildcard source slot */
85 struct rsvp_filter *ht[16+1];
89 struct rsvp_filter
91 struct rsvp_filter *next;
92 __be32 src[RSVP_DST_LEN];
93 struct tc_rsvp_gpi spi;
94 u8 tunnelhdr;
96 struct tcf_result res;
97 struct tcf_exts exts;
99 u32 handle;
100 struct rsvp_session *sess;
103 static __inline__ unsigned hash_dst(__be32 *dst, u8 protocol, u8 tunnelid)
105 unsigned h = (__force __u32)dst[RSVP_DST_LEN-1];
106 h ^= h>>16;
107 h ^= h>>8;
108 return (h ^ protocol ^ tunnelid) & 0xFF;
111 static __inline__ unsigned hash_src(__be32 *src)
113 unsigned h = (__force __u32)src[RSVP_DST_LEN-1];
114 h ^= h>>16;
115 h ^= h>>8;
116 h ^= h>>4;
117 return h & 0xF;
120 static struct tcf_ext_map rsvp_ext_map = {
121 .police = TCA_RSVP_POLICE,
122 .action = TCA_RSVP_ACT
125 #define RSVP_APPLY_RESULT() \
127 int r = tcf_exts_exec(skb, &f->exts, res); \
128 if (r < 0) \
129 continue; \
130 else if (r > 0) \
131 return r; \
134 static int rsvp_classify(struct sk_buff *skb, struct tcf_proto *tp,
135 struct tcf_result *res)
137 struct rsvp_session **sht = ((struct rsvp_head*)tp->root)->ht;
138 struct rsvp_session *s;
139 struct rsvp_filter *f;
140 unsigned h1, h2;
141 __be32 *dst, *src;
142 u8 protocol;
143 u8 tunnelid = 0;
144 u8 *xprt;
145 #if RSVP_DST_LEN == 4
146 struct ipv6hdr *nhptr = ipv6_hdr(skb);
147 #else
148 struct iphdr *nhptr = ip_hdr(skb);
149 #endif
151 restart:
153 #if RSVP_DST_LEN == 4
154 src = &nhptr->saddr.s6_addr32[0];
155 dst = &nhptr->daddr.s6_addr32[0];
156 protocol = nhptr->nexthdr;
157 xprt = ((u8*)nhptr) + sizeof(struct ipv6hdr);
158 #else
159 src = &nhptr->saddr;
160 dst = &nhptr->daddr;
161 protocol = nhptr->protocol;
162 xprt = ((u8*)nhptr) + (nhptr->ihl<<2);
163 if (nhptr->frag_off & htons(IP_MF|IP_OFFSET))
164 return -1;
165 #endif
167 h1 = hash_dst(dst, protocol, tunnelid);
168 h2 = hash_src(src);
170 for (s = sht[h1]; s; s = s->next) {
171 if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
172 protocol == s->protocol &&
173 !(s->dpi.mask &
174 (*(u32*)(xprt+s->dpi.offset)^s->dpi.key)) &&
175 #if RSVP_DST_LEN == 4
176 dst[0] == s->dst[0] &&
177 dst[1] == s->dst[1] &&
178 dst[2] == s->dst[2] &&
179 #endif
180 tunnelid == s->tunnelid) {
182 for (f = s->ht[h2]; f; f = f->next) {
183 if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN-1] &&
184 !(f->spi.mask & (*(u32*)(xprt+f->spi.offset)^f->spi.key))
185 #if RSVP_DST_LEN == 4
187 src[0] == f->src[0] &&
188 src[1] == f->src[1] &&
189 src[2] == f->src[2]
190 #endif
192 *res = f->res;
193 RSVP_APPLY_RESULT();
195 matched:
196 if (f->tunnelhdr == 0)
197 return 0;
199 tunnelid = f->res.classid;
200 nhptr = (void*)(xprt + f->tunnelhdr - sizeof(*nhptr));
201 goto restart;
205 /* And wildcard bucket... */
206 for (f = s->ht[16]; f; f = f->next) {
207 *res = f->res;
208 RSVP_APPLY_RESULT();
209 goto matched;
211 return -1;
214 return -1;
217 static unsigned long rsvp_get(struct tcf_proto *tp, u32 handle)
219 struct rsvp_session **sht = ((struct rsvp_head*)tp->root)->ht;
220 struct rsvp_session *s;
221 struct rsvp_filter *f;
222 unsigned h1 = handle&0xFF;
223 unsigned h2 = (handle>>8)&0xFF;
225 if (h2 > 16)
226 return 0;
228 for (s = sht[h1]; s; s = s->next) {
229 for (f = s->ht[h2]; f; f = f->next) {
230 if (f->handle == handle)
231 return (unsigned long)f;
234 return 0;
237 static void rsvp_put(struct tcf_proto *tp, unsigned long f)
241 static int rsvp_init(struct tcf_proto *tp)
243 struct rsvp_head *data;
245 data = kzalloc(sizeof(struct rsvp_head), GFP_KERNEL);
246 if (data) {
247 tp->root = data;
248 return 0;
250 return -ENOBUFS;
253 static inline void
254 rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
256 tcf_unbind_filter(tp, &f->res);
257 tcf_exts_destroy(tp, &f->exts);
258 kfree(f);
261 static void rsvp_destroy(struct tcf_proto *tp)
263 struct rsvp_head *data = xchg(&tp->root, NULL);
264 struct rsvp_session **sht;
265 int h1, h2;
267 if (data == NULL)
268 return;
270 sht = data->ht;
272 for (h1=0; h1<256; h1++) {
273 struct rsvp_session *s;
275 while ((s = sht[h1]) != NULL) {
276 sht[h1] = s->next;
278 for (h2=0; h2<=16; h2++) {
279 struct rsvp_filter *f;
281 while ((f = s->ht[h2]) != NULL) {
282 s->ht[h2] = f->next;
283 rsvp_delete_filter(tp, f);
286 kfree(s);
289 kfree(data);
292 static int rsvp_delete(struct tcf_proto *tp, unsigned long arg)
294 struct rsvp_filter **fp, *f = (struct rsvp_filter*)arg;
295 unsigned h = f->handle;
296 struct rsvp_session **sp;
297 struct rsvp_session *s = f->sess;
298 int i;
300 for (fp = &s->ht[(h>>8)&0xFF]; *fp; fp = &(*fp)->next) {
301 if (*fp == f) {
302 tcf_tree_lock(tp);
303 *fp = f->next;
304 tcf_tree_unlock(tp);
305 rsvp_delete_filter(tp, f);
307 /* Strip tree */
309 for (i=0; i<=16; i++)
310 if (s->ht[i])
311 return 0;
313 /* OK, session has no flows */
314 for (sp = &((struct rsvp_head*)tp->root)->ht[h&0xFF];
315 *sp; sp = &(*sp)->next) {
316 if (*sp == s) {
317 tcf_tree_lock(tp);
318 *sp = s->next;
319 tcf_tree_unlock(tp);
321 kfree(s);
322 return 0;
326 return 0;
329 return 0;
332 static unsigned gen_handle(struct tcf_proto *tp, unsigned salt)
334 struct rsvp_head *data = tp->root;
335 int i = 0xFFFF;
337 while (i-- > 0) {
338 u32 h;
339 if ((data->hgenerator += 0x10000) == 0)
340 data->hgenerator = 0x10000;
341 h = data->hgenerator|salt;
342 if (rsvp_get(tp, h) == 0)
343 return h;
345 return 0;
348 static int tunnel_bts(struct rsvp_head *data)
350 int n = data->tgenerator>>5;
351 u32 b = 1<<(data->tgenerator&0x1F);
353 if (data->tmap[n]&b)
354 return 0;
355 data->tmap[n] |= b;
356 return 1;
359 static void tunnel_recycle(struct rsvp_head *data)
361 struct rsvp_session **sht = data->ht;
362 u32 tmap[256/32];
363 int h1, h2;
365 memset(tmap, 0, sizeof(tmap));
367 for (h1=0; h1<256; h1++) {
368 struct rsvp_session *s;
369 for (s = sht[h1]; s; s = s->next) {
370 for (h2=0; h2<=16; h2++) {
371 struct rsvp_filter *f;
373 for (f = s->ht[h2]; f; f = f->next) {
374 if (f->tunnelhdr == 0)
375 continue;
376 data->tgenerator = f->res.classid;
377 tunnel_bts(data);
383 memcpy(data->tmap, tmap, sizeof(tmap));
386 static u32 gen_tunnel(struct rsvp_head *data)
388 int i, k;
390 for (k=0; k<2; k++) {
391 for (i=255; i>0; i--) {
392 if (++data->tgenerator == 0)
393 data->tgenerator = 1;
394 if (tunnel_bts(data))
395 return data->tgenerator;
397 tunnel_recycle(data);
399 return 0;
402 static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = {
403 [TCA_RSVP_CLASSID] = { .type = NLA_U32 },
404 [TCA_RSVP_DST] = { .type = NLA_BINARY,
405 .len = RSVP_DST_LEN * sizeof(u32) },
406 [TCA_RSVP_SRC] = { .type = NLA_BINARY,
407 .len = RSVP_DST_LEN * sizeof(u32) },
408 [TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) },
411 static int rsvp_change(struct tcf_proto *tp, unsigned long base,
412 u32 handle,
413 struct nlattr **tca,
414 unsigned long *arg)
416 struct rsvp_head *data = tp->root;
417 struct rsvp_filter *f, **fp;
418 struct rsvp_session *s, **sp;
419 struct tc_rsvp_pinfo *pinfo = NULL;
420 struct nlattr *opt = tca[TCA_OPTIONS-1];
421 struct nlattr *tb[TCA_RSVP_MAX + 1];
422 struct tcf_exts e;
423 unsigned h1, h2;
424 __be32 *dst;
425 int err;
427 if (opt == NULL)
428 return handle ? -EINVAL : 0;
430 err = nla_parse_nested(tb, TCA_RSVP_MAX, opt, rsvp_policy);
431 if (err < 0)
432 return err;
434 err = tcf_exts_validate(tp, tb, tca[TCA_RATE-1], &e, &rsvp_ext_map);
435 if (err < 0)
436 return err;
438 if ((f = (struct rsvp_filter*)*arg) != NULL) {
439 /* Node exists: adjust only classid */
441 if (f->handle != handle && handle)
442 goto errout2;
443 if (tb[TCA_RSVP_CLASSID-1]) {
444 f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID-1]);
445 tcf_bind_filter(tp, &f->res, base);
448 tcf_exts_change(tp, &f->exts, &e);
449 return 0;
452 /* Now more serious part... */
453 err = -EINVAL;
454 if (handle)
455 goto errout2;
456 if (tb[TCA_RSVP_DST-1] == NULL)
457 goto errout2;
459 err = -ENOBUFS;
460 f = kzalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
461 if (f == NULL)
462 goto errout2;
464 h2 = 16;
465 if (tb[TCA_RSVP_SRC-1]) {
466 memcpy(f->src, nla_data(tb[TCA_RSVP_SRC-1]), sizeof(f->src));
467 h2 = hash_src(f->src);
469 if (tb[TCA_RSVP_PINFO-1]) {
470 pinfo = nla_data(tb[TCA_RSVP_PINFO-1]);
471 f->spi = pinfo->spi;
472 f->tunnelhdr = pinfo->tunnelhdr;
474 if (tb[TCA_RSVP_CLASSID-1])
475 f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID-1]);
477 dst = nla_data(tb[TCA_RSVP_DST-1]);
478 h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);
480 err = -ENOMEM;
481 if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
482 goto errout;
484 if (f->tunnelhdr) {
485 err = -EINVAL;
486 if (f->res.classid > 255)
487 goto errout;
489 err = -ENOMEM;
490 if (f->res.classid == 0 &&
491 (f->res.classid = gen_tunnel(data)) == 0)
492 goto errout;
495 for (sp = &data->ht[h1]; (s=*sp) != NULL; sp = &s->next) {
496 if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
497 pinfo && pinfo->protocol == s->protocol &&
498 memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0 &&
499 #if RSVP_DST_LEN == 4
500 dst[0] == s->dst[0] &&
501 dst[1] == s->dst[1] &&
502 dst[2] == s->dst[2] &&
503 #endif
504 pinfo->tunnelid == s->tunnelid) {
506 insert:
507 /* OK, we found appropriate session */
509 fp = &s->ht[h2];
511 f->sess = s;
512 if (f->tunnelhdr == 0)
513 tcf_bind_filter(tp, &f->res, base);
515 tcf_exts_change(tp, &f->exts, &e);
517 for (fp = &s->ht[h2]; *fp; fp = &(*fp)->next)
518 if (((*fp)->spi.mask&f->spi.mask) != f->spi.mask)
519 break;
520 f->next = *fp;
521 wmb();
522 *fp = f;
524 *arg = (unsigned long)f;
525 return 0;
529 /* No session found. Create new one. */
531 err = -ENOBUFS;
532 s = kzalloc(sizeof(struct rsvp_session), GFP_KERNEL);
533 if (s == NULL)
534 goto errout;
535 memcpy(s->dst, dst, sizeof(s->dst));
537 if (pinfo) {
538 s->dpi = pinfo->dpi;
539 s->protocol = pinfo->protocol;
540 s->tunnelid = pinfo->tunnelid;
542 for (sp = &data->ht[h1]; *sp; sp = &(*sp)->next) {
543 if (((*sp)->dpi.mask&s->dpi.mask) != s->dpi.mask)
544 break;
546 s->next = *sp;
547 wmb();
548 *sp = s;
550 goto insert;
552 errout:
553 kfree(f);
554 errout2:
555 tcf_exts_destroy(tp, &e);
556 return err;
559 static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg)
561 struct rsvp_head *head = tp->root;
562 unsigned h, h1;
564 if (arg->stop)
565 return;
567 for (h = 0; h < 256; h++) {
568 struct rsvp_session *s;
570 for (s = head->ht[h]; s; s = s->next) {
571 for (h1 = 0; h1 <= 16; h1++) {
572 struct rsvp_filter *f;
574 for (f = s->ht[h1]; f; f = f->next) {
575 if (arg->count < arg->skip) {
576 arg->count++;
577 continue;
579 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
580 arg->stop = 1;
581 return;
583 arg->count++;
590 static int rsvp_dump(struct tcf_proto *tp, unsigned long fh,
591 struct sk_buff *skb, struct tcmsg *t)
593 struct rsvp_filter *f = (struct rsvp_filter*)fh;
594 struct rsvp_session *s;
595 unsigned char *b = skb_tail_pointer(skb);
596 struct nlattr *nest;
597 struct tc_rsvp_pinfo pinfo;
599 if (f == NULL)
600 return skb->len;
601 s = f->sess;
603 t->tcm_handle = f->handle;
605 nest = nla_nest_start(skb, TCA_OPTIONS);
606 if (nest == NULL)
607 goto nla_put_failure;
609 NLA_PUT(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst);
610 pinfo.dpi = s->dpi;
611 pinfo.spi = f->spi;
612 pinfo.protocol = s->protocol;
613 pinfo.tunnelid = s->tunnelid;
614 pinfo.tunnelhdr = f->tunnelhdr;
615 pinfo.pad = 0;
616 NLA_PUT(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo);
617 if (f->res.classid)
618 NLA_PUT_U32(skb, TCA_RSVP_CLASSID, f->res.classid);
619 if (((f->handle>>8)&0xFF) != 16)
620 NLA_PUT(skb, TCA_RSVP_SRC, sizeof(f->src), f->src);
622 if (tcf_exts_dump(skb, &f->exts, &rsvp_ext_map) < 0)
623 goto nla_put_failure;
625 nla_nest_end(skb, nest);
627 if (tcf_exts_dump_stats(skb, &f->exts, &rsvp_ext_map) < 0)
628 goto nla_put_failure;
629 return skb->len;
631 nla_put_failure:
632 nlmsg_trim(skb, b);
633 return -1;
636 static struct tcf_proto_ops RSVP_OPS = {
637 .next = NULL,
638 .kind = RSVP_ID,
639 .classify = rsvp_classify,
640 .init = rsvp_init,
641 .destroy = rsvp_destroy,
642 .get = rsvp_get,
643 .put = rsvp_put,
644 .change = rsvp_change,
645 .delete = rsvp_delete,
646 .walk = rsvp_walk,
647 .dump = rsvp_dump,
648 .owner = THIS_MODULE,
651 static int __init init_rsvp(void)
653 return register_tcf_proto_ops(&RSVP_OPS);
656 static void __exit exit_rsvp(void)
658 unregister_tcf_proto_ops(&RSVP_OPS);
661 module_init(init_rsvp)
662 module_exit(exit_rsvp)