Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6/cjktty.git] / kernel / sched_fair.c
blob354769979c021cd6392714235043ee4dfcdb89ea
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
99 static const struct sched_class fair_sched_class;
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
105 #ifdef CONFIG_FAIR_GROUP_SCHED
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
110 return cfs_rq->rq;
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
116 static inline struct task_struct *task_of(struct sched_entity *se)
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120 #endif
121 return container_of(se, struct task_struct, se);
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
128 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
130 return p->se.cfs_rq;
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
136 return se->cfs_rq;
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
142 return grp->my_q;
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
148 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
150 return cfs_rq->tg->cfs_rq[this_cpu];
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
155 if (!cfs_rq->on_list) {
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
171 cfs_rq->on_list = 1;
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
187 /* Do the two (enqueued) entities belong to the same group ? */
188 static inline int
189 is_same_group(struct sched_entity *se, struct sched_entity *pse)
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
194 return 0;
197 static inline struct sched_entity *parent_entity(struct sched_entity *se)
199 return se->parent;
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity *se)
205 int depth = 0;
207 for_each_sched_entity(se)
208 depth++;
210 return depth;
213 static void
214 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
216 int se_depth, pse_depth;
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
247 static inline struct task_struct *task_of(struct sched_entity *se)
249 return container_of(se, struct task_struct, se);
252 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 return container_of(cfs_rq, struct rq, cfs);
257 #define entity_is_task(se) 1
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
262 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
264 return &task_rq(p)->cfs;
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
272 return &rq->cfs;
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
278 return NULL;
281 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
283 return &cpu_rq(this_cpu)->cfs;
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
300 return 1;
303 static inline struct sched_entity *parent_entity(struct sched_entity *se)
305 return NULL;
308 static inline void
309 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
320 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
324 min_vruntime = vruntime;
326 return min_vruntime;
329 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
335 return min_vruntime;
338 static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
341 return (s64)(a->vruntime - b->vruntime) < 0;
344 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
346 return se->vruntime - cfs_rq->min_vruntime;
349 static void update_min_vruntime(struct cfs_rq *cfs_rq)
351 u64 vruntime = cfs_rq->min_vruntime;
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
361 if (!cfs_rq->curr)
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
371 * Enqueue an entity into the rb-tree:
373 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
378 s64 key = entity_key(cfs_rq, se);
379 int leftmost = 1;
382 * Find the right place in the rbtree:
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
391 if (key < entity_key(cfs_rq, entry)) {
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
403 if (leftmost)
404 cfs_rq->rb_leftmost = &se->run_node;
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
410 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
422 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
424 struct rb_node *left = cfs_rq->rb_leftmost;
426 if (!left)
427 return NULL;
429 return rb_entry(left, struct sched_entity, run_node);
432 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
436 if (!last)
437 return NULL;
439 return rb_entry(last, struct sched_entity, run_node);
442 /**************************************************************
443 * Scheduling class statistics methods:
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table *table, int write,
448 void __user *buffer, size_t *lenp,
449 loff_t *ppos)
451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 int factor = get_update_sysctl_factor();
454 if (ret || !write)
455 return ret;
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
465 #undef WRT_SYSCTL
467 return 0;
469 #endif
472 * delta /= w
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta, struct sched_entity *se)
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
480 return delta;
484 * The idea is to set a period in which each task runs once.
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
489 * p = (nr <= nl) ? l : l*nr/nl
491 static u64 __sched_period(unsigned long nr_running)
493 u64 period = sysctl_sched_latency;
494 unsigned long nr_latency = sched_nr_latency;
496 if (unlikely(nr_running > nr_latency)) {
497 period = sysctl_sched_min_granularity;
498 period *= nr_running;
501 return period;
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
508 * s = p*P[w/rw]
510 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
514 for_each_sched_entity(se) {
515 struct load_weight *load;
516 struct load_weight lw;
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
521 if (unlikely(!se->on_rq)) {
522 lw = cfs_rq->load;
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
527 slice = calc_delta_mine(slice, se->load.weight, load);
529 return slice;
533 * We calculate the vruntime slice of a to be inserted task
535 * vs = s/w
537 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
542 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
549 static inline void
550 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
553 unsigned long delta_exec_weighted;
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
558 curr->sum_exec_runtime += delta_exec;
559 schedstat_add(cfs_rq, exec_clock, delta_exec);
560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
562 curr->vruntime += delta_exec_weighted;
563 update_min_vruntime(cfs_rq);
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq->load_unacc_exec_time += delta_exec;
567 #endif
570 static void update_curr(struct cfs_rq *cfs_rq)
572 struct sched_entity *curr = cfs_rq->curr;
573 u64 now = rq_of(cfs_rq)->clock_task;
574 unsigned long delta_exec;
576 if (unlikely(!curr))
577 return;
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
584 delta_exec = (unsigned long)(now - curr->exec_start);
585 if (!delta_exec)
586 return;
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595 cpuacct_charge(curtask, delta_exec);
596 account_group_exec_runtime(curtask, delta_exec);
600 static inline void
601 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
607 * Task is being enqueued - update stats:
609 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
615 if (se != cfs_rq->curr)
616 update_stats_wait_start(cfs_rq, se);
619 static void
620 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
632 #endif
633 schedstat_set(se->statistics.wait_start, 0);
636 static inline void
637 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
643 if (se != cfs_rq->curr)
644 update_stats_wait_end(cfs_rq, se);
648 * We are picking a new current task - update its stats:
650 static inline void
651 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 * We are starting a new run period:
656 se->exec_start = rq_of(cfs_rq)->clock_task;
659 /**************************************************
660 * Scheduling class queueing methods:
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664 static void
665 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
667 cfs_rq->task_weight += weight;
669 #else
670 static inline void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
674 #endif
676 static void
677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 update_load_add(&cfs_rq->load, se->load.weight);
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682 if (entity_is_task(se)) {
683 add_cfs_task_weight(cfs_rq, se->load.weight);
684 list_add(&se->group_node, &cfs_rq->tasks);
686 cfs_rq->nr_running++;
689 static void
690 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
692 update_load_sub(&cfs_rq->load, se->load.weight);
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695 if (entity_is_task(se)) {
696 add_cfs_task_weight(cfs_rq, -se->load.weight);
697 list_del_init(&se->group_node);
699 cfs_rq->nr_running--;
702 #ifdef CONFIG_FAIR_GROUP_SCHED
703 # ifdef CONFIG_SMP
704 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
705 int global_update)
707 struct task_group *tg = cfs_rq->tg;
708 long load_avg;
710 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
711 load_avg -= cfs_rq->load_contribution;
713 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
714 atomic_add(load_avg, &tg->load_weight);
715 cfs_rq->load_contribution += load_avg;
719 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
721 u64 period = sysctl_sched_shares_window;
722 u64 now, delta;
723 unsigned long load = cfs_rq->load.weight;
725 if (!cfs_rq)
726 return;
728 now = rq_of(cfs_rq)->clock;
729 delta = now - cfs_rq->load_stamp;
731 /* truncate load history at 4 idle periods */
732 if (cfs_rq->load_stamp > cfs_rq->load_last &&
733 now - cfs_rq->load_last > 4 * period) {
734 cfs_rq->load_period = 0;
735 cfs_rq->load_avg = 0;
738 cfs_rq->load_stamp = now;
739 cfs_rq->load_unacc_exec_time = 0;
740 cfs_rq->load_period += delta;
741 if (load) {
742 cfs_rq->load_last = now;
743 cfs_rq->load_avg += delta * load;
746 /* consider updating load contribution on each fold or truncate */
747 if (global_update || cfs_rq->load_period > period
748 || !cfs_rq->load_period)
749 update_cfs_rq_load_contribution(cfs_rq, global_update);
751 while (cfs_rq->load_period > period) {
753 * Inline assembly required to prevent the compiler
754 * optimising this loop into a divmod call.
755 * See __iter_div_u64_rem() for another example of this.
757 asm("" : "+rm" (cfs_rq->load_period));
758 cfs_rq->load_period /= 2;
759 cfs_rq->load_avg /= 2;
762 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
763 list_del_leaf_cfs_rq(cfs_rq);
766 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
767 long weight_delta)
769 long load_weight, load, shares;
771 load = cfs_rq->load.weight + weight_delta;
773 load_weight = atomic_read(&tg->load_weight);
774 load_weight -= cfs_rq->load_contribution;
775 load_weight += load;
777 shares = (tg->shares * load);
778 if (load_weight)
779 shares /= load_weight;
781 if (shares < MIN_SHARES)
782 shares = MIN_SHARES;
783 if (shares > tg->shares)
784 shares = tg->shares;
786 return shares;
789 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
791 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
792 update_cfs_load(cfs_rq, 0);
793 update_cfs_shares(cfs_rq, 0);
796 # else /* CONFIG_SMP */
797 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
801 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
802 long weight_delta)
804 return tg->shares;
807 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
810 # endif /* CONFIG_SMP */
811 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
812 unsigned long weight)
814 if (se->on_rq) {
815 /* commit outstanding execution time */
816 if (cfs_rq->curr == se)
817 update_curr(cfs_rq);
818 account_entity_dequeue(cfs_rq, se);
821 update_load_set(&se->load, weight);
823 if (se->on_rq)
824 account_entity_enqueue(cfs_rq, se);
827 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
829 struct task_group *tg;
830 struct sched_entity *se;
831 long shares;
833 if (!cfs_rq)
834 return;
836 tg = cfs_rq->tg;
837 se = tg->se[cpu_of(rq_of(cfs_rq))];
838 if (!se)
839 return;
840 #ifndef CONFIG_SMP
841 if (likely(se->load.weight == tg->shares))
842 return;
843 #endif
844 shares = calc_cfs_shares(cfs_rq, tg, weight_delta);
846 reweight_entity(cfs_rq_of(se), se, shares);
848 #else /* CONFIG_FAIR_GROUP_SCHED */
849 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
853 static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
857 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
860 #endif /* CONFIG_FAIR_GROUP_SCHED */
862 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
864 #ifdef CONFIG_SCHEDSTATS
865 struct task_struct *tsk = NULL;
867 if (entity_is_task(se))
868 tsk = task_of(se);
870 if (se->statistics.sleep_start) {
871 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
873 if ((s64)delta < 0)
874 delta = 0;
876 if (unlikely(delta > se->statistics.sleep_max))
877 se->statistics.sleep_max = delta;
879 se->statistics.sleep_start = 0;
880 se->statistics.sum_sleep_runtime += delta;
882 if (tsk) {
883 account_scheduler_latency(tsk, delta >> 10, 1);
884 trace_sched_stat_sleep(tsk, delta);
887 if (se->statistics.block_start) {
888 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
890 if ((s64)delta < 0)
891 delta = 0;
893 if (unlikely(delta > se->statistics.block_max))
894 se->statistics.block_max = delta;
896 se->statistics.block_start = 0;
897 se->statistics.sum_sleep_runtime += delta;
899 if (tsk) {
900 if (tsk->in_iowait) {
901 se->statistics.iowait_sum += delta;
902 se->statistics.iowait_count++;
903 trace_sched_stat_iowait(tsk, delta);
907 * Blocking time is in units of nanosecs, so shift by
908 * 20 to get a milliseconds-range estimation of the
909 * amount of time that the task spent sleeping:
911 if (unlikely(prof_on == SLEEP_PROFILING)) {
912 profile_hits(SLEEP_PROFILING,
913 (void *)get_wchan(tsk),
914 delta >> 20);
916 account_scheduler_latency(tsk, delta >> 10, 0);
919 #endif
922 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
924 #ifdef CONFIG_SCHED_DEBUG
925 s64 d = se->vruntime - cfs_rq->min_vruntime;
927 if (d < 0)
928 d = -d;
930 if (d > 3*sysctl_sched_latency)
931 schedstat_inc(cfs_rq, nr_spread_over);
932 #endif
935 static void
936 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
938 u64 vruntime = cfs_rq->min_vruntime;
941 * The 'current' period is already promised to the current tasks,
942 * however the extra weight of the new task will slow them down a
943 * little, place the new task so that it fits in the slot that
944 * stays open at the end.
946 if (initial && sched_feat(START_DEBIT))
947 vruntime += sched_vslice(cfs_rq, se);
949 /* sleeps up to a single latency don't count. */
950 if (!initial) {
951 unsigned long thresh = sysctl_sched_latency;
954 * Halve their sleep time's effect, to allow
955 * for a gentler effect of sleepers:
957 if (sched_feat(GENTLE_FAIR_SLEEPERS))
958 thresh >>= 1;
960 vruntime -= thresh;
963 /* ensure we never gain time by being placed backwards. */
964 vruntime = max_vruntime(se->vruntime, vruntime);
966 se->vruntime = vruntime;
969 static void
970 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
973 * Update the normalized vruntime before updating min_vruntime
974 * through callig update_curr().
976 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
977 se->vruntime += cfs_rq->min_vruntime;
980 * Update run-time statistics of the 'current'.
982 update_curr(cfs_rq);
983 update_cfs_load(cfs_rq, 0);
984 update_cfs_shares(cfs_rq, se->load.weight);
985 account_entity_enqueue(cfs_rq, se);
987 if (flags & ENQUEUE_WAKEUP) {
988 place_entity(cfs_rq, se, 0);
989 enqueue_sleeper(cfs_rq, se);
992 update_stats_enqueue(cfs_rq, se);
993 check_spread(cfs_rq, se);
994 if (se != cfs_rq->curr)
995 __enqueue_entity(cfs_rq, se);
996 se->on_rq = 1;
998 if (cfs_rq->nr_running == 1)
999 list_add_leaf_cfs_rq(cfs_rq);
1002 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1004 if (!se || cfs_rq->last == se)
1005 cfs_rq->last = NULL;
1007 if (!se || cfs_rq->next == se)
1008 cfs_rq->next = NULL;
1011 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1013 for_each_sched_entity(se)
1014 __clear_buddies(cfs_rq_of(se), se);
1017 static void
1018 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1021 * Update run-time statistics of the 'current'.
1023 update_curr(cfs_rq);
1025 update_stats_dequeue(cfs_rq, se);
1026 if (flags & DEQUEUE_SLEEP) {
1027 #ifdef CONFIG_SCHEDSTATS
1028 if (entity_is_task(se)) {
1029 struct task_struct *tsk = task_of(se);
1031 if (tsk->state & TASK_INTERRUPTIBLE)
1032 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1033 if (tsk->state & TASK_UNINTERRUPTIBLE)
1034 se->statistics.block_start = rq_of(cfs_rq)->clock;
1036 #endif
1039 clear_buddies(cfs_rq, se);
1041 if (se != cfs_rq->curr)
1042 __dequeue_entity(cfs_rq, se);
1043 se->on_rq = 0;
1044 update_cfs_load(cfs_rq, 0);
1045 account_entity_dequeue(cfs_rq, se);
1046 update_min_vruntime(cfs_rq);
1047 update_cfs_shares(cfs_rq, 0);
1050 * Normalize the entity after updating the min_vruntime because the
1051 * update can refer to the ->curr item and we need to reflect this
1052 * movement in our normalized position.
1054 if (!(flags & DEQUEUE_SLEEP))
1055 se->vruntime -= cfs_rq->min_vruntime;
1059 * Preempt the current task with a newly woken task if needed:
1061 static void
1062 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1064 unsigned long ideal_runtime, delta_exec;
1066 ideal_runtime = sched_slice(cfs_rq, curr);
1067 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1068 if (delta_exec > ideal_runtime) {
1069 resched_task(rq_of(cfs_rq)->curr);
1071 * The current task ran long enough, ensure it doesn't get
1072 * re-elected due to buddy favours.
1074 clear_buddies(cfs_rq, curr);
1075 return;
1079 * Ensure that a task that missed wakeup preemption by a
1080 * narrow margin doesn't have to wait for a full slice.
1081 * This also mitigates buddy induced latencies under load.
1083 if (!sched_feat(WAKEUP_PREEMPT))
1084 return;
1086 if (delta_exec < sysctl_sched_min_granularity)
1087 return;
1089 if (cfs_rq->nr_running > 1) {
1090 struct sched_entity *se = __pick_next_entity(cfs_rq);
1091 s64 delta = curr->vruntime - se->vruntime;
1093 if (delta < 0)
1094 return;
1096 if (delta > ideal_runtime)
1097 resched_task(rq_of(cfs_rq)->curr);
1101 static void
1102 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1104 /* 'current' is not kept within the tree. */
1105 if (se->on_rq) {
1107 * Any task has to be enqueued before it get to execute on
1108 * a CPU. So account for the time it spent waiting on the
1109 * runqueue.
1111 update_stats_wait_end(cfs_rq, se);
1112 __dequeue_entity(cfs_rq, se);
1115 update_stats_curr_start(cfs_rq, se);
1116 cfs_rq->curr = se;
1117 #ifdef CONFIG_SCHEDSTATS
1119 * Track our maximum slice length, if the CPU's load is at
1120 * least twice that of our own weight (i.e. dont track it
1121 * when there are only lesser-weight tasks around):
1123 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1124 se->statistics.slice_max = max(se->statistics.slice_max,
1125 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1127 #endif
1128 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1131 static int
1132 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1134 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1136 struct sched_entity *se = __pick_next_entity(cfs_rq);
1137 struct sched_entity *left = se;
1139 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1140 se = cfs_rq->next;
1143 * Prefer last buddy, try to return the CPU to a preempted task.
1145 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1146 se = cfs_rq->last;
1148 clear_buddies(cfs_rq, se);
1150 return se;
1153 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1156 * If still on the runqueue then deactivate_task()
1157 * was not called and update_curr() has to be done:
1159 if (prev->on_rq)
1160 update_curr(cfs_rq);
1162 check_spread(cfs_rq, prev);
1163 if (prev->on_rq) {
1164 update_stats_wait_start(cfs_rq, prev);
1165 /* Put 'current' back into the tree. */
1166 __enqueue_entity(cfs_rq, prev);
1168 cfs_rq->curr = NULL;
1171 static void
1172 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1175 * Update run-time statistics of the 'current'.
1177 update_curr(cfs_rq);
1180 * Update share accounting for long-running entities.
1182 update_entity_shares_tick(cfs_rq);
1184 #ifdef CONFIG_SCHED_HRTICK
1186 * queued ticks are scheduled to match the slice, so don't bother
1187 * validating it and just reschedule.
1189 if (queued) {
1190 resched_task(rq_of(cfs_rq)->curr);
1191 return;
1194 * don't let the period tick interfere with the hrtick preemption
1196 if (!sched_feat(DOUBLE_TICK) &&
1197 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1198 return;
1199 #endif
1201 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1202 check_preempt_tick(cfs_rq, curr);
1205 /**************************************************
1206 * CFS operations on tasks:
1209 #ifdef CONFIG_SCHED_HRTICK
1210 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1212 struct sched_entity *se = &p->se;
1213 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1215 WARN_ON(task_rq(p) != rq);
1217 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1218 u64 slice = sched_slice(cfs_rq, se);
1219 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1220 s64 delta = slice - ran;
1222 if (delta < 0) {
1223 if (rq->curr == p)
1224 resched_task(p);
1225 return;
1229 * Don't schedule slices shorter than 10000ns, that just
1230 * doesn't make sense. Rely on vruntime for fairness.
1232 if (rq->curr != p)
1233 delta = max_t(s64, 10000LL, delta);
1235 hrtick_start(rq, delta);
1240 * called from enqueue/dequeue and updates the hrtick when the
1241 * current task is from our class and nr_running is low enough
1242 * to matter.
1244 static void hrtick_update(struct rq *rq)
1246 struct task_struct *curr = rq->curr;
1248 if (curr->sched_class != &fair_sched_class)
1249 return;
1251 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1252 hrtick_start_fair(rq, curr);
1254 #else /* !CONFIG_SCHED_HRTICK */
1255 static inline void
1256 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1260 static inline void hrtick_update(struct rq *rq)
1263 #endif
1266 * The enqueue_task method is called before nr_running is
1267 * increased. Here we update the fair scheduling stats and
1268 * then put the task into the rbtree:
1270 static void
1271 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1273 struct cfs_rq *cfs_rq;
1274 struct sched_entity *se = &p->se;
1276 for_each_sched_entity(se) {
1277 if (se->on_rq)
1278 break;
1279 cfs_rq = cfs_rq_of(se);
1280 enqueue_entity(cfs_rq, se, flags);
1281 flags = ENQUEUE_WAKEUP;
1284 for_each_sched_entity(se) {
1285 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1287 update_cfs_load(cfs_rq, 0);
1288 update_cfs_shares(cfs_rq, 0);
1291 hrtick_update(rq);
1295 * The dequeue_task method is called before nr_running is
1296 * decreased. We remove the task from the rbtree and
1297 * update the fair scheduling stats:
1299 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1301 struct cfs_rq *cfs_rq;
1302 struct sched_entity *se = &p->se;
1304 for_each_sched_entity(se) {
1305 cfs_rq = cfs_rq_of(se);
1306 dequeue_entity(cfs_rq, se, flags);
1308 /* Don't dequeue parent if it has other entities besides us */
1309 if (cfs_rq->load.weight)
1310 break;
1311 flags |= DEQUEUE_SLEEP;
1314 for_each_sched_entity(se) {
1315 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1317 update_cfs_load(cfs_rq, 0);
1318 update_cfs_shares(cfs_rq, 0);
1321 hrtick_update(rq);
1325 * sched_yield() support is very simple - we dequeue and enqueue.
1327 * If compat_yield is turned on then we requeue to the end of the tree.
1329 static void yield_task_fair(struct rq *rq)
1331 struct task_struct *curr = rq->curr;
1332 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1333 struct sched_entity *rightmost, *se = &curr->se;
1336 * Are we the only task in the tree?
1338 if (unlikely(cfs_rq->nr_running == 1))
1339 return;
1341 clear_buddies(cfs_rq, se);
1343 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1344 update_rq_clock(rq);
1346 * Update run-time statistics of the 'current'.
1348 update_curr(cfs_rq);
1350 return;
1353 * Find the rightmost entry in the rbtree:
1355 rightmost = __pick_last_entity(cfs_rq);
1357 * Already in the rightmost position?
1359 if (unlikely(!rightmost || entity_before(rightmost, se)))
1360 return;
1363 * Minimally necessary key value to be last in the tree:
1364 * Upon rescheduling, sched_class::put_prev_task() will place
1365 * 'current' within the tree based on its new key value.
1367 se->vruntime = rightmost->vruntime + 1;
1370 #ifdef CONFIG_SMP
1372 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1374 struct sched_entity *se = &p->se;
1375 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1377 se->vruntime -= cfs_rq->min_vruntime;
1380 #ifdef CONFIG_FAIR_GROUP_SCHED
1382 * effective_load() calculates the load change as seen from the root_task_group
1384 * Adding load to a group doesn't make a group heavier, but can cause movement
1385 * of group shares between cpus. Assuming the shares were perfectly aligned one
1386 * can calculate the shift in shares.
1388 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1390 struct sched_entity *se = tg->se[cpu];
1392 if (!tg->parent)
1393 return wl;
1395 for_each_sched_entity(se) {
1396 long lw, w;
1398 tg = se->my_q->tg;
1399 w = se->my_q->load.weight;
1401 /* use this cpu's instantaneous contribution */
1402 lw = atomic_read(&tg->load_weight);
1403 lw -= se->my_q->load_contribution;
1404 lw += w + wg;
1406 wl += w;
1408 if (lw > 0 && wl < lw)
1409 wl = (wl * tg->shares) / lw;
1410 else
1411 wl = tg->shares;
1413 /* zero point is MIN_SHARES */
1414 if (wl < MIN_SHARES)
1415 wl = MIN_SHARES;
1416 wl -= se->load.weight;
1417 wg = 0;
1420 return wl;
1423 #else
1425 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1426 unsigned long wl, unsigned long wg)
1428 return wl;
1431 #endif
1433 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1435 unsigned long this_load, load;
1436 int idx, this_cpu, prev_cpu;
1437 unsigned long tl_per_task;
1438 struct task_group *tg;
1439 unsigned long weight;
1440 int balanced;
1442 idx = sd->wake_idx;
1443 this_cpu = smp_processor_id();
1444 prev_cpu = task_cpu(p);
1445 load = source_load(prev_cpu, idx);
1446 this_load = target_load(this_cpu, idx);
1449 * If sync wakeup then subtract the (maximum possible)
1450 * effect of the currently running task from the load
1451 * of the current CPU:
1453 rcu_read_lock();
1454 if (sync) {
1455 tg = task_group(current);
1456 weight = current->se.load.weight;
1458 this_load += effective_load(tg, this_cpu, -weight, -weight);
1459 load += effective_load(tg, prev_cpu, 0, -weight);
1462 tg = task_group(p);
1463 weight = p->se.load.weight;
1466 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1467 * due to the sync cause above having dropped this_load to 0, we'll
1468 * always have an imbalance, but there's really nothing you can do
1469 * about that, so that's good too.
1471 * Otherwise check if either cpus are near enough in load to allow this
1472 * task to be woken on this_cpu.
1474 if (this_load) {
1475 unsigned long this_eff_load, prev_eff_load;
1477 this_eff_load = 100;
1478 this_eff_load *= power_of(prev_cpu);
1479 this_eff_load *= this_load +
1480 effective_load(tg, this_cpu, weight, weight);
1482 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1483 prev_eff_load *= power_of(this_cpu);
1484 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1486 balanced = this_eff_load <= prev_eff_load;
1487 } else
1488 balanced = true;
1489 rcu_read_unlock();
1492 * If the currently running task will sleep within
1493 * a reasonable amount of time then attract this newly
1494 * woken task:
1496 if (sync && balanced)
1497 return 1;
1499 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1500 tl_per_task = cpu_avg_load_per_task(this_cpu);
1502 if (balanced ||
1503 (this_load <= load &&
1504 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1506 * This domain has SD_WAKE_AFFINE and
1507 * p is cache cold in this domain, and
1508 * there is no bad imbalance.
1510 schedstat_inc(sd, ttwu_move_affine);
1511 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1513 return 1;
1515 return 0;
1519 * find_idlest_group finds and returns the least busy CPU group within the
1520 * domain.
1522 static struct sched_group *
1523 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1524 int this_cpu, int load_idx)
1526 struct sched_group *idlest = NULL, *group = sd->groups;
1527 unsigned long min_load = ULONG_MAX, this_load = 0;
1528 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1530 do {
1531 unsigned long load, avg_load;
1532 int local_group;
1533 int i;
1535 /* Skip over this group if it has no CPUs allowed */
1536 if (!cpumask_intersects(sched_group_cpus(group),
1537 &p->cpus_allowed))
1538 continue;
1540 local_group = cpumask_test_cpu(this_cpu,
1541 sched_group_cpus(group));
1543 /* Tally up the load of all CPUs in the group */
1544 avg_load = 0;
1546 for_each_cpu(i, sched_group_cpus(group)) {
1547 /* Bias balancing toward cpus of our domain */
1548 if (local_group)
1549 load = source_load(i, load_idx);
1550 else
1551 load = target_load(i, load_idx);
1553 avg_load += load;
1556 /* Adjust by relative CPU power of the group */
1557 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1559 if (local_group) {
1560 this_load = avg_load;
1561 } else if (avg_load < min_load) {
1562 min_load = avg_load;
1563 idlest = group;
1565 } while (group = group->next, group != sd->groups);
1567 if (!idlest || 100*this_load < imbalance*min_load)
1568 return NULL;
1569 return idlest;
1573 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1575 static int
1576 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1578 unsigned long load, min_load = ULONG_MAX;
1579 int idlest = -1;
1580 int i;
1582 /* Traverse only the allowed CPUs */
1583 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1584 load = weighted_cpuload(i);
1586 if (load < min_load || (load == min_load && i == this_cpu)) {
1587 min_load = load;
1588 idlest = i;
1592 return idlest;
1596 * Try and locate an idle CPU in the sched_domain.
1598 static int select_idle_sibling(struct task_struct *p, int target)
1600 int cpu = smp_processor_id();
1601 int prev_cpu = task_cpu(p);
1602 struct sched_domain *sd;
1603 int i;
1606 * If the task is going to be woken-up on this cpu and if it is
1607 * already idle, then it is the right target.
1609 if (target == cpu && idle_cpu(cpu))
1610 return cpu;
1613 * If the task is going to be woken-up on the cpu where it previously
1614 * ran and if it is currently idle, then it the right target.
1616 if (target == prev_cpu && idle_cpu(prev_cpu))
1617 return prev_cpu;
1620 * Otherwise, iterate the domains and find an elegible idle cpu.
1622 for_each_domain(target, sd) {
1623 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1624 break;
1626 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1627 if (idle_cpu(i)) {
1628 target = i;
1629 break;
1634 * Lets stop looking for an idle sibling when we reached
1635 * the domain that spans the current cpu and prev_cpu.
1637 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1638 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1639 break;
1642 return target;
1646 * sched_balance_self: balance the current task (running on cpu) in domains
1647 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1648 * SD_BALANCE_EXEC.
1650 * Balance, ie. select the least loaded group.
1652 * Returns the target CPU number, or the same CPU if no balancing is needed.
1654 * preempt must be disabled.
1656 static int
1657 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1659 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1660 int cpu = smp_processor_id();
1661 int prev_cpu = task_cpu(p);
1662 int new_cpu = cpu;
1663 int want_affine = 0;
1664 int want_sd = 1;
1665 int sync = wake_flags & WF_SYNC;
1667 if (sd_flag & SD_BALANCE_WAKE) {
1668 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1669 want_affine = 1;
1670 new_cpu = prev_cpu;
1673 for_each_domain(cpu, tmp) {
1674 if (!(tmp->flags & SD_LOAD_BALANCE))
1675 continue;
1678 * If power savings logic is enabled for a domain, see if we
1679 * are not overloaded, if so, don't balance wider.
1681 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1682 unsigned long power = 0;
1683 unsigned long nr_running = 0;
1684 unsigned long capacity;
1685 int i;
1687 for_each_cpu(i, sched_domain_span(tmp)) {
1688 power += power_of(i);
1689 nr_running += cpu_rq(i)->cfs.nr_running;
1692 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1694 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1695 nr_running /= 2;
1697 if (nr_running < capacity)
1698 want_sd = 0;
1702 * If both cpu and prev_cpu are part of this domain,
1703 * cpu is a valid SD_WAKE_AFFINE target.
1705 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1706 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1707 affine_sd = tmp;
1708 want_affine = 0;
1711 if (!want_sd && !want_affine)
1712 break;
1714 if (!(tmp->flags & sd_flag))
1715 continue;
1717 if (want_sd)
1718 sd = tmp;
1721 if (affine_sd) {
1722 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1723 return select_idle_sibling(p, cpu);
1724 else
1725 return select_idle_sibling(p, prev_cpu);
1728 while (sd) {
1729 int load_idx = sd->forkexec_idx;
1730 struct sched_group *group;
1731 int weight;
1733 if (!(sd->flags & sd_flag)) {
1734 sd = sd->child;
1735 continue;
1738 if (sd_flag & SD_BALANCE_WAKE)
1739 load_idx = sd->wake_idx;
1741 group = find_idlest_group(sd, p, cpu, load_idx);
1742 if (!group) {
1743 sd = sd->child;
1744 continue;
1747 new_cpu = find_idlest_cpu(group, p, cpu);
1748 if (new_cpu == -1 || new_cpu == cpu) {
1749 /* Now try balancing at a lower domain level of cpu */
1750 sd = sd->child;
1751 continue;
1754 /* Now try balancing at a lower domain level of new_cpu */
1755 cpu = new_cpu;
1756 weight = sd->span_weight;
1757 sd = NULL;
1758 for_each_domain(cpu, tmp) {
1759 if (weight <= tmp->span_weight)
1760 break;
1761 if (tmp->flags & sd_flag)
1762 sd = tmp;
1764 /* while loop will break here if sd == NULL */
1767 return new_cpu;
1769 #endif /* CONFIG_SMP */
1771 static unsigned long
1772 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1774 unsigned long gran = sysctl_sched_wakeup_granularity;
1777 * Since its curr running now, convert the gran from real-time
1778 * to virtual-time in his units.
1780 * By using 'se' instead of 'curr' we penalize light tasks, so
1781 * they get preempted easier. That is, if 'se' < 'curr' then
1782 * the resulting gran will be larger, therefore penalizing the
1783 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1784 * be smaller, again penalizing the lighter task.
1786 * This is especially important for buddies when the leftmost
1787 * task is higher priority than the buddy.
1789 if (unlikely(se->load.weight != NICE_0_LOAD))
1790 gran = calc_delta_fair(gran, se);
1792 return gran;
1796 * Should 'se' preempt 'curr'.
1798 * |s1
1799 * |s2
1800 * |s3
1802 * |<--->|c
1804 * w(c, s1) = -1
1805 * w(c, s2) = 0
1806 * w(c, s3) = 1
1809 static int
1810 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1812 s64 gran, vdiff = curr->vruntime - se->vruntime;
1814 if (vdiff <= 0)
1815 return -1;
1817 gran = wakeup_gran(curr, se);
1818 if (vdiff > gran)
1819 return 1;
1821 return 0;
1824 static void set_last_buddy(struct sched_entity *se)
1826 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1827 for_each_sched_entity(se)
1828 cfs_rq_of(se)->last = se;
1832 static void set_next_buddy(struct sched_entity *se)
1834 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1835 for_each_sched_entity(se)
1836 cfs_rq_of(se)->next = se;
1841 * Preempt the current task with a newly woken task if needed:
1843 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1845 struct task_struct *curr = rq->curr;
1846 struct sched_entity *se = &curr->se, *pse = &p->se;
1847 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1848 int scale = cfs_rq->nr_running >= sched_nr_latency;
1850 if (unlikely(se == pse))
1851 return;
1853 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1854 set_next_buddy(pse);
1857 * We can come here with TIF_NEED_RESCHED already set from new task
1858 * wake up path.
1860 if (test_tsk_need_resched(curr))
1861 return;
1864 * Batch and idle tasks do not preempt (their preemption is driven by
1865 * the tick):
1867 if (unlikely(p->policy != SCHED_NORMAL))
1868 return;
1870 /* Idle tasks are by definition preempted by everybody. */
1871 if (unlikely(curr->policy == SCHED_IDLE))
1872 goto preempt;
1874 if (!sched_feat(WAKEUP_PREEMPT))
1875 return;
1877 update_curr(cfs_rq);
1878 find_matching_se(&se, &pse);
1879 BUG_ON(!pse);
1880 if (wakeup_preempt_entity(se, pse) == 1)
1881 goto preempt;
1883 return;
1885 preempt:
1886 resched_task(curr);
1888 * Only set the backward buddy when the current task is still
1889 * on the rq. This can happen when a wakeup gets interleaved
1890 * with schedule on the ->pre_schedule() or idle_balance()
1891 * point, either of which can * drop the rq lock.
1893 * Also, during early boot the idle thread is in the fair class,
1894 * for obvious reasons its a bad idea to schedule back to it.
1896 if (unlikely(!se->on_rq || curr == rq->idle))
1897 return;
1899 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1900 set_last_buddy(se);
1903 static struct task_struct *pick_next_task_fair(struct rq *rq)
1905 struct task_struct *p;
1906 struct cfs_rq *cfs_rq = &rq->cfs;
1907 struct sched_entity *se;
1909 if (!cfs_rq->nr_running)
1910 return NULL;
1912 do {
1913 se = pick_next_entity(cfs_rq);
1914 set_next_entity(cfs_rq, se);
1915 cfs_rq = group_cfs_rq(se);
1916 } while (cfs_rq);
1918 p = task_of(se);
1919 hrtick_start_fair(rq, p);
1921 return p;
1925 * Account for a descheduled task:
1927 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1929 struct sched_entity *se = &prev->se;
1930 struct cfs_rq *cfs_rq;
1932 for_each_sched_entity(se) {
1933 cfs_rq = cfs_rq_of(se);
1934 put_prev_entity(cfs_rq, se);
1938 #ifdef CONFIG_SMP
1939 /**************************************************
1940 * Fair scheduling class load-balancing methods:
1944 * pull_task - move a task from a remote runqueue to the local runqueue.
1945 * Both runqueues must be locked.
1947 static void pull_task(struct rq *src_rq, struct task_struct *p,
1948 struct rq *this_rq, int this_cpu)
1950 deactivate_task(src_rq, p, 0);
1951 set_task_cpu(p, this_cpu);
1952 activate_task(this_rq, p, 0);
1953 check_preempt_curr(this_rq, p, 0);
1957 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1959 static
1960 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1961 struct sched_domain *sd, enum cpu_idle_type idle,
1962 int *all_pinned)
1964 int tsk_cache_hot = 0;
1966 * We do not migrate tasks that are:
1967 * 1) running (obviously), or
1968 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1969 * 3) are cache-hot on their current CPU.
1971 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1972 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1973 return 0;
1975 *all_pinned = 0;
1977 if (task_running(rq, p)) {
1978 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1979 return 0;
1983 * Aggressive migration if:
1984 * 1) task is cache cold, or
1985 * 2) too many balance attempts have failed.
1988 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1989 if (!tsk_cache_hot ||
1990 sd->nr_balance_failed > sd->cache_nice_tries) {
1991 #ifdef CONFIG_SCHEDSTATS
1992 if (tsk_cache_hot) {
1993 schedstat_inc(sd, lb_hot_gained[idle]);
1994 schedstat_inc(p, se.statistics.nr_forced_migrations);
1996 #endif
1997 return 1;
2000 if (tsk_cache_hot) {
2001 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2002 return 0;
2004 return 1;
2008 * move_one_task tries to move exactly one task from busiest to this_rq, as
2009 * part of active balancing operations within "domain".
2010 * Returns 1 if successful and 0 otherwise.
2012 * Called with both runqueues locked.
2014 static int
2015 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2016 struct sched_domain *sd, enum cpu_idle_type idle)
2018 struct task_struct *p, *n;
2019 struct cfs_rq *cfs_rq;
2020 int pinned = 0;
2022 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2023 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2025 if (!can_migrate_task(p, busiest, this_cpu,
2026 sd, idle, &pinned))
2027 continue;
2029 pull_task(busiest, p, this_rq, this_cpu);
2031 * Right now, this is only the second place pull_task()
2032 * is called, so we can safely collect pull_task()
2033 * stats here rather than inside pull_task().
2035 schedstat_inc(sd, lb_gained[idle]);
2036 return 1;
2040 return 0;
2043 static unsigned long
2044 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2045 unsigned long max_load_move, struct sched_domain *sd,
2046 enum cpu_idle_type idle, int *all_pinned,
2047 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2049 int loops = 0, pulled = 0, pinned = 0;
2050 long rem_load_move = max_load_move;
2051 struct task_struct *p, *n;
2053 if (max_load_move == 0)
2054 goto out;
2056 pinned = 1;
2058 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2059 if (loops++ > sysctl_sched_nr_migrate)
2060 break;
2062 if ((p->se.load.weight >> 1) > rem_load_move ||
2063 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2064 continue;
2066 pull_task(busiest, p, this_rq, this_cpu);
2067 pulled++;
2068 rem_load_move -= p->se.load.weight;
2070 #ifdef CONFIG_PREEMPT
2072 * NEWIDLE balancing is a source of latency, so preemptible
2073 * kernels will stop after the first task is pulled to minimize
2074 * the critical section.
2076 if (idle == CPU_NEWLY_IDLE)
2077 break;
2078 #endif
2081 * We only want to steal up to the prescribed amount of
2082 * weighted load.
2084 if (rem_load_move <= 0)
2085 break;
2087 if (p->prio < *this_best_prio)
2088 *this_best_prio = p->prio;
2090 out:
2092 * Right now, this is one of only two places pull_task() is called,
2093 * so we can safely collect pull_task() stats here rather than
2094 * inside pull_task().
2096 schedstat_add(sd, lb_gained[idle], pulled);
2098 if (all_pinned)
2099 *all_pinned = pinned;
2101 return max_load_move - rem_load_move;
2104 #ifdef CONFIG_FAIR_GROUP_SCHED
2106 * update tg->load_weight by folding this cpu's load_avg
2108 static int update_shares_cpu(struct task_group *tg, int cpu)
2110 struct cfs_rq *cfs_rq;
2111 unsigned long flags;
2112 struct rq *rq;
2114 if (!tg->se[cpu])
2115 return 0;
2117 rq = cpu_rq(cpu);
2118 cfs_rq = tg->cfs_rq[cpu];
2120 raw_spin_lock_irqsave(&rq->lock, flags);
2122 update_rq_clock(rq);
2123 update_cfs_load(cfs_rq, 1);
2126 * We need to update shares after updating tg->load_weight in
2127 * order to adjust the weight of groups with long running tasks.
2129 update_cfs_shares(cfs_rq, 0);
2131 raw_spin_unlock_irqrestore(&rq->lock, flags);
2133 return 0;
2136 static void update_shares(int cpu)
2138 struct cfs_rq *cfs_rq;
2139 struct rq *rq = cpu_rq(cpu);
2141 rcu_read_lock();
2142 for_each_leaf_cfs_rq(rq, cfs_rq)
2143 update_shares_cpu(cfs_rq->tg, cpu);
2144 rcu_read_unlock();
2147 static unsigned long
2148 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2149 unsigned long max_load_move,
2150 struct sched_domain *sd, enum cpu_idle_type idle,
2151 int *all_pinned, int *this_best_prio)
2153 long rem_load_move = max_load_move;
2154 int busiest_cpu = cpu_of(busiest);
2155 struct task_group *tg;
2157 rcu_read_lock();
2158 update_h_load(busiest_cpu);
2160 list_for_each_entry_rcu(tg, &task_groups, list) {
2161 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2162 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2163 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2164 u64 rem_load, moved_load;
2167 * empty group
2169 if (!busiest_cfs_rq->task_weight)
2170 continue;
2172 rem_load = (u64)rem_load_move * busiest_weight;
2173 rem_load = div_u64(rem_load, busiest_h_load + 1);
2175 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2176 rem_load, sd, idle, all_pinned, this_best_prio,
2177 busiest_cfs_rq);
2179 if (!moved_load)
2180 continue;
2182 moved_load *= busiest_h_load;
2183 moved_load = div_u64(moved_load, busiest_weight + 1);
2185 rem_load_move -= moved_load;
2186 if (rem_load_move < 0)
2187 break;
2189 rcu_read_unlock();
2191 return max_load_move - rem_load_move;
2193 #else
2194 static inline void update_shares(int cpu)
2198 static unsigned long
2199 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2200 unsigned long max_load_move,
2201 struct sched_domain *sd, enum cpu_idle_type idle,
2202 int *all_pinned, int *this_best_prio)
2204 return balance_tasks(this_rq, this_cpu, busiest,
2205 max_load_move, sd, idle, all_pinned,
2206 this_best_prio, &busiest->cfs);
2208 #endif
2211 * move_tasks tries to move up to max_load_move weighted load from busiest to
2212 * this_rq, as part of a balancing operation within domain "sd".
2213 * Returns 1 if successful and 0 otherwise.
2215 * Called with both runqueues locked.
2217 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2218 unsigned long max_load_move,
2219 struct sched_domain *sd, enum cpu_idle_type idle,
2220 int *all_pinned)
2222 unsigned long total_load_moved = 0, load_moved;
2223 int this_best_prio = this_rq->curr->prio;
2225 do {
2226 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2227 max_load_move - total_load_moved,
2228 sd, idle, all_pinned, &this_best_prio);
2230 total_load_moved += load_moved;
2232 #ifdef CONFIG_PREEMPT
2234 * NEWIDLE balancing is a source of latency, so preemptible
2235 * kernels will stop after the first task is pulled to minimize
2236 * the critical section.
2238 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2239 break;
2241 if (raw_spin_is_contended(&this_rq->lock) ||
2242 raw_spin_is_contended(&busiest->lock))
2243 break;
2244 #endif
2245 } while (load_moved && max_load_move > total_load_moved);
2247 return total_load_moved > 0;
2250 /********** Helpers for find_busiest_group ************************/
2252 * sd_lb_stats - Structure to store the statistics of a sched_domain
2253 * during load balancing.
2255 struct sd_lb_stats {
2256 struct sched_group *busiest; /* Busiest group in this sd */
2257 struct sched_group *this; /* Local group in this sd */
2258 unsigned long total_load; /* Total load of all groups in sd */
2259 unsigned long total_pwr; /* Total power of all groups in sd */
2260 unsigned long avg_load; /* Average load across all groups in sd */
2262 /** Statistics of this group */
2263 unsigned long this_load;
2264 unsigned long this_load_per_task;
2265 unsigned long this_nr_running;
2266 unsigned long this_has_capacity;
2267 unsigned int this_idle_cpus;
2269 /* Statistics of the busiest group */
2270 unsigned int busiest_idle_cpus;
2271 unsigned long max_load;
2272 unsigned long busiest_load_per_task;
2273 unsigned long busiest_nr_running;
2274 unsigned long busiest_group_capacity;
2275 unsigned long busiest_has_capacity;
2276 unsigned int busiest_group_weight;
2278 int group_imb; /* Is there imbalance in this sd */
2279 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2280 int power_savings_balance; /* Is powersave balance needed for this sd */
2281 struct sched_group *group_min; /* Least loaded group in sd */
2282 struct sched_group *group_leader; /* Group which relieves group_min */
2283 unsigned long min_load_per_task; /* load_per_task in group_min */
2284 unsigned long leader_nr_running; /* Nr running of group_leader */
2285 unsigned long min_nr_running; /* Nr running of group_min */
2286 #endif
2290 * sg_lb_stats - stats of a sched_group required for load_balancing
2292 struct sg_lb_stats {
2293 unsigned long avg_load; /*Avg load across the CPUs of the group */
2294 unsigned long group_load; /* Total load over the CPUs of the group */
2295 unsigned long sum_nr_running; /* Nr tasks running in the group */
2296 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2297 unsigned long group_capacity;
2298 unsigned long idle_cpus;
2299 unsigned long group_weight;
2300 int group_imb; /* Is there an imbalance in the group ? */
2301 int group_has_capacity; /* Is there extra capacity in the group? */
2305 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2306 * @group: The group whose first cpu is to be returned.
2308 static inline unsigned int group_first_cpu(struct sched_group *group)
2310 return cpumask_first(sched_group_cpus(group));
2314 * get_sd_load_idx - Obtain the load index for a given sched domain.
2315 * @sd: The sched_domain whose load_idx is to be obtained.
2316 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2318 static inline int get_sd_load_idx(struct sched_domain *sd,
2319 enum cpu_idle_type idle)
2321 int load_idx;
2323 switch (idle) {
2324 case CPU_NOT_IDLE:
2325 load_idx = sd->busy_idx;
2326 break;
2328 case CPU_NEWLY_IDLE:
2329 load_idx = sd->newidle_idx;
2330 break;
2331 default:
2332 load_idx = sd->idle_idx;
2333 break;
2336 return load_idx;
2340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2342 * init_sd_power_savings_stats - Initialize power savings statistics for
2343 * the given sched_domain, during load balancing.
2345 * @sd: Sched domain whose power-savings statistics are to be initialized.
2346 * @sds: Variable containing the statistics for sd.
2347 * @idle: Idle status of the CPU at which we're performing load-balancing.
2349 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2350 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2353 * Busy processors will not participate in power savings
2354 * balance.
2356 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2357 sds->power_savings_balance = 0;
2358 else {
2359 sds->power_savings_balance = 1;
2360 sds->min_nr_running = ULONG_MAX;
2361 sds->leader_nr_running = 0;
2366 * update_sd_power_savings_stats - Update the power saving stats for a
2367 * sched_domain while performing load balancing.
2369 * @group: sched_group belonging to the sched_domain under consideration.
2370 * @sds: Variable containing the statistics of the sched_domain
2371 * @local_group: Does group contain the CPU for which we're performing
2372 * load balancing ?
2373 * @sgs: Variable containing the statistics of the group.
2375 static inline void update_sd_power_savings_stats(struct sched_group *group,
2376 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2379 if (!sds->power_savings_balance)
2380 return;
2383 * If the local group is idle or completely loaded
2384 * no need to do power savings balance at this domain
2386 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2387 !sds->this_nr_running))
2388 sds->power_savings_balance = 0;
2391 * If a group is already running at full capacity or idle,
2392 * don't include that group in power savings calculations
2394 if (!sds->power_savings_balance ||
2395 sgs->sum_nr_running >= sgs->group_capacity ||
2396 !sgs->sum_nr_running)
2397 return;
2400 * Calculate the group which has the least non-idle load.
2401 * This is the group from where we need to pick up the load
2402 * for saving power
2404 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2405 (sgs->sum_nr_running == sds->min_nr_running &&
2406 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2407 sds->group_min = group;
2408 sds->min_nr_running = sgs->sum_nr_running;
2409 sds->min_load_per_task = sgs->sum_weighted_load /
2410 sgs->sum_nr_running;
2414 * Calculate the group which is almost near its
2415 * capacity but still has some space to pick up some load
2416 * from other group and save more power
2418 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2419 return;
2421 if (sgs->sum_nr_running > sds->leader_nr_running ||
2422 (sgs->sum_nr_running == sds->leader_nr_running &&
2423 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2424 sds->group_leader = group;
2425 sds->leader_nr_running = sgs->sum_nr_running;
2430 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2431 * @sds: Variable containing the statistics of the sched_domain
2432 * under consideration.
2433 * @this_cpu: Cpu at which we're currently performing load-balancing.
2434 * @imbalance: Variable to store the imbalance.
2436 * Description:
2437 * Check if we have potential to perform some power-savings balance.
2438 * If yes, set the busiest group to be the least loaded group in the
2439 * sched_domain, so that it's CPUs can be put to idle.
2441 * Returns 1 if there is potential to perform power-savings balance.
2442 * Else returns 0.
2444 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2445 int this_cpu, unsigned long *imbalance)
2447 if (!sds->power_savings_balance)
2448 return 0;
2450 if (sds->this != sds->group_leader ||
2451 sds->group_leader == sds->group_min)
2452 return 0;
2454 *imbalance = sds->min_load_per_task;
2455 sds->busiest = sds->group_min;
2457 return 1;
2460 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2461 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2462 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2464 return;
2467 static inline void update_sd_power_savings_stats(struct sched_group *group,
2468 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2470 return;
2473 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2474 int this_cpu, unsigned long *imbalance)
2476 return 0;
2478 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2481 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2483 return SCHED_LOAD_SCALE;
2486 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2488 return default_scale_freq_power(sd, cpu);
2491 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2493 unsigned long weight = sd->span_weight;
2494 unsigned long smt_gain = sd->smt_gain;
2496 smt_gain /= weight;
2498 return smt_gain;
2501 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2503 return default_scale_smt_power(sd, cpu);
2506 unsigned long scale_rt_power(int cpu)
2508 struct rq *rq = cpu_rq(cpu);
2509 u64 total, available;
2511 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2513 if (unlikely(total < rq->rt_avg)) {
2514 /* Ensures that power won't end up being negative */
2515 available = 0;
2516 } else {
2517 available = total - rq->rt_avg;
2520 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2521 total = SCHED_LOAD_SCALE;
2523 total >>= SCHED_LOAD_SHIFT;
2525 return div_u64(available, total);
2528 static void update_cpu_power(struct sched_domain *sd, int cpu)
2530 unsigned long weight = sd->span_weight;
2531 unsigned long power = SCHED_LOAD_SCALE;
2532 struct sched_group *sdg = sd->groups;
2534 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2535 if (sched_feat(ARCH_POWER))
2536 power *= arch_scale_smt_power(sd, cpu);
2537 else
2538 power *= default_scale_smt_power(sd, cpu);
2540 power >>= SCHED_LOAD_SHIFT;
2543 sdg->cpu_power_orig = power;
2545 if (sched_feat(ARCH_POWER))
2546 power *= arch_scale_freq_power(sd, cpu);
2547 else
2548 power *= default_scale_freq_power(sd, cpu);
2550 power >>= SCHED_LOAD_SHIFT;
2552 power *= scale_rt_power(cpu);
2553 power >>= SCHED_LOAD_SHIFT;
2555 if (!power)
2556 power = 1;
2558 cpu_rq(cpu)->cpu_power = power;
2559 sdg->cpu_power = power;
2562 static void update_group_power(struct sched_domain *sd, int cpu)
2564 struct sched_domain *child = sd->child;
2565 struct sched_group *group, *sdg = sd->groups;
2566 unsigned long power;
2568 if (!child) {
2569 update_cpu_power(sd, cpu);
2570 return;
2573 power = 0;
2575 group = child->groups;
2576 do {
2577 power += group->cpu_power;
2578 group = group->next;
2579 } while (group != child->groups);
2581 sdg->cpu_power = power;
2585 * Try and fix up capacity for tiny siblings, this is needed when
2586 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2587 * which on its own isn't powerful enough.
2589 * See update_sd_pick_busiest() and check_asym_packing().
2591 static inline int
2592 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2595 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2597 if (sd->level != SD_LV_SIBLING)
2598 return 0;
2601 * If ~90% of the cpu_power is still there, we're good.
2603 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2604 return 1;
2606 return 0;
2610 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2611 * @sd: The sched_domain whose statistics are to be updated.
2612 * @group: sched_group whose statistics are to be updated.
2613 * @this_cpu: Cpu for which load balance is currently performed.
2614 * @idle: Idle status of this_cpu
2615 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2616 * @sd_idle: Idle status of the sched_domain containing group.
2617 * @local_group: Does group contain this_cpu.
2618 * @cpus: Set of cpus considered for load balancing.
2619 * @balance: Should we balance.
2620 * @sgs: variable to hold the statistics for this group.
2622 static inline void update_sg_lb_stats(struct sched_domain *sd,
2623 struct sched_group *group, int this_cpu,
2624 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2625 int local_group, const struct cpumask *cpus,
2626 int *balance, struct sg_lb_stats *sgs)
2628 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2629 int i;
2630 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2631 unsigned long avg_load_per_task = 0;
2633 if (local_group)
2634 balance_cpu = group_first_cpu(group);
2636 /* Tally up the load of all CPUs in the group */
2637 max_cpu_load = 0;
2638 min_cpu_load = ~0UL;
2639 max_nr_running = 0;
2641 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2642 struct rq *rq = cpu_rq(i);
2644 if (*sd_idle && rq->nr_running)
2645 *sd_idle = 0;
2647 /* Bias balancing toward cpus of our domain */
2648 if (local_group) {
2649 if (idle_cpu(i) && !first_idle_cpu) {
2650 first_idle_cpu = 1;
2651 balance_cpu = i;
2654 load = target_load(i, load_idx);
2655 } else {
2656 load = source_load(i, load_idx);
2657 if (load > max_cpu_load) {
2658 max_cpu_load = load;
2659 max_nr_running = rq->nr_running;
2661 if (min_cpu_load > load)
2662 min_cpu_load = load;
2665 sgs->group_load += load;
2666 sgs->sum_nr_running += rq->nr_running;
2667 sgs->sum_weighted_load += weighted_cpuload(i);
2668 if (idle_cpu(i))
2669 sgs->idle_cpus++;
2673 * First idle cpu or the first cpu(busiest) in this sched group
2674 * is eligible for doing load balancing at this and above
2675 * domains. In the newly idle case, we will allow all the cpu's
2676 * to do the newly idle load balance.
2678 if (idle != CPU_NEWLY_IDLE && local_group) {
2679 if (balance_cpu != this_cpu) {
2680 *balance = 0;
2681 return;
2683 update_group_power(sd, this_cpu);
2686 /* Adjust by relative CPU power of the group */
2687 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2690 * Consider the group unbalanced when the imbalance is larger
2691 * than the average weight of two tasks.
2693 * APZ: with cgroup the avg task weight can vary wildly and
2694 * might not be a suitable number - should we keep a
2695 * normalized nr_running number somewhere that negates
2696 * the hierarchy?
2698 if (sgs->sum_nr_running)
2699 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2701 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2702 sgs->group_imb = 1;
2704 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2705 if (!sgs->group_capacity)
2706 sgs->group_capacity = fix_small_capacity(sd, group);
2707 sgs->group_weight = group->group_weight;
2709 if (sgs->group_capacity > sgs->sum_nr_running)
2710 sgs->group_has_capacity = 1;
2714 * update_sd_pick_busiest - return 1 on busiest group
2715 * @sd: sched_domain whose statistics are to be checked
2716 * @sds: sched_domain statistics
2717 * @sg: sched_group candidate to be checked for being the busiest
2718 * @sgs: sched_group statistics
2719 * @this_cpu: the current cpu
2721 * Determine if @sg is a busier group than the previously selected
2722 * busiest group.
2724 static bool update_sd_pick_busiest(struct sched_domain *sd,
2725 struct sd_lb_stats *sds,
2726 struct sched_group *sg,
2727 struct sg_lb_stats *sgs,
2728 int this_cpu)
2730 if (sgs->avg_load <= sds->max_load)
2731 return false;
2733 if (sgs->sum_nr_running > sgs->group_capacity)
2734 return true;
2736 if (sgs->group_imb)
2737 return true;
2740 * ASYM_PACKING needs to move all the work to the lowest
2741 * numbered CPUs in the group, therefore mark all groups
2742 * higher than ourself as busy.
2744 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2745 this_cpu < group_first_cpu(sg)) {
2746 if (!sds->busiest)
2747 return true;
2749 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2750 return true;
2753 return false;
2757 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2758 * @sd: sched_domain whose statistics are to be updated.
2759 * @this_cpu: Cpu for which load balance is currently performed.
2760 * @idle: Idle status of this_cpu
2761 * @sd_idle: Idle status of the sched_domain containing sg.
2762 * @cpus: Set of cpus considered for load balancing.
2763 * @balance: Should we balance.
2764 * @sds: variable to hold the statistics for this sched_domain.
2766 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2767 enum cpu_idle_type idle, int *sd_idle,
2768 const struct cpumask *cpus, int *balance,
2769 struct sd_lb_stats *sds)
2771 struct sched_domain *child = sd->child;
2772 struct sched_group *sg = sd->groups;
2773 struct sg_lb_stats sgs;
2774 int load_idx, prefer_sibling = 0;
2776 if (child && child->flags & SD_PREFER_SIBLING)
2777 prefer_sibling = 1;
2779 init_sd_power_savings_stats(sd, sds, idle);
2780 load_idx = get_sd_load_idx(sd, idle);
2782 do {
2783 int local_group;
2785 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2786 memset(&sgs, 0, sizeof(sgs));
2787 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2788 local_group, cpus, balance, &sgs);
2790 if (local_group && !(*balance))
2791 return;
2793 sds->total_load += sgs.group_load;
2794 sds->total_pwr += sg->cpu_power;
2797 * In case the child domain prefers tasks go to siblings
2798 * first, lower the sg capacity to one so that we'll try
2799 * and move all the excess tasks away. We lower the capacity
2800 * of a group only if the local group has the capacity to fit
2801 * these excess tasks, i.e. nr_running < group_capacity. The
2802 * extra check prevents the case where you always pull from the
2803 * heaviest group when it is already under-utilized (possible
2804 * with a large weight task outweighs the tasks on the system).
2806 if (prefer_sibling && !local_group && sds->this_has_capacity)
2807 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2809 if (local_group) {
2810 sds->this_load = sgs.avg_load;
2811 sds->this = sg;
2812 sds->this_nr_running = sgs.sum_nr_running;
2813 sds->this_load_per_task = sgs.sum_weighted_load;
2814 sds->this_has_capacity = sgs.group_has_capacity;
2815 sds->this_idle_cpus = sgs.idle_cpus;
2816 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2817 sds->max_load = sgs.avg_load;
2818 sds->busiest = sg;
2819 sds->busiest_nr_running = sgs.sum_nr_running;
2820 sds->busiest_idle_cpus = sgs.idle_cpus;
2821 sds->busiest_group_capacity = sgs.group_capacity;
2822 sds->busiest_load_per_task = sgs.sum_weighted_load;
2823 sds->busiest_has_capacity = sgs.group_has_capacity;
2824 sds->busiest_group_weight = sgs.group_weight;
2825 sds->group_imb = sgs.group_imb;
2828 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2829 sg = sg->next;
2830 } while (sg != sd->groups);
2833 int __weak arch_sd_sibling_asym_packing(void)
2835 return 0*SD_ASYM_PACKING;
2839 * check_asym_packing - Check to see if the group is packed into the
2840 * sched doman.
2842 * This is primarily intended to used at the sibling level. Some
2843 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2844 * case of POWER7, it can move to lower SMT modes only when higher
2845 * threads are idle. When in lower SMT modes, the threads will
2846 * perform better since they share less core resources. Hence when we
2847 * have idle threads, we want them to be the higher ones.
2849 * This packing function is run on idle threads. It checks to see if
2850 * the busiest CPU in this domain (core in the P7 case) has a higher
2851 * CPU number than the packing function is being run on. Here we are
2852 * assuming lower CPU number will be equivalent to lower a SMT thread
2853 * number.
2855 * Returns 1 when packing is required and a task should be moved to
2856 * this CPU. The amount of the imbalance is returned in *imbalance.
2858 * @sd: The sched_domain whose packing is to be checked.
2859 * @sds: Statistics of the sched_domain which is to be packed
2860 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2861 * @imbalance: returns amount of imbalanced due to packing.
2863 static int check_asym_packing(struct sched_domain *sd,
2864 struct sd_lb_stats *sds,
2865 int this_cpu, unsigned long *imbalance)
2867 int busiest_cpu;
2869 if (!(sd->flags & SD_ASYM_PACKING))
2870 return 0;
2872 if (!sds->busiest)
2873 return 0;
2875 busiest_cpu = group_first_cpu(sds->busiest);
2876 if (this_cpu > busiest_cpu)
2877 return 0;
2879 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2880 SCHED_LOAD_SCALE);
2881 return 1;
2885 * fix_small_imbalance - Calculate the minor imbalance that exists
2886 * amongst the groups of a sched_domain, during
2887 * load balancing.
2888 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2889 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2890 * @imbalance: Variable to store the imbalance.
2892 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2893 int this_cpu, unsigned long *imbalance)
2895 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2896 unsigned int imbn = 2;
2897 unsigned long scaled_busy_load_per_task;
2899 if (sds->this_nr_running) {
2900 sds->this_load_per_task /= sds->this_nr_running;
2901 if (sds->busiest_load_per_task >
2902 sds->this_load_per_task)
2903 imbn = 1;
2904 } else
2905 sds->this_load_per_task =
2906 cpu_avg_load_per_task(this_cpu);
2908 scaled_busy_load_per_task = sds->busiest_load_per_task
2909 * SCHED_LOAD_SCALE;
2910 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2912 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2913 (scaled_busy_load_per_task * imbn)) {
2914 *imbalance = sds->busiest_load_per_task;
2915 return;
2919 * OK, we don't have enough imbalance to justify moving tasks,
2920 * however we may be able to increase total CPU power used by
2921 * moving them.
2924 pwr_now += sds->busiest->cpu_power *
2925 min(sds->busiest_load_per_task, sds->max_load);
2926 pwr_now += sds->this->cpu_power *
2927 min(sds->this_load_per_task, sds->this_load);
2928 pwr_now /= SCHED_LOAD_SCALE;
2930 /* Amount of load we'd subtract */
2931 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2932 sds->busiest->cpu_power;
2933 if (sds->max_load > tmp)
2934 pwr_move += sds->busiest->cpu_power *
2935 min(sds->busiest_load_per_task, sds->max_load - tmp);
2937 /* Amount of load we'd add */
2938 if (sds->max_load * sds->busiest->cpu_power <
2939 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2940 tmp = (sds->max_load * sds->busiest->cpu_power) /
2941 sds->this->cpu_power;
2942 else
2943 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2944 sds->this->cpu_power;
2945 pwr_move += sds->this->cpu_power *
2946 min(sds->this_load_per_task, sds->this_load + tmp);
2947 pwr_move /= SCHED_LOAD_SCALE;
2949 /* Move if we gain throughput */
2950 if (pwr_move > pwr_now)
2951 *imbalance = sds->busiest_load_per_task;
2955 * calculate_imbalance - Calculate the amount of imbalance present within the
2956 * groups of a given sched_domain during load balance.
2957 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2958 * @this_cpu: Cpu for which currently load balance is being performed.
2959 * @imbalance: The variable to store the imbalance.
2961 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2962 unsigned long *imbalance)
2964 unsigned long max_pull, load_above_capacity = ~0UL;
2966 sds->busiest_load_per_task /= sds->busiest_nr_running;
2967 if (sds->group_imb) {
2968 sds->busiest_load_per_task =
2969 min(sds->busiest_load_per_task, sds->avg_load);
2973 * In the presence of smp nice balancing, certain scenarios can have
2974 * max load less than avg load(as we skip the groups at or below
2975 * its cpu_power, while calculating max_load..)
2977 if (sds->max_load < sds->avg_load) {
2978 *imbalance = 0;
2979 return fix_small_imbalance(sds, this_cpu, imbalance);
2982 if (!sds->group_imb) {
2984 * Don't want to pull so many tasks that a group would go idle.
2986 load_above_capacity = (sds->busiest_nr_running -
2987 sds->busiest_group_capacity);
2989 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2991 load_above_capacity /= sds->busiest->cpu_power;
2995 * We're trying to get all the cpus to the average_load, so we don't
2996 * want to push ourselves above the average load, nor do we wish to
2997 * reduce the max loaded cpu below the average load. At the same time,
2998 * we also don't want to reduce the group load below the group capacity
2999 * (so that we can implement power-savings policies etc). Thus we look
3000 * for the minimum possible imbalance.
3001 * Be careful of negative numbers as they'll appear as very large values
3002 * with unsigned longs.
3004 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3006 /* How much load to actually move to equalise the imbalance */
3007 *imbalance = min(max_pull * sds->busiest->cpu_power,
3008 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3009 / SCHED_LOAD_SCALE;
3012 * if *imbalance is less than the average load per runnable task
3013 * there is no gaurantee that any tasks will be moved so we'll have
3014 * a think about bumping its value to force at least one task to be
3015 * moved
3017 if (*imbalance < sds->busiest_load_per_task)
3018 return fix_small_imbalance(sds, this_cpu, imbalance);
3022 /******* find_busiest_group() helpers end here *********************/
3025 * find_busiest_group - Returns the busiest group within the sched_domain
3026 * if there is an imbalance. If there isn't an imbalance, and
3027 * the user has opted for power-savings, it returns a group whose
3028 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3029 * such a group exists.
3031 * Also calculates the amount of weighted load which should be moved
3032 * to restore balance.
3034 * @sd: The sched_domain whose busiest group is to be returned.
3035 * @this_cpu: The cpu for which load balancing is currently being performed.
3036 * @imbalance: Variable which stores amount of weighted load which should
3037 * be moved to restore balance/put a group to idle.
3038 * @idle: The idle status of this_cpu.
3039 * @sd_idle: The idleness of sd
3040 * @cpus: The set of CPUs under consideration for load-balancing.
3041 * @balance: Pointer to a variable indicating if this_cpu
3042 * is the appropriate cpu to perform load balancing at this_level.
3044 * Returns: - the busiest group if imbalance exists.
3045 * - If no imbalance and user has opted for power-savings balance,
3046 * return the least loaded group whose CPUs can be
3047 * put to idle by rebalancing its tasks onto our group.
3049 static struct sched_group *
3050 find_busiest_group(struct sched_domain *sd, int this_cpu,
3051 unsigned long *imbalance, enum cpu_idle_type idle,
3052 int *sd_idle, const struct cpumask *cpus, int *balance)
3054 struct sd_lb_stats sds;
3056 memset(&sds, 0, sizeof(sds));
3059 * Compute the various statistics relavent for load balancing at
3060 * this level.
3062 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3063 balance, &sds);
3065 /* Cases where imbalance does not exist from POV of this_cpu */
3066 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3067 * at this level.
3068 * 2) There is no busy sibling group to pull from.
3069 * 3) This group is the busiest group.
3070 * 4) This group is more busy than the avg busieness at this
3071 * sched_domain.
3072 * 5) The imbalance is within the specified limit.
3074 * Note: when doing newidle balance, if the local group has excess
3075 * capacity (i.e. nr_running < group_capacity) and the busiest group
3076 * does not have any capacity, we force a load balance to pull tasks
3077 * to the local group. In this case, we skip past checks 3, 4 and 5.
3079 if (!(*balance))
3080 goto ret;
3082 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3083 check_asym_packing(sd, &sds, this_cpu, imbalance))
3084 return sds.busiest;
3086 if (!sds.busiest || sds.busiest_nr_running == 0)
3087 goto out_balanced;
3089 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3090 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3091 !sds.busiest_has_capacity)
3092 goto force_balance;
3094 if (sds.this_load >= sds.max_load)
3095 goto out_balanced;
3097 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3099 if (sds.this_load >= sds.avg_load)
3100 goto out_balanced;
3103 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3104 * And to check for busy balance use !idle_cpu instead of
3105 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3106 * even when they are idle.
3108 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3109 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3110 goto out_balanced;
3111 } else {
3113 * This cpu is idle. If the busiest group load doesn't
3114 * have more tasks than the number of available cpu's and
3115 * there is no imbalance between this and busiest group
3116 * wrt to idle cpu's, it is balanced.
3118 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3119 sds.busiest_nr_running <= sds.busiest_group_weight)
3120 goto out_balanced;
3123 force_balance:
3124 /* Looks like there is an imbalance. Compute it */
3125 calculate_imbalance(&sds, this_cpu, imbalance);
3126 return sds.busiest;
3128 out_balanced:
3130 * There is no obvious imbalance. But check if we can do some balancing
3131 * to save power.
3133 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3134 return sds.busiest;
3135 ret:
3136 *imbalance = 0;
3137 return NULL;
3141 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3143 static struct rq *
3144 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3145 enum cpu_idle_type idle, unsigned long imbalance,
3146 const struct cpumask *cpus)
3148 struct rq *busiest = NULL, *rq;
3149 unsigned long max_load = 0;
3150 int i;
3152 for_each_cpu(i, sched_group_cpus(group)) {
3153 unsigned long power = power_of(i);
3154 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3155 unsigned long wl;
3157 if (!capacity)
3158 capacity = fix_small_capacity(sd, group);
3160 if (!cpumask_test_cpu(i, cpus))
3161 continue;
3163 rq = cpu_rq(i);
3164 wl = weighted_cpuload(i);
3167 * When comparing with imbalance, use weighted_cpuload()
3168 * which is not scaled with the cpu power.
3170 if (capacity && rq->nr_running == 1 && wl > imbalance)
3171 continue;
3174 * For the load comparisons with the other cpu's, consider
3175 * the weighted_cpuload() scaled with the cpu power, so that
3176 * the load can be moved away from the cpu that is potentially
3177 * running at a lower capacity.
3179 wl = (wl * SCHED_LOAD_SCALE) / power;
3181 if (wl > max_load) {
3182 max_load = wl;
3183 busiest = rq;
3187 return busiest;
3191 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3192 * so long as it is large enough.
3194 #define MAX_PINNED_INTERVAL 512
3196 /* Working cpumask for load_balance and load_balance_newidle. */
3197 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3199 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3200 int busiest_cpu, int this_cpu)
3202 if (idle == CPU_NEWLY_IDLE) {
3205 * ASYM_PACKING needs to force migrate tasks from busy but
3206 * higher numbered CPUs in order to pack all tasks in the
3207 * lowest numbered CPUs.
3209 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3210 return 1;
3213 * The only task running in a non-idle cpu can be moved to this
3214 * cpu in an attempt to completely freeup the other CPU
3215 * package.
3217 * The package power saving logic comes from
3218 * find_busiest_group(). If there are no imbalance, then
3219 * f_b_g() will return NULL. However when sched_mc={1,2} then
3220 * f_b_g() will select a group from which a running task may be
3221 * pulled to this cpu in order to make the other package idle.
3222 * If there is no opportunity to make a package idle and if
3223 * there are no imbalance, then f_b_g() will return NULL and no
3224 * action will be taken in load_balance_newidle().
3226 * Under normal task pull operation due to imbalance, there
3227 * will be more than one task in the source run queue and
3228 * move_tasks() will succeed. ld_moved will be true and this
3229 * active balance code will not be triggered.
3231 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3232 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3233 return 0;
3235 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3236 return 0;
3239 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3242 static int active_load_balance_cpu_stop(void *data);
3245 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3246 * tasks if there is an imbalance.
3248 static int load_balance(int this_cpu, struct rq *this_rq,
3249 struct sched_domain *sd, enum cpu_idle_type idle,
3250 int *balance)
3252 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3253 struct sched_group *group;
3254 unsigned long imbalance;
3255 struct rq *busiest;
3256 unsigned long flags;
3257 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3259 cpumask_copy(cpus, cpu_active_mask);
3262 * When power savings policy is enabled for the parent domain, idle
3263 * sibling can pick up load irrespective of busy siblings. In this case,
3264 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3265 * portraying it as CPU_NOT_IDLE.
3267 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3269 sd_idle = 1;
3271 schedstat_inc(sd, lb_count[idle]);
3273 redo:
3274 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3275 cpus, balance);
3277 if (*balance == 0)
3278 goto out_balanced;
3280 if (!group) {
3281 schedstat_inc(sd, lb_nobusyg[idle]);
3282 goto out_balanced;
3285 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3286 if (!busiest) {
3287 schedstat_inc(sd, lb_nobusyq[idle]);
3288 goto out_balanced;
3291 BUG_ON(busiest == this_rq);
3293 schedstat_add(sd, lb_imbalance[idle], imbalance);
3295 ld_moved = 0;
3296 if (busiest->nr_running > 1) {
3298 * Attempt to move tasks. If find_busiest_group has found
3299 * an imbalance but busiest->nr_running <= 1, the group is
3300 * still unbalanced. ld_moved simply stays zero, so it is
3301 * correctly treated as an imbalance.
3303 local_irq_save(flags);
3304 double_rq_lock(this_rq, busiest);
3305 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3306 imbalance, sd, idle, &all_pinned);
3307 double_rq_unlock(this_rq, busiest);
3308 local_irq_restore(flags);
3311 * some other cpu did the load balance for us.
3313 if (ld_moved && this_cpu != smp_processor_id())
3314 resched_cpu(this_cpu);
3316 /* All tasks on this runqueue were pinned by CPU affinity */
3317 if (unlikely(all_pinned)) {
3318 cpumask_clear_cpu(cpu_of(busiest), cpus);
3319 if (!cpumask_empty(cpus))
3320 goto redo;
3321 goto out_balanced;
3325 if (!ld_moved) {
3326 schedstat_inc(sd, lb_failed[idle]);
3328 * Increment the failure counter only on periodic balance.
3329 * We do not want newidle balance, which can be very
3330 * frequent, pollute the failure counter causing
3331 * excessive cache_hot migrations and active balances.
3333 if (idle != CPU_NEWLY_IDLE)
3334 sd->nr_balance_failed++;
3336 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3337 this_cpu)) {
3338 raw_spin_lock_irqsave(&busiest->lock, flags);
3340 /* don't kick the active_load_balance_cpu_stop,
3341 * if the curr task on busiest cpu can't be
3342 * moved to this_cpu
3344 if (!cpumask_test_cpu(this_cpu,
3345 &busiest->curr->cpus_allowed)) {
3346 raw_spin_unlock_irqrestore(&busiest->lock,
3347 flags);
3348 all_pinned = 1;
3349 goto out_one_pinned;
3353 * ->active_balance synchronizes accesses to
3354 * ->active_balance_work. Once set, it's cleared
3355 * only after active load balance is finished.
3357 if (!busiest->active_balance) {
3358 busiest->active_balance = 1;
3359 busiest->push_cpu = this_cpu;
3360 active_balance = 1;
3362 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3364 if (active_balance)
3365 stop_one_cpu_nowait(cpu_of(busiest),
3366 active_load_balance_cpu_stop, busiest,
3367 &busiest->active_balance_work);
3370 * We've kicked active balancing, reset the failure
3371 * counter.
3373 sd->nr_balance_failed = sd->cache_nice_tries+1;
3375 } else
3376 sd->nr_balance_failed = 0;
3378 if (likely(!active_balance)) {
3379 /* We were unbalanced, so reset the balancing interval */
3380 sd->balance_interval = sd->min_interval;
3381 } else {
3383 * If we've begun active balancing, start to back off. This
3384 * case may not be covered by the all_pinned logic if there
3385 * is only 1 task on the busy runqueue (because we don't call
3386 * move_tasks).
3388 if (sd->balance_interval < sd->max_interval)
3389 sd->balance_interval *= 2;
3392 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3393 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3394 ld_moved = -1;
3396 goto out;
3398 out_balanced:
3399 schedstat_inc(sd, lb_balanced[idle]);
3401 sd->nr_balance_failed = 0;
3403 out_one_pinned:
3404 /* tune up the balancing interval */
3405 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3406 (sd->balance_interval < sd->max_interval))
3407 sd->balance_interval *= 2;
3409 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3410 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3411 ld_moved = -1;
3412 else
3413 ld_moved = 0;
3414 out:
3415 return ld_moved;
3419 * idle_balance is called by schedule() if this_cpu is about to become
3420 * idle. Attempts to pull tasks from other CPUs.
3422 static void idle_balance(int this_cpu, struct rq *this_rq)
3424 struct sched_domain *sd;
3425 int pulled_task = 0;
3426 unsigned long next_balance = jiffies + HZ;
3428 this_rq->idle_stamp = this_rq->clock;
3430 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3431 return;
3434 * Drop the rq->lock, but keep IRQ/preempt disabled.
3436 raw_spin_unlock(&this_rq->lock);
3438 update_shares(this_cpu);
3439 for_each_domain(this_cpu, sd) {
3440 unsigned long interval;
3441 int balance = 1;
3443 if (!(sd->flags & SD_LOAD_BALANCE))
3444 continue;
3446 if (sd->flags & SD_BALANCE_NEWIDLE) {
3447 /* If we've pulled tasks over stop searching: */
3448 pulled_task = load_balance(this_cpu, this_rq,
3449 sd, CPU_NEWLY_IDLE, &balance);
3452 interval = msecs_to_jiffies(sd->balance_interval);
3453 if (time_after(next_balance, sd->last_balance + interval))
3454 next_balance = sd->last_balance + interval;
3455 if (pulled_task) {
3456 this_rq->idle_stamp = 0;
3457 break;
3461 raw_spin_lock(&this_rq->lock);
3463 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3465 * We are going idle. next_balance may be set based on
3466 * a busy processor. So reset next_balance.
3468 this_rq->next_balance = next_balance;
3473 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3474 * running tasks off the busiest CPU onto idle CPUs. It requires at
3475 * least 1 task to be running on each physical CPU where possible, and
3476 * avoids physical / logical imbalances.
3478 static int active_load_balance_cpu_stop(void *data)
3480 struct rq *busiest_rq = data;
3481 int busiest_cpu = cpu_of(busiest_rq);
3482 int target_cpu = busiest_rq->push_cpu;
3483 struct rq *target_rq = cpu_rq(target_cpu);
3484 struct sched_domain *sd;
3486 raw_spin_lock_irq(&busiest_rq->lock);
3488 /* make sure the requested cpu hasn't gone down in the meantime */
3489 if (unlikely(busiest_cpu != smp_processor_id() ||
3490 !busiest_rq->active_balance))
3491 goto out_unlock;
3493 /* Is there any task to move? */
3494 if (busiest_rq->nr_running <= 1)
3495 goto out_unlock;
3498 * This condition is "impossible", if it occurs
3499 * we need to fix it. Originally reported by
3500 * Bjorn Helgaas on a 128-cpu setup.
3502 BUG_ON(busiest_rq == target_rq);
3504 /* move a task from busiest_rq to target_rq */
3505 double_lock_balance(busiest_rq, target_rq);
3507 /* Search for an sd spanning us and the target CPU. */
3508 for_each_domain(target_cpu, sd) {
3509 if ((sd->flags & SD_LOAD_BALANCE) &&
3510 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3511 break;
3514 if (likely(sd)) {
3515 schedstat_inc(sd, alb_count);
3517 if (move_one_task(target_rq, target_cpu, busiest_rq,
3518 sd, CPU_IDLE))
3519 schedstat_inc(sd, alb_pushed);
3520 else
3521 schedstat_inc(sd, alb_failed);
3523 double_unlock_balance(busiest_rq, target_rq);
3524 out_unlock:
3525 busiest_rq->active_balance = 0;
3526 raw_spin_unlock_irq(&busiest_rq->lock);
3527 return 0;
3530 #ifdef CONFIG_NO_HZ
3532 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3534 static void trigger_sched_softirq(void *data)
3536 raise_softirq_irqoff(SCHED_SOFTIRQ);
3539 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3541 csd->func = trigger_sched_softirq;
3542 csd->info = NULL;
3543 csd->flags = 0;
3544 csd->priv = 0;
3548 * idle load balancing details
3549 * - One of the idle CPUs nominates itself as idle load_balancer, while
3550 * entering idle.
3551 * - This idle load balancer CPU will also go into tickless mode when
3552 * it is idle, just like all other idle CPUs
3553 * - When one of the busy CPUs notice that there may be an idle rebalancing
3554 * needed, they will kick the idle load balancer, which then does idle
3555 * load balancing for all the idle CPUs.
3557 static struct {
3558 atomic_t load_balancer;
3559 atomic_t first_pick_cpu;
3560 atomic_t second_pick_cpu;
3561 cpumask_var_t idle_cpus_mask;
3562 cpumask_var_t grp_idle_mask;
3563 unsigned long next_balance; /* in jiffy units */
3564 } nohz ____cacheline_aligned;
3566 int get_nohz_load_balancer(void)
3568 return atomic_read(&nohz.load_balancer);
3571 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3573 * lowest_flag_domain - Return lowest sched_domain containing flag.
3574 * @cpu: The cpu whose lowest level of sched domain is to
3575 * be returned.
3576 * @flag: The flag to check for the lowest sched_domain
3577 * for the given cpu.
3579 * Returns the lowest sched_domain of a cpu which contains the given flag.
3581 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3583 struct sched_domain *sd;
3585 for_each_domain(cpu, sd)
3586 if (sd && (sd->flags & flag))
3587 break;
3589 return sd;
3593 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3594 * @cpu: The cpu whose domains we're iterating over.
3595 * @sd: variable holding the value of the power_savings_sd
3596 * for cpu.
3597 * @flag: The flag to filter the sched_domains to be iterated.
3599 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3600 * set, starting from the lowest sched_domain to the highest.
3602 #define for_each_flag_domain(cpu, sd, flag) \
3603 for (sd = lowest_flag_domain(cpu, flag); \
3604 (sd && (sd->flags & flag)); sd = sd->parent)
3607 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3608 * @ilb_group: group to be checked for semi-idleness
3610 * Returns: 1 if the group is semi-idle. 0 otherwise.
3612 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3613 * and atleast one non-idle CPU. This helper function checks if the given
3614 * sched_group is semi-idle or not.
3616 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3618 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3619 sched_group_cpus(ilb_group));
3622 * A sched_group is semi-idle when it has atleast one busy cpu
3623 * and atleast one idle cpu.
3625 if (cpumask_empty(nohz.grp_idle_mask))
3626 return 0;
3628 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3629 return 0;
3631 return 1;
3634 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3635 * @cpu: The cpu which is nominating a new idle_load_balancer.
3637 * Returns: Returns the id of the idle load balancer if it exists,
3638 * Else, returns >= nr_cpu_ids.
3640 * This algorithm picks the idle load balancer such that it belongs to a
3641 * semi-idle powersavings sched_domain. The idea is to try and avoid
3642 * completely idle packages/cores just for the purpose of idle load balancing
3643 * when there are other idle cpu's which are better suited for that job.
3645 static int find_new_ilb(int cpu)
3647 struct sched_domain *sd;
3648 struct sched_group *ilb_group;
3651 * Have idle load balancer selection from semi-idle packages only
3652 * when power-aware load balancing is enabled
3654 if (!(sched_smt_power_savings || sched_mc_power_savings))
3655 goto out_done;
3658 * Optimize for the case when we have no idle CPUs or only one
3659 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3661 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3662 goto out_done;
3664 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3665 ilb_group = sd->groups;
3667 do {
3668 if (is_semi_idle_group(ilb_group))
3669 return cpumask_first(nohz.grp_idle_mask);
3671 ilb_group = ilb_group->next;
3673 } while (ilb_group != sd->groups);
3676 out_done:
3677 return nr_cpu_ids;
3679 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3680 static inline int find_new_ilb(int call_cpu)
3682 return nr_cpu_ids;
3684 #endif
3687 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3688 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3689 * CPU (if there is one).
3691 static void nohz_balancer_kick(int cpu)
3693 int ilb_cpu;
3695 nohz.next_balance++;
3697 ilb_cpu = get_nohz_load_balancer();
3699 if (ilb_cpu >= nr_cpu_ids) {
3700 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3701 if (ilb_cpu >= nr_cpu_ids)
3702 return;
3705 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3706 struct call_single_data *cp;
3708 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3709 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3710 __smp_call_function_single(ilb_cpu, cp, 0);
3712 return;
3716 * This routine will try to nominate the ilb (idle load balancing)
3717 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3718 * load balancing on behalf of all those cpus.
3720 * When the ilb owner becomes busy, we will not have new ilb owner until some
3721 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3722 * idle load balancing by kicking one of the idle CPUs.
3724 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3725 * ilb owner CPU in future (when there is a need for idle load balancing on
3726 * behalf of all idle CPUs).
3728 void select_nohz_load_balancer(int stop_tick)
3730 int cpu = smp_processor_id();
3732 if (stop_tick) {
3733 if (!cpu_active(cpu)) {
3734 if (atomic_read(&nohz.load_balancer) != cpu)
3735 return;
3738 * If we are going offline and still the leader,
3739 * give up!
3741 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3742 nr_cpu_ids) != cpu)
3743 BUG();
3745 return;
3748 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3750 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3751 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3752 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3753 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3755 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3756 int new_ilb;
3758 /* make me the ilb owner */
3759 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3760 cpu) != nr_cpu_ids)
3761 return;
3764 * Check to see if there is a more power-efficient
3765 * ilb.
3767 new_ilb = find_new_ilb(cpu);
3768 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3769 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3770 resched_cpu(new_ilb);
3771 return;
3773 return;
3775 } else {
3776 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3777 return;
3779 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3781 if (atomic_read(&nohz.load_balancer) == cpu)
3782 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3783 nr_cpu_ids) != cpu)
3784 BUG();
3786 return;
3788 #endif
3790 static DEFINE_SPINLOCK(balancing);
3793 * It checks each scheduling domain to see if it is due to be balanced,
3794 * and initiates a balancing operation if so.
3796 * Balancing parameters are set up in arch_init_sched_domains.
3798 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3800 int balance = 1;
3801 struct rq *rq = cpu_rq(cpu);
3802 unsigned long interval;
3803 struct sched_domain *sd;
3804 /* Earliest time when we have to do rebalance again */
3805 unsigned long next_balance = jiffies + 60*HZ;
3806 int update_next_balance = 0;
3807 int need_serialize;
3809 update_shares(cpu);
3811 for_each_domain(cpu, sd) {
3812 if (!(sd->flags & SD_LOAD_BALANCE))
3813 continue;
3815 interval = sd->balance_interval;
3816 if (idle != CPU_IDLE)
3817 interval *= sd->busy_factor;
3819 /* scale ms to jiffies */
3820 interval = msecs_to_jiffies(interval);
3821 if (unlikely(!interval))
3822 interval = 1;
3823 if (interval > HZ*NR_CPUS/10)
3824 interval = HZ*NR_CPUS/10;
3826 need_serialize = sd->flags & SD_SERIALIZE;
3828 if (need_serialize) {
3829 if (!spin_trylock(&balancing))
3830 goto out;
3833 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3834 if (load_balance(cpu, rq, sd, idle, &balance)) {
3836 * We've pulled tasks over so either we're no
3837 * longer idle, or one of our SMT siblings is
3838 * not idle.
3840 idle = CPU_NOT_IDLE;
3842 sd->last_balance = jiffies;
3844 if (need_serialize)
3845 spin_unlock(&balancing);
3846 out:
3847 if (time_after(next_balance, sd->last_balance + interval)) {
3848 next_balance = sd->last_balance + interval;
3849 update_next_balance = 1;
3853 * Stop the load balance at this level. There is another
3854 * CPU in our sched group which is doing load balancing more
3855 * actively.
3857 if (!balance)
3858 break;
3862 * next_balance will be updated only when there is a need.
3863 * When the cpu is attached to null domain for ex, it will not be
3864 * updated.
3866 if (likely(update_next_balance))
3867 rq->next_balance = next_balance;
3870 #ifdef CONFIG_NO_HZ
3872 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3873 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3875 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3877 struct rq *this_rq = cpu_rq(this_cpu);
3878 struct rq *rq;
3879 int balance_cpu;
3881 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3882 return;
3884 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3885 if (balance_cpu == this_cpu)
3886 continue;
3889 * If this cpu gets work to do, stop the load balancing
3890 * work being done for other cpus. Next load
3891 * balancing owner will pick it up.
3893 if (need_resched()) {
3894 this_rq->nohz_balance_kick = 0;
3895 break;
3898 raw_spin_lock_irq(&this_rq->lock);
3899 update_rq_clock(this_rq);
3900 update_cpu_load(this_rq);
3901 raw_spin_unlock_irq(&this_rq->lock);
3903 rebalance_domains(balance_cpu, CPU_IDLE);
3905 rq = cpu_rq(balance_cpu);
3906 if (time_after(this_rq->next_balance, rq->next_balance))
3907 this_rq->next_balance = rq->next_balance;
3909 nohz.next_balance = this_rq->next_balance;
3910 this_rq->nohz_balance_kick = 0;
3914 * Current heuristic for kicking the idle load balancer
3915 * - first_pick_cpu is the one of the busy CPUs. It will kick
3916 * idle load balancer when it has more than one process active. This
3917 * eliminates the need for idle load balancing altogether when we have
3918 * only one running process in the system (common case).
3919 * - If there are more than one busy CPU, idle load balancer may have
3920 * to run for active_load_balance to happen (i.e., two busy CPUs are
3921 * SMT or core siblings and can run better if they move to different
3922 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3923 * which will kick idle load balancer as soon as it has any load.
3925 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3927 unsigned long now = jiffies;
3928 int ret;
3929 int first_pick_cpu, second_pick_cpu;
3931 if (time_before(now, nohz.next_balance))
3932 return 0;
3934 if (rq->idle_at_tick)
3935 return 0;
3937 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3938 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3940 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3941 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3942 return 0;
3944 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3945 if (ret == nr_cpu_ids || ret == cpu) {
3946 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3947 if (rq->nr_running > 1)
3948 return 1;
3949 } else {
3950 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3951 if (ret == nr_cpu_ids || ret == cpu) {
3952 if (rq->nr_running)
3953 return 1;
3956 return 0;
3958 #else
3959 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3960 #endif
3963 * run_rebalance_domains is triggered when needed from the scheduler tick.
3964 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3966 static void run_rebalance_domains(struct softirq_action *h)
3968 int this_cpu = smp_processor_id();
3969 struct rq *this_rq = cpu_rq(this_cpu);
3970 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3971 CPU_IDLE : CPU_NOT_IDLE;
3973 rebalance_domains(this_cpu, idle);
3976 * If this cpu has a pending nohz_balance_kick, then do the
3977 * balancing on behalf of the other idle cpus whose ticks are
3978 * stopped.
3980 nohz_idle_balance(this_cpu, idle);
3983 static inline int on_null_domain(int cpu)
3985 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3989 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3991 static inline void trigger_load_balance(struct rq *rq, int cpu)
3993 /* Don't need to rebalance while attached to NULL domain */
3994 if (time_after_eq(jiffies, rq->next_balance) &&
3995 likely(!on_null_domain(cpu)))
3996 raise_softirq(SCHED_SOFTIRQ);
3997 #ifdef CONFIG_NO_HZ
3998 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3999 nohz_balancer_kick(cpu);
4000 #endif
4003 static void rq_online_fair(struct rq *rq)
4005 update_sysctl();
4008 static void rq_offline_fair(struct rq *rq)
4010 update_sysctl();
4013 #else /* CONFIG_SMP */
4016 * on UP we do not need to balance between CPUs:
4018 static inline void idle_balance(int cpu, struct rq *rq)
4022 #endif /* CONFIG_SMP */
4025 * scheduler tick hitting a task of our scheduling class:
4027 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4029 struct cfs_rq *cfs_rq;
4030 struct sched_entity *se = &curr->se;
4032 for_each_sched_entity(se) {
4033 cfs_rq = cfs_rq_of(se);
4034 entity_tick(cfs_rq, se, queued);
4039 * called on fork with the child task as argument from the parent's context
4040 * - child not yet on the tasklist
4041 * - preemption disabled
4043 static void task_fork_fair(struct task_struct *p)
4045 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4046 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4047 int this_cpu = smp_processor_id();
4048 struct rq *rq = this_rq();
4049 unsigned long flags;
4051 raw_spin_lock_irqsave(&rq->lock, flags);
4053 update_rq_clock(rq);
4055 if (unlikely(task_cpu(p) != this_cpu)) {
4056 rcu_read_lock();
4057 __set_task_cpu(p, this_cpu);
4058 rcu_read_unlock();
4061 update_curr(cfs_rq);
4063 if (curr)
4064 se->vruntime = curr->vruntime;
4065 place_entity(cfs_rq, se, 1);
4067 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4069 * Upon rescheduling, sched_class::put_prev_task() will place
4070 * 'current' within the tree based on its new key value.
4072 swap(curr->vruntime, se->vruntime);
4073 resched_task(rq->curr);
4076 se->vruntime -= cfs_rq->min_vruntime;
4078 raw_spin_unlock_irqrestore(&rq->lock, flags);
4082 * Priority of the task has changed. Check to see if we preempt
4083 * the current task.
4085 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4086 int oldprio, int running)
4089 * Reschedule if we are currently running on this runqueue and
4090 * our priority decreased, or if we are not currently running on
4091 * this runqueue and our priority is higher than the current's
4093 if (running) {
4094 if (p->prio > oldprio)
4095 resched_task(rq->curr);
4096 } else
4097 check_preempt_curr(rq, p, 0);
4101 * We switched to the sched_fair class.
4103 static void switched_to_fair(struct rq *rq, struct task_struct *p,
4104 int running)
4107 * We were most likely switched from sched_rt, so
4108 * kick off the schedule if running, otherwise just see
4109 * if we can still preempt the current task.
4111 if (running)
4112 resched_task(rq->curr);
4113 else
4114 check_preempt_curr(rq, p, 0);
4117 /* Account for a task changing its policy or group.
4119 * This routine is mostly called to set cfs_rq->curr field when a task
4120 * migrates between groups/classes.
4122 static void set_curr_task_fair(struct rq *rq)
4124 struct sched_entity *se = &rq->curr->se;
4126 for_each_sched_entity(se)
4127 set_next_entity(cfs_rq_of(se), se);
4130 #ifdef CONFIG_FAIR_GROUP_SCHED
4131 static void task_move_group_fair(struct task_struct *p, int on_rq)
4134 * If the task was not on the rq at the time of this cgroup movement
4135 * it must have been asleep, sleeping tasks keep their ->vruntime
4136 * absolute on their old rq until wakeup (needed for the fair sleeper
4137 * bonus in place_entity()).
4139 * If it was on the rq, we've just 'preempted' it, which does convert
4140 * ->vruntime to a relative base.
4142 * Make sure both cases convert their relative position when migrating
4143 * to another cgroup's rq. This does somewhat interfere with the
4144 * fair sleeper stuff for the first placement, but who cares.
4146 if (!on_rq)
4147 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4148 set_task_rq(p, task_cpu(p));
4149 if (!on_rq)
4150 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4152 #endif
4154 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4156 struct sched_entity *se = &task->se;
4157 unsigned int rr_interval = 0;
4160 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4161 * idle runqueue:
4163 if (rq->cfs.load.weight)
4164 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4166 return rr_interval;
4170 * All the scheduling class methods:
4172 static const struct sched_class fair_sched_class = {
4173 .next = &idle_sched_class,
4174 .enqueue_task = enqueue_task_fair,
4175 .dequeue_task = dequeue_task_fair,
4176 .yield_task = yield_task_fair,
4178 .check_preempt_curr = check_preempt_wakeup,
4180 .pick_next_task = pick_next_task_fair,
4181 .put_prev_task = put_prev_task_fair,
4183 #ifdef CONFIG_SMP
4184 .select_task_rq = select_task_rq_fair,
4186 .rq_online = rq_online_fair,
4187 .rq_offline = rq_offline_fair,
4189 .task_waking = task_waking_fair,
4190 #endif
4192 .set_curr_task = set_curr_task_fair,
4193 .task_tick = task_tick_fair,
4194 .task_fork = task_fork_fair,
4196 .prio_changed = prio_changed_fair,
4197 .switched_to = switched_to_fair,
4199 .get_rr_interval = get_rr_interval_fair,
4201 #ifdef CONFIG_FAIR_GROUP_SCHED
4202 .task_move_group = task_move_group_fair,
4203 #endif
4206 #ifdef CONFIG_SCHED_DEBUG
4207 static void print_cfs_stats(struct seq_file *m, int cpu)
4209 struct cfs_rq *cfs_rq;
4211 rcu_read_lock();
4212 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4213 print_cfs_rq(m, cpu, cfs_rq);
4214 rcu_read_unlock();
4216 #endif