ixgbevf: Add fix to VF to handle multi-descriptor buffers
[linux-2.6/cjktty.git] / drivers / scsi / hpsa.c
blob796482badf13acfe91f4391822d90cd6339d9ffc
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
102 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
103 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 {0,}
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
109 /* board_id = Subsystem Device ID & Vendor ID
110 * product = Marketing Name for the board
111 * access = Address of the struct of function pointers
113 static struct board_type products[] = {
114 {0x3241103C, "Smart Array P212", &SA5_access},
115 {0x3243103C, "Smart Array P410", &SA5_access},
116 {0x3245103C, "Smart Array P410i", &SA5_access},
117 {0x3247103C, "Smart Array P411", &SA5_access},
118 {0x3249103C, "Smart Array P812", &SA5_access},
119 {0x324a103C, "Smart Array P712m", &SA5_access},
120 {0x324b103C, "Smart Array P711m", &SA5_access},
121 {0x3350103C, "Smart Array", &SA5_access},
122 {0x3351103C, "Smart Array", &SA5_access},
123 {0x3352103C, "Smart Array", &SA5_access},
124 {0x3353103C, "Smart Array", &SA5_access},
125 {0x3354103C, "Smart Array", &SA5_access},
126 {0x3355103C, "Smart Array", &SA5_access},
127 {0x3356103C, "Smart Array", &SA5_access},
128 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
131 static int number_of_controllers;
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152 int cmd_type);
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157 unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159 int qdepth, int reason);
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
163 static int hpsa_slave_alloc(struct scsi_device *sdev);
164 static void hpsa_slave_destroy(struct scsi_device *sdev);
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static int check_for_unit_attention(struct ctlr_info *h,
168 struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170 struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173 int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h, u8 q);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178 u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180 unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
183 void __iomem *vaddr, int wait_for_ready);
184 static inline void finish_cmd(struct CommandList *c);
185 #define BOARD_NOT_READY 0
186 #define BOARD_READY 1
188 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
190 unsigned long *priv = shost_priv(sdev->host);
191 return (struct ctlr_info *) *priv;
194 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
196 unsigned long *priv = shost_priv(sh);
197 return (struct ctlr_info *) *priv;
200 static int check_for_unit_attention(struct ctlr_info *h,
201 struct CommandList *c)
203 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
204 return 0;
206 switch (c->err_info->SenseInfo[12]) {
207 case STATE_CHANGED:
208 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
209 "detected, command retried\n", h->ctlr);
210 break;
211 case LUN_FAILED:
212 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
213 "detected, action required\n", h->ctlr);
214 break;
215 case REPORT_LUNS_CHANGED:
216 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
217 "changed, action required\n", h->ctlr);
219 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
220 * target (array) devices.
222 break;
223 case POWER_OR_RESET:
224 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
225 "or device reset detected\n", h->ctlr);
226 break;
227 case UNIT_ATTENTION_CLEARED:
228 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
229 "cleared by another initiator\n", h->ctlr);
230 break;
231 default:
232 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
233 "unit attention detected\n", h->ctlr);
234 break;
236 return 1;
239 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
241 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
242 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
243 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
244 return 0;
245 dev_warn(&h->pdev->dev, HPSA "device busy");
246 return 1;
249 static ssize_t host_store_rescan(struct device *dev,
250 struct device_attribute *attr,
251 const char *buf, size_t count)
253 struct ctlr_info *h;
254 struct Scsi_Host *shost = class_to_shost(dev);
255 h = shost_to_hba(shost);
256 hpsa_scan_start(h->scsi_host);
257 return count;
260 static ssize_t host_show_firmware_revision(struct device *dev,
261 struct device_attribute *attr, char *buf)
263 struct ctlr_info *h;
264 struct Scsi_Host *shost = class_to_shost(dev);
265 unsigned char *fwrev;
267 h = shost_to_hba(shost);
268 if (!h->hba_inquiry_data)
269 return 0;
270 fwrev = &h->hba_inquiry_data[32];
271 return snprintf(buf, 20, "%c%c%c%c\n",
272 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
275 static ssize_t host_show_commands_outstanding(struct device *dev,
276 struct device_attribute *attr, char *buf)
278 struct Scsi_Host *shost = class_to_shost(dev);
279 struct ctlr_info *h = shost_to_hba(shost);
281 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
284 static ssize_t host_show_transport_mode(struct device *dev,
285 struct device_attribute *attr, char *buf)
287 struct ctlr_info *h;
288 struct Scsi_Host *shost = class_to_shost(dev);
290 h = shost_to_hba(shost);
291 return snprintf(buf, 20, "%s\n",
292 h->transMethod & CFGTBL_Trans_Performant ?
293 "performant" : "simple");
296 /* List of controllers which cannot be hard reset on kexec with reset_devices */
297 static u32 unresettable_controller[] = {
298 0x324a103C, /* Smart Array P712m */
299 0x324b103C, /* SmartArray P711m */
300 0x3223103C, /* Smart Array P800 */
301 0x3234103C, /* Smart Array P400 */
302 0x3235103C, /* Smart Array P400i */
303 0x3211103C, /* Smart Array E200i */
304 0x3212103C, /* Smart Array E200 */
305 0x3213103C, /* Smart Array E200i */
306 0x3214103C, /* Smart Array E200i */
307 0x3215103C, /* Smart Array E200i */
308 0x3237103C, /* Smart Array E500 */
309 0x323D103C, /* Smart Array P700m */
310 0x40800E11, /* Smart Array 5i */
311 0x409C0E11, /* Smart Array 6400 */
312 0x409D0E11, /* Smart Array 6400 EM */
313 0x40700E11, /* Smart Array 5300 */
314 0x40820E11, /* Smart Array 532 */
315 0x40830E11, /* Smart Array 5312 */
316 0x409A0E11, /* Smart Array 641 */
317 0x409B0E11, /* Smart Array 642 */
318 0x40910E11, /* Smart Array 6i */
321 /* List of controllers which cannot even be soft reset */
322 static u32 soft_unresettable_controller[] = {
323 0x40800E11, /* Smart Array 5i */
324 0x40700E11, /* Smart Array 5300 */
325 0x40820E11, /* Smart Array 532 */
326 0x40830E11, /* Smart Array 5312 */
327 0x409A0E11, /* Smart Array 641 */
328 0x409B0E11, /* Smart Array 642 */
329 0x40910E11, /* Smart Array 6i */
330 /* Exclude 640x boards. These are two pci devices in one slot
331 * which share a battery backed cache module. One controls the
332 * cache, the other accesses the cache through the one that controls
333 * it. If we reset the one controlling the cache, the other will
334 * likely not be happy. Just forbid resetting this conjoined mess.
335 * The 640x isn't really supported by hpsa anyway.
337 0x409C0E11, /* Smart Array 6400 */
338 0x409D0E11, /* Smart Array 6400 EM */
341 static int ctlr_is_hard_resettable(u32 board_id)
343 int i;
345 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
346 if (unresettable_controller[i] == board_id)
347 return 0;
348 return 1;
351 static int ctlr_is_soft_resettable(u32 board_id)
353 int i;
355 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
356 if (soft_unresettable_controller[i] == board_id)
357 return 0;
358 return 1;
361 static int ctlr_is_resettable(u32 board_id)
363 return ctlr_is_hard_resettable(board_id) ||
364 ctlr_is_soft_resettable(board_id);
367 static ssize_t host_show_resettable(struct device *dev,
368 struct device_attribute *attr, char *buf)
370 struct ctlr_info *h;
371 struct Scsi_Host *shost = class_to_shost(dev);
373 h = shost_to_hba(shost);
374 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
379 return (scsi3addr[3] & 0xC0) == 0x40;
382 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
383 "1(ADM)", "UNKNOWN"
385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
387 static ssize_t raid_level_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
390 ssize_t l = 0;
391 unsigned char rlevel;
392 struct ctlr_info *h;
393 struct scsi_device *sdev;
394 struct hpsa_scsi_dev_t *hdev;
395 unsigned long flags;
397 sdev = to_scsi_device(dev);
398 h = sdev_to_hba(sdev);
399 spin_lock_irqsave(&h->lock, flags);
400 hdev = sdev->hostdata;
401 if (!hdev) {
402 spin_unlock_irqrestore(&h->lock, flags);
403 return -ENODEV;
406 /* Is this even a logical drive? */
407 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
408 spin_unlock_irqrestore(&h->lock, flags);
409 l = snprintf(buf, PAGE_SIZE, "N/A\n");
410 return l;
413 rlevel = hdev->raid_level;
414 spin_unlock_irqrestore(&h->lock, flags);
415 if (rlevel > RAID_UNKNOWN)
416 rlevel = RAID_UNKNOWN;
417 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
418 return l;
421 static ssize_t lunid_show(struct device *dev,
422 struct device_attribute *attr, char *buf)
424 struct ctlr_info *h;
425 struct scsi_device *sdev;
426 struct hpsa_scsi_dev_t *hdev;
427 unsigned long flags;
428 unsigned char lunid[8];
430 sdev = to_scsi_device(dev);
431 h = sdev_to_hba(sdev);
432 spin_lock_irqsave(&h->lock, flags);
433 hdev = sdev->hostdata;
434 if (!hdev) {
435 spin_unlock_irqrestore(&h->lock, flags);
436 return -ENODEV;
438 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
439 spin_unlock_irqrestore(&h->lock, flags);
440 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
441 lunid[0], lunid[1], lunid[2], lunid[3],
442 lunid[4], lunid[5], lunid[6], lunid[7]);
445 static ssize_t unique_id_show(struct device *dev,
446 struct device_attribute *attr, char *buf)
448 struct ctlr_info *h;
449 struct scsi_device *sdev;
450 struct hpsa_scsi_dev_t *hdev;
451 unsigned long flags;
452 unsigned char sn[16];
454 sdev = to_scsi_device(dev);
455 h = sdev_to_hba(sdev);
456 spin_lock_irqsave(&h->lock, flags);
457 hdev = sdev->hostdata;
458 if (!hdev) {
459 spin_unlock_irqrestore(&h->lock, flags);
460 return -ENODEV;
462 memcpy(sn, hdev->device_id, sizeof(sn));
463 spin_unlock_irqrestore(&h->lock, flags);
464 return snprintf(buf, 16 * 2 + 2,
465 "%02X%02X%02X%02X%02X%02X%02X%02X"
466 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
467 sn[0], sn[1], sn[2], sn[3],
468 sn[4], sn[5], sn[6], sn[7],
469 sn[8], sn[9], sn[10], sn[11],
470 sn[12], sn[13], sn[14], sn[15]);
473 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
474 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
475 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
476 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
477 static DEVICE_ATTR(firmware_revision, S_IRUGO,
478 host_show_firmware_revision, NULL);
479 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
480 host_show_commands_outstanding, NULL);
481 static DEVICE_ATTR(transport_mode, S_IRUGO,
482 host_show_transport_mode, NULL);
483 static DEVICE_ATTR(resettable, S_IRUGO,
484 host_show_resettable, NULL);
486 static struct device_attribute *hpsa_sdev_attrs[] = {
487 &dev_attr_raid_level,
488 &dev_attr_lunid,
489 &dev_attr_unique_id,
490 NULL,
493 static struct device_attribute *hpsa_shost_attrs[] = {
494 &dev_attr_rescan,
495 &dev_attr_firmware_revision,
496 &dev_attr_commands_outstanding,
497 &dev_attr_transport_mode,
498 &dev_attr_resettable,
499 NULL,
502 static struct scsi_host_template hpsa_driver_template = {
503 .module = THIS_MODULE,
504 .name = HPSA,
505 .proc_name = HPSA,
506 .queuecommand = hpsa_scsi_queue_command,
507 .scan_start = hpsa_scan_start,
508 .scan_finished = hpsa_scan_finished,
509 .change_queue_depth = hpsa_change_queue_depth,
510 .this_id = -1,
511 .use_clustering = ENABLE_CLUSTERING,
512 .eh_abort_handler = hpsa_eh_abort_handler,
513 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
514 .ioctl = hpsa_ioctl,
515 .slave_alloc = hpsa_slave_alloc,
516 .slave_destroy = hpsa_slave_destroy,
517 #ifdef CONFIG_COMPAT
518 .compat_ioctl = hpsa_compat_ioctl,
519 #endif
520 .sdev_attrs = hpsa_sdev_attrs,
521 .shost_attrs = hpsa_shost_attrs,
522 .max_sectors = 8192,
526 /* Enqueuing and dequeuing functions for cmdlists. */
527 static inline void addQ(struct list_head *list, struct CommandList *c)
529 list_add_tail(&c->list, list);
532 static inline u32 next_command(struct ctlr_info *h, u8 q)
534 u32 a;
535 struct reply_pool *rq = &h->reply_queue[q];
536 unsigned long flags;
538 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
539 return h->access.command_completed(h, q);
541 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
542 a = rq->head[rq->current_entry];
543 rq->current_entry++;
544 spin_lock_irqsave(&h->lock, flags);
545 h->commands_outstanding--;
546 spin_unlock_irqrestore(&h->lock, flags);
547 } else {
548 a = FIFO_EMPTY;
550 /* Check for wraparound */
551 if (rq->current_entry == h->max_commands) {
552 rq->current_entry = 0;
553 rq->wraparound ^= 1;
555 return a;
558 /* set_performant_mode: Modify the tag for cciss performant
559 * set bit 0 for pull model, bits 3-1 for block fetch
560 * register number
562 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
564 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
565 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
566 if (likely(h->msix_vector))
567 c->Header.ReplyQueue =
568 smp_processor_id() % h->nreply_queues;
572 static int is_firmware_flash_cmd(u8 *cdb)
574 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
578 * During firmware flash, the heartbeat register may not update as frequently
579 * as it should. So we dial down lockup detection during firmware flash. and
580 * dial it back up when firmware flash completes.
582 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
583 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
584 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
585 struct CommandList *c)
587 if (!is_firmware_flash_cmd(c->Request.CDB))
588 return;
589 atomic_inc(&h->firmware_flash_in_progress);
590 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
593 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
594 struct CommandList *c)
596 if (is_firmware_flash_cmd(c->Request.CDB) &&
597 atomic_dec_and_test(&h->firmware_flash_in_progress))
598 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
601 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
602 struct CommandList *c)
604 unsigned long flags;
606 set_performant_mode(h, c);
607 dial_down_lockup_detection_during_fw_flash(h, c);
608 spin_lock_irqsave(&h->lock, flags);
609 addQ(&h->reqQ, c);
610 h->Qdepth++;
611 spin_unlock_irqrestore(&h->lock, flags);
612 start_io(h);
615 static inline void removeQ(struct CommandList *c)
617 if (WARN_ON(list_empty(&c->list)))
618 return;
619 list_del_init(&c->list);
622 static inline int is_hba_lunid(unsigned char scsi3addr[])
624 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
627 static inline int is_scsi_rev_5(struct ctlr_info *h)
629 if (!h->hba_inquiry_data)
630 return 0;
631 if ((h->hba_inquiry_data[2] & 0x07) == 5)
632 return 1;
633 return 0;
636 static int hpsa_find_target_lun(struct ctlr_info *h,
637 unsigned char scsi3addr[], int bus, int *target, int *lun)
639 /* finds an unused bus, target, lun for a new physical device
640 * assumes h->devlock is held
642 int i, found = 0;
643 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
645 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
647 for (i = 0; i < h->ndevices; i++) {
648 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
649 __set_bit(h->dev[i]->target, lun_taken);
652 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
653 if (i < HPSA_MAX_DEVICES) {
654 /* *bus = 1; */
655 *target = i;
656 *lun = 0;
657 found = 1;
659 return !found;
662 /* Add an entry into h->dev[] array. */
663 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
664 struct hpsa_scsi_dev_t *device,
665 struct hpsa_scsi_dev_t *added[], int *nadded)
667 /* assumes h->devlock is held */
668 int n = h->ndevices;
669 int i;
670 unsigned char addr1[8], addr2[8];
671 struct hpsa_scsi_dev_t *sd;
673 if (n >= HPSA_MAX_DEVICES) {
674 dev_err(&h->pdev->dev, "too many devices, some will be "
675 "inaccessible.\n");
676 return -1;
679 /* physical devices do not have lun or target assigned until now. */
680 if (device->lun != -1)
681 /* Logical device, lun is already assigned. */
682 goto lun_assigned;
684 /* If this device a non-zero lun of a multi-lun device
685 * byte 4 of the 8-byte LUN addr will contain the logical
686 * unit no, zero otherise.
688 if (device->scsi3addr[4] == 0) {
689 /* This is not a non-zero lun of a multi-lun device */
690 if (hpsa_find_target_lun(h, device->scsi3addr,
691 device->bus, &device->target, &device->lun) != 0)
692 return -1;
693 goto lun_assigned;
696 /* This is a non-zero lun of a multi-lun device.
697 * Search through our list and find the device which
698 * has the same 8 byte LUN address, excepting byte 4.
699 * Assign the same bus and target for this new LUN.
700 * Use the logical unit number from the firmware.
702 memcpy(addr1, device->scsi3addr, 8);
703 addr1[4] = 0;
704 for (i = 0; i < n; i++) {
705 sd = h->dev[i];
706 memcpy(addr2, sd->scsi3addr, 8);
707 addr2[4] = 0;
708 /* differ only in byte 4? */
709 if (memcmp(addr1, addr2, 8) == 0) {
710 device->bus = sd->bus;
711 device->target = sd->target;
712 device->lun = device->scsi3addr[4];
713 break;
716 if (device->lun == -1) {
717 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
718 " suspect firmware bug or unsupported hardware "
719 "configuration.\n");
720 return -1;
723 lun_assigned:
725 h->dev[n] = device;
726 h->ndevices++;
727 added[*nadded] = device;
728 (*nadded)++;
730 /* initially, (before registering with scsi layer) we don't
731 * know our hostno and we don't want to print anything first
732 * time anyway (the scsi layer's inquiries will show that info)
734 /* if (hostno != -1) */
735 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
736 scsi_device_type(device->devtype), hostno,
737 device->bus, device->target, device->lun);
738 return 0;
741 /* Update an entry in h->dev[] array. */
742 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
743 int entry, struct hpsa_scsi_dev_t *new_entry)
745 /* assumes h->devlock is held */
746 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
748 /* Raid level changed. */
749 h->dev[entry]->raid_level = new_entry->raid_level;
750 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
751 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
752 new_entry->target, new_entry->lun);
755 /* Replace an entry from h->dev[] array. */
756 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
757 int entry, struct hpsa_scsi_dev_t *new_entry,
758 struct hpsa_scsi_dev_t *added[], int *nadded,
759 struct hpsa_scsi_dev_t *removed[], int *nremoved)
761 /* assumes h->devlock is held */
762 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
763 removed[*nremoved] = h->dev[entry];
764 (*nremoved)++;
767 * New physical devices won't have target/lun assigned yet
768 * so we need to preserve the values in the slot we are replacing.
770 if (new_entry->target == -1) {
771 new_entry->target = h->dev[entry]->target;
772 new_entry->lun = h->dev[entry]->lun;
775 h->dev[entry] = new_entry;
776 added[*nadded] = new_entry;
777 (*nadded)++;
778 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
779 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
780 new_entry->target, new_entry->lun);
783 /* Remove an entry from h->dev[] array. */
784 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
785 struct hpsa_scsi_dev_t *removed[], int *nremoved)
787 /* assumes h->devlock is held */
788 int i;
789 struct hpsa_scsi_dev_t *sd;
791 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
793 sd = h->dev[entry];
794 removed[*nremoved] = h->dev[entry];
795 (*nremoved)++;
797 for (i = entry; i < h->ndevices-1; i++)
798 h->dev[i] = h->dev[i+1];
799 h->ndevices--;
800 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
801 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
802 sd->lun);
805 #define SCSI3ADDR_EQ(a, b) ( \
806 (a)[7] == (b)[7] && \
807 (a)[6] == (b)[6] && \
808 (a)[5] == (b)[5] && \
809 (a)[4] == (b)[4] && \
810 (a)[3] == (b)[3] && \
811 (a)[2] == (b)[2] && \
812 (a)[1] == (b)[1] && \
813 (a)[0] == (b)[0])
815 static void fixup_botched_add(struct ctlr_info *h,
816 struct hpsa_scsi_dev_t *added)
818 /* called when scsi_add_device fails in order to re-adjust
819 * h->dev[] to match the mid layer's view.
821 unsigned long flags;
822 int i, j;
824 spin_lock_irqsave(&h->lock, flags);
825 for (i = 0; i < h->ndevices; i++) {
826 if (h->dev[i] == added) {
827 for (j = i; j < h->ndevices-1; j++)
828 h->dev[j] = h->dev[j+1];
829 h->ndevices--;
830 break;
833 spin_unlock_irqrestore(&h->lock, flags);
834 kfree(added);
837 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
838 struct hpsa_scsi_dev_t *dev2)
840 /* we compare everything except lun and target as these
841 * are not yet assigned. Compare parts likely
842 * to differ first
844 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
845 sizeof(dev1->scsi3addr)) != 0)
846 return 0;
847 if (memcmp(dev1->device_id, dev2->device_id,
848 sizeof(dev1->device_id)) != 0)
849 return 0;
850 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
851 return 0;
852 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
853 return 0;
854 if (dev1->devtype != dev2->devtype)
855 return 0;
856 if (dev1->bus != dev2->bus)
857 return 0;
858 return 1;
861 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
862 struct hpsa_scsi_dev_t *dev2)
864 /* Device attributes that can change, but don't mean
865 * that the device is a different device, nor that the OS
866 * needs to be told anything about the change.
868 if (dev1->raid_level != dev2->raid_level)
869 return 1;
870 return 0;
873 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
874 * and return needle location in *index. If scsi3addr matches, but not
875 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
876 * location in *index.
877 * In the case of a minor device attribute change, such as RAID level, just
878 * return DEVICE_UPDATED, along with the updated device's location in index.
879 * If needle not found, return DEVICE_NOT_FOUND.
881 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
882 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
883 int *index)
885 int i;
886 #define DEVICE_NOT_FOUND 0
887 #define DEVICE_CHANGED 1
888 #define DEVICE_SAME 2
889 #define DEVICE_UPDATED 3
890 for (i = 0; i < haystack_size; i++) {
891 if (haystack[i] == NULL) /* previously removed. */
892 continue;
893 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
894 *index = i;
895 if (device_is_the_same(needle, haystack[i])) {
896 if (device_updated(needle, haystack[i]))
897 return DEVICE_UPDATED;
898 return DEVICE_SAME;
899 } else {
900 return DEVICE_CHANGED;
904 *index = -1;
905 return DEVICE_NOT_FOUND;
908 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
909 struct hpsa_scsi_dev_t *sd[], int nsds)
911 /* sd contains scsi3 addresses and devtypes, and inquiry
912 * data. This function takes what's in sd to be the current
913 * reality and updates h->dev[] to reflect that reality.
915 int i, entry, device_change, changes = 0;
916 struct hpsa_scsi_dev_t *csd;
917 unsigned long flags;
918 struct hpsa_scsi_dev_t **added, **removed;
919 int nadded, nremoved;
920 struct Scsi_Host *sh = NULL;
922 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
923 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
925 if (!added || !removed) {
926 dev_warn(&h->pdev->dev, "out of memory in "
927 "adjust_hpsa_scsi_table\n");
928 goto free_and_out;
931 spin_lock_irqsave(&h->devlock, flags);
933 /* find any devices in h->dev[] that are not in
934 * sd[] and remove them from h->dev[], and for any
935 * devices which have changed, remove the old device
936 * info and add the new device info.
937 * If minor device attributes change, just update
938 * the existing device structure.
940 i = 0;
941 nremoved = 0;
942 nadded = 0;
943 while (i < h->ndevices) {
944 csd = h->dev[i];
945 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
946 if (device_change == DEVICE_NOT_FOUND) {
947 changes++;
948 hpsa_scsi_remove_entry(h, hostno, i,
949 removed, &nremoved);
950 continue; /* remove ^^^, hence i not incremented */
951 } else if (device_change == DEVICE_CHANGED) {
952 changes++;
953 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
954 added, &nadded, removed, &nremoved);
955 /* Set it to NULL to prevent it from being freed
956 * at the bottom of hpsa_update_scsi_devices()
958 sd[entry] = NULL;
959 } else if (device_change == DEVICE_UPDATED) {
960 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
962 i++;
965 /* Now, make sure every device listed in sd[] is also
966 * listed in h->dev[], adding them if they aren't found
969 for (i = 0; i < nsds; i++) {
970 if (!sd[i]) /* if already added above. */
971 continue;
972 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
973 h->ndevices, &entry);
974 if (device_change == DEVICE_NOT_FOUND) {
975 changes++;
976 if (hpsa_scsi_add_entry(h, hostno, sd[i],
977 added, &nadded) != 0)
978 break;
979 sd[i] = NULL; /* prevent from being freed later. */
980 } else if (device_change == DEVICE_CHANGED) {
981 /* should never happen... */
982 changes++;
983 dev_warn(&h->pdev->dev,
984 "device unexpectedly changed.\n");
985 /* but if it does happen, we just ignore that device */
988 spin_unlock_irqrestore(&h->devlock, flags);
990 /* Don't notify scsi mid layer of any changes the first time through
991 * (or if there are no changes) scsi_scan_host will do it later the
992 * first time through.
994 if (hostno == -1 || !changes)
995 goto free_and_out;
997 sh = h->scsi_host;
998 /* Notify scsi mid layer of any removed devices */
999 for (i = 0; i < nremoved; i++) {
1000 struct scsi_device *sdev =
1001 scsi_device_lookup(sh, removed[i]->bus,
1002 removed[i]->target, removed[i]->lun);
1003 if (sdev != NULL) {
1004 scsi_remove_device(sdev);
1005 scsi_device_put(sdev);
1006 } else {
1007 /* We don't expect to get here.
1008 * future cmds to this device will get selection
1009 * timeout as if the device was gone.
1011 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1012 " for removal.", hostno, removed[i]->bus,
1013 removed[i]->target, removed[i]->lun);
1015 kfree(removed[i]);
1016 removed[i] = NULL;
1019 /* Notify scsi mid layer of any added devices */
1020 for (i = 0; i < nadded; i++) {
1021 if (scsi_add_device(sh, added[i]->bus,
1022 added[i]->target, added[i]->lun) == 0)
1023 continue;
1024 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1025 "device not added.\n", hostno, added[i]->bus,
1026 added[i]->target, added[i]->lun);
1027 /* now we have to remove it from h->dev,
1028 * since it didn't get added to scsi mid layer
1030 fixup_botched_add(h, added[i]);
1033 free_and_out:
1034 kfree(added);
1035 kfree(removed);
1039 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1040 * Assume's h->devlock is held.
1042 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1043 int bus, int target, int lun)
1045 int i;
1046 struct hpsa_scsi_dev_t *sd;
1048 for (i = 0; i < h->ndevices; i++) {
1049 sd = h->dev[i];
1050 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1051 return sd;
1053 return NULL;
1056 /* link sdev->hostdata to our per-device structure. */
1057 static int hpsa_slave_alloc(struct scsi_device *sdev)
1059 struct hpsa_scsi_dev_t *sd;
1060 unsigned long flags;
1061 struct ctlr_info *h;
1063 h = sdev_to_hba(sdev);
1064 spin_lock_irqsave(&h->devlock, flags);
1065 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1066 sdev_id(sdev), sdev->lun);
1067 if (sd != NULL)
1068 sdev->hostdata = sd;
1069 spin_unlock_irqrestore(&h->devlock, flags);
1070 return 0;
1073 static void hpsa_slave_destroy(struct scsi_device *sdev)
1075 /* nothing to do. */
1078 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1080 int i;
1082 if (!h->cmd_sg_list)
1083 return;
1084 for (i = 0; i < h->nr_cmds; i++) {
1085 kfree(h->cmd_sg_list[i]);
1086 h->cmd_sg_list[i] = NULL;
1088 kfree(h->cmd_sg_list);
1089 h->cmd_sg_list = NULL;
1092 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1094 int i;
1096 if (h->chainsize <= 0)
1097 return 0;
1099 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1100 GFP_KERNEL);
1101 if (!h->cmd_sg_list)
1102 return -ENOMEM;
1103 for (i = 0; i < h->nr_cmds; i++) {
1104 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1105 h->chainsize, GFP_KERNEL);
1106 if (!h->cmd_sg_list[i])
1107 goto clean;
1109 return 0;
1111 clean:
1112 hpsa_free_sg_chain_blocks(h);
1113 return -ENOMEM;
1116 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1117 struct CommandList *c)
1119 struct SGDescriptor *chain_sg, *chain_block;
1120 u64 temp64;
1122 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1123 chain_block = h->cmd_sg_list[c->cmdindex];
1124 chain_sg->Ext = HPSA_SG_CHAIN;
1125 chain_sg->Len = sizeof(*chain_sg) *
1126 (c->Header.SGTotal - h->max_cmd_sg_entries);
1127 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1128 PCI_DMA_TODEVICE);
1129 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1130 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1133 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1134 struct CommandList *c)
1136 struct SGDescriptor *chain_sg;
1137 union u64bit temp64;
1139 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1140 return;
1142 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1143 temp64.val32.lower = chain_sg->Addr.lower;
1144 temp64.val32.upper = chain_sg->Addr.upper;
1145 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1148 static void complete_scsi_command(struct CommandList *cp)
1150 struct scsi_cmnd *cmd;
1151 struct ctlr_info *h;
1152 struct ErrorInfo *ei;
1154 unsigned char sense_key;
1155 unsigned char asc; /* additional sense code */
1156 unsigned char ascq; /* additional sense code qualifier */
1157 unsigned long sense_data_size;
1159 ei = cp->err_info;
1160 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1161 h = cp->h;
1163 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1164 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1165 hpsa_unmap_sg_chain_block(h, cp);
1167 cmd->result = (DID_OK << 16); /* host byte */
1168 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1169 cmd->result |= ei->ScsiStatus;
1171 /* copy the sense data whether we need to or not. */
1172 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1173 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1174 else
1175 sense_data_size = sizeof(ei->SenseInfo);
1176 if (ei->SenseLen < sense_data_size)
1177 sense_data_size = ei->SenseLen;
1179 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1180 scsi_set_resid(cmd, ei->ResidualCnt);
1182 if (ei->CommandStatus == 0) {
1183 cmd->scsi_done(cmd);
1184 cmd_free(h, cp);
1185 return;
1188 /* an error has occurred */
1189 switch (ei->CommandStatus) {
1191 case CMD_TARGET_STATUS:
1192 if (ei->ScsiStatus) {
1193 /* Get sense key */
1194 sense_key = 0xf & ei->SenseInfo[2];
1195 /* Get additional sense code */
1196 asc = ei->SenseInfo[12];
1197 /* Get addition sense code qualifier */
1198 ascq = ei->SenseInfo[13];
1201 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1202 if (check_for_unit_attention(h, cp)) {
1203 cmd->result = DID_SOFT_ERROR << 16;
1204 break;
1206 if (sense_key == ILLEGAL_REQUEST) {
1208 * SCSI REPORT_LUNS is commonly unsupported on
1209 * Smart Array. Suppress noisy complaint.
1211 if (cp->Request.CDB[0] == REPORT_LUNS)
1212 break;
1214 /* If ASC/ASCQ indicate Logical Unit
1215 * Not Supported condition,
1217 if ((asc == 0x25) && (ascq == 0x0)) {
1218 dev_warn(&h->pdev->dev, "cp %p "
1219 "has check condition\n", cp);
1220 break;
1224 if (sense_key == NOT_READY) {
1225 /* If Sense is Not Ready, Logical Unit
1226 * Not ready, Manual Intervention
1227 * required
1229 if ((asc == 0x04) && (ascq == 0x03)) {
1230 dev_warn(&h->pdev->dev, "cp %p "
1231 "has check condition: unit "
1232 "not ready, manual "
1233 "intervention required\n", cp);
1234 break;
1237 if (sense_key == ABORTED_COMMAND) {
1238 /* Aborted command is retryable */
1239 dev_warn(&h->pdev->dev, "cp %p "
1240 "has check condition: aborted command: "
1241 "ASC: 0x%x, ASCQ: 0x%x\n",
1242 cp, asc, ascq);
1243 cmd->result = DID_SOFT_ERROR << 16;
1244 break;
1246 /* Must be some other type of check condition */
1247 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1248 "unknown type: "
1249 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1250 "Returning result: 0x%x, "
1251 "cmd=[%02x %02x %02x %02x %02x "
1252 "%02x %02x %02x %02x %02x %02x "
1253 "%02x %02x %02x %02x %02x]\n",
1254 cp, sense_key, asc, ascq,
1255 cmd->result,
1256 cmd->cmnd[0], cmd->cmnd[1],
1257 cmd->cmnd[2], cmd->cmnd[3],
1258 cmd->cmnd[4], cmd->cmnd[5],
1259 cmd->cmnd[6], cmd->cmnd[7],
1260 cmd->cmnd[8], cmd->cmnd[9],
1261 cmd->cmnd[10], cmd->cmnd[11],
1262 cmd->cmnd[12], cmd->cmnd[13],
1263 cmd->cmnd[14], cmd->cmnd[15]);
1264 break;
1268 /* Problem was not a check condition
1269 * Pass it up to the upper layers...
1271 if (ei->ScsiStatus) {
1272 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1273 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1274 "Returning result: 0x%x\n",
1275 cp, ei->ScsiStatus,
1276 sense_key, asc, ascq,
1277 cmd->result);
1278 } else { /* scsi status is zero??? How??? */
1279 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1280 "Returning no connection.\n", cp),
1282 /* Ordinarily, this case should never happen,
1283 * but there is a bug in some released firmware
1284 * revisions that allows it to happen if, for
1285 * example, a 4100 backplane loses power and
1286 * the tape drive is in it. We assume that
1287 * it's a fatal error of some kind because we
1288 * can't show that it wasn't. We will make it
1289 * look like selection timeout since that is
1290 * the most common reason for this to occur,
1291 * and it's severe enough.
1294 cmd->result = DID_NO_CONNECT << 16;
1296 break;
1298 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1299 break;
1300 case CMD_DATA_OVERRUN:
1301 dev_warn(&h->pdev->dev, "cp %p has"
1302 " completed with data overrun "
1303 "reported\n", cp);
1304 break;
1305 case CMD_INVALID: {
1306 /* print_bytes(cp, sizeof(*cp), 1, 0);
1307 print_cmd(cp); */
1308 /* We get CMD_INVALID if you address a non-existent device
1309 * instead of a selection timeout (no response). You will
1310 * see this if you yank out a drive, then try to access it.
1311 * This is kind of a shame because it means that any other
1312 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1313 * missing target. */
1314 cmd->result = DID_NO_CONNECT << 16;
1316 break;
1317 case CMD_PROTOCOL_ERR:
1318 dev_warn(&h->pdev->dev, "cp %p has "
1319 "protocol error \n", cp);
1320 break;
1321 case CMD_HARDWARE_ERR:
1322 cmd->result = DID_ERROR << 16;
1323 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1324 break;
1325 case CMD_CONNECTION_LOST:
1326 cmd->result = DID_ERROR << 16;
1327 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1328 break;
1329 case CMD_ABORTED:
1330 cmd->result = DID_ABORT << 16;
1331 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1332 cp, ei->ScsiStatus);
1333 break;
1334 case CMD_ABORT_FAILED:
1335 cmd->result = DID_ERROR << 16;
1336 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1337 break;
1338 case CMD_UNSOLICITED_ABORT:
1339 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1340 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1341 "abort\n", cp);
1342 break;
1343 case CMD_TIMEOUT:
1344 cmd->result = DID_TIME_OUT << 16;
1345 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1346 break;
1347 case CMD_UNABORTABLE:
1348 cmd->result = DID_ERROR << 16;
1349 dev_warn(&h->pdev->dev, "Command unabortable\n");
1350 break;
1351 default:
1352 cmd->result = DID_ERROR << 16;
1353 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1354 cp, ei->CommandStatus);
1356 cmd->scsi_done(cmd);
1357 cmd_free(h, cp);
1360 static void hpsa_pci_unmap(struct pci_dev *pdev,
1361 struct CommandList *c, int sg_used, int data_direction)
1363 int i;
1364 union u64bit addr64;
1366 for (i = 0; i < sg_used; i++) {
1367 addr64.val32.lower = c->SG[i].Addr.lower;
1368 addr64.val32.upper = c->SG[i].Addr.upper;
1369 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1370 data_direction);
1374 static void hpsa_map_one(struct pci_dev *pdev,
1375 struct CommandList *cp,
1376 unsigned char *buf,
1377 size_t buflen,
1378 int data_direction)
1380 u64 addr64;
1382 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1383 cp->Header.SGList = 0;
1384 cp->Header.SGTotal = 0;
1385 return;
1388 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1389 cp->SG[0].Addr.lower =
1390 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1391 cp->SG[0].Addr.upper =
1392 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1393 cp->SG[0].Len = buflen;
1394 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1395 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1398 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1399 struct CommandList *c)
1401 DECLARE_COMPLETION_ONSTACK(wait);
1403 c->waiting = &wait;
1404 enqueue_cmd_and_start_io(h, c);
1405 wait_for_completion(&wait);
1408 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1409 struct CommandList *c)
1411 unsigned long flags;
1413 /* If controller lockup detected, fake a hardware error. */
1414 spin_lock_irqsave(&h->lock, flags);
1415 if (unlikely(h->lockup_detected)) {
1416 spin_unlock_irqrestore(&h->lock, flags);
1417 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1418 } else {
1419 spin_unlock_irqrestore(&h->lock, flags);
1420 hpsa_scsi_do_simple_cmd_core(h, c);
1424 #define MAX_DRIVER_CMD_RETRIES 25
1425 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1426 struct CommandList *c, int data_direction)
1428 int backoff_time = 10, retry_count = 0;
1430 do {
1431 memset(c->err_info, 0, sizeof(*c->err_info));
1432 hpsa_scsi_do_simple_cmd_core(h, c);
1433 retry_count++;
1434 if (retry_count > 3) {
1435 msleep(backoff_time);
1436 if (backoff_time < 1000)
1437 backoff_time *= 2;
1439 } while ((check_for_unit_attention(h, c) ||
1440 check_for_busy(h, c)) &&
1441 retry_count <= MAX_DRIVER_CMD_RETRIES);
1442 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1445 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1447 struct ErrorInfo *ei;
1448 struct device *d = &cp->h->pdev->dev;
1450 ei = cp->err_info;
1451 switch (ei->CommandStatus) {
1452 case CMD_TARGET_STATUS:
1453 dev_warn(d, "cmd %p has completed with errors\n", cp);
1454 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1455 ei->ScsiStatus);
1456 if (ei->ScsiStatus == 0)
1457 dev_warn(d, "SCSI status is abnormally zero. "
1458 "(probably indicates selection timeout "
1459 "reported incorrectly due to a known "
1460 "firmware bug, circa July, 2001.)\n");
1461 break;
1462 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1463 dev_info(d, "UNDERRUN\n");
1464 break;
1465 case CMD_DATA_OVERRUN:
1466 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1467 break;
1468 case CMD_INVALID: {
1469 /* controller unfortunately reports SCSI passthru's
1470 * to non-existent targets as invalid commands.
1472 dev_warn(d, "cp %p is reported invalid (probably means "
1473 "target device no longer present)\n", cp);
1474 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1475 print_cmd(cp); */
1477 break;
1478 case CMD_PROTOCOL_ERR:
1479 dev_warn(d, "cp %p has protocol error \n", cp);
1480 break;
1481 case CMD_HARDWARE_ERR:
1482 /* cmd->result = DID_ERROR << 16; */
1483 dev_warn(d, "cp %p had hardware error\n", cp);
1484 break;
1485 case CMD_CONNECTION_LOST:
1486 dev_warn(d, "cp %p had connection lost\n", cp);
1487 break;
1488 case CMD_ABORTED:
1489 dev_warn(d, "cp %p was aborted\n", cp);
1490 break;
1491 case CMD_ABORT_FAILED:
1492 dev_warn(d, "cp %p reports abort failed\n", cp);
1493 break;
1494 case CMD_UNSOLICITED_ABORT:
1495 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1496 break;
1497 case CMD_TIMEOUT:
1498 dev_warn(d, "cp %p timed out\n", cp);
1499 break;
1500 case CMD_UNABORTABLE:
1501 dev_warn(d, "Command unabortable\n");
1502 break;
1503 default:
1504 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1505 ei->CommandStatus);
1509 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1510 unsigned char page, unsigned char *buf,
1511 unsigned char bufsize)
1513 int rc = IO_OK;
1514 struct CommandList *c;
1515 struct ErrorInfo *ei;
1517 c = cmd_special_alloc(h);
1519 if (c == NULL) { /* trouble... */
1520 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1521 return -ENOMEM;
1524 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1525 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1526 ei = c->err_info;
1527 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1528 hpsa_scsi_interpret_error(c);
1529 rc = -1;
1531 cmd_special_free(h, c);
1532 return rc;
1535 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1537 int rc = IO_OK;
1538 struct CommandList *c;
1539 struct ErrorInfo *ei;
1541 c = cmd_special_alloc(h);
1543 if (c == NULL) { /* trouble... */
1544 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1545 return -ENOMEM;
1548 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1549 hpsa_scsi_do_simple_cmd_core(h, c);
1550 /* no unmap needed here because no data xfer. */
1552 ei = c->err_info;
1553 if (ei->CommandStatus != 0) {
1554 hpsa_scsi_interpret_error(c);
1555 rc = -1;
1557 cmd_special_free(h, c);
1558 return rc;
1561 static void hpsa_get_raid_level(struct ctlr_info *h,
1562 unsigned char *scsi3addr, unsigned char *raid_level)
1564 int rc;
1565 unsigned char *buf;
1567 *raid_level = RAID_UNKNOWN;
1568 buf = kzalloc(64, GFP_KERNEL);
1569 if (!buf)
1570 return;
1571 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1572 if (rc == 0)
1573 *raid_level = buf[8];
1574 if (*raid_level > RAID_UNKNOWN)
1575 *raid_level = RAID_UNKNOWN;
1576 kfree(buf);
1577 return;
1580 /* Get the device id from inquiry page 0x83 */
1581 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1582 unsigned char *device_id, int buflen)
1584 int rc;
1585 unsigned char *buf;
1587 if (buflen > 16)
1588 buflen = 16;
1589 buf = kzalloc(64, GFP_KERNEL);
1590 if (!buf)
1591 return -1;
1592 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1593 if (rc == 0)
1594 memcpy(device_id, &buf[8], buflen);
1595 kfree(buf);
1596 return rc != 0;
1599 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1600 struct ReportLUNdata *buf, int bufsize,
1601 int extended_response)
1603 int rc = IO_OK;
1604 struct CommandList *c;
1605 unsigned char scsi3addr[8];
1606 struct ErrorInfo *ei;
1608 c = cmd_special_alloc(h);
1609 if (c == NULL) { /* trouble... */
1610 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1611 return -1;
1613 /* address the controller */
1614 memset(scsi3addr, 0, sizeof(scsi3addr));
1615 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1616 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1617 if (extended_response)
1618 c->Request.CDB[1] = extended_response;
1619 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1620 ei = c->err_info;
1621 if (ei->CommandStatus != 0 &&
1622 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1623 hpsa_scsi_interpret_error(c);
1624 rc = -1;
1626 cmd_special_free(h, c);
1627 return rc;
1630 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1631 struct ReportLUNdata *buf,
1632 int bufsize, int extended_response)
1634 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1637 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1638 struct ReportLUNdata *buf, int bufsize)
1640 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1643 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1644 int bus, int target, int lun)
1646 device->bus = bus;
1647 device->target = target;
1648 device->lun = lun;
1651 static int hpsa_update_device_info(struct ctlr_info *h,
1652 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1653 unsigned char *is_OBDR_device)
1656 #define OBDR_SIG_OFFSET 43
1657 #define OBDR_TAPE_SIG "$DR-10"
1658 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1659 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1661 unsigned char *inq_buff;
1662 unsigned char *obdr_sig;
1664 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1665 if (!inq_buff)
1666 goto bail_out;
1668 /* Do an inquiry to the device to see what it is. */
1669 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1670 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1671 /* Inquiry failed (msg printed already) */
1672 dev_err(&h->pdev->dev,
1673 "hpsa_update_device_info: inquiry failed\n");
1674 goto bail_out;
1677 this_device->devtype = (inq_buff[0] & 0x1f);
1678 memcpy(this_device->scsi3addr, scsi3addr, 8);
1679 memcpy(this_device->vendor, &inq_buff[8],
1680 sizeof(this_device->vendor));
1681 memcpy(this_device->model, &inq_buff[16],
1682 sizeof(this_device->model));
1683 memset(this_device->device_id, 0,
1684 sizeof(this_device->device_id));
1685 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1686 sizeof(this_device->device_id));
1688 if (this_device->devtype == TYPE_DISK &&
1689 is_logical_dev_addr_mode(scsi3addr))
1690 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1691 else
1692 this_device->raid_level = RAID_UNKNOWN;
1694 if (is_OBDR_device) {
1695 /* See if this is a One-Button-Disaster-Recovery device
1696 * by looking for "$DR-10" at offset 43 in inquiry data.
1698 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1699 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1700 strncmp(obdr_sig, OBDR_TAPE_SIG,
1701 OBDR_SIG_LEN) == 0);
1704 kfree(inq_buff);
1705 return 0;
1707 bail_out:
1708 kfree(inq_buff);
1709 return 1;
1712 static unsigned char *ext_target_model[] = {
1713 "MSA2012",
1714 "MSA2024",
1715 "MSA2312",
1716 "MSA2324",
1717 "P2000 G3 SAS",
1718 NULL,
1721 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1723 int i;
1725 for (i = 0; ext_target_model[i]; i++)
1726 if (strncmp(device->model, ext_target_model[i],
1727 strlen(ext_target_model[i])) == 0)
1728 return 1;
1729 return 0;
1732 /* Helper function to assign bus, target, lun mapping of devices.
1733 * Puts non-external target logical volumes on bus 0, external target logical
1734 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1735 * Logical drive target and lun are assigned at this time, but
1736 * physical device lun and target assignment are deferred (assigned
1737 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1739 static void figure_bus_target_lun(struct ctlr_info *h,
1740 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1742 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1744 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1745 /* physical device, target and lun filled in later */
1746 if (is_hba_lunid(lunaddrbytes))
1747 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1748 else
1749 /* defer target, lun assignment for physical devices */
1750 hpsa_set_bus_target_lun(device, 2, -1, -1);
1751 return;
1753 /* It's a logical device */
1754 if (is_ext_target(h, device)) {
1755 /* external target way, put logicals on bus 1
1756 * and match target/lun numbers box
1757 * reports, other smart array, bus 0, target 0, match lunid
1759 hpsa_set_bus_target_lun(device,
1760 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1761 return;
1763 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1767 * If there is no lun 0 on a target, linux won't find any devices.
1768 * For the external targets (arrays), we have to manually detect the enclosure
1769 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1770 * it for some reason. *tmpdevice is the target we're adding,
1771 * this_device is a pointer into the current element of currentsd[]
1772 * that we're building up in update_scsi_devices(), below.
1773 * lunzerobits is a bitmap that tracks which targets already have a
1774 * lun 0 assigned.
1775 * Returns 1 if an enclosure was added, 0 if not.
1777 static int add_ext_target_dev(struct ctlr_info *h,
1778 struct hpsa_scsi_dev_t *tmpdevice,
1779 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1780 unsigned long lunzerobits[], int *n_ext_target_devs)
1782 unsigned char scsi3addr[8];
1784 if (test_bit(tmpdevice->target, lunzerobits))
1785 return 0; /* There is already a lun 0 on this target. */
1787 if (!is_logical_dev_addr_mode(lunaddrbytes))
1788 return 0; /* It's the logical targets that may lack lun 0. */
1790 if (!is_ext_target(h, tmpdevice))
1791 return 0; /* Only external target devices have this problem. */
1793 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1794 return 0;
1796 memset(scsi3addr, 0, 8);
1797 scsi3addr[3] = tmpdevice->target;
1798 if (is_hba_lunid(scsi3addr))
1799 return 0; /* Don't add the RAID controller here. */
1801 if (is_scsi_rev_5(h))
1802 return 0; /* p1210m doesn't need to do this. */
1804 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1805 dev_warn(&h->pdev->dev, "Maximum number of external "
1806 "target devices exceeded. Check your hardware "
1807 "configuration.");
1808 return 0;
1811 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1812 return 0;
1813 (*n_ext_target_devs)++;
1814 hpsa_set_bus_target_lun(this_device,
1815 tmpdevice->bus, tmpdevice->target, 0);
1816 set_bit(tmpdevice->target, lunzerobits);
1817 return 1;
1821 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1822 * logdev. The number of luns in physdev and logdev are returned in
1823 * *nphysicals and *nlogicals, respectively.
1824 * Returns 0 on success, -1 otherwise.
1826 static int hpsa_gather_lun_info(struct ctlr_info *h,
1827 int reportlunsize,
1828 struct ReportLUNdata *physdev, u32 *nphysicals,
1829 struct ReportLUNdata *logdev, u32 *nlogicals)
1831 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1832 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1833 return -1;
1835 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1836 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1837 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1838 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1839 *nphysicals - HPSA_MAX_PHYS_LUN);
1840 *nphysicals = HPSA_MAX_PHYS_LUN;
1842 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1843 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1844 return -1;
1846 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1847 /* Reject Logicals in excess of our max capability. */
1848 if (*nlogicals > HPSA_MAX_LUN) {
1849 dev_warn(&h->pdev->dev,
1850 "maximum logical LUNs (%d) exceeded. "
1851 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1852 *nlogicals - HPSA_MAX_LUN);
1853 *nlogicals = HPSA_MAX_LUN;
1855 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1856 dev_warn(&h->pdev->dev,
1857 "maximum logical + physical LUNs (%d) exceeded. "
1858 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1859 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1860 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1862 return 0;
1865 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1866 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1867 struct ReportLUNdata *logdev_list)
1869 /* Helper function, figure out where the LUN ID info is coming from
1870 * given index i, lists of physical and logical devices, where in
1871 * the list the raid controller is supposed to appear (first or last)
1874 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1875 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1877 if (i == raid_ctlr_position)
1878 return RAID_CTLR_LUNID;
1880 if (i < logicals_start)
1881 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1883 if (i < last_device)
1884 return &logdev_list->LUN[i - nphysicals -
1885 (raid_ctlr_position == 0)][0];
1886 BUG();
1887 return NULL;
1890 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1892 /* the idea here is we could get notified
1893 * that some devices have changed, so we do a report
1894 * physical luns and report logical luns cmd, and adjust
1895 * our list of devices accordingly.
1897 * The scsi3addr's of devices won't change so long as the
1898 * adapter is not reset. That means we can rescan and
1899 * tell which devices we already know about, vs. new
1900 * devices, vs. disappearing devices.
1902 struct ReportLUNdata *physdev_list = NULL;
1903 struct ReportLUNdata *logdev_list = NULL;
1904 u32 nphysicals = 0;
1905 u32 nlogicals = 0;
1906 u32 ndev_allocated = 0;
1907 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1908 int ncurrent = 0;
1909 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1910 int i, n_ext_target_devs, ndevs_to_allocate;
1911 int raid_ctlr_position;
1912 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1914 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1915 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1916 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1917 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1919 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1920 dev_err(&h->pdev->dev, "out of memory\n");
1921 goto out;
1923 memset(lunzerobits, 0, sizeof(lunzerobits));
1925 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1926 logdev_list, &nlogicals))
1927 goto out;
1929 /* We might see up to the maximum number of logical and physical disks
1930 * plus external target devices, and a device for the local RAID
1931 * controller.
1933 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1935 /* Allocate the per device structures */
1936 for (i = 0; i < ndevs_to_allocate; i++) {
1937 if (i >= HPSA_MAX_DEVICES) {
1938 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1939 " %d devices ignored.\n", HPSA_MAX_DEVICES,
1940 ndevs_to_allocate - HPSA_MAX_DEVICES);
1941 break;
1944 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1945 if (!currentsd[i]) {
1946 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1947 __FILE__, __LINE__);
1948 goto out;
1950 ndev_allocated++;
1953 if (unlikely(is_scsi_rev_5(h)))
1954 raid_ctlr_position = 0;
1955 else
1956 raid_ctlr_position = nphysicals + nlogicals;
1958 /* adjust our table of devices */
1959 n_ext_target_devs = 0;
1960 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1961 u8 *lunaddrbytes, is_OBDR = 0;
1963 /* Figure out where the LUN ID info is coming from */
1964 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1965 i, nphysicals, nlogicals, physdev_list, logdev_list);
1966 /* skip masked physical devices. */
1967 if (lunaddrbytes[3] & 0xC0 &&
1968 i < nphysicals + (raid_ctlr_position == 0))
1969 continue;
1971 /* Get device type, vendor, model, device id */
1972 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1973 &is_OBDR))
1974 continue; /* skip it if we can't talk to it. */
1975 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1976 this_device = currentsd[ncurrent];
1979 * For external target devices, we have to insert a LUN 0 which
1980 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1981 * is nonetheless an enclosure device there. We have to
1982 * present that otherwise linux won't find anything if
1983 * there is no lun 0.
1985 if (add_ext_target_dev(h, tmpdevice, this_device,
1986 lunaddrbytes, lunzerobits,
1987 &n_ext_target_devs)) {
1988 ncurrent++;
1989 this_device = currentsd[ncurrent];
1992 *this_device = *tmpdevice;
1994 switch (this_device->devtype) {
1995 case TYPE_ROM:
1996 /* We don't *really* support actual CD-ROM devices,
1997 * just "One Button Disaster Recovery" tape drive
1998 * which temporarily pretends to be a CD-ROM drive.
1999 * So we check that the device is really an OBDR tape
2000 * device by checking for "$DR-10" in bytes 43-48 of
2001 * the inquiry data.
2003 if (is_OBDR)
2004 ncurrent++;
2005 break;
2006 case TYPE_DISK:
2007 if (i < nphysicals)
2008 break;
2009 ncurrent++;
2010 break;
2011 case TYPE_TAPE:
2012 case TYPE_MEDIUM_CHANGER:
2013 ncurrent++;
2014 break;
2015 case TYPE_RAID:
2016 /* Only present the Smartarray HBA as a RAID controller.
2017 * If it's a RAID controller other than the HBA itself
2018 * (an external RAID controller, MSA500 or similar)
2019 * don't present it.
2021 if (!is_hba_lunid(lunaddrbytes))
2022 break;
2023 ncurrent++;
2024 break;
2025 default:
2026 break;
2028 if (ncurrent >= HPSA_MAX_DEVICES)
2029 break;
2031 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2032 out:
2033 kfree(tmpdevice);
2034 for (i = 0; i < ndev_allocated; i++)
2035 kfree(currentsd[i]);
2036 kfree(currentsd);
2037 kfree(physdev_list);
2038 kfree(logdev_list);
2041 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2042 * dma mapping and fills in the scatter gather entries of the
2043 * hpsa command, cp.
2045 static int hpsa_scatter_gather(struct ctlr_info *h,
2046 struct CommandList *cp,
2047 struct scsi_cmnd *cmd)
2049 unsigned int len;
2050 struct scatterlist *sg;
2051 u64 addr64;
2052 int use_sg, i, sg_index, chained;
2053 struct SGDescriptor *curr_sg;
2055 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2057 use_sg = scsi_dma_map(cmd);
2058 if (use_sg < 0)
2059 return use_sg;
2061 if (!use_sg)
2062 goto sglist_finished;
2064 curr_sg = cp->SG;
2065 chained = 0;
2066 sg_index = 0;
2067 scsi_for_each_sg(cmd, sg, use_sg, i) {
2068 if (i == h->max_cmd_sg_entries - 1 &&
2069 use_sg > h->max_cmd_sg_entries) {
2070 chained = 1;
2071 curr_sg = h->cmd_sg_list[cp->cmdindex];
2072 sg_index = 0;
2074 addr64 = (u64) sg_dma_address(sg);
2075 len = sg_dma_len(sg);
2076 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2077 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2078 curr_sg->Len = len;
2079 curr_sg->Ext = 0; /* we are not chaining */
2080 curr_sg++;
2083 if (use_sg + chained > h->maxSG)
2084 h->maxSG = use_sg + chained;
2086 if (chained) {
2087 cp->Header.SGList = h->max_cmd_sg_entries;
2088 cp->Header.SGTotal = (u16) (use_sg + 1);
2089 hpsa_map_sg_chain_block(h, cp);
2090 return 0;
2093 sglist_finished:
2095 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2096 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2097 return 0;
2101 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2102 void (*done)(struct scsi_cmnd *))
2104 struct ctlr_info *h;
2105 struct hpsa_scsi_dev_t *dev;
2106 unsigned char scsi3addr[8];
2107 struct CommandList *c;
2108 unsigned long flags;
2110 /* Get the ptr to our adapter structure out of cmd->host. */
2111 h = sdev_to_hba(cmd->device);
2112 dev = cmd->device->hostdata;
2113 if (!dev) {
2114 cmd->result = DID_NO_CONNECT << 16;
2115 done(cmd);
2116 return 0;
2118 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2120 spin_lock_irqsave(&h->lock, flags);
2121 if (unlikely(h->lockup_detected)) {
2122 spin_unlock_irqrestore(&h->lock, flags);
2123 cmd->result = DID_ERROR << 16;
2124 done(cmd);
2125 return 0;
2127 spin_unlock_irqrestore(&h->lock, flags);
2128 c = cmd_alloc(h);
2129 if (c == NULL) { /* trouble... */
2130 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2131 return SCSI_MLQUEUE_HOST_BUSY;
2134 /* Fill in the command list header */
2136 cmd->scsi_done = done; /* save this for use by completion code */
2138 /* save c in case we have to abort it */
2139 cmd->host_scribble = (unsigned char *) c;
2141 c->cmd_type = CMD_SCSI;
2142 c->scsi_cmd = cmd;
2143 c->Header.ReplyQueue = 0; /* unused in simple mode */
2144 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2145 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2146 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2148 /* Fill in the request block... */
2150 c->Request.Timeout = 0;
2151 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2152 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2153 c->Request.CDBLen = cmd->cmd_len;
2154 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2155 c->Request.Type.Type = TYPE_CMD;
2156 c->Request.Type.Attribute = ATTR_SIMPLE;
2157 switch (cmd->sc_data_direction) {
2158 case DMA_TO_DEVICE:
2159 c->Request.Type.Direction = XFER_WRITE;
2160 break;
2161 case DMA_FROM_DEVICE:
2162 c->Request.Type.Direction = XFER_READ;
2163 break;
2164 case DMA_NONE:
2165 c->Request.Type.Direction = XFER_NONE;
2166 break;
2167 case DMA_BIDIRECTIONAL:
2168 /* This can happen if a buggy application does a scsi passthru
2169 * and sets both inlen and outlen to non-zero. ( see
2170 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2173 c->Request.Type.Direction = XFER_RSVD;
2174 /* This is technically wrong, and hpsa controllers should
2175 * reject it with CMD_INVALID, which is the most correct
2176 * response, but non-fibre backends appear to let it
2177 * slide by, and give the same results as if this field
2178 * were set correctly. Either way is acceptable for
2179 * our purposes here.
2182 break;
2184 default:
2185 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2186 cmd->sc_data_direction);
2187 BUG();
2188 break;
2191 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2192 cmd_free(h, c);
2193 return SCSI_MLQUEUE_HOST_BUSY;
2195 enqueue_cmd_and_start_io(h, c);
2196 /* the cmd'll come back via intr handler in complete_scsi_command() */
2197 return 0;
2200 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2202 static void hpsa_scan_start(struct Scsi_Host *sh)
2204 struct ctlr_info *h = shost_to_hba(sh);
2205 unsigned long flags;
2207 /* wait until any scan already in progress is finished. */
2208 while (1) {
2209 spin_lock_irqsave(&h->scan_lock, flags);
2210 if (h->scan_finished)
2211 break;
2212 spin_unlock_irqrestore(&h->scan_lock, flags);
2213 wait_event(h->scan_wait_queue, h->scan_finished);
2214 /* Note: We don't need to worry about a race between this
2215 * thread and driver unload because the midlayer will
2216 * have incremented the reference count, so unload won't
2217 * happen if we're in here.
2220 h->scan_finished = 0; /* mark scan as in progress */
2221 spin_unlock_irqrestore(&h->scan_lock, flags);
2223 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2225 spin_lock_irqsave(&h->scan_lock, flags);
2226 h->scan_finished = 1; /* mark scan as finished. */
2227 wake_up_all(&h->scan_wait_queue);
2228 spin_unlock_irqrestore(&h->scan_lock, flags);
2231 static int hpsa_scan_finished(struct Scsi_Host *sh,
2232 unsigned long elapsed_time)
2234 struct ctlr_info *h = shost_to_hba(sh);
2235 unsigned long flags;
2236 int finished;
2238 spin_lock_irqsave(&h->scan_lock, flags);
2239 finished = h->scan_finished;
2240 spin_unlock_irqrestore(&h->scan_lock, flags);
2241 return finished;
2244 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2245 int qdepth, int reason)
2247 struct ctlr_info *h = sdev_to_hba(sdev);
2249 if (reason != SCSI_QDEPTH_DEFAULT)
2250 return -ENOTSUPP;
2252 if (qdepth < 1)
2253 qdepth = 1;
2254 else
2255 if (qdepth > h->nr_cmds)
2256 qdepth = h->nr_cmds;
2257 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2258 return sdev->queue_depth;
2261 static void hpsa_unregister_scsi(struct ctlr_info *h)
2263 /* we are being forcibly unloaded, and may not refuse. */
2264 scsi_remove_host(h->scsi_host);
2265 scsi_host_put(h->scsi_host);
2266 h->scsi_host = NULL;
2269 static int hpsa_register_scsi(struct ctlr_info *h)
2271 struct Scsi_Host *sh;
2272 int error;
2274 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2275 if (sh == NULL)
2276 goto fail;
2278 sh->io_port = 0;
2279 sh->n_io_port = 0;
2280 sh->this_id = -1;
2281 sh->max_channel = 3;
2282 sh->max_cmd_len = MAX_COMMAND_SIZE;
2283 sh->max_lun = HPSA_MAX_LUN;
2284 sh->max_id = HPSA_MAX_LUN;
2285 sh->can_queue = h->nr_cmds;
2286 sh->cmd_per_lun = h->nr_cmds;
2287 sh->sg_tablesize = h->maxsgentries;
2288 h->scsi_host = sh;
2289 sh->hostdata[0] = (unsigned long) h;
2290 sh->irq = h->intr[h->intr_mode];
2291 sh->unique_id = sh->irq;
2292 error = scsi_add_host(sh, &h->pdev->dev);
2293 if (error)
2294 goto fail_host_put;
2295 scsi_scan_host(sh);
2296 return 0;
2298 fail_host_put:
2299 dev_err(&h->pdev->dev, "%s: scsi_add_host"
2300 " failed for controller %d\n", __func__, h->ctlr);
2301 scsi_host_put(sh);
2302 return error;
2303 fail:
2304 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2305 " failed for controller %d\n", __func__, h->ctlr);
2306 return -ENOMEM;
2309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2310 unsigned char lunaddr[])
2312 int rc = 0;
2313 int count = 0;
2314 int waittime = 1; /* seconds */
2315 struct CommandList *c;
2317 c = cmd_special_alloc(h);
2318 if (!c) {
2319 dev_warn(&h->pdev->dev, "out of memory in "
2320 "wait_for_device_to_become_ready.\n");
2321 return IO_ERROR;
2324 /* Send test unit ready until device ready, or give up. */
2325 while (count < HPSA_TUR_RETRY_LIMIT) {
2327 /* Wait for a bit. do this first, because if we send
2328 * the TUR right away, the reset will just abort it.
2330 msleep(1000 * waittime);
2331 count++;
2333 /* Increase wait time with each try, up to a point. */
2334 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2335 waittime = waittime * 2;
2337 /* Send the Test Unit Ready */
2338 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2339 hpsa_scsi_do_simple_cmd_core(h, c);
2340 /* no unmap needed here because no data xfer. */
2342 if (c->err_info->CommandStatus == CMD_SUCCESS)
2343 break;
2345 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2346 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2347 (c->err_info->SenseInfo[2] == NO_SENSE ||
2348 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2349 break;
2351 dev_warn(&h->pdev->dev, "waiting %d secs "
2352 "for device to become ready.\n", waittime);
2353 rc = 1; /* device not ready. */
2356 if (rc)
2357 dev_warn(&h->pdev->dev, "giving up on device.\n");
2358 else
2359 dev_warn(&h->pdev->dev, "device is ready.\n");
2361 cmd_special_free(h, c);
2362 return rc;
2365 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2366 * complaining. Doing a host- or bus-reset can't do anything good here.
2368 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2370 int rc;
2371 struct ctlr_info *h;
2372 struct hpsa_scsi_dev_t *dev;
2374 /* find the controller to which the command to be aborted was sent */
2375 h = sdev_to_hba(scsicmd->device);
2376 if (h == NULL) /* paranoia */
2377 return FAILED;
2378 dev = scsicmd->device->hostdata;
2379 if (!dev) {
2380 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2381 "device lookup failed.\n");
2382 return FAILED;
2384 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2385 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2386 /* send a reset to the SCSI LUN which the command was sent to */
2387 rc = hpsa_send_reset(h, dev->scsi3addr);
2388 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2389 return SUCCESS;
2391 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2392 return FAILED;
2395 static void swizzle_abort_tag(u8 *tag)
2397 u8 original_tag[8];
2399 memcpy(original_tag, tag, 8);
2400 tag[0] = original_tag[3];
2401 tag[1] = original_tag[2];
2402 tag[2] = original_tag[1];
2403 tag[3] = original_tag[0];
2404 tag[4] = original_tag[7];
2405 tag[5] = original_tag[6];
2406 tag[6] = original_tag[5];
2407 tag[7] = original_tag[4];
2410 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2411 struct CommandList *abort, int swizzle)
2413 int rc = IO_OK;
2414 struct CommandList *c;
2415 struct ErrorInfo *ei;
2417 c = cmd_special_alloc(h);
2418 if (c == NULL) { /* trouble... */
2419 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2420 return -ENOMEM;
2423 fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2424 if (swizzle)
2425 swizzle_abort_tag(&c->Request.CDB[4]);
2426 hpsa_scsi_do_simple_cmd_core(h, c);
2427 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2428 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2429 /* no unmap needed here because no data xfer. */
2431 ei = c->err_info;
2432 switch (ei->CommandStatus) {
2433 case CMD_SUCCESS:
2434 break;
2435 case CMD_UNABORTABLE: /* Very common, don't make noise. */
2436 rc = -1;
2437 break;
2438 default:
2439 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2440 __func__, abort->Header.Tag.upper,
2441 abort->Header.Tag.lower);
2442 hpsa_scsi_interpret_error(c);
2443 rc = -1;
2444 break;
2446 cmd_special_free(h, c);
2447 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2448 abort->Header.Tag.upper, abort->Header.Tag.lower);
2449 return rc;
2453 * hpsa_find_cmd_in_queue
2455 * Used to determine whether a command (find) is still present
2456 * in queue_head. Optionally excludes the last element of queue_head.
2458 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2459 * not yet been submitted, and so can be aborted by the driver without
2460 * sending an abort to the hardware.
2462 * Returns pointer to command if found in queue, NULL otherwise.
2464 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2465 struct scsi_cmnd *find, struct list_head *queue_head)
2467 unsigned long flags;
2468 struct CommandList *c = NULL; /* ptr into cmpQ */
2470 if (!find)
2471 return 0;
2472 spin_lock_irqsave(&h->lock, flags);
2473 list_for_each_entry(c, queue_head, list) {
2474 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2475 continue;
2476 if (c->scsi_cmd == find) {
2477 spin_unlock_irqrestore(&h->lock, flags);
2478 return c;
2481 spin_unlock_irqrestore(&h->lock, flags);
2482 return NULL;
2485 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2486 u8 *tag, struct list_head *queue_head)
2488 unsigned long flags;
2489 struct CommandList *c;
2491 spin_lock_irqsave(&h->lock, flags);
2492 list_for_each_entry(c, queue_head, list) {
2493 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2494 continue;
2495 spin_unlock_irqrestore(&h->lock, flags);
2496 return c;
2498 spin_unlock_irqrestore(&h->lock, flags);
2499 return NULL;
2502 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2503 * tell which kind we're dealing with, so we send the abort both ways. There
2504 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2505 * way we construct our tags but we check anyway in case the assumptions which
2506 * make this true someday become false.
2508 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2509 unsigned char *scsi3addr, struct CommandList *abort)
2511 u8 swizzled_tag[8];
2512 struct CommandList *c;
2513 int rc = 0, rc2 = 0;
2515 /* we do not expect to find the swizzled tag in our queue, but
2516 * check anyway just to be sure the assumptions which make this
2517 * the case haven't become wrong.
2519 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2520 swizzle_abort_tag(swizzled_tag);
2521 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2522 if (c != NULL) {
2523 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2524 return hpsa_send_abort(h, scsi3addr, abort, 0);
2526 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2528 /* if the command is still in our queue, we can't conclude that it was
2529 * aborted (it might have just completed normally) but in any case
2530 * we don't need to try to abort it another way.
2532 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2533 if (c)
2534 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2535 return rc && rc2;
2538 /* Send an abort for the specified command.
2539 * If the device and controller support it,
2540 * send a task abort request.
2542 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2545 int i, rc;
2546 struct ctlr_info *h;
2547 struct hpsa_scsi_dev_t *dev;
2548 struct CommandList *abort; /* pointer to command to be aborted */
2549 struct CommandList *found;
2550 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
2551 char msg[256]; /* For debug messaging. */
2552 int ml = 0;
2554 /* Find the controller of the command to be aborted */
2555 h = sdev_to_hba(sc->device);
2556 if (WARN(h == NULL,
2557 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2558 return FAILED;
2560 /* Check that controller supports some kind of task abort */
2561 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2562 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2563 return FAILED;
2565 memset(msg, 0, sizeof(msg));
2566 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2567 h->scsi_host->host_no, sc->device->channel,
2568 sc->device->id, sc->device->lun);
2570 /* Find the device of the command to be aborted */
2571 dev = sc->device->hostdata;
2572 if (!dev) {
2573 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2574 msg);
2575 return FAILED;
2578 /* Get SCSI command to be aborted */
2579 abort = (struct CommandList *) sc->host_scribble;
2580 if (abort == NULL) {
2581 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2582 msg);
2583 return FAILED;
2586 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2587 abort->Header.Tag.upper, abort->Header.Tag.lower);
2588 as = (struct scsi_cmnd *) abort->scsi_cmd;
2589 if (as != NULL)
2590 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2591 as->cmnd[0], as->serial_number);
2592 dev_dbg(&h->pdev->dev, "%s\n", msg);
2593 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2594 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2596 /* Search reqQ to See if command is queued but not submitted,
2597 * if so, complete the command with aborted status and remove
2598 * it from the reqQ.
2600 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2601 if (found) {
2602 found->err_info->CommandStatus = CMD_ABORTED;
2603 finish_cmd(found);
2604 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2605 msg);
2606 return SUCCESS;
2609 /* not in reqQ, if also not in cmpQ, must have already completed */
2610 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2611 if (!found) {
2612 dev_dbg(&h->pdev->dev, "%s Request FAILED (not known to driver).\n",
2613 msg);
2614 return SUCCESS;
2618 * Command is in flight, or possibly already completed
2619 * by the firmware (but not to the scsi mid layer) but we can't
2620 * distinguish which. Send the abort down.
2622 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2623 if (rc != 0) {
2624 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2625 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2626 h->scsi_host->host_no,
2627 dev->bus, dev->target, dev->lun);
2628 return FAILED;
2630 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2632 /* If the abort(s) above completed and actually aborted the
2633 * command, then the command to be aborted should already be
2634 * completed. If not, wait around a bit more to see if they
2635 * manage to complete normally.
2637 #define ABORT_COMPLETE_WAIT_SECS 30
2638 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2639 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2640 if (!found)
2641 return SUCCESS;
2642 msleep(100);
2644 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2645 msg, ABORT_COMPLETE_WAIT_SECS);
2646 return FAILED;
2651 * For operations that cannot sleep, a command block is allocated at init,
2652 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2653 * which ones are free or in use. Lock must be held when calling this.
2654 * cmd_free() is the complement.
2656 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2658 struct CommandList *c;
2659 int i;
2660 union u64bit temp64;
2661 dma_addr_t cmd_dma_handle, err_dma_handle;
2662 unsigned long flags;
2664 spin_lock_irqsave(&h->lock, flags);
2665 do {
2666 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2667 if (i == h->nr_cmds) {
2668 spin_unlock_irqrestore(&h->lock, flags);
2669 return NULL;
2671 } while (test_and_set_bit
2672 (i & (BITS_PER_LONG - 1),
2673 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2674 h->nr_allocs++;
2675 spin_unlock_irqrestore(&h->lock, flags);
2677 c = h->cmd_pool + i;
2678 memset(c, 0, sizeof(*c));
2679 cmd_dma_handle = h->cmd_pool_dhandle
2680 + i * sizeof(*c);
2681 c->err_info = h->errinfo_pool + i;
2682 memset(c->err_info, 0, sizeof(*c->err_info));
2683 err_dma_handle = h->errinfo_pool_dhandle
2684 + i * sizeof(*c->err_info);
2686 c->cmdindex = i;
2688 INIT_LIST_HEAD(&c->list);
2689 c->busaddr = (u32) cmd_dma_handle;
2690 temp64.val = (u64) err_dma_handle;
2691 c->ErrDesc.Addr.lower = temp64.val32.lower;
2692 c->ErrDesc.Addr.upper = temp64.val32.upper;
2693 c->ErrDesc.Len = sizeof(*c->err_info);
2695 c->h = h;
2696 return c;
2699 /* For operations that can wait for kmalloc to possibly sleep,
2700 * this routine can be called. Lock need not be held to call
2701 * cmd_special_alloc. cmd_special_free() is the complement.
2703 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2705 struct CommandList *c;
2706 union u64bit temp64;
2707 dma_addr_t cmd_dma_handle, err_dma_handle;
2709 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2710 if (c == NULL)
2711 return NULL;
2712 memset(c, 0, sizeof(*c));
2714 c->cmdindex = -1;
2716 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2717 &err_dma_handle);
2719 if (c->err_info == NULL) {
2720 pci_free_consistent(h->pdev,
2721 sizeof(*c), c, cmd_dma_handle);
2722 return NULL;
2724 memset(c->err_info, 0, sizeof(*c->err_info));
2726 INIT_LIST_HEAD(&c->list);
2727 c->busaddr = (u32) cmd_dma_handle;
2728 temp64.val = (u64) err_dma_handle;
2729 c->ErrDesc.Addr.lower = temp64.val32.lower;
2730 c->ErrDesc.Addr.upper = temp64.val32.upper;
2731 c->ErrDesc.Len = sizeof(*c->err_info);
2733 c->h = h;
2734 return c;
2737 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2739 int i;
2740 unsigned long flags;
2742 i = c - h->cmd_pool;
2743 spin_lock_irqsave(&h->lock, flags);
2744 clear_bit(i & (BITS_PER_LONG - 1),
2745 h->cmd_pool_bits + (i / BITS_PER_LONG));
2746 h->nr_frees++;
2747 spin_unlock_irqrestore(&h->lock, flags);
2750 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2752 union u64bit temp64;
2754 temp64.val32.lower = c->ErrDesc.Addr.lower;
2755 temp64.val32.upper = c->ErrDesc.Addr.upper;
2756 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2757 c->err_info, (dma_addr_t) temp64.val);
2758 pci_free_consistent(h->pdev, sizeof(*c),
2759 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2762 #ifdef CONFIG_COMPAT
2764 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2766 IOCTL32_Command_struct __user *arg32 =
2767 (IOCTL32_Command_struct __user *) arg;
2768 IOCTL_Command_struct arg64;
2769 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2770 int err;
2771 u32 cp;
2773 memset(&arg64, 0, sizeof(arg64));
2774 err = 0;
2775 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2776 sizeof(arg64.LUN_info));
2777 err |= copy_from_user(&arg64.Request, &arg32->Request,
2778 sizeof(arg64.Request));
2779 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2780 sizeof(arg64.error_info));
2781 err |= get_user(arg64.buf_size, &arg32->buf_size);
2782 err |= get_user(cp, &arg32->buf);
2783 arg64.buf = compat_ptr(cp);
2784 err |= copy_to_user(p, &arg64, sizeof(arg64));
2786 if (err)
2787 return -EFAULT;
2789 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2790 if (err)
2791 return err;
2792 err |= copy_in_user(&arg32->error_info, &p->error_info,
2793 sizeof(arg32->error_info));
2794 if (err)
2795 return -EFAULT;
2796 return err;
2799 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2800 int cmd, void *arg)
2802 BIG_IOCTL32_Command_struct __user *arg32 =
2803 (BIG_IOCTL32_Command_struct __user *) arg;
2804 BIG_IOCTL_Command_struct arg64;
2805 BIG_IOCTL_Command_struct __user *p =
2806 compat_alloc_user_space(sizeof(arg64));
2807 int err;
2808 u32 cp;
2810 memset(&arg64, 0, sizeof(arg64));
2811 err = 0;
2812 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2813 sizeof(arg64.LUN_info));
2814 err |= copy_from_user(&arg64.Request, &arg32->Request,
2815 sizeof(arg64.Request));
2816 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2817 sizeof(arg64.error_info));
2818 err |= get_user(arg64.buf_size, &arg32->buf_size);
2819 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2820 err |= get_user(cp, &arg32->buf);
2821 arg64.buf = compat_ptr(cp);
2822 err |= copy_to_user(p, &arg64, sizeof(arg64));
2824 if (err)
2825 return -EFAULT;
2827 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2828 if (err)
2829 return err;
2830 err |= copy_in_user(&arg32->error_info, &p->error_info,
2831 sizeof(arg32->error_info));
2832 if (err)
2833 return -EFAULT;
2834 return err;
2837 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2839 switch (cmd) {
2840 case CCISS_GETPCIINFO:
2841 case CCISS_GETINTINFO:
2842 case CCISS_SETINTINFO:
2843 case CCISS_GETNODENAME:
2844 case CCISS_SETNODENAME:
2845 case CCISS_GETHEARTBEAT:
2846 case CCISS_GETBUSTYPES:
2847 case CCISS_GETFIRMVER:
2848 case CCISS_GETDRIVVER:
2849 case CCISS_REVALIDVOLS:
2850 case CCISS_DEREGDISK:
2851 case CCISS_REGNEWDISK:
2852 case CCISS_REGNEWD:
2853 case CCISS_RESCANDISK:
2854 case CCISS_GETLUNINFO:
2855 return hpsa_ioctl(dev, cmd, arg);
2857 case CCISS_PASSTHRU32:
2858 return hpsa_ioctl32_passthru(dev, cmd, arg);
2859 case CCISS_BIG_PASSTHRU32:
2860 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2862 default:
2863 return -ENOIOCTLCMD;
2866 #endif
2868 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2870 struct hpsa_pci_info pciinfo;
2872 if (!argp)
2873 return -EINVAL;
2874 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2875 pciinfo.bus = h->pdev->bus->number;
2876 pciinfo.dev_fn = h->pdev->devfn;
2877 pciinfo.board_id = h->board_id;
2878 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2879 return -EFAULT;
2880 return 0;
2883 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2885 DriverVer_type DriverVer;
2886 unsigned char vmaj, vmin, vsubmin;
2887 int rc;
2889 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2890 &vmaj, &vmin, &vsubmin);
2891 if (rc != 3) {
2892 dev_info(&h->pdev->dev, "driver version string '%s' "
2893 "unrecognized.", HPSA_DRIVER_VERSION);
2894 vmaj = 0;
2895 vmin = 0;
2896 vsubmin = 0;
2898 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2899 if (!argp)
2900 return -EINVAL;
2901 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2902 return -EFAULT;
2903 return 0;
2906 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2908 IOCTL_Command_struct iocommand;
2909 struct CommandList *c;
2910 char *buff = NULL;
2911 union u64bit temp64;
2913 if (!argp)
2914 return -EINVAL;
2915 if (!capable(CAP_SYS_RAWIO))
2916 return -EPERM;
2917 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2918 return -EFAULT;
2919 if ((iocommand.buf_size < 1) &&
2920 (iocommand.Request.Type.Direction != XFER_NONE)) {
2921 return -EINVAL;
2923 if (iocommand.buf_size > 0) {
2924 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2925 if (buff == NULL)
2926 return -EFAULT;
2927 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2928 /* Copy the data into the buffer we created */
2929 if (copy_from_user(buff, iocommand.buf,
2930 iocommand.buf_size)) {
2931 kfree(buff);
2932 return -EFAULT;
2934 } else {
2935 memset(buff, 0, iocommand.buf_size);
2938 c = cmd_special_alloc(h);
2939 if (c == NULL) {
2940 kfree(buff);
2941 return -ENOMEM;
2943 /* Fill in the command type */
2944 c->cmd_type = CMD_IOCTL_PEND;
2945 /* Fill in Command Header */
2946 c->Header.ReplyQueue = 0; /* unused in simple mode */
2947 if (iocommand.buf_size > 0) { /* buffer to fill */
2948 c->Header.SGList = 1;
2949 c->Header.SGTotal = 1;
2950 } else { /* no buffers to fill */
2951 c->Header.SGList = 0;
2952 c->Header.SGTotal = 0;
2954 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2955 /* use the kernel address the cmd block for tag */
2956 c->Header.Tag.lower = c->busaddr;
2958 /* Fill in Request block */
2959 memcpy(&c->Request, &iocommand.Request,
2960 sizeof(c->Request));
2962 /* Fill in the scatter gather information */
2963 if (iocommand.buf_size > 0) {
2964 temp64.val = pci_map_single(h->pdev, buff,
2965 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2966 c->SG[0].Addr.lower = temp64.val32.lower;
2967 c->SG[0].Addr.upper = temp64.val32.upper;
2968 c->SG[0].Len = iocommand.buf_size;
2969 c->SG[0].Ext = 0; /* we are not chaining*/
2971 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2972 if (iocommand.buf_size > 0)
2973 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2974 check_ioctl_unit_attention(h, c);
2976 /* Copy the error information out */
2977 memcpy(&iocommand.error_info, c->err_info,
2978 sizeof(iocommand.error_info));
2979 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2980 kfree(buff);
2981 cmd_special_free(h, c);
2982 return -EFAULT;
2984 if (iocommand.Request.Type.Direction == XFER_READ &&
2985 iocommand.buf_size > 0) {
2986 /* Copy the data out of the buffer we created */
2987 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2988 kfree(buff);
2989 cmd_special_free(h, c);
2990 return -EFAULT;
2993 kfree(buff);
2994 cmd_special_free(h, c);
2995 return 0;
2998 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3000 BIG_IOCTL_Command_struct *ioc;
3001 struct CommandList *c;
3002 unsigned char **buff = NULL;
3003 int *buff_size = NULL;
3004 union u64bit temp64;
3005 BYTE sg_used = 0;
3006 int status = 0;
3007 int i;
3008 u32 left;
3009 u32 sz;
3010 BYTE __user *data_ptr;
3012 if (!argp)
3013 return -EINVAL;
3014 if (!capable(CAP_SYS_RAWIO))
3015 return -EPERM;
3016 ioc = (BIG_IOCTL_Command_struct *)
3017 kmalloc(sizeof(*ioc), GFP_KERNEL);
3018 if (!ioc) {
3019 status = -ENOMEM;
3020 goto cleanup1;
3022 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3023 status = -EFAULT;
3024 goto cleanup1;
3026 if ((ioc->buf_size < 1) &&
3027 (ioc->Request.Type.Direction != XFER_NONE)) {
3028 status = -EINVAL;
3029 goto cleanup1;
3031 /* Check kmalloc limits using all SGs */
3032 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3033 status = -EINVAL;
3034 goto cleanup1;
3036 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3037 status = -EINVAL;
3038 goto cleanup1;
3040 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3041 if (!buff) {
3042 status = -ENOMEM;
3043 goto cleanup1;
3045 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3046 if (!buff_size) {
3047 status = -ENOMEM;
3048 goto cleanup1;
3050 left = ioc->buf_size;
3051 data_ptr = ioc->buf;
3052 while (left) {
3053 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3054 buff_size[sg_used] = sz;
3055 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3056 if (buff[sg_used] == NULL) {
3057 status = -ENOMEM;
3058 goto cleanup1;
3060 if (ioc->Request.Type.Direction == XFER_WRITE) {
3061 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3062 status = -ENOMEM;
3063 goto cleanup1;
3065 } else
3066 memset(buff[sg_used], 0, sz);
3067 left -= sz;
3068 data_ptr += sz;
3069 sg_used++;
3071 c = cmd_special_alloc(h);
3072 if (c == NULL) {
3073 status = -ENOMEM;
3074 goto cleanup1;
3076 c->cmd_type = CMD_IOCTL_PEND;
3077 c->Header.ReplyQueue = 0;
3078 c->Header.SGList = c->Header.SGTotal = sg_used;
3079 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3080 c->Header.Tag.lower = c->busaddr;
3081 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3082 if (ioc->buf_size > 0) {
3083 int i;
3084 for (i = 0; i < sg_used; i++) {
3085 temp64.val = pci_map_single(h->pdev, buff[i],
3086 buff_size[i], PCI_DMA_BIDIRECTIONAL);
3087 c->SG[i].Addr.lower = temp64.val32.lower;
3088 c->SG[i].Addr.upper = temp64.val32.upper;
3089 c->SG[i].Len = buff_size[i];
3090 /* we are not chaining */
3091 c->SG[i].Ext = 0;
3094 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3095 if (sg_used)
3096 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3097 check_ioctl_unit_attention(h, c);
3098 /* Copy the error information out */
3099 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3100 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3101 cmd_special_free(h, c);
3102 status = -EFAULT;
3103 goto cleanup1;
3105 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3106 /* Copy the data out of the buffer we created */
3107 BYTE __user *ptr = ioc->buf;
3108 for (i = 0; i < sg_used; i++) {
3109 if (copy_to_user(ptr, buff[i], buff_size[i])) {
3110 cmd_special_free(h, c);
3111 status = -EFAULT;
3112 goto cleanup1;
3114 ptr += buff_size[i];
3117 cmd_special_free(h, c);
3118 status = 0;
3119 cleanup1:
3120 if (buff) {
3121 for (i = 0; i < sg_used; i++)
3122 kfree(buff[i]);
3123 kfree(buff);
3125 kfree(buff_size);
3126 kfree(ioc);
3127 return status;
3130 static void check_ioctl_unit_attention(struct ctlr_info *h,
3131 struct CommandList *c)
3133 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3134 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3135 (void) check_for_unit_attention(h, c);
3138 * ioctl
3140 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3142 struct ctlr_info *h;
3143 void __user *argp = (void __user *)arg;
3145 h = sdev_to_hba(dev);
3147 switch (cmd) {
3148 case CCISS_DEREGDISK:
3149 case CCISS_REGNEWDISK:
3150 case CCISS_REGNEWD:
3151 hpsa_scan_start(h->scsi_host);
3152 return 0;
3153 case CCISS_GETPCIINFO:
3154 return hpsa_getpciinfo_ioctl(h, argp);
3155 case CCISS_GETDRIVVER:
3156 return hpsa_getdrivver_ioctl(h, argp);
3157 case CCISS_PASSTHRU:
3158 return hpsa_passthru_ioctl(h, argp);
3159 case CCISS_BIG_PASSTHRU:
3160 return hpsa_big_passthru_ioctl(h, argp);
3161 default:
3162 return -ENOTTY;
3166 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3167 unsigned char *scsi3addr, u8 reset_type)
3169 struct CommandList *c;
3171 c = cmd_alloc(h);
3172 if (!c)
3173 return -ENOMEM;
3174 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3175 RAID_CTLR_LUNID, TYPE_MSG);
3176 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3177 c->waiting = NULL;
3178 enqueue_cmd_and_start_io(h, c);
3179 /* Don't wait for completion, the reset won't complete. Don't free
3180 * the command either. This is the last command we will send before
3181 * re-initializing everything, so it doesn't matter and won't leak.
3183 return 0;
3186 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3187 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3188 int cmd_type)
3190 int pci_dir = XFER_NONE;
3191 struct CommandList *a; /* for commands to be aborted */
3193 c->cmd_type = CMD_IOCTL_PEND;
3194 c->Header.ReplyQueue = 0;
3195 if (buff != NULL && size > 0) {
3196 c->Header.SGList = 1;
3197 c->Header.SGTotal = 1;
3198 } else {
3199 c->Header.SGList = 0;
3200 c->Header.SGTotal = 0;
3202 c->Header.Tag.lower = c->busaddr;
3203 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3205 c->Request.Type.Type = cmd_type;
3206 if (cmd_type == TYPE_CMD) {
3207 switch (cmd) {
3208 case HPSA_INQUIRY:
3209 /* are we trying to read a vital product page */
3210 if (page_code != 0) {
3211 c->Request.CDB[1] = 0x01;
3212 c->Request.CDB[2] = page_code;
3214 c->Request.CDBLen = 6;
3215 c->Request.Type.Attribute = ATTR_SIMPLE;
3216 c->Request.Type.Direction = XFER_READ;
3217 c->Request.Timeout = 0;
3218 c->Request.CDB[0] = HPSA_INQUIRY;
3219 c->Request.CDB[4] = size & 0xFF;
3220 break;
3221 case HPSA_REPORT_LOG:
3222 case HPSA_REPORT_PHYS:
3223 /* Talking to controller so It's a physical command
3224 mode = 00 target = 0. Nothing to write.
3226 c->Request.CDBLen = 12;
3227 c->Request.Type.Attribute = ATTR_SIMPLE;
3228 c->Request.Type.Direction = XFER_READ;
3229 c->Request.Timeout = 0;
3230 c->Request.CDB[0] = cmd;
3231 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3232 c->Request.CDB[7] = (size >> 16) & 0xFF;
3233 c->Request.CDB[8] = (size >> 8) & 0xFF;
3234 c->Request.CDB[9] = size & 0xFF;
3235 break;
3236 case HPSA_CACHE_FLUSH:
3237 c->Request.CDBLen = 12;
3238 c->Request.Type.Attribute = ATTR_SIMPLE;
3239 c->Request.Type.Direction = XFER_WRITE;
3240 c->Request.Timeout = 0;
3241 c->Request.CDB[0] = BMIC_WRITE;
3242 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3243 c->Request.CDB[7] = (size >> 8) & 0xFF;
3244 c->Request.CDB[8] = size & 0xFF;
3245 break;
3246 case TEST_UNIT_READY:
3247 c->Request.CDBLen = 6;
3248 c->Request.Type.Attribute = ATTR_SIMPLE;
3249 c->Request.Type.Direction = XFER_NONE;
3250 c->Request.Timeout = 0;
3251 break;
3252 default:
3253 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3254 BUG();
3255 return;
3257 } else if (cmd_type == TYPE_MSG) {
3258 switch (cmd) {
3260 case HPSA_DEVICE_RESET_MSG:
3261 c->Request.CDBLen = 16;
3262 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
3263 c->Request.Type.Attribute = ATTR_SIMPLE;
3264 c->Request.Type.Direction = XFER_NONE;
3265 c->Request.Timeout = 0; /* Don't time out */
3266 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3267 c->Request.CDB[0] = cmd;
3268 c->Request.CDB[1] = 0x03; /* Reset target above */
3269 /* If bytes 4-7 are zero, it means reset the */
3270 /* LunID device */
3271 c->Request.CDB[4] = 0x00;
3272 c->Request.CDB[5] = 0x00;
3273 c->Request.CDB[6] = 0x00;
3274 c->Request.CDB[7] = 0x00;
3275 break;
3276 case HPSA_ABORT_MSG:
3277 a = buff; /* point to command to be aborted */
3278 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3279 a->Header.Tag.upper, a->Header.Tag.lower,
3280 c->Header.Tag.upper, c->Header.Tag.lower);
3281 c->Request.CDBLen = 16;
3282 c->Request.Type.Type = TYPE_MSG;
3283 c->Request.Type.Attribute = ATTR_SIMPLE;
3284 c->Request.Type.Direction = XFER_WRITE;
3285 c->Request.Timeout = 0; /* Don't time out */
3286 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3287 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3288 c->Request.CDB[2] = 0x00; /* reserved */
3289 c->Request.CDB[3] = 0x00; /* reserved */
3290 /* Tag to abort goes in CDB[4]-CDB[11] */
3291 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3292 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3293 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3294 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3295 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3296 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3297 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3298 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3299 c->Request.CDB[12] = 0x00; /* reserved */
3300 c->Request.CDB[13] = 0x00; /* reserved */
3301 c->Request.CDB[14] = 0x00; /* reserved */
3302 c->Request.CDB[15] = 0x00; /* reserved */
3303 break;
3304 default:
3305 dev_warn(&h->pdev->dev, "unknown message type %d\n",
3306 cmd);
3307 BUG();
3309 } else {
3310 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3311 BUG();
3314 switch (c->Request.Type.Direction) {
3315 case XFER_READ:
3316 pci_dir = PCI_DMA_FROMDEVICE;
3317 break;
3318 case XFER_WRITE:
3319 pci_dir = PCI_DMA_TODEVICE;
3320 break;
3321 case XFER_NONE:
3322 pci_dir = PCI_DMA_NONE;
3323 break;
3324 default:
3325 pci_dir = PCI_DMA_BIDIRECTIONAL;
3328 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3330 return;
3334 * Map (physical) PCI mem into (virtual) kernel space
3336 static void __iomem *remap_pci_mem(ulong base, ulong size)
3338 ulong page_base = ((ulong) base) & PAGE_MASK;
3339 ulong page_offs = ((ulong) base) - page_base;
3340 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3342 return page_remapped ? (page_remapped + page_offs) : NULL;
3345 /* Takes cmds off the submission queue and sends them to the hardware,
3346 * then puts them on the queue of cmds waiting for completion.
3348 static void start_io(struct ctlr_info *h)
3350 struct CommandList *c;
3351 unsigned long flags;
3353 spin_lock_irqsave(&h->lock, flags);
3354 while (!list_empty(&h->reqQ)) {
3355 c = list_entry(h->reqQ.next, struct CommandList, list);
3356 /* can't do anything if fifo is full */
3357 if ((h->access.fifo_full(h))) {
3358 dev_warn(&h->pdev->dev, "fifo full\n");
3359 break;
3362 /* Get the first entry from the Request Q */
3363 removeQ(c);
3364 h->Qdepth--;
3366 /* Put job onto the completed Q */
3367 addQ(&h->cmpQ, c);
3369 /* Must increment commands_outstanding before unlocking
3370 * and submitting to avoid race checking for fifo full
3371 * condition.
3373 h->commands_outstanding++;
3374 if (h->commands_outstanding > h->max_outstanding)
3375 h->max_outstanding = h->commands_outstanding;
3377 /* Tell the controller execute command */
3378 spin_unlock_irqrestore(&h->lock, flags);
3379 h->access.submit_command(h, c);
3380 spin_lock_irqsave(&h->lock, flags);
3382 spin_unlock_irqrestore(&h->lock, flags);
3385 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3387 return h->access.command_completed(h, q);
3390 static inline bool interrupt_pending(struct ctlr_info *h)
3392 return h->access.intr_pending(h);
3395 static inline long interrupt_not_for_us(struct ctlr_info *h)
3397 return (h->access.intr_pending(h) == 0) ||
3398 (h->interrupts_enabled == 0);
3401 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3402 u32 raw_tag)
3404 if (unlikely(tag_index >= h->nr_cmds)) {
3405 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3406 return 1;
3408 return 0;
3411 static inline void finish_cmd(struct CommandList *c)
3413 unsigned long flags;
3415 spin_lock_irqsave(&c->h->lock, flags);
3416 removeQ(c);
3417 spin_unlock_irqrestore(&c->h->lock, flags);
3418 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3419 if (likely(c->cmd_type == CMD_SCSI))
3420 complete_scsi_command(c);
3421 else if (c->cmd_type == CMD_IOCTL_PEND)
3422 complete(c->waiting);
3425 static inline u32 hpsa_tag_contains_index(u32 tag)
3427 return tag & DIRECT_LOOKUP_BIT;
3430 static inline u32 hpsa_tag_to_index(u32 tag)
3432 return tag >> DIRECT_LOOKUP_SHIFT;
3436 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3438 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3439 #define HPSA_SIMPLE_ERROR_BITS 0x03
3440 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3441 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3442 return tag & ~HPSA_PERF_ERROR_BITS;
3445 /* process completion of an indexed ("direct lookup") command */
3446 static inline void process_indexed_cmd(struct ctlr_info *h,
3447 u32 raw_tag)
3449 u32 tag_index;
3450 struct CommandList *c;
3452 tag_index = hpsa_tag_to_index(raw_tag);
3453 if (!bad_tag(h, tag_index, raw_tag)) {
3454 c = h->cmd_pool + tag_index;
3455 finish_cmd(c);
3459 /* process completion of a non-indexed command */
3460 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3461 u32 raw_tag)
3463 u32 tag;
3464 struct CommandList *c = NULL;
3465 unsigned long flags;
3467 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3468 spin_lock_irqsave(&h->lock, flags);
3469 list_for_each_entry(c, &h->cmpQ, list) {
3470 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3471 spin_unlock_irqrestore(&h->lock, flags);
3472 finish_cmd(c);
3473 return;
3476 spin_unlock_irqrestore(&h->lock, flags);
3477 bad_tag(h, h->nr_cmds + 1, raw_tag);
3480 /* Some controllers, like p400, will give us one interrupt
3481 * after a soft reset, even if we turned interrupts off.
3482 * Only need to check for this in the hpsa_xxx_discard_completions
3483 * functions.
3485 static int ignore_bogus_interrupt(struct ctlr_info *h)
3487 if (likely(!reset_devices))
3488 return 0;
3490 if (likely(h->interrupts_enabled))
3491 return 0;
3493 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3494 "(known firmware bug.) Ignoring.\n");
3496 return 1;
3500 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3501 * Relies on (h-q[x] == x) being true for x such that
3502 * 0 <= x < MAX_REPLY_QUEUES.
3504 static struct ctlr_info *queue_to_hba(u8 *queue)
3506 return container_of((queue - *queue), struct ctlr_info, q[0]);
3509 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3511 struct ctlr_info *h = queue_to_hba(queue);
3512 u8 q = *(u8 *) queue;
3513 u32 raw_tag;
3515 if (ignore_bogus_interrupt(h))
3516 return IRQ_NONE;
3518 if (interrupt_not_for_us(h))
3519 return IRQ_NONE;
3520 h->last_intr_timestamp = get_jiffies_64();
3521 while (interrupt_pending(h)) {
3522 raw_tag = get_next_completion(h, q);
3523 while (raw_tag != FIFO_EMPTY)
3524 raw_tag = next_command(h, q);
3526 return IRQ_HANDLED;
3529 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3531 struct ctlr_info *h = queue_to_hba(queue);
3532 u32 raw_tag;
3533 u8 q = *(u8 *) queue;
3535 if (ignore_bogus_interrupt(h))
3536 return IRQ_NONE;
3538 h->last_intr_timestamp = get_jiffies_64();
3539 raw_tag = get_next_completion(h, q);
3540 while (raw_tag != FIFO_EMPTY)
3541 raw_tag = next_command(h, q);
3542 return IRQ_HANDLED;
3545 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3547 struct ctlr_info *h = queue_to_hba((u8 *) queue);
3548 u32 raw_tag;
3549 u8 q = *(u8 *) queue;
3551 if (interrupt_not_for_us(h))
3552 return IRQ_NONE;
3553 h->last_intr_timestamp = get_jiffies_64();
3554 while (interrupt_pending(h)) {
3555 raw_tag = get_next_completion(h, q);
3556 while (raw_tag != FIFO_EMPTY) {
3557 if (likely(hpsa_tag_contains_index(raw_tag)))
3558 process_indexed_cmd(h, raw_tag);
3559 else
3560 process_nonindexed_cmd(h, raw_tag);
3561 raw_tag = next_command(h, q);
3564 return IRQ_HANDLED;
3567 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3569 struct ctlr_info *h = queue_to_hba(queue);
3570 u32 raw_tag;
3571 u8 q = *(u8 *) queue;
3573 h->last_intr_timestamp = get_jiffies_64();
3574 raw_tag = get_next_completion(h, q);
3575 while (raw_tag != FIFO_EMPTY) {
3576 if (likely(hpsa_tag_contains_index(raw_tag)))
3577 process_indexed_cmd(h, raw_tag);
3578 else
3579 process_nonindexed_cmd(h, raw_tag);
3580 raw_tag = next_command(h, q);
3582 return IRQ_HANDLED;
3585 /* Send a message CDB to the firmware. Careful, this only works
3586 * in simple mode, not performant mode due to the tag lookup.
3587 * We only ever use this immediately after a controller reset.
3589 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3590 unsigned char type)
3592 struct Command {
3593 struct CommandListHeader CommandHeader;
3594 struct RequestBlock Request;
3595 struct ErrDescriptor ErrorDescriptor;
3597 struct Command *cmd;
3598 static const size_t cmd_sz = sizeof(*cmd) +
3599 sizeof(cmd->ErrorDescriptor);
3600 dma_addr_t paddr64;
3601 uint32_t paddr32, tag;
3602 void __iomem *vaddr;
3603 int i, err;
3605 vaddr = pci_ioremap_bar(pdev, 0);
3606 if (vaddr == NULL)
3607 return -ENOMEM;
3609 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3610 * CCISS commands, so they must be allocated from the lower 4GiB of
3611 * memory.
3613 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3614 if (err) {
3615 iounmap(vaddr);
3616 return -ENOMEM;
3619 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3620 if (cmd == NULL) {
3621 iounmap(vaddr);
3622 return -ENOMEM;
3625 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3626 * although there's no guarantee, we assume that the address is at
3627 * least 4-byte aligned (most likely, it's page-aligned).
3629 paddr32 = paddr64;
3631 cmd->CommandHeader.ReplyQueue = 0;
3632 cmd->CommandHeader.SGList = 0;
3633 cmd->CommandHeader.SGTotal = 0;
3634 cmd->CommandHeader.Tag.lower = paddr32;
3635 cmd->CommandHeader.Tag.upper = 0;
3636 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3638 cmd->Request.CDBLen = 16;
3639 cmd->Request.Type.Type = TYPE_MSG;
3640 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3641 cmd->Request.Type.Direction = XFER_NONE;
3642 cmd->Request.Timeout = 0; /* Don't time out */
3643 cmd->Request.CDB[0] = opcode;
3644 cmd->Request.CDB[1] = type;
3645 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3646 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3647 cmd->ErrorDescriptor.Addr.upper = 0;
3648 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3650 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3652 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3653 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3654 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3655 break;
3656 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3659 iounmap(vaddr);
3661 /* we leak the DMA buffer here ... no choice since the controller could
3662 * still complete the command.
3664 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3665 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3666 opcode, type);
3667 return -ETIMEDOUT;
3670 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3672 if (tag & HPSA_ERROR_BIT) {
3673 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3674 opcode, type);
3675 return -EIO;
3678 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3679 opcode, type);
3680 return 0;
3683 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3685 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3686 void * __iomem vaddr, u32 use_doorbell)
3688 u16 pmcsr;
3689 int pos;
3691 if (use_doorbell) {
3692 /* For everything after the P600, the PCI power state method
3693 * of resetting the controller doesn't work, so we have this
3694 * other way using the doorbell register.
3696 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3697 writel(use_doorbell, vaddr + SA5_DOORBELL);
3698 } else { /* Try to do it the PCI power state way */
3700 /* Quoting from the Open CISS Specification: "The Power
3701 * Management Control/Status Register (CSR) controls the power
3702 * state of the device. The normal operating state is D0,
3703 * CSR=00h. The software off state is D3, CSR=03h. To reset
3704 * the controller, place the interface device in D3 then to D0,
3705 * this causes a secondary PCI reset which will reset the
3706 * controller." */
3708 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3709 if (pos == 0) {
3710 dev_err(&pdev->dev,
3711 "hpsa_reset_controller: "
3712 "PCI PM not supported\n");
3713 return -ENODEV;
3715 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3716 /* enter the D3hot power management state */
3717 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3718 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3719 pmcsr |= PCI_D3hot;
3720 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3722 msleep(500);
3724 /* enter the D0 power management state */
3725 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3726 pmcsr |= PCI_D0;
3727 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3730 * The P600 requires a small delay when changing states.
3731 * Otherwise we may think the board did not reset and we bail.
3732 * This for kdump only and is particular to the P600.
3734 msleep(500);
3736 return 0;
3739 static __devinit void init_driver_version(char *driver_version, int len)
3741 memset(driver_version, 0, len);
3742 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3745 static __devinit int write_driver_ver_to_cfgtable(
3746 struct CfgTable __iomem *cfgtable)
3748 char *driver_version;
3749 int i, size = sizeof(cfgtable->driver_version);
3751 driver_version = kmalloc(size, GFP_KERNEL);
3752 if (!driver_version)
3753 return -ENOMEM;
3755 init_driver_version(driver_version, size);
3756 for (i = 0; i < size; i++)
3757 writeb(driver_version[i], &cfgtable->driver_version[i]);
3758 kfree(driver_version);
3759 return 0;
3762 static __devinit void read_driver_ver_from_cfgtable(
3763 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3765 int i;
3767 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3768 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3771 static __devinit int controller_reset_failed(
3772 struct CfgTable __iomem *cfgtable)
3775 char *driver_ver, *old_driver_ver;
3776 int rc, size = sizeof(cfgtable->driver_version);
3778 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3779 if (!old_driver_ver)
3780 return -ENOMEM;
3781 driver_ver = old_driver_ver + size;
3783 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3784 * should have been changed, otherwise we know the reset failed.
3786 init_driver_version(old_driver_ver, size);
3787 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3788 rc = !memcmp(driver_ver, old_driver_ver, size);
3789 kfree(old_driver_ver);
3790 return rc;
3792 /* This does a hard reset of the controller using PCI power management
3793 * states or the using the doorbell register.
3795 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3797 u64 cfg_offset;
3798 u32 cfg_base_addr;
3799 u64 cfg_base_addr_index;
3800 void __iomem *vaddr;
3801 unsigned long paddr;
3802 u32 misc_fw_support;
3803 int rc;
3804 struct CfgTable __iomem *cfgtable;
3805 u32 use_doorbell;
3806 u32 board_id;
3807 u16 command_register;
3809 /* For controllers as old as the P600, this is very nearly
3810 * the same thing as
3812 * pci_save_state(pci_dev);
3813 * pci_set_power_state(pci_dev, PCI_D3hot);
3814 * pci_set_power_state(pci_dev, PCI_D0);
3815 * pci_restore_state(pci_dev);
3817 * For controllers newer than the P600, the pci power state
3818 * method of resetting doesn't work so we have another way
3819 * using the doorbell register.
3822 rc = hpsa_lookup_board_id(pdev, &board_id);
3823 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3824 dev_warn(&pdev->dev, "Not resetting device.\n");
3825 return -ENODEV;
3828 /* if controller is soft- but not hard resettable... */
3829 if (!ctlr_is_hard_resettable(board_id))
3830 return -ENOTSUPP; /* try soft reset later. */
3832 /* Save the PCI command register */
3833 pci_read_config_word(pdev, 4, &command_register);
3834 /* Turn the board off. This is so that later pci_restore_state()
3835 * won't turn the board on before the rest of config space is ready.
3837 pci_disable_device(pdev);
3838 pci_save_state(pdev);
3840 /* find the first memory BAR, so we can find the cfg table */
3841 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3842 if (rc)
3843 return rc;
3844 vaddr = remap_pci_mem(paddr, 0x250);
3845 if (!vaddr)
3846 return -ENOMEM;
3848 /* find cfgtable in order to check if reset via doorbell is supported */
3849 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3850 &cfg_base_addr_index, &cfg_offset);
3851 if (rc)
3852 goto unmap_vaddr;
3853 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3854 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3855 if (!cfgtable) {
3856 rc = -ENOMEM;
3857 goto unmap_vaddr;
3859 rc = write_driver_ver_to_cfgtable(cfgtable);
3860 if (rc)
3861 goto unmap_vaddr;
3863 /* If reset via doorbell register is supported, use that.
3864 * There are two such methods. Favor the newest method.
3866 misc_fw_support = readl(&cfgtable->misc_fw_support);
3867 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3868 if (use_doorbell) {
3869 use_doorbell = DOORBELL_CTLR_RESET2;
3870 } else {
3871 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3872 if (use_doorbell) {
3873 dev_warn(&pdev->dev, "Soft reset not supported. "
3874 "Firmware update is required.\n");
3875 rc = -ENOTSUPP; /* try soft reset */
3876 goto unmap_cfgtable;
3880 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3881 if (rc)
3882 goto unmap_cfgtable;
3884 pci_restore_state(pdev);
3885 rc = pci_enable_device(pdev);
3886 if (rc) {
3887 dev_warn(&pdev->dev, "failed to enable device.\n");
3888 goto unmap_cfgtable;
3890 pci_write_config_word(pdev, 4, command_register);
3892 /* Some devices (notably the HP Smart Array 5i Controller)
3893 need a little pause here */
3894 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3896 /* Wait for board to become not ready, then ready. */
3897 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3898 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3899 if (rc) {
3900 dev_warn(&pdev->dev,
3901 "failed waiting for board to reset."
3902 " Will try soft reset.\n");
3903 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3904 goto unmap_cfgtable;
3906 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3907 if (rc) {
3908 dev_warn(&pdev->dev,
3909 "failed waiting for board to become ready "
3910 "after hard reset\n");
3911 goto unmap_cfgtable;
3914 rc = controller_reset_failed(vaddr);
3915 if (rc < 0)
3916 goto unmap_cfgtable;
3917 if (rc) {
3918 dev_warn(&pdev->dev, "Unable to successfully reset "
3919 "controller. Will try soft reset.\n");
3920 rc = -ENOTSUPP;
3921 } else {
3922 dev_info(&pdev->dev, "board ready after hard reset.\n");
3925 unmap_cfgtable:
3926 iounmap(cfgtable);
3928 unmap_vaddr:
3929 iounmap(vaddr);
3930 return rc;
3934 * We cannot read the structure directly, for portability we must use
3935 * the io functions.
3936 * This is for debug only.
3938 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3940 #ifdef HPSA_DEBUG
3941 int i;
3942 char temp_name[17];
3944 dev_info(dev, "Controller Configuration information\n");
3945 dev_info(dev, "------------------------------------\n");
3946 for (i = 0; i < 4; i++)
3947 temp_name[i] = readb(&(tb->Signature[i]));
3948 temp_name[4] = '\0';
3949 dev_info(dev, " Signature = %s\n", temp_name);
3950 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3951 dev_info(dev, " Transport methods supported = 0x%x\n",
3952 readl(&(tb->TransportSupport)));
3953 dev_info(dev, " Transport methods active = 0x%x\n",
3954 readl(&(tb->TransportActive)));
3955 dev_info(dev, " Requested transport Method = 0x%x\n",
3956 readl(&(tb->HostWrite.TransportRequest)));
3957 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3958 readl(&(tb->HostWrite.CoalIntDelay)));
3959 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3960 readl(&(tb->HostWrite.CoalIntCount)));
3961 dev_info(dev, " Max outstanding commands = 0x%d\n",
3962 readl(&(tb->CmdsOutMax)));
3963 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3964 for (i = 0; i < 16; i++)
3965 temp_name[i] = readb(&(tb->ServerName[i]));
3966 temp_name[16] = '\0';
3967 dev_info(dev, " Server Name = %s\n", temp_name);
3968 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3969 readl(&(tb->HeartBeat)));
3970 #endif /* HPSA_DEBUG */
3973 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3975 int i, offset, mem_type, bar_type;
3977 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3978 return 0;
3979 offset = 0;
3980 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3981 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3982 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3983 offset += 4;
3984 else {
3985 mem_type = pci_resource_flags(pdev, i) &
3986 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3987 switch (mem_type) {
3988 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3989 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3990 offset += 4; /* 32 bit */
3991 break;
3992 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3993 offset += 8;
3994 break;
3995 default: /* reserved in PCI 2.2 */
3996 dev_warn(&pdev->dev,
3997 "base address is invalid\n");
3998 return -1;
3999 break;
4002 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4003 return i + 1;
4005 return -1;
4008 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4009 * controllers that are capable. If not, we use IO-APIC mode.
4012 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4014 #ifdef CONFIG_PCI_MSI
4015 int err, i;
4016 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4018 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4019 hpsa_msix_entries[i].vector = 0;
4020 hpsa_msix_entries[i].entry = i;
4023 /* Some boards advertise MSI but don't really support it */
4024 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4025 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4026 goto default_int_mode;
4027 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4028 dev_info(&h->pdev->dev, "MSIX\n");
4029 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4030 MAX_REPLY_QUEUES);
4031 if (!err) {
4032 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4033 h->intr[i] = hpsa_msix_entries[i].vector;
4034 h->msix_vector = 1;
4035 return;
4037 if (err > 0) {
4038 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4039 "available\n", err);
4040 goto default_int_mode;
4041 } else {
4042 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4043 err);
4044 goto default_int_mode;
4047 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4048 dev_info(&h->pdev->dev, "MSI\n");
4049 if (!pci_enable_msi(h->pdev))
4050 h->msi_vector = 1;
4051 else
4052 dev_warn(&h->pdev->dev, "MSI init failed\n");
4054 default_int_mode:
4055 #endif /* CONFIG_PCI_MSI */
4056 /* if we get here we're going to use the default interrupt mode */
4057 h->intr[h->intr_mode] = h->pdev->irq;
4060 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4062 int i;
4063 u32 subsystem_vendor_id, subsystem_device_id;
4065 subsystem_vendor_id = pdev->subsystem_vendor;
4066 subsystem_device_id = pdev->subsystem_device;
4067 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4068 subsystem_vendor_id;
4070 for (i = 0; i < ARRAY_SIZE(products); i++)
4071 if (*board_id == products[i].board_id)
4072 return i;
4074 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4075 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4076 !hpsa_allow_any) {
4077 dev_warn(&pdev->dev, "unrecognized board ID: "
4078 "0x%08x, ignoring.\n", *board_id);
4079 return -ENODEV;
4081 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4084 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4085 unsigned long *memory_bar)
4087 int i;
4089 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4090 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4091 /* addressing mode bits already removed */
4092 *memory_bar = pci_resource_start(pdev, i);
4093 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4094 *memory_bar);
4095 return 0;
4097 dev_warn(&pdev->dev, "no memory BAR found\n");
4098 return -ENODEV;
4101 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4102 void __iomem *vaddr, int wait_for_ready)
4104 int i, iterations;
4105 u32 scratchpad;
4106 if (wait_for_ready)
4107 iterations = HPSA_BOARD_READY_ITERATIONS;
4108 else
4109 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4111 for (i = 0; i < iterations; i++) {
4112 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4113 if (wait_for_ready) {
4114 if (scratchpad == HPSA_FIRMWARE_READY)
4115 return 0;
4116 } else {
4117 if (scratchpad != HPSA_FIRMWARE_READY)
4118 return 0;
4120 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4122 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4123 return -ENODEV;
4126 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4127 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4128 u64 *cfg_offset)
4130 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4131 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4132 *cfg_base_addr &= (u32) 0x0000ffff;
4133 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4134 if (*cfg_base_addr_index == -1) {
4135 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4136 return -ENODEV;
4138 return 0;
4141 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4143 u64 cfg_offset;
4144 u32 cfg_base_addr;
4145 u64 cfg_base_addr_index;
4146 u32 trans_offset;
4147 int rc;
4149 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4150 &cfg_base_addr_index, &cfg_offset);
4151 if (rc)
4152 return rc;
4153 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4154 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4155 if (!h->cfgtable)
4156 return -ENOMEM;
4157 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4158 if (rc)
4159 return rc;
4160 /* Find performant mode table. */
4161 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4162 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4163 cfg_base_addr_index)+cfg_offset+trans_offset,
4164 sizeof(*h->transtable));
4165 if (!h->transtable)
4166 return -ENOMEM;
4167 return 0;
4170 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4172 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4174 /* Limit commands in memory limited kdump scenario. */
4175 if (reset_devices && h->max_commands > 32)
4176 h->max_commands = 32;
4178 if (h->max_commands < 16) {
4179 dev_warn(&h->pdev->dev, "Controller reports "
4180 "max supported commands of %d, an obvious lie. "
4181 "Using 16. Ensure that firmware is up to date.\n",
4182 h->max_commands);
4183 h->max_commands = 16;
4187 /* Interrogate the hardware for some limits:
4188 * max commands, max SG elements without chaining, and with chaining,
4189 * SG chain block size, etc.
4191 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4193 hpsa_get_max_perf_mode_cmds(h);
4194 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4195 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4197 * Limit in-command s/g elements to 32 save dma'able memory.
4198 * Howvever spec says if 0, use 31
4200 h->max_cmd_sg_entries = 31;
4201 if (h->maxsgentries > 512) {
4202 h->max_cmd_sg_entries = 32;
4203 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4204 h->maxsgentries--; /* save one for chain pointer */
4205 } else {
4206 h->maxsgentries = 31; /* default to traditional values */
4207 h->chainsize = 0;
4210 /* Find out what task management functions are supported and cache */
4211 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4214 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4216 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4217 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4218 return false;
4220 return true;
4223 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4224 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4226 #ifdef CONFIG_X86
4227 u32 prefetch;
4229 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4230 prefetch |= 0x100;
4231 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4232 #endif
4235 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4236 * in a prefetch beyond physical memory.
4238 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4240 u32 dma_prefetch;
4242 if (h->board_id != 0x3225103C)
4243 return;
4244 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4245 dma_prefetch |= 0x8000;
4246 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4249 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4251 int i;
4252 u32 doorbell_value;
4253 unsigned long flags;
4255 /* under certain very rare conditions, this can take awhile.
4256 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4257 * as we enter this code.)
4259 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4260 spin_lock_irqsave(&h->lock, flags);
4261 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4262 spin_unlock_irqrestore(&h->lock, flags);
4263 if (!(doorbell_value & CFGTBL_ChangeReq))
4264 break;
4265 /* delay and try again */
4266 usleep_range(10000, 20000);
4270 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4272 u32 trans_support;
4274 trans_support = readl(&(h->cfgtable->TransportSupport));
4275 if (!(trans_support & SIMPLE_MODE))
4276 return -ENOTSUPP;
4278 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4279 /* Update the field, and then ring the doorbell */
4280 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4281 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4282 hpsa_wait_for_mode_change_ack(h);
4283 print_cfg_table(&h->pdev->dev, h->cfgtable);
4284 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4285 dev_warn(&h->pdev->dev,
4286 "unable to get board into simple mode\n");
4287 return -ENODEV;
4289 h->transMethod = CFGTBL_Trans_Simple;
4290 return 0;
4293 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4295 int prod_index, err;
4297 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4298 if (prod_index < 0)
4299 return -ENODEV;
4300 h->product_name = products[prod_index].product_name;
4301 h->access = *(products[prod_index].access);
4303 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4304 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4306 err = pci_enable_device(h->pdev);
4307 if (err) {
4308 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4309 return err;
4312 /* Enable bus mastering (pci_disable_device may disable this) */
4313 pci_set_master(h->pdev);
4315 err = pci_request_regions(h->pdev, HPSA);
4316 if (err) {
4317 dev_err(&h->pdev->dev,
4318 "cannot obtain PCI resources, aborting\n");
4319 return err;
4321 hpsa_interrupt_mode(h);
4322 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4323 if (err)
4324 goto err_out_free_res;
4325 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4326 if (!h->vaddr) {
4327 err = -ENOMEM;
4328 goto err_out_free_res;
4330 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4331 if (err)
4332 goto err_out_free_res;
4333 err = hpsa_find_cfgtables(h);
4334 if (err)
4335 goto err_out_free_res;
4336 hpsa_find_board_params(h);
4338 if (!hpsa_CISS_signature_present(h)) {
4339 err = -ENODEV;
4340 goto err_out_free_res;
4342 hpsa_enable_scsi_prefetch(h);
4343 hpsa_p600_dma_prefetch_quirk(h);
4344 err = hpsa_enter_simple_mode(h);
4345 if (err)
4346 goto err_out_free_res;
4347 return 0;
4349 err_out_free_res:
4350 if (h->transtable)
4351 iounmap(h->transtable);
4352 if (h->cfgtable)
4353 iounmap(h->cfgtable);
4354 if (h->vaddr)
4355 iounmap(h->vaddr);
4356 pci_disable_device(h->pdev);
4357 pci_release_regions(h->pdev);
4358 return err;
4361 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4363 int rc;
4365 #define HBA_INQUIRY_BYTE_COUNT 64
4366 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4367 if (!h->hba_inquiry_data)
4368 return;
4369 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4370 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4371 if (rc != 0) {
4372 kfree(h->hba_inquiry_data);
4373 h->hba_inquiry_data = NULL;
4377 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4379 int rc, i;
4381 if (!reset_devices)
4382 return 0;
4384 /* Reset the controller with a PCI power-cycle or via doorbell */
4385 rc = hpsa_kdump_hard_reset_controller(pdev);
4387 /* -ENOTSUPP here means we cannot reset the controller
4388 * but it's already (and still) up and running in
4389 * "performant mode". Or, it might be 640x, which can't reset
4390 * due to concerns about shared bbwc between 6402/6404 pair.
4392 if (rc == -ENOTSUPP)
4393 return rc; /* just try to do the kdump anyhow. */
4394 if (rc)
4395 return -ENODEV;
4397 /* Now try to get the controller to respond to a no-op */
4398 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4399 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4400 if (hpsa_noop(pdev) == 0)
4401 break;
4402 else
4403 dev_warn(&pdev->dev, "no-op failed%s\n",
4404 (i < 11 ? "; re-trying" : ""));
4406 return 0;
4409 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4411 h->cmd_pool_bits = kzalloc(
4412 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4413 sizeof(unsigned long), GFP_KERNEL);
4414 h->cmd_pool = pci_alloc_consistent(h->pdev,
4415 h->nr_cmds * sizeof(*h->cmd_pool),
4416 &(h->cmd_pool_dhandle));
4417 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4418 h->nr_cmds * sizeof(*h->errinfo_pool),
4419 &(h->errinfo_pool_dhandle));
4420 if ((h->cmd_pool_bits == NULL)
4421 || (h->cmd_pool == NULL)
4422 || (h->errinfo_pool == NULL)) {
4423 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4424 return -ENOMEM;
4426 return 0;
4429 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4431 kfree(h->cmd_pool_bits);
4432 if (h->cmd_pool)
4433 pci_free_consistent(h->pdev,
4434 h->nr_cmds * sizeof(struct CommandList),
4435 h->cmd_pool, h->cmd_pool_dhandle);
4436 if (h->errinfo_pool)
4437 pci_free_consistent(h->pdev,
4438 h->nr_cmds * sizeof(struct ErrorInfo),
4439 h->errinfo_pool,
4440 h->errinfo_pool_dhandle);
4443 static int hpsa_request_irq(struct ctlr_info *h,
4444 irqreturn_t (*msixhandler)(int, void *),
4445 irqreturn_t (*intxhandler)(int, void *))
4447 int rc, i;
4450 * initialize h->q[x] = x so that interrupt handlers know which
4451 * queue to process.
4453 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4454 h->q[i] = (u8) i;
4456 if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4457 /* If performant mode and MSI-X, use multiple reply queues */
4458 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4459 rc = request_irq(h->intr[i], msixhandler,
4460 0, h->devname,
4461 &h->q[i]);
4462 } else {
4463 /* Use single reply pool */
4464 if (h->msix_vector || h->msi_vector) {
4465 rc = request_irq(h->intr[h->intr_mode],
4466 msixhandler, 0, h->devname,
4467 &h->q[h->intr_mode]);
4468 } else {
4469 rc = request_irq(h->intr[h->intr_mode],
4470 intxhandler, IRQF_SHARED, h->devname,
4471 &h->q[h->intr_mode]);
4474 if (rc) {
4475 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4476 h->intr[h->intr_mode], h->devname);
4477 return -ENODEV;
4479 return 0;
4482 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4484 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4485 HPSA_RESET_TYPE_CONTROLLER)) {
4486 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4487 return -EIO;
4490 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4491 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4492 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4493 return -1;
4496 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4497 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4498 dev_warn(&h->pdev->dev, "Board failed to become ready "
4499 "after soft reset.\n");
4500 return -1;
4503 return 0;
4506 static void free_irqs(struct ctlr_info *h)
4508 int i;
4510 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4511 /* Single reply queue, only one irq to free */
4512 i = h->intr_mode;
4513 free_irq(h->intr[i], &h->q[i]);
4514 return;
4517 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4518 free_irq(h->intr[i], &h->q[i]);
4521 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4523 free_irqs(h);
4524 #ifdef CONFIG_PCI_MSI
4525 if (h->msix_vector) {
4526 if (h->pdev->msix_enabled)
4527 pci_disable_msix(h->pdev);
4528 } else if (h->msi_vector) {
4529 if (h->pdev->msi_enabled)
4530 pci_disable_msi(h->pdev);
4532 #endif /* CONFIG_PCI_MSI */
4535 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4537 hpsa_free_irqs_and_disable_msix(h);
4538 hpsa_free_sg_chain_blocks(h);
4539 hpsa_free_cmd_pool(h);
4540 kfree(h->blockFetchTable);
4541 pci_free_consistent(h->pdev, h->reply_pool_size,
4542 h->reply_pool, h->reply_pool_dhandle);
4543 if (h->vaddr)
4544 iounmap(h->vaddr);
4545 if (h->transtable)
4546 iounmap(h->transtable);
4547 if (h->cfgtable)
4548 iounmap(h->cfgtable);
4549 pci_release_regions(h->pdev);
4550 kfree(h);
4553 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4555 assert_spin_locked(&lockup_detector_lock);
4556 if (!hpsa_lockup_detector)
4557 return;
4558 if (h->lockup_detected)
4559 return; /* already stopped the lockup detector */
4560 list_del(&h->lockup_list);
4563 /* Called when controller lockup detected. */
4564 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4566 struct CommandList *c = NULL;
4568 assert_spin_locked(&h->lock);
4569 /* Mark all outstanding commands as failed and complete them. */
4570 while (!list_empty(list)) {
4571 c = list_entry(list->next, struct CommandList, list);
4572 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4573 finish_cmd(c);
4577 static void controller_lockup_detected(struct ctlr_info *h)
4579 unsigned long flags;
4581 assert_spin_locked(&lockup_detector_lock);
4582 remove_ctlr_from_lockup_detector_list(h);
4583 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4584 spin_lock_irqsave(&h->lock, flags);
4585 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4586 spin_unlock_irqrestore(&h->lock, flags);
4587 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4588 h->lockup_detected);
4589 pci_disable_device(h->pdev);
4590 spin_lock_irqsave(&h->lock, flags);
4591 fail_all_cmds_on_list(h, &h->cmpQ);
4592 fail_all_cmds_on_list(h, &h->reqQ);
4593 spin_unlock_irqrestore(&h->lock, flags);
4596 static void detect_controller_lockup(struct ctlr_info *h)
4598 u64 now;
4599 u32 heartbeat;
4600 unsigned long flags;
4602 assert_spin_locked(&lockup_detector_lock);
4603 now = get_jiffies_64();
4604 /* If we've received an interrupt recently, we're ok. */
4605 if (time_after64(h->last_intr_timestamp +
4606 (h->heartbeat_sample_interval), now))
4607 return;
4610 * If we've already checked the heartbeat recently, we're ok.
4611 * This could happen if someone sends us a signal. We
4612 * otherwise don't care about signals in this thread.
4614 if (time_after64(h->last_heartbeat_timestamp +
4615 (h->heartbeat_sample_interval), now))
4616 return;
4618 /* If heartbeat has not changed since we last looked, we're not ok. */
4619 spin_lock_irqsave(&h->lock, flags);
4620 heartbeat = readl(&h->cfgtable->HeartBeat);
4621 spin_unlock_irqrestore(&h->lock, flags);
4622 if (h->last_heartbeat == heartbeat) {
4623 controller_lockup_detected(h);
4624 return;
4627 /* We're ok. */
4628 h->last_heartbeat = heartbeat;
4629 h->last_heartbeat_timestamp = now;
4632 static int detect_controller_lockup_thread(void *notused)
4634 struct ctlr_info *h;
4635 unsigned long flags;
4637 while (1) {
4638 struct list_head *this, *tmp;
4640 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4641 if (kthread_should_stop())
4642 break;
4643 spin_lock_irqsave(&lockup_detector_lock, flags);
4644 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4645 h = list_entry(this, struct ctlr_info, lockup_list);
4646 detect_controller_lockup(h);
4648 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4650 return 0;
4653 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4655 unsigned long flags;
4657 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4658 spin_lock_irqsave(&lockup_detector_lock, flags);
4659 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4660 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4663 static void start_controller_lockup_detector(struct ctlr_info *h)
4665 /* Start the lockup detector thread if not already started */
4666 if (!hpsa_lockup_detector) {
4667 spin_lock_init(&lockup_detector_lock);
4668 hpsa_lockup_detector =
4669 kthread_run(detect_controller_lockup_thread,
4670 NULL, HPSA);
4672 if (!hpsa_lockup_detector) {
4673 dev_warn(&h->pdev->dev,
4674 "Could not start lockup detector thread\n");
4675 return;
4677 add_ctlr_to_lockup_detector_list(h);
4680 static void stop_controller_lockup_detector(struct ctlr_info *h)
4682 unsigned long flags;
4684 spin_lock_irqsave(&lockup_detector_lock, flags);
4685 remove_ctlr_from_lockup_detector_list(h);
4686 /* If the list of ctlr's to monitor is empty, stop the thread */
4687 if (list_empty(&hpsa_ctlr_list)) {
4688 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4689 kthread_stop(hpsa_lockup_detector);
4690 spin_lock_irqsave(&lockup_detector_lock, flags);
4691 hpsa_lockup_detector = NULL;
4693 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4696 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4697 const struct pci_device_id *ent)
4699 int dac, rc;
4700 struct ctlr_info *h;
4701 int try_soft_reset = 0;
4702 unsigned long flags;
4704 if (number_of_controllers == 0)
4705 printk(KERN_INFO DRIVER_NAME "\n");
4707 rc = hpsa_init_reset_devices(pdev);
4708 if (rc) {
4709 if (rc != -ENOTSUPP)
4710 return rc;
4711 /* If the reset fails in a particular way (it has no way to do
4712 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4713 * a soft reset once we get the controller configured up to the
4714 * point that it can accept a command.
4716 try_soft_reset = 1;
4717 rc = 0;
4720 reinit_after_soft_reset:
4722 /* Command structures must be aligned on a 32-byte boundary because
4723 * the 5 lower bits of the address are used by the hardware. and by
4724 * the driver. See comments in hpsa.h for more info.
4726 #define COMMANDLIST_ALIGNMENT 32
4727 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4728 h = kzalloc(sizeof(*h), GFP_KERNEL);
4729 if (!h)
4730 return -ENOMEM;
4732 h->pdev = pdev;
4733 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4734 INIT_LIST_HEAD(&h->cmpQ);
4735 INIT_LIST_HEAD(&h->reqQ);
4736 spin_lock_init(&h->lock);
4737 spin_lock_init(&h->scan_lock);
4738 rc = hpsa_pci_init(h);
4739 if (rc != 0)
4740 goto clean1;
4742 sprintf(h->devname, HPSA "%d", number_of_controllers);
4743 h->ctlr = number_of_controllers;
4744 number_of_controllers++;
4746 /* configure PCI DMA stuff */
4747 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4748 if (rc == 0) {
4749 dac = 1;
4750 } else {
4751 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4752 if (rc == 0) {
4753 dac = 0;
4754 } else {
4755 dev_err(&pdev->dev, "no suitable DMA available\n");
4756 goto clean1;
4760 /* make sure the board interrupts are off */
4761 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4763 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4764 goto clean2;
4765 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4766 h->devname, pdev->device,
4767 h->intr[h->intr_mode], dac ? "" : " not");
4768 if (hpsa_allocate_cmd_pool(h))
4769 goto clean4;
4770 if (hpsa_allocate_sg_chain_blocks(h))
4771 goto clean4;
4772 init_waitqueue_head(&h->scan_wait_queue);
4773 h->scan_finished = 1; /* no scan currently in progress */
4775 pci_set_drvdata(pdev, h);
4776 h->ndevices = 0;
4777 h->scsi_host = NULL;
4778 spin_lock_init(&h->devlock);
4779 hpsa_put_ctlr_into_performant_mode(h);
4781 /* At this point, the controller is ready to take commands.
4782 * Now, if reset_devices and the hard reset didn't work, try
4783 * the soft reset and see if that works.
4785 if (try_soft_reset) {
4787 /* This is kind of gross. We may or may not get a completion
4788 * from the soft reset command, and if we do, then the value
4789 * from the fifo may or may not be valid. So, we wait 10 secs
4790 * after the reset throwing away any completions we get during
4791 * that time. Unregister the interrupt handler and register
4792 * fake ones to scoop up any residual completions.
4794 spin_lock_irqsave(&h->lock, flags);
4795 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4796 spin_unlock_irqrestore(&h->lock, flags);
4797 free_irqs(h);
4798 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4799 hpsa_intx_discard_completions);
4800 if (rc) {
4801 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4802 "soft reset.\n");
4803 goto clean4;
4806 rc = hpsa_kdump_soft_reset(h);
4807 if (rc)
4808 /* Neither hard nor soft reset worked, we're hosed. */
4809 goto clean4;
4811 dev_info(&h->pdev->dev, "Board READY.\n");
4812 dev_info(&h->pdev->dev,
4813 "Waiting for stale completions to drain.\n");
4814 h->access.set_intr_mask(h, HPSA_INTR_ON);
4815 msleep(10000);
4816 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4818 rc = controller_reset_failed(h->cfgtable);
4819 if (rc)
4820 dev_info(&h->pdev->dev,
4821 "Soft reset appears to have failed.\n");
4823 /* since the controller's reset, we have to go back and re-init
4824 * everything. Easiest to just forget what we've done and do it
4825 * all over again.
4827 hpsa_undo_allocations_after_kdump_soft_reset(h);
4828 try_soft_reset = 0;
4829 if (rc)
4830 /* don't go to clean4, we already unallocated */
4831 return -ENODEV;
4833 goto reinit_after_soft_reset;
4836 /* Turn the interrupts on so we can service requests */
4837 h->access.set_intr_mask(h, HPSA_INTR_ON);
4839 hpsa_hba_inquiry(h);
4840 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4841 start_controller_lockup_detector(h);
4842 return 1;
4844 clean4:
4845 hpsa_free_sg_chain_blocks(h);
4846 hpsa_free_cmd_pool(h);
4847 free_irqs(h);
4848 clean2:
4849 clean1:
4850 kfree(h);
4851 return rc;
4854 static void hpsa_flush_cache(struct ctlr_info *h)
4856 char *flush_buf;
4857 struct CommandList *c;
4859 flush_buf = kzalloc(4, GFP_KERNEL);
4860 if (!flush_buf)
4861 return;
4863 c = cmd_special_alloc(h);
4864 if (!c) {
4865 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4866 goto out_of_memory;
4868 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4869 RAID_CTLR_LUNID, TYPE_CMD);
4870 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4871 if (c->err_info->CommandStatus != 0)
4872 dev_warn(&h->pdev->dev,
4873 "error flushing cache on controller\n");
4874 cmd_special_free(h, c);
4875 out_of_memory:
4876 kfree(flush_buf);
4879 static void hpsa_shutdown(struct pci_dev *pdev)
4881 struct ctlr_info *h;
4883 h = pci_get_drvdata(pdev);
4884 /* Turn board interrupts off and send the flush cache command
4885 * sendcmd will turn off interrupt, and send the flush...
4886 * To write all data in the battery backed cache to disks
4888 hpsa_flush_cache(h);
4889 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4890 hpsa_free_irqs_and_disable_msix(h);
4893 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4895 int i;
4897 for (i = 0; i < h->ndevices; i++)
4898 kfree(h->dev[i]);
4901 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4903 struct ctlr_info *h;
4905 if (pci_get_drvdata(pdev) == NULL) {
4906 dev_err(&pdev->dev, "unable to remove device\n");
4907 return;
4909 h = pci_get_drvdata(pdev);
4910 stop_controller_lockup_detector(h);
4911 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4912 hpsa_shutdown(pdev);
4913 iounmap(h->vaddr);
4914 iounmap(h->transtable);
4915 iounmap(h->cfgtable);
4916 hpsa_free_device_info(h);
4917 hpsa_free_sg_chain_blocks(h);
4918 pci_free_consistent(h->pdev,
4919 h->nr_cmds * sizeof(struct CommandList),
4920 h->cmd_pool, h->cmd_pool_dhandle);
4921 pci_free_consistent(h->pdev,
4922 h->nr_cmds * sizeof(struct ErrorInfo),
4923 h->errinfo_pool, h->errinfo_pool_dhandle);
4924 pci_free_consistent(h->pdev, h->reply_pool_size,
4925 h->reply_pool, h->reply_pool_dhandle);
4926 kfree(h->cmd_pool_bits);
4927 kfree(h->blockFetchTable);
4928 kfree(h->hba_inquiry_data);
4929 pci_disable_device(pdev);
4930 pci_release_regions(pdev);
4931 pci_set_drvdata(pdev, NULL);
4932 kfree(h);
4935 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4936 __attribute__((unused)) pm_message_t state)
4938 return -ENOSYS;
4941 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4943 return -ENOSYS;
4946 static struct pci_driver hpsa_pci_driver = {
4947 .name = HPSA,
4948 .probe = hpsa_init_one,
4949 .remove = __devexit_p(hpsa_remove_one),
4950 .id_table = hpsa_pci_device_id, /* id_table */
4951 .shutdown = hpsa_shutdown,
4952 .suspend = hpsa_suspend,
4953 .resume = hpsa_resume,
4956 /* Fill in bucket_map[], given nsgs (the max number of
4957 * scatter gather elements supported) and bucket[],
4958 * which is an array of 8 integers. The bucket[] array
4959 * contains 8 different DMA transfer sizes (in 16
4960 * byte increments) which the controller uses to fetch
4961 * commands. This function fills in bucket_map[], which
4962 * maps a given number of scatter gather elements to one of
4963 * the 8 DMA transfer sizes. The point of it is to allow the
4964 * controller to only do as much DMA as needed to fetch the
4965 * command, with the DMA transfer size encoded in the lower
4966 * bits of the command address.
4968 static void calc_bucket_map(int bucket[], int num_buckets,
4969 int nsgs, int *bucket_map)
4971 int i, j, b, size;
4973 /* even a command with 0 SGs requires 4 blocks */
4974 #define MINIMUM_TRANSFER_BLOCKS 4
4975 #define NUM_BUCKETS 8
4976 /* Note, bucket_map must have nsgs+1 entries. */
4977 for (i = 0; i <= nsgs; i++) {
4978 /* Compute size of a command with i SG entries */
4979 size = i + MINIMUM_TRANSFER_BLOCKS;
4980 b = num_buckets; /* Assume the biggest bucket */
4981 /* Find the bucket that is just big enough */
4982 for (j = 0; j < 8; j++) {
4983 if (bucket[j] >= size) {
4984 b = j;
4985 break;
4988 /* for a command with i SG entries, use bucket b. */
4989 bucket_map[i] = b;
4993 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4994 u32 use_short_tags)
4996 int i;
4997 unsigned long register_value;
4999 /* This is a bit complicated. There are 8 registers on
5000 * the controller which we write to to tell it 8 different
5001 * sizes of commands which there may be. It's a way of
5002 * reducing the DMA done to fetch each command. Encoded into
5003 * each command's tag are 3 bits which communicate to the controller
5004 * which of the eight sizes that command fits within. The size of
5005 * each command depends on how many scatter gather entries there are.
5006 * Each SG entry requires 16 bytes. The eight registers are programmed
5007 * with the number of 16-byte blocks a command of that size requires.
5008 * The smallest command possible requires 5 such 16 byte blocks.
5009 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5010 * blocks. Note, this only extends to the SG entries contained
5011 * within the command block, and does not extend to chained blocks
5012 * of SG elements. bft[] contains the eight values we write to
5013 * the registers. They are not evenly distributed, but have more
5014 * sizes for small commands, and fewer sizes for larger commands.
5016 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5017 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5018 /* 5 = 1 s/g entry or 4k
5019 * 6 = 2 s/g entry or 8k
5020 * 8 = 4 s/g entry or 16k
5021 * 10 = 6 s/g entry or 24k
5024 /* Controller spec: zero out this buffer. */
5025 memset(h->reply_pool, 0, h->reply_pool_size);
5027 bft[7] = SG_ENTRIES_IN_CMD + 4;
5028 calc_bucket_map(bft, ARRAY_SIZE(bft),
5029 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5030 for (i = 0; i < 8; i++)
5031 writel(bft[i], &h->transtable->BlockFetch[i]);
5033 /* size of controller ring buffer */
5034 writel(h->max_commands, &h->transtable->RepQSize);
5035 writel(h->nreply_queues, &h->transtable->RepQCount);
5036 writel(0, &h->transtable->RepQCtrAddrLow32);
5037 writel(0, &h->transtable->RepQCtrAddrHigh32);
5039 for (i = 0; i < h->nreply_queues; i++) {
5040 writel(0, &h->transtable->RepQAddr[i].upper);
5041 writel(h->reply_pool_dhandle +
5042 (h->max_commands * sizeof(u64) * i),
5043 &h->transtable->RepQAddr[i].lower);
5046 writel(CFGTBL_Trans_Performant | use_short_tags |
5047 CFGTBL_Trans_enable_directed_msix,
5048 &(h->cfgtable->HostWrite.TransportRequest));
5049 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5050 hpsa_wait_for_mode_change_ack(h);
5051 register_value = readl(&(h->cfgtable->TransportActive));
5052 if (!(register_value & CFGTBL_Trans_Performant)) {
5053 dev_warn(&h->pdev->dev, "unable to get board into"
5054 " performant mode\n");
5055 return;
5057 /* Change the access methods to the performant access methods */
5058 h->access = SA5_performant_access;
5059 h->transMethod = CFGTBL_Trans_Performant;
5062 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5064 u32 trans_support;
5065 int i;
5067 if (hpsa_simple_mode)
5068 return;
5070 trans_support = readl(&(h->cfgtable->TransportSupport));
5071 if (!(trans_support & PERFORMANT_MODE))
5072 return;
5074 h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5075 hpsa_get_max_perf_mode_cmds(h);
5076 /* Performant mode ring buffer and supporting data structures */
5077 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5078 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5079 &(h->reply_pool_dhandle));
5081 for (i = 0; i < h->nreply_queues; i++) {
5082 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5083 h->reply_queue[i].size = h->max_commands;
5084 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
5085 h->reply_queue[i].current_entry = 0;
5088 /* Need a block fetch table for performant mode */
5089 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5090 sizeof(u32)), GFP_KERNEL);
5092 if ((h->reply_pool == NULL)
5093 || (h->blockFetchTable == NULL))
5094 goto clean_up;
5096 hpsa_enter_performant_mode(h,
5097 trans_support & CFGTBL_Trans_use_short_tags);
5099 return;
5101 clean_up:
5102 if (h->reply_pool)
5103 pci_free_consistent(h->pdev, h->reply_pool_size,
5104 h->reply_pool, h->reply_pool_dhandle);
5105 kfree(h->blockFetchTable);
5109 * This is it. Register the PCI driver information for the cards we control
5110 * the OS will call our registered routines when it finds one of our cards.
5112 static int __init hpsa_init(void)
5114 return pci_register_driver(&hpsa_pci_driver);
5117 static void __exit hpsa_cleanup(void)
5119 pci_unregister_driver(&hpsa_pci_driver);
5122 module_init(hpsa_init);
5123 module_exit(hpsa_cleanup);