[TCP]: Use read mostly for CUBIC parameters.
[linux-2.6/cjktty.git] / kernel / signal.c
blob8072e568bbe0c41e68cffc8efa291488b4dcf0e7
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 * In POSIX a signal is sent either to a specific thread (Linux task)
44 * or to the process as a whole (Linux thread group). How the signal
45 * is sent determines whether it's to one thread or the whole group,
46 * which determines which signal mask(s) are involved in blocking it
47 * from being delivered until later. When the signal is delivered,
48 * either it's caught or ignored by a user handler or it has a default
49 * effect that applies to the whole thread group (POSIX process).
51 * The possible effects an unblocked signal set to SIG_DFL can have are:
52 * ignore - Nothing Happens
53 * terminate - kill the process, i.e. all threads in the group,
54 * similar to exit_group. The group leader (only) reports
55 * WIFSIGNALED status to its parent.
56 * coredump - write a core dump file describing all threads using
57 * the same mm and then kill all those threads
58 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
60 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
61 * Other signals when not blocked and set to SIG_DFL behaves as follows.
62 * The job control signals also have other special effects.
64 * +--------------------+------------------+
65 * | POSIX signal | default action |
66 * +--------------------+------------------+
67 * | SIGHUP | terminate |
68 * | SIGINT | terminate |
69 * | SIGQUIT | coredump |
70 * | SIGILL | coredump |
71 * | SIGTRAP | coredump |
72 * | SIGABRT/SIGIOT | coredump |
73 * | SIGBUS | coredump |
74 * | SIGFPE | coredump |
75 * | SIGKILL | terminate(+) |
76 * | SIGUSR1 | terminate |
77 * | SIGSEGV | coredump |
78 * | SIGUSR2 | terminate |
79 * | SIGPIPE | terminate |
80 * | SIGALRM | terminate |
81 * | SIGTERM | terminate |
82 * | SIGCHLD | ignore |
83 * | SIGCONT | ignore(*) |
84 * | SIGSTOP | stop(*)(+) |
85 * | SIGTSTP | stop(*) |
86 * | SIGTTIN | stop(*) |
87 * | SIGTTOU | stop(*) |
88 * | SIGURG | ignore |
89 * | SIGXCPU | coredump |
90 * | SIGXFSZ | coredump |
91 * | SIGVTALRM | terminate |
92 * | SIGPROF | terminate |
93 * | SIGPOLL/SIGIO | terminate |
94 * | SIGSYS/SIGUNUSED | coredump |
95 * | SIGSTKFLT | terminate |
96 * | SIGWINCH | ignore |
97 * | SIGPWR | terminate |
98 * | SIGRTMIN-SIGRTMAX | terminate |
99 * +--------------------+------------------+
100 * | non-POSIX signal | default action |
101 * +--------------------+------------------+
102 * | SIGEMT | coredump |
103 * +--------------------+------------------+
105 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
106 * (*) Special job control effects:
107 * When SIGCONT is sent, it resumes the process (all threads in the group)
108 * from TASK_STOPPED state and also clears any pending/queued stop signals
109 * (any of those marked with "stop(*)"). This happens regardless of blocking,
110 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
111 * any pending/queued SIGCONT signals; this happens regardless of blocking,
112 * catching, or ignored the stop signal, though (except for SIGSTOP) the
113 * default action of stopping the process may happen later or never.
116 #ifdef SIGEMT
117 #define M_SIGEMT M(SIGEMT)
118 #else
119 #define M_SIGEMT 0
120 #endif
122 #if SIGRTMIN > BITS_PER_LONG
123 #define M(sig) (1ULL << ((sig)-1))
124 #else
125 #define M(sig) (1UL << ((sig)-1))
126 #endif
127 #define T(sig, mask) (M(sig) & (mask))
129 #define SIG_KERNEL_ONLY_MASK (\
130 M(SIGKILL) | M(SIGSTOP) )
132 #define SIG_KERNEL_STOP_MASK (\
133 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
135 #define SIG_KERNEL_COREDUMP_MASK (\
136 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
137 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
138 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
140 #define SIG_KERNEL_IGNORE_MASK (\
141 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
143 #define sig_kernel_only(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
145 #define sig_kernel_coredump(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
147 #define sig_kernel_ignore(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
149 #define sig_kernel_stop(sig) \
150 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
152 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
154 #define sig_user_defined(t, signr) \
155 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
156 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
158 #define sig_fatal(t, signr) \
159 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
160 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
162 static int sig_ignored(struct task_struct *t, int sig)
164 void __user * handler;
167 * Tracers always want to know about signals..
169 if (t->ptrace & PT_PTRACED)
170 return 0;
173 * Blocked signals are never ignored, since the
174 * signal handler may change by the time it is
175 * unblocked.
177 if (sigismember(&t->blocked, sig))
178 return 0;
180 /* Is it explicitly or implicitly ignored? */
181 handler = t->sighand->action[sig-1].sa.sa_handler;
182 return handler == SIG_IGN ||
183 (handler == SIG_DFL && sig_kernel_ignore(sig));
187 * Re-calculate pending state from the set of locally pending
188 * signals, globally pending signals, and blocked signals.
190 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
192 unsigned long ready;
193 long i;
195 switch (_NSIG_WORDS) {
196 default:
197 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
198 ready |= signal->sig[i] &~ blocked->sig[i];
199 break;
201 case 4: ready = signal->sig[3] &~ blocked->sig[3];
202 ready |= signal->sig[2] &~ blocked->sig[2];
203 ready |= signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
207 case 2: ready = signal->sig[1] &~ blocked->sig[1];
208 ready |= signal->sig[0] &~ blocked->sig[0];
209 break;
211 case 1: ready = signal->sig[0] &~ blocked->sig[0];
213 return ready != 0;
216 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
218 fastcall void recalc_sigpending_tsk(struct task_struct *t)
220 if (t->signal->group_stop_count > 0 ||
221 (freezing(t)) ||
222 PENDING(&t->pending, &t->blocked) ||
223 PENDING(&t->signal->shared_pending, &t->blocked))
224 set_tsk_thread_flag(t, TIF_SIGPENDING);
225 else
226 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 void recalc_sigpending(void)
231 recalc_sigpending_tsk(current);
234 /* Given the mask, find the first available signal that should be serviced. */
236 static int
237 next_signal(struct sigpending *pending, sigset_t *mask)
239 unsigned long i, *s, *m, x;
240 int sig = 0;
242 s = pending->signal.sig;
243 m = mask->sig;
244 switch (_NSIG_WORDS) {
245 default:
246 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
247 if ((x = *s &~ *m) != 0) {
248 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 break;
251 break;
253 case 2: if ((x = s[0] &~ m[0]) != 0)
254 sig = 1;
255 else if ((x = s[1] &~ m[1]) != 0)
256 sig = _NSIG_BPW + 1;
257 else
258 break;
259 sig += ffz(~x);
260 break;
262 case 1: if ((x = *s &~ *m) != 0)
263 sig = ffz(~x) + 1;
264 break;
267 return sig;
270 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
271 int override_rlimit)
273 struct sigqueue *q = NULL;
274 struct user_struct *user;
277 * In order to avoid problems with "switch_user()", we want to make
278 * sure that the compiler doesn't re-load "t->user"
280 user = t->user;
281 barrier();
282 atomic_inc(&user->sigpending);
283 if (override_rlimit ||
284 atomic_read(&user->sigpending) <=
285 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
286 q = kmem_cache_alloc(sigqueue_cachep, flags);
287 if (unlikely(q == NULL)) {
288 atomic_dec(&user->sigpending);
289 } else {
290 INIT_LIST_HEAD(&q->list);
291 q->flags = 0;
292 q->user = get_uid(user);
294 return(q);
297 static void __sigqueue_free(struct sigqueue *q)
299 if (q->flags & SIGQUEUE_PREALLOC)
300 return;
301 atomic_dec(&q->user->sigpending);
302 free_uid(q->user);
303 kmem_cache_free(sigqueue_cachep, q);
306 void flush_sigqueue(struct sigpending *queue)
308 struct sigqueue *q;
310 sigemptyset(&queue->signal);
311 while (!list_empty(&queue->list)) {
312 q = list_entry(queue->list.next, struct sigqueue , list);
313 list_del_init(&q->list);
314 __sigqueue_free(q);
319 * Flush all pending signals for a task.
321 void flush_signals(struct task_struct *t)
323 unsigned long flags;
325 spin_lock_irqsave(&t->sighand->siglock, flags);
326 clear_tsk_thread_flag(t,TIF_SIGPENDING);
327 flush_sigqueue(&t->pending);
328 flush_sigqueue(&t->signal->shared_pending);
329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
333 * Flush all handlers for a task.
336 void
337 flush_signal_handlers(struct task_struct *t, int force_default)
339 int i;
340 struct k_sigaction *ka = &t->sighand->action[0];
341 for (i = _NSIG ; i != 0 ; i--) {
342 if (force_default || ka->sa.sa_handler != SIG_IGN)
343 ka->sa.sa_handler = SIG_DFL;
344 ka->sa.sa_flags = 0;
345 sigemptyset(&ka->sa.sa_mask);
346 ka++;
351 /* Notify the system that a driver wants to block all signals for this
352 * process, and wants to be notified if any signals at all were to be
353 * sent/acted upon. If the notifier routine returns non-zero, then the
354 * signal will be acted upon after all. If the notifier routine returns 0,
355 * then then signal will be blocked. Only one block per process is
356 * allowed. priv is a pointer to private data that the notifier routine
357 * can use to determine if the signal should be blocked or not. */
359 void
360 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
362 unsigned long flags;
364 spin_lock_irqsave(&current->sighand->siglock, flags);
365 current->notifier_mask = mask;
366 current->notifier_data = priv;
367 current->notifier = notifier;
368 spin_unlock_irqrestore(&current->sighand->siglock, flags);
371 /* Notify the system that blocking has ended. */
373 void
374 unblock_all_signals(void)
376 unsigned long flags;
378 spin_lock_irqsave(&current->sighand->siglock, flags);
379 current->notifier = NULL;
380 current->notifier_data = NULL;
381 recalc_sigpending();
382 spin_unlock_irqrestore(&current->sighand->siglock, flags);
385 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
387 struct sigqueue *q, *first = NULL;
388 int still_pending = 0;
390 if (unlikely(!sigismember(&list->signal, sig)))
391 return 0;
394 * Collect the siginfo appropriate to this signal. Check if
395 * there is another siginfo for the same signal.
397 list_for_each_entry(q, &list->list, list) {
398 if (q->info.si_signo == sig) {
399 if (first) {
400 still_pending = 1;
401 break;
403 first = q;
406 if (first) {
407 list_del_init(&first->list);
408 copy_siginfo(info, &first->info);
409 __sigqueue_free(first);
410 if (!still_pending)
411 sigdelset(&list->signal, sig);
412 } else {
414 /* Ok, it wasn't in the queue. This must be
415 a fast-pathed signal or we must have been
416 out of queue space. So zero out the info.
418 sigdelset(&list->signal, sig);
419 info->si_signo = sig;
420 info->si_errno = 0;
421 info->si_code = 0;
422 info->si_pid = 0;
423 info->si_uid = 0;
425 return 1;
428 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
429 siginfo_t *info)
431 int sig = next_signal(pending, mask);
433 if (sig) {
434 if (current->notifier) {
435 if (sigismember(current->notifier_mask, sig)) {
436 if (!(current->notifier)(current->notifier_data)) {
437 clear_thread_flag(TIF_SIGPENDING);
438 return 0;
443 if (!collect_signal(sig, pending, info))
444 sig = 0;
447 return sig;
451 * Dequeue a signal and return the element to the caller, which is
452 * expected to free it.
454 * All callers have to hold the siglock.
456 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
458 int signr = __dequeue_signal(&tsk->pending, mask, info);
459 if (!signr)
460 signr = __dequeue_signal(&tsk->signal->shared_pending,
461 mask, info);
462 recalc_sigpending_tsk(tsk);
463 if (signr && unlikely(sig_kernel_stop(signr))) {
465 * Set a marker that we have dequeued a stop signal. Our
466 * caller might release the siglock and then the pending
467 * stop signal it is about to process is no longer in the
468 * pending bitmasks, but must still be cleared by a SIGCONT
469 * (and overruled by a SIGKILL). So those cases clear this
470 * shared flag after we've set it. Note that this flag may
471 * remain set after the signal we return is ignored or
472 * handled. That doesn't matter because its only purpose
473 * is to alert stop-signal processing code when another
474 * processor has come along and cleared the flag.
476 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
477 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
479 if ( signr &&
480 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
481 info->si_sys_private){
483 * Release the siglock to ensure proper locking order
484 * of timer locks outside of siglocks. Note, we leave
485 * irqs disabled here, since the posix-timers code is
486 * about to disable them again anyway.
488 spin_unlock(&tsk->sighand->siglock);
489 do_schedule_next_timer(info);
490 spin_lock(&tsk->sighand->siglock);
492 return signr;
496 * Tell a process that it has a new active signal..
498 * NOTE! we rely on the previous spin_lock to
499 * lock interrupts for us! We can only be called with
500 * "siglock" held, and the local interrupt must
501 * have been disabled when that got acquired!
503 * No need to set need_resched since signal event passing
504 * goes through ->blocked
506 void signal_wake_up(struct task_struct *t, int resume)
508 unsigned int mask;
510 set_tsk_thread_flag(t, TIF_SIGPENDING);
513 * For SIGKILL, we want to wake it up in the stopped/traced case.
514 * We don't check t->state here because there is a race with it
515 * executing another processor and just now entering stopped state.
516 * By using wake_up_state, we ensure the process will wake up and
517 * handle its death signal.
519 mask = TASK_INTERRUPTIBLE;
520 if (resume)
521 mask |= TASK_STOPPED | TASK_TRACED;
522 if (!wake_up_state(t, mask))
523 kick_process(t);
527 * Remove signals in mask from the pending set and queue.
528 * Returns 1 if any signals were found.
530 * All callers must be holding the siglock.
532 * This version takes a sigset mask and looks at all signals,
533 * not just those in the first mask word.
535 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
537 struct sigqueue *q, *n;
538 sigset_t m;
540 sigandsets(&m, mask, &s->signal);
541 if (sigisemptyset(&m))
542 return 0;
544 signandsets(&s->signal, &s->signal, mask);
545 list_for_each_entry_safe(q, n, &s->list, list) {
546 if (sigismember(mask, q->info.si_signo)) {
547 list_del_init(&q->list);
548 __sigqueue_free(q);
551 return 1;
554 * Remove signals in mask from the pending set and queue.
555 * Returns 1 if any signals were found.
557 * All callers must be holding the siglock.
559 static int rm_from_queue(unsigned long mask, struct sigpending *s)
561 struct sigqueue *q, *n;
563 if (!sigtestsetmask(&s->signal, mask))
564 return 0;
566 sigdelsetmask(&s->signal, mask);
567 list_for_each_entry_safe(q, n, &s->list, list) {
568 if (q->info.si_signo < SIGRTMIN &&
569 (mask & sigmask(q->info.si_signo))) {
570 list_del_init(&q->list);
571 __sigqueue_free(q);
574 return 1;
578 * Bad permissions for sending the signal
580 static int check_kill_permission(int sig, struct siginfo *info,
581 struct task_struct *t)
583 int error = -EINVAL;
584 if (!valid_signal(sig))
585 return error;
586 error = -EPERM;
587 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
588 && ((sig != SIGCONT) ||
589 (process_session(current) != process_session(t)))
590 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
591 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
592 && !capable(CAP_KILL))
593 return error;
595 error = security_task_kill(t, info, sig, 0);
596 if (!error)
597 audit_signal_info(sig, t); /* Let audit system see the signal */
598 return error;
601 /* forward decl */
602 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
605 * Handle magic process-wide effects of stop/continue signals.
606 * Unlike the signal actions, these happen immediately at signal-generation
607 * time regardless of blocking, ignoring, or handling. This does the
608 * actual continuing for SIGCONT, but not the actual stopping for stop
609 * signals. The process stop is done as a signal action for SIG_DFL.
611 static void handle_stop_signal(int sig, struct task_struct *p)
613 struct task_struct *t;
615 if (p->signal->flags & SIGNAL_GROUP_EXIT)
617 * The process is in the middle of dying already.
619 return;
621 if (sig_kernel_stop(sig)) {
623 * This is a stop signal. Remove SIGCONT from all queues.
625 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
626 t = p;
627 do {
628 rm_from_queue(sigmask(SIGCONT), &t->pending);
629 t = next_thread(t);
630 } while (t != p);
631 } else if (sig == SIGCONT) {
633 * Remove all stop signals from all queues,
634 * and wake all threads.
636 if (unlikely(p->signal->group_stop_count > 0)) {
638 * There was a group stop in progress. We'll
639 * pretend it finished before we got here. We are
640 * obliged to report it to the parent: if the
641 * SIGSTOP happened "after" this SIGCONT, then it
642 * would have cleared this pending SIGCONT. If it
643 * happened "before" this SIGCONT, then the parent
644 * got the SIGCHLD about the stop finishing before
645 * the continue happened. We do the notification
646 * now, and it's as if the stop had finished and
647 * the SIGCHLD was pending on entry to this kill.
649 p->signal->group_stop_count = 0;
650 p->signal->flags = SIGNAL_STOP_CONTINUED;
651 spin_unlock(&p->sighand->siglock);
652 do_notify_parent_cldstop(p, CLD_STOPPED);
653 spin_lock(&p->sighand->siglock);
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
656 t = p;
657 do {
658 unsigned int state;
659 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
662 * If there is a handler for SIGCONT, we must make
663 * sure that no thread returns to user mode before
664 * we post the signal, in case it was the only
665 * thread eligible to run the signal handler--then
666 * it must not do anything between resuming and
667 * running the handler. With the TIF_SIGPENDING
668 * flag set, the thread will pause and acquire the
669 * siglock that we hold now and until we've queued
670 * the pending signal.
672 * Wake up the stopped thread _after_ setting
673 * TIF_SIGPENDING
675 state = TASK_STOPPED;
676 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
677 set_tsk_thread_flag(t, TIF_SIGPENDING);
678 state |= TASK_INTERRUPTIBLE;
680 wake_up_state(t, state);
682 t = next_thread(t);
683 } while (t != p);
685 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
687 * We were in fact stopped, and are now continued.
688 * Notify the parent with CLD_CONTINUED.
690 p->signal->flags = SIGNAL_STOP_CONTINUED;
691 p->signal->group_exit_code = 0;
692 spin_unlock(&p->sighand->siglock);
693 do_notify_parent_cldstop(p, CLD_CONTINUED);
694 spin_lock(&p->sighand->siglock);
695 } else {
697 * We are not stopped, but there could be a stop
698 * signal in the middle of being processed after
699 * being removed from the queue. Clear that too.
701 p->signal->flags = 0;
703 } else if (sig == SIGKILL) {
705 * Make sure that any pending stop signal already dequeued
706 * is undone by the wakeup for SIGKILL.
708 p->signal->flags = 0;
712 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
713 struct sigpending *signals)
715 struct sigqueue * q = NULL;
716 int ret = 0;
719 * fast-pathed signals for kernel-internal things like SIGSTOP
720 * or SIGKILL.
722 if (info == SEND_SIG_FORCED)
723 goto out_set;
725 /* Real-time signals must be queued if sent by sigqueue, or
726 some other real-time mechanism. It is implementation
727 defined whether kill() does so. We attempt to do so, on
728 the principle of least surprise, but since kill is not
729 allowed to fail with EAGAIN when low on memory we just
730 make sure at least one signal gets delivered and don't
731 pass on the info struct. */
733 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
734 (is_si_special(info) ||
735 info->si_code >= 0)));
736 if (q) {
737 list_add_tail(&q->list, &signals->list);
738 switch ((unsigned long) info) {
739 case (unsigned long) SEND_SIG_NOINFO:
740 q->info.si_signo = sig;
741 q->info.si_errno = 0;
742 q->info.si_code = SI_USER;
743 q->info.si_pid = current->pid;
744 q->info.si_uid = current->uid;
745 break;
746 case (unsigned long) SEND_SIG_PRIV:
747 q->info.si_signo = sig;
748 q->info.si_errno = 0;
749 q->info.si_code = SI_KERNEL;
750 q->info.si_pid = 0;
751 q->info.si_uid = 0;
752 break;
753 default:
754 copy_siginfo(&q->info, info);
755 break;
757 } else if (!is_si_special(info)) {
758 if (sig >= SIGRTMIN && info->si_code != SI_USER)
760 * Queue overflow, abort. We may abort if the signal was rt
761 * and sent by user using something other than kill().
763 return -EAGAIN;
766 out_set:
767 sigaddset(&signals->signal, sig);
768 return ret;
771 #define LEGACY_QUEUE(sigptr, sig) \
772 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
775 static int
776 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
778 int ret = 0;
780 BUG_ON(!irqs_disabled());
781 assert_spin_locked(&t->sighand->siglock);
783 /* Short-circuit ignored signals. */
784 if (sig_ignored(t, sig))
785 goto out;
787 /* Support queueing exactly one non-rt signal, so that we
788 can get more detailed information about the cause of
789 the signal. */
790 if (LEGACY_QUEUE(&t->pending, sig))
791 goto out;
793 ret = send_signal(sig, info, t, &t->pending);
794 if (!ret && !sigismember(&t->blocked, sig))
795 signal_wake_up(t, sig == SIGKILL);
796 out:
797 return ret;
801 * Force a signal that the process can't ignore: if necessary
802 * we unblock the signal and change any SIG_IGN to SIG_DFL.
804 * Note: If we unblock the signal, we always reset it to SIG_DFL,
805 * since we do not want to have a signal handler that was blocked
806 * be invoked when user space had explicitly blocked it.
808 * We don't want to have recursive SIGSEGV's etc, for example.
811 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
813 unsigned long int flags;
814 int ret, blocked, ignored;
815 struct k_sigaction *action;
817 spin_lock_irqsave(&t->sighand->siglock, flags);
818 action = &t->sighand->action[sig-1];
819 ignored = action->sa.sa_handler == SIG_IGN;
820 blocked = sigismember(&t->blocked, sig);
821 if (blocked || ignored) {
822 action->sa.sa_handler = SIG_DFL;
823 if (blocked) {
824 sigdelset(&t->blocked, sig);
825 recalc_sigpending_tsk(t);
828 ret = specific_send_sig_info(sig, info, t);
829 spin_unlock_irqrestore(&t->sighand->siglock, flags);
831 return ret;
834 void
835 force_sig_specific(int sig, struct task_struct *t)
837 force_sig_info(sig, SEND_SIG_FORCED, t);
841 * Test if P wants to take SIG. After we've checked all threads with this,
842 * it's equivalent to finding no threads not blocking SIG. Any threads not
843 * blocking SIG were ruled out because they are not running and already
844 * have pending signals. Such threads will dequeue from the shared queue
845 * as soon as they're available, so putting the signal on the shared queue
846 * will be equivalent to sending it to one such thread.
848 static inline int wants_signal(int sig, struct task_struct *p)
850 if (sigismember(&p->blocked, sig))
851 return 0;
852 if (p->flags & PF_EXITING)
853 return 0;
854 if (sig == SIGKILL)
855 return 1;
856 if (p->state & (TASK_STOPPED | TASK_TRACED))
857 return 0;
858 return task_curr(p) || !signal_pending(p);
861 static void
862 __group_complete_signal(int sig, struct task_struct *p)
864 struct task_struct *t;
867 * Now find a thread we can wake up to take the signal off the queue.
869 * If the main thread wants the signal, it gets first crack.
870 * Probably the least surprising to the average bear.
872 if (wants_signal(sig, p))
873 t = p;
874 else if (thread_group_empty(p))
876 * There is just one thread and it does not need to be woken.
877 * It will dequeue unblocked signals before it runs again.
879 return;
880 else {
882 * Otherwise try to find a suitable thread.
884 t = p->signal->curr_target;
885 if (t == NULL)
886 /* restart balancing at this thread */
887 t = p->signal->curr_target = p;
889 while (!wants_signal(sig, t)) {
890 t = next_thread(t);
891 if (t == p->signal->curr_target)
893 * No thread needs to be woken.
894 * Any eligible threads will see
895 * the signal in the queue soon.
897 return;
899 p->signal->curr_target = t;
903 * Found a killable thread. If the signal will be fatal,
904 * then start taking the whole group down immediately.
906 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
907 !sigismember(&t->real_blocked, sig) &&
908 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
910 * This signal will be fatal to the whole group.
912 if (!sig_kernel_coredump(sig)) {
914 * Start a group exit and wake everybody up.
915 * This way we don't have other threads
916 * running and doing things after a slower
917 * thread has the fatal signal pending.
919 p->signal->flags = SIGNAL_GROUP_EXIT;
920 p->signal->group_exit_code = sig;
921 p->signal->group_stop_count = 0;
922 t = p;
923 do {
924 sigaddset(&t->pending.signal, SIGKILL);
925 signal_wake_up(t, 1);
926 t = next_thread(t);
927 } while (t != p);
928 return;
932 * There will be a core dump. We make all threads other
933 * than the chosen one go into a group stop so that nothing
934 * happens until it gets scheduled, takes the signal off
935 * the shared queue, and does the core dump. This is a
936 * little more complicated than strictly necessary, but it
937 * keeps the signal state that winds up in the core dump
938 * unchanged from the death state, e.g. which thread had
939 * the core-dump signal unblocked.
941 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
942 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
943 p->signal->group_stop_count = 0;
944 p->signal->group_exit_task = t;
945 t = p;
946 do {
947 p->signal->group_stop_count++;
948 signal_wake_up(t, 0);
949 t = next_thread(t);
950 } while (t != p);
951 wake_up_process(p->signal->group_exit_task);
952 return;
956 * The signal is already in the shared-pending queue.
957 * Tell the chosen thread to wake up and dequeue it.
959 signal_wake_up(t, sig == SIGKILL);
960 return;
964 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
966 int ret = 0;
968 assert_spin_locked(&p->sighand->siglock);
969 handle_stop_signal(sig, p);
971 /* Short-circuit ignored signals. */
972 if (sig_ignored(p, sig))
973 return ret;
975 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
976 /* This is a non-RT signal and we already have one queued. */
977 return ret;
980 * Put this signal on the shared-pending queue, or fail with EAGAIN.
981 * We always use the shared queue for process-wide signals,
982 * to avoid several races.
984 ret = send_signal(sig, info, p, &p->signal->shared_pending);
985 if (unlikely(ret))
986 return ret;
988 __group_complete_signal(sig, p);
989 return 0;
993 * Nuke all other threads in the group.
995 void zap_other_threads(struct task_struct *p)
997 struct task_struct *t;
999 p->signal->flags = SIGNAL_GROUP_EXIT;
1000 p->signal->group_stop_count = 0;
1002 if (thread_group_empty(p))
1003 return;
1005 for (t = next_thread(p); t != p; t = next_thread(t)) {
1007 * Don't bother with already dead threads
1009 if (t->exit_state)
1010 continue;
1013 * We don't want to notify the parent, since we are
1014 * killed as part of a thread group due to another
1015 * thread doing an execve() or similar. So set the
1016 * exit signal to -1 to allow immediate reaping of
1017 * the process. But don't detach the thread group
1018 * leader.
1020 if (t != p->group_leader)
1021 t->exit_signal = -1;
1023 /* SIGKILL will be handled before any pending SIGSTOP */
1024 sigaddset(&t->pending.signal, SIGKILL);
1025 signal_wake_up(t, 1);
1030 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1032 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1034 struct sighand_struct *sighand;
1036 for (;;) {
1037 sighand = rcu_dereference(tsk->sighand);
1038 if (unlikely(sighand == NULL))
1039 break;
1041 spin_lock_irqsave(&sighand->siglock, *flags);
1042 if (likely(sighand == tsk->sighand))
1043 break;
1044 spin_unlock_irqrestore(&sighand->siglock, *flags);
1047 return sighand;
1050 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1052 unsigned long flags;
1053 int ret;
1055 ret = check_kill_permission(sig, info, p);
1057 if (!ret && sig) {
1058 ret = -ESRCH;
1059 if (lock_task_sighand(p, &flags)) {
1060 ret = __group_send_sig_info(sig, info, p);
1061 unlock_task_sighand(p, &flags);
1065 return ret;
1069 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1070 * control characters do (^C, ^Z etc)
1073 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1075 struct task_struct *p = NULL;
1076 int retval, success;
1078 success = 0;
1079 retval = -ESRCH;
1080 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1081 int err = group_send_sig_info(sig, info, p);
1082 success |= !err;
1083 retval = err;
1084 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1085 return success ? 0 : retval;
1088 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1090 int retval;
1092 read_lock(&tasklist_lock);
1093 retval = __kill_pgrp_info(sig, info, pgrp);
1094 read_unlock(&tasklist_lock);
1096 return retval;
1099 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1101 int error;
1102 struct task_struct *p;
1104 rcu_read_lock();
1105 if (unlikely(sig_needs_tasklist(sig)))
1106 read_lock(&tasklist_lock);
1108 p = pid_task(pid, PIDTYPE_PID);
1109 error = -ESRCH;
1110 if (p)
1111 error = group_send_sig_info(sig, info, p);
1113 if (unlikely(sig_needs_tasklist(sig)))
1114 read_unlock(&tasklist_lock);
1115 rcu_read_unlock();
1116 return error;
1119 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1121 int error;
1122 rcu_read_lock();
1123 error = kill_pid_info(sig, info, find_pid(pid));
1124 rcu_read_unlock();
1125 return error;
1128 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1129 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1130 uid_t uid, uid_t euid, u32 secid)
1132 int ret = -EINVAL;
1133 struct task_struct *p;
1135 if (!valid_signal(sig))
1136 return ret;
1138 read_lock(&tasklist_lock);
1139 p = pid_task(pid, PIDTYPE_PID);
1140 if (!p) {
1141 ret = -ESRCH;
1142 goto out_unlock;
1144 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1145 && (euid != p->suid) && (euid != p->uid)
1146 && (uid != p->suid) && (uid != p->uid)) {
1147 ret = -EPERM;
1148 goto out_unlock;
1150 ret = security_task_kill(p, info, sig, secid);
1151 if (ret)
1152 goto out_unlock;
1153 if (sig && p->sighand) {
1154 unsigned long flags;
1155 spin_lock_irqsave(&p->sighand->siglock, flags);
1156 ret = __group_send_sig_info(sig, info, p);
1157 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1159 out_unlock:
1160 read_unlock(&tasklist_lock);
1161 return ret;
1163 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1166 * kill_something_info() interprets pid in interesting ways just like kill(2).
1168 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1169 * is probably wrong. Should make it like BSD or SYSV.
1172 static int kill_something_info(int sig, struct siginfo *info, int pid)
1174 int ret;
1175 rcu_read_lock();
1176 if (!pid) {
1177 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1178 } else if (pid == -1) {
1179 int retval = 0, count = 0;
1180 struct task_struct * p;
1182 read_lock(&tasklist_lock);
1183 for_each_process(p) {
1184 if (p->pid > 1 && p->tgid != current->tgid) {
1185 int err = group_send_sig_info(sig, info, p);
1186 ++count;
1187 if (err != -EPERM)
1188 retval = err;
1191 read_unlock(&tasklist_lock);
1192 ret = count ? retval : -ESRCH;
1193 } else if (pid < 0) {
1194 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1195 } else {
1196 ret = kill_pid_info(sig, info, find_pid(pid));
1198 rcu_read_unlock();
1199 return ret;
1203 * These are for backward compatibility with the rest of the kernel source.
1207 * These two are the most common entry points. They send a signal
1208 * just to the specific thread.
1211 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1213 int ret;
1214 unsigned long flags;
1217 * Make sure legacy kernel users don't send in bad values
1218 * (normal paths check this in check_kill_permission).
1220 if (!valid_signal(sig))
1221 return -EINVAL;
1224 * We need the tasklist lock even for the specific
1225 * thread case (when we don't need to follow the group
1226 * lists) in order to avoid races with "p->sighand"
1227 * going away or changing from under us.
1229 read_lock(&tasklist_lock);
1230 spin_lock_irqsave(&p->sighand->siglock, flags);
1231 ret = specific_send_sig_info(sig, info, p);
1232 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1233 read_unlock(&tasklist_lock);
1234 return ret;
1237 #define __si_special(priv) \
1238 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1241 send_sig(int sig, struct task_struct *p, int priv)
1243 return send_sig_info(sig, __si_special(priv), p);
1247 * This is the entry point for "process-wide" signals.
1248 * They will go to an appropriate thread in the thread group.
1251 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1253 int ret;
1254 read_lock(&tasklist_lock);
1255 ret = group_send_sig_info(sig, info, p);
1256 read_unlock(&tasklist_lock);
1257 return ret;
1260 void
1261 force_sig(int sig, struct task_struct *p)
1263 force_sig_info(sig, SEND_SIG_PRIV, p);
1267 * When things go south during signal handling, we
1268 * will force a SIGSEGV. And if the signal that caused
1269 * the problem was already a SIGSEGV, we'll want to
1270 * make sure we don't even try to deliver the signal..
1273 force_sigsegv(int sig, struct task_struct *p)
1275 if (sig == SIGSEGV) {
1276 unsigned long flags;
1277 spin_lock_irqsave(&p->sighand->siglock, flags);
1278 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1279 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1281 force_sig(SIGSEGV, p);
1282 return 0;
1285 int kill_pgrp(struct pid *pid, int sig, int priv)
1287 return kill_pgrp_info(sig, __si_special(priv), pid);
1289 EXPORT_SYMBOL(kill_pgrp);
1291 int kill_pid(struct pid *pid, int sig, int priv)
1293 return kill_pid_info(sig, __si_special(priv), pid);
1295 EXPORT_SYMBOL(kill_pid);
1298 kill_proc(pid_t pid, int sig, int priv)
1300 return kill_proc_info(sig, __si_special(priv), pid);
1304 * These functions support sending signals using preallocated sigqueue
1305 * structures. This is needed "because realtime applications cannot
1306 * afford to lose notifications of asynchronous events, like timer
1307 * expirations or I/O completions". In the case of Posix Timers
1308 * we allocate the sigqueue structure from the timer_create. If this
1309 * allocation fails we are able to report the failure to the application
1310 * with an EAGAIN error.
1313 struct sigqueue *sigqueue_alloc(void)
1315 struct sigqueue *q;
1317 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1318 q->flags |= SIGQUEUE_PREALLOC;
1319 return(q);
1322 void sigqueue_free(struct sigqueue *q)
1324 unsigned long flags;
1325 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1327 * If the signal is still pending remove it from the
1328 * pending queue.
1330 if (unlikely(!list_empty(&q->list))) {
1331 spinlock_t *lock = &current->sighand->siglock;
1332 read_lock(&tasklist_lock);
1333 spin_lock_irqsave(lock, flags);
1334 if (!list_empty(&q->list))
1335 list_del_init(&q->list);
1336 spin_unlock_irqrestore(lock, flags);
1337 read_unlock(&tasklist_lock);
1339 q->flags &= ~SIGQUEUE_PREALLOC;
1340 __sigqueue_free(q);
1343 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1345 unsigned long flags;
1346 int ret = 0;
1348 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1351 * The rcu based delayed sighand destroy makes it possible to
1352 * run this without tasklist lock held. The task struct itself
1353 * cannot go away as create_timer did get_task_struct().
1355 * We return -1, when the task is marked exiting, so
1356 * posix_timer_event can redirect it to the group leader
1358 rcu_read_lock();
1360 if (!likely(lock_task_sighand(p, &flags))) {
1361 ret = -1;
1362 goto out_err;
1365 if (unlikely(!list_empty(&q->list))) {
1367 * If an SI_TIMER entry is already queue just increment
1368 * the overrun count.
1370 BUG_ON(q->info.si_code != SI_TIMER);
1371 q->info.si_overrun++;
1372 goto out;
1374 /* Short-circuit ignored signals. */
1375 if (sig_ignored(p, sig)) {
1376 ret = 1;
1377 goto out;
1380 list_add_tail(&q->list, &p->pending.list);
1381 sigaddset(&p->pending.signal, sig);
1382 if (!sigismember(&p->blocked, sig))
1383 signal_wake_up(p, sig == SIGKILL);
1385 out:
1386 unlock_task_sighand(p, &flags);
1387 out_err:
1388 rcu_read_unlock();
1390 return ret;
1394 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1396 unsigned long flags;
1397 int ret = 0;
1399 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1401 read_lock(&tasklist_lock);
1402 /* Since it_lock is held, p->sighand cannot be NULL. */
1403 spin_lock_irqsave(&p->sighand->siglock, flags);
1404 handle_stop_signal(sig, p);
1406 /* Short-circuit ignored signals. */
1407 if (sig_ignored(p, sig)) {
1408 ret = 1;
1409 goto out;
1412 if (unlikely(!list_empty(&q->list))) {
1414 * If an SI_TIMER entry is already queue just increment
1415 * the overrun count. Other uses should not try to
1416 * send the signal multiple times.
1418 BUG_ON(q->info.si_code != SI_TIMER);
1419 q->info.si_overrun++;
1420 goto out;
1424 * Put this signal on the shared-pending queue.
1425 * We always use the shared queue for process-wide signals,
1426 * to avoid several races.
1428 list_add_tail(&q->list, &p->signal->shared_pending.list);
1429 sigaddset(&p->signal->shared_pending.signal, sig);
1431 __group_complete_signal(sig, p);
1432 out:
1433 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1434 read_unlock(&tasklist_lock);
1435 return ret;
1439 * Wake up any threads in the parent blocked in wait* syscalls.
1441 static inline void __wake_up_parent(struct task_struct *p,
1442 struct task_struct *parent)
1444 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1448 * Let a parent know about the death of a child.
1449 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1452 void do_notify_parent(struct task_struct *tsk, int sig)
1454 struct siginfo info;
1455 unsigned long flags;
1456 struct sighand_struct *psig;
1458 BUG_ON(sig == -1);
1460 /* do_notify_parent_cldstop should have been called instead. */
1461 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1463 BUG_ON(!tsk->ptrace &&
1464 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1466 info.si_signo = sig;
1467 info.si_errno = 0;
1468 info.si_pid = tsk->pid;
1469 info.si_uid = tsk->uid;
1471 /* FIXME: find out whether or not this is supposed to be c*time. */
1472 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1473 tsk->signal->utime));
1474 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1475 tsk->signal->stime));
1477 info.si_status = tsk->exit_code & 0x7f;
1478 if (tsk->exit_code & 0x80)
1479 info.si_code = CLD_DUMPED;
1480 else if (tsk->exit_code & 0x7f)
1481 info.si_code = CLD_KILLED;
1482 else {
1483 info.si_code = CLD_EXITED;
1484 info.si_status = tsk->exit_code >> 8;
1487 psig = tsk->parent->sighand;
1488 spin_lock_irqsave(&psig->siglock, flags);
1489 if (!tsk->ptrace && sig == SIGCHLD &&
1490 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1491 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1493 * We are exiting and our parent doesn't care. POSIX.1
1494 * defines special semantics for setting SIGCHLD to SIG_IGN
1495 * or setting the SA_NOCLDWAIT flag: we should be reaped
1496 * automatically and not left for our parent's wait4 call.
1497 * Rather than having the parent do it as a magic kind of
1498 * signal handler, we just set this to tell do_exit that we
1499 * can be cleaned up without becoming a zombie. Note that
1500 * we still call __wake_up_parent in this case, because a
1501 * blocked sys_wait4 might now return -ECHILD.
1503 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1504 * is implementation-defined: we do (if you don't want
1505 * it, just use SIG_IGN instead).
1507 tsk->exit_signal = -1;
1508 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1509 sig = 0;
1511 if (valid_signal(sig) && sig > 0)
1512 __group_send_sig_info(sig, &info, tsk->parent);
1513 __wake_up_parent(tsk, tsk->parent);
1514 spin_unlock_irqrestore(&psig->siglock, flags);
1517 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1519 struct siginfo info;
1520 unsigned long flags;
1521 struct task_struct *parent;
1522 struct sighand_struct *sighand;
1524 if (tsk->ptrace & PT_PTRACED)
1525 parent = tsk->parent;
1526 else {
1527 tsk = tsk->group_leader;
1528 parent = tsk->real_parent;
1531 info.si_signo = SIGCHLD;
1532 info.si_errno = 0;
1533 info.si_pid = tsk->pid;
1534 info.si_uid = tsk->uid;
1536 /* FIXME: find out whether or not this is supposed to be c*time. */
1537 info.si_utime = cputime_to_jiffies(tsk->utime);
1538 info.si_stime = cputime_to_jiffies(tsk->stime);
1540 info.si_code = why;
1541 switch (why) {
1542 case CLD_CONTINUED:
1543 info.si_status = SIGCONT;
1544 break;
1545 case CLD_STOPPED:
1546 info.si_status = tsk->signal->group_exit_code & 0x7f;
1547 break;
1548 case CLD_TRAPPED:
1549 info.si_status = tsk->exit_code & 0x7f;
1550 break;
1551 default:
1552 BUG();
1555 sighand = parent->sighand;
1556 spin_lock_irqsave(&sighand->siglock, flags);
1557 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1558 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1559 __group_send_sig_info(SIGCHLD, &info, parent);
1561 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1563 __wake_up_parent(tsk, parent);
1564 spin_unlock_irqrestore(&sighand->siglock, flags);
1567 static inline int may_ptrace_stop(void)
1569 if (!likely(current->ptrace & PT_PTRACED))
1570 return 0;
1572 if (unlikely(current->parent == current->real_parent &&
1573 (current->ptrace & PT_ATTACHED)))
1574 return 0;
1576 if (unlikely(current->signal == current->parent->signal) &&
1577 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1578 return 0;
1581 * Are we in the middle of do_coredump?
1582 * If so and our tracer is also part of the coredump stopping
1583 * is a deadlock situation, and pointless because our tracer
1584 * is dead so don't allow us to stop.
1585 * If SIGKILL was already sent before the caller unlocked
1586 * ->siglock we must see ->core_waiters != 0. Otherwise it
1587 * is safe to enter schedule().
1589 if (unlikely(current->mm->core_waiters) &&
1590 unlikely(current->mm == current->parent->mm))
1591 return 0;
1593 return 1;
1597 * This must be called with current->sighand->siglock held.
1599 * This should be the path for all ptrace stops.
1600 * We always set current->last_siginfo while stopped here.
1601 * That makes it a way to test a stopped process for
1602 * being ptrace-stopped vs being job-control-stopped.
1604 * If we actually decide not to stop at all because the tracer is gone,
1605 * we leave nostop_code in current->exit_code.
1607 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1610 * If there is a group stop in progress,
1611 * we must participate in the bookkeeping.
1613 if (current->signal->group_stop_count > 0)
1614 --current->signal->group_stop_count;
1616 current->last_siginfo = info;
1617 current->exit_code = exit_code;
1619 /* Let the debugger run. */
1620 set_current_state(TASK_TRACED);
1621 spin_unlock_irq(&current->sighand->siglock);
1622 try_to_freeze();
1623 read_lock(&tasklist_lock);
1624 if (may_ptrace_stop()) {
1625 do_notify_parent_cldstop(current, CLD_TRAPPED);
1626 read_unlock(&tasklist_lock);
1627 schedule();
1628 } else {
1630 * By the time we got the lock, our tracer went away.
1631 * Don't stop here.
1633 read_unlock(&tasklist_lock);
1634 set_current_state(TASK_RUNNING);
1635 current->exit_code = nostop_code;
1639 * We are back. Now reacquire the siglock before touching
1640 * last_siginfo, so that we are sure to have synchronized with
1641 * any signal-sending on another CPU that wants to examine it.
1643 spin_lock_irq(&current->sighand->siglock);
1644 current->last_siginfo = NULL;
1647 * Queued signals ignored us while we were stopped for tracing.
1648 * So check for any that we should take before resuming user mode.
1650 recalc_sigpending();
1653 void ptrace_notify(int exit_code)
1655 siginfo_t info;
1657 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1659 memset(&info, 0, sizeof info);
1660 info.si_signo = SIGTRAP;
1661 info.si_code = exit_code;
1662 info.si_pid = current->pid;
1663 info.si_uid = current->uid;
1665 /* Let the debugger run. */
1666 spin_lock_irq(&current->sighand->siglock);
1667 ptrace_stop(exit_code, 0, &info);
1668 spin_unlock_irq(&current->sighand->siglock);
1671 static void
1672 finish_stop(int stop_count)
1675 * If there are no other threads in the group, or if there is
1676 * a group stop in progress and we are the last to stop,
1677 * report to the parent. When ptraced, every thread reports itself.
1679 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1680 read_lock(&tasklist_lock);
1681 do_notify_parent_cldstop(current, CLD_STOPPED);
1682 read_unlock(&tasklist_lock);
1685 do {
1686 schedule();
1687 } while (try_to_freeze());
1689 * Now we don't run again until continued.
1691 current->exit_code = 0;
1695 * This performs the stopping for SIGSTOP and other stop signals.
1696 * We have to stop all threads in the thread group.
1697 * Returns nonzero if we've actually stopped and released the siglock.
1698 * Returns zero if we didn't stop and still hold the siglock.
1700 static int do_signal_stop(int signr)
1702 struct signal_struct *sig = current->signal;
1703 int stop_count;
1705 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1706 return 0;
1708 if (sig->group_stop_count > 0) {
1710 * There is a group stop in progress. We don't need to
1711 * start another one.
1713 stop_count = --sig->group_stop_count;
1714 } else {
1716 * There is no group stop already in progress.
1717 * We must initiate one now.
1719 struct task_struct *t;
1721 sig->group_exit_code = signr;
1723 stop_count = 0;
1724 for (t = next_thread(current); t != current; t = next_thread(t))
1726 * Setting state to TASK_STOPPED for a group
1727 * stop is always done with the siglock held,
1728 * so this check has no races.
1730 if (!t->exit_state &&
1731 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1732 stop_count++;
1733 signal_wake_up(t, 0);
1735 sig->group_stop_count = stop_count;
1738 if (stop_count == 0)
1739 sig->flags = SIGNAL_STOP_STOPPED;
1740 current->exit_code = sig->group_exit_code;
1741 __set_current_state(TASK_STOPPED);
1743 spin_unlock_irq(&current->sighand->siglock);
1744 finish_stop(stop_count);
1745 return 1;
1749 * Do appropriate magic when group_stop_count > 0.
1750 * We return nonzero if we stopped, after releasing the siglock.
1751 * We return zero if we still hold the siglock and should look
1752 * for another signal without checking group_stop_count again.
1754 static int handle_group_stop(void)
1756 int stop_count;
1758 if (current->signal->group_exit_task == current) {
1760 * Group stop is so we can do a core dump,
1761 * We are the initiating thread, so get on with it.
1763 current->signal->group_exit_task = NULL;
1764 return 0;
1767 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1769 * Group stop is so another thread can do a core dump,
1770 * or else we are racing against a death signal.
1771 * Just punt the stop so we can get the next signal.
1773 return 0;
1776 * There is a group stop in progress. We stop
1777 * without any associated signal being in our queue.
1779 stop_count = --current->signal->group_stop_count;
1780 if (stop_count == 0)
1781 current->signal->flags = SIGNAL_STOP_STOPPED;
1782 current->exit_code = current->signal->group_exit_code;
1783 set_current_state(TASK_STOPPED);
1784 spin_unlock_irq(&current->sighand->siglock);
1785 finish_stop(stop_count);
1786 return 1;
1789 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1790 struct pt_regs *regs, void *cookie)
1792 sigset_t *mask = &current->blocked;
1793 int signr = 0;
1795 try_to_freeze();
1797 relock:
1798 spin_lock_irq(&current->sighand->siglock);
1799 for (;;) {
1800 struct k_sigaction *ka;
1802 if (unlikely(current->signal->group_stop_count > 0) &&
1803 handle_group_stop())
1804 goto relock;
1806 signr = dequeue_signal(current, mask, info);
1808 if (!signr)
1809 break; /* will return 0 */
1811 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1812 ptrace_signal_deliver(regs, cookie);
1814 /* Let the debugger run. */
1815 ptrace_stop(signr, signr, info);
1817 /* We're back. Did the debugger cancel the sig? */
1818 signr = current->exit_code;
1819 if (signr == 0)
1820 continue;
1822 current->exit_code = 0;
1824 /* Update the siginfo structure if the signal has
1825 changed. If the debugger wanted something
1826 specific in the siginfo structure then it should
1827 have updated *info via PTRACE_SETSIGINFO. */
1828 if (signr != info->si_signo) {
1829 info->si_signo = signr;
1830 info->si_errno = 0;
1831 info->si_code = SI_USER;
1832 info->si_pid = current->parent->pid;
1833 info->si_uid = current->parent->uid;
1836 /* If the (new) signal is now blocked, requeue it. */
1837 if (sigismember(&current->blocked, signr)) {
1838 specific_send_sig_info(signr, info, current);
1839 continue;
1843 ka = &current->sighand->action[signr-1];
1844 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1845 continue;
1846 if (ka->sa.sa_handler != SIG_DFL) {
1847 /* Run the handler. */
1848 *return_ka = *ka;
1850 if (ka->sa.sa_flags & SA_ONESHOT)
1851 ka->sa.sa_handler = SIG_DFL;
1853 break; /* will return non-zero "signr" value */
1857 * Now we are doing the default action for this signal.
1859 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1860 continue;
1863 * Init of a pid space gets no signals it doesn't want from
1864 * within that pid space. It can of course get signals from
1865 * its parent pid space.
1867 if (current == child_reaper(current))
1868 continue;
1870 if (sig_kernel_stop(signr)) {
1872 * The default action is to stop all threads in
1873 * the thread group. The job control signals
1874 * do nothing in an orphaned pgrp, but SIGSTOP
1875 * always works. Note that siglock needs to be
1876 * dropped during the call to is_orphaned_pgrp()
1877 * because of lock ordering with tasklist_lock.
1878 * This allows an intervening SIGCONT to be posted.
1879 * We need to check for that and bail out if necessary.
1881 if (signr != SIGSTOP) {
1882 spin_unlock_irq(&current->sighand->siglock);
1884 /* signals can be posted during this window */
1886 if (is_current_pgrp_orphaned())
1887 goto relock;
1889 spin_lock_irq(&current->sighand->siglock);
1892 if (likely(do_signal_stop(signr))) {
1893 /* It released the siglock. */
1894 goto relock;
1898 * We didn't actually stop, due to a race
1899 * with SIGCONT or something like that.
1901 continue;
1904 spin_unlock_irq(&current->sighand->siglock);
1907 * Anything else is fatal, maybe with a core dump.
1909 current->flags |= PF_SIGNALED;
1910 if (sig_kernel_coredump(signr)) {
1912 * If it was able to dump core, this kills all
1913 * other threads in the group and synchronizes with
1914 * their demise. If we lost the race with another
1915 * thread getting here, it set group_exit_code
1916 * first and our do_group_exit call below will use
1917 * that value and ignore the one we pass it.
1919 do_coredump((long)signr, signr, regs);
1923 * Death signals, no core dump.
1925 do_group_exit(signr);
1926 /* NOTREACHED */
1928 spin_unlock_irq(&current->sighand->siglock);
1929 return signr;
1932 EXPORT_SYMBOL(recalc_sigpending);
1933 EXPORT_SYMBOL_GPL(dequeue_signal);
1934 EXPORT_SYMBOL(flush_signals);
1935 EXPORT_SYMBOL(force_sig);
1936 EXPORT_SYMBOL(kill_proc);
1937 EXPORT_SYMBOL(ptrace_notify);
1938 EXPORT_SYMBOL(send_sig);
1939 EXPORT_SYMBOL(send_sig_info);
1940 EXPORT_SYMBOL(sigprocmask);
1941 EXPORT_SYMBOL(block_all_signals);
1942 EXPORT_SYMBOL(unblock_all_signals);
1946 * System call entry points.
1949 asmlinkage long sys_restart_syscall(void)
1951 struct restart_block *restart = &current_thread_info()->restart_block;
1952 return restart->fn(restart);
1955 long do_no_restart_syscall(struct restart_block *param)
1957 return -EINTR;
1961 * We don't need to get the kernel lock - this is all local to this
1962 * particular thread.. (and that's good, because this is _heavily_
1963 * used by various programs)
1967 * This is also useful for kernel threads that want to temporarily
1968 * (or permanently) block certain signals.
1970 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1971 * interface happily blocks "unblockable" signals like SIGKILL
1972 * and friends.
1974 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1976 int error;
1978 spin_lock_irq(&current->sighand->siglock);
1979 if (oldset)
1980 *oldset = current->blocked;
1982 error = 0;
1983 switch (how) {
1984 case SIG_BLOCK:
1985 sigorsets(&current->blocked, &current->blocked, set);
1986 break;
1987 case SIG_UNBLOCK:
1988 signandsets(&current->blocked, &current->blocked, set);
1989 break;
1990 case SIG_SETMASK:
1991 current->blocked = *set;
1992 break;
1993 default:
1994 error = -EINVAL;
1996 recalc_sigpending();
1997 spin_unlock_irq(&current->sighand->siglock);
1999 return error;
2002 asmlinkage long
2003 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2005 int error = -EINVAL;
2006 sigset_t old_set, new_set;
2008 /* XXX: Don't preclude handling different sized sigset_t's. */
2009 if (sigsetsize != sizeof(sigset_t))
2010 goto out;
2012 if (set) {
2013 error = -EFAULT;
2014 if (copy_from_user(&new_set, set, sizeof(*set)))
2015 goto out;
2016 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2018 error = sigprocmask(how, &new_set, &old_set);
2019 if (error)
2020 goto out;
2021 if (oset)
2022 goto set_old;
2023 } else if (oset) {
2024 spin_lock_irq(&current->sighand->siglock);
2025 old_set = current->blocked;
2026 spin_unlock_irq(&current->sighand->siglock);
2028 set_old:
2029 error = -EFAULT;
2030 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2031 goto out;
2033 error = 0;
2034 out:
2035 return error;
2038 long do_sigpending(void __user *set, unsigned long sigsetsize)
2040 long error = -EINVAL;
2041 sigset_t pending;
2043 if (sigsetsize > sizeof(sigset_t))
2044 goto out;
2046 spin_lock_irq(&current->sighand->siglock);
2047 sigorsets(&pending, &current->pending.signal,
2048 &current->signal->shared_pending.signal);
2049 spin_unlock_irq(&current->sighand->siglock);
2051 /* Outside the lock because only this thread touches it. */
2052 sigandsets(&pending, &current->blocked, &pending);
2054 error = -EFAULT;
2055 if (!copy_to_user(set, &pending, sigsetsize))
2056 error = 0;
2058 out:
2059 return error;
2062 asmlinkage long
2063 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2065 return do_sigpending(set, sigsetsize);
2068 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2070 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2072 int err;
2074 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2075 return -EFAULT;
2076 if (from->si_code < 0)
2077 return __copy_to_user(to, from, sizeof(siginfo_t))
2078 ? -EFAULT : 0;
2080 * If you change siginfo_t structure, please be sure
2081 * this code is fixed accordingly.
2082 * It should never copy any pad contained in the structure
2083 * to avoid security leaks, but must copy the generic
2084 * 3 ints plus the relevant union member.
2086 err = __put_user(from->si_signo, &to->si_signo);
2087 err |= __put_user(from->si_errno, &to->si_errno);
2088 err |= __put_user((short)from->si_code, &to->si_code);
2089 switch (from->si_code & __SI_MASK) {
2090 case __SI_KILL:
2091 err |= __put_user(from->si_pid, &to->si_pid);
2092 err |= __put_user(from->si_uid, &to->si_uid);
2093 break;
2094 case __SI_TIMER:
2095 err |= __put_user(from->si_tid, &to->si_tid);
2096 err |= __put_user(from->si_overrun, &to->si_overrun);
2097 err |= __put_user(from->si_ptr, &to->si_ptr);
2098 break;
2099 case __SI_POLL:
2100 err |= __put_user(from->si_band, &to->si_band);
2101 err |= __put_user(from->si_fd, &to->si_fd);
2102 break;
2103 case __SI_FAULT:
2104 err |= __put_user(from->si_addr, &to->si_addr);
2105 #ifdef __ARCH_SI_TRAPNO
2106 err |= __put_user(from->si_trapno, &to->si_trapno);
2107 #endif
2108 break;
2109 case __SI_CHLD:
2110 err |= __put_user(from->si_pid, &to->si_pid);
2111 err |= __put_user(from->si_uid, &to->si_uid);
2112 err |= __put_user(from->si_status, &to->si_status);
2113 err |= __put_user(from->si_utime, &to->si_utime);
2114 err |= __put_user(from->si_stime, &to->si_stime);
2115 break;
2116 case __SI_RT: /* This is not generated by the kernel as of now. */
2117 case __SI_MESGQ: /* But this is */
2118 err |= __put_user(from->si_pid, &to->si_pid);
2119 err |= __put_user(from->si_uid, &to->si_uid);
2120 err |= __put_user(from->si_ptr, &to->si_ptr);
2121 break;
2122 default: /* this is just in case for now ... */
2123 err |= __put_user(from->si_pid, &to->si_pid);
2124 err |= __put_user(from->si_uid, &to->si_uid);
2125 break;
2127 return err;
2130 #endif
2132 asmlinkage long
2133 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2134 siginfo_t __user *uinfo,
2135 const struct timespec __user *uts,
2136 size_t sigsetsize)
2138 int ret, sig;
2139 sigset_t these;
2140 struct timespec ts;
2141 siginfo_t info;
2142 long timeout = 0;
2144 /* XXX: Don't preclude handling different sized sigset_t's. */
2145 if (sigsetsize != sizeof(sigset_t))
2146 return -EINVAL;
2148 if (copy_from_user(&these, uthese, sizeof(these)))
2149 return -EFAULT;
2152 * Invert the set of allowed signals to get those we
2153 * want to block.
2155 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2156 signotset(&these);
2158 if (uts) {
2159 if (copy_from_user(&ts, uts, sizeof(ts)))
2160 return -EFAULT;
2161 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2162 || ts.tv_sec < 0)
2163 return -EINVAL;
2166 spin_lock_irq(&current->sighand->siglock);
2167 sig = dequeue_signal(current, &these, &info);
2168 if (!sig) {
2169 timeout = MAX_SCHEDULE_TIMEOUT;
2170 if (uts)
2171 timeout = (timespec_to_jiffies(&ts)
2172 + (ts.tv_sec || ts.tv_nsec));
2174 if (timeout) {
2175 /* None ready -- temporarily unblock those we're
2176 * interested while we are sleeping in so that we'll
2177 * be awakened when they arrive. */
2178 current->real_blocked = current->blocked;
2179 sigandsets(&current->blocked, &current->blocked, &these);
2180 recalc_sigpending();
2181 spin_unlock_irq(&current->sighand->siglock);
2183 timeout = schedule_timeout_interruptible(timeout);
2185 spin_lock_irq(&current->sighand->siglock);
2186 sig = dequeue_signal(current, &these, &info);
2187 current->blocked = current->real_blocked;
2188 siginitset(&current->real_blocked, 0);
2189 recalc_sigpending();
2192 spin_unlock_irq(&current->sighand->siglock);
2194 if (sig) {
2195 ret = sig;
2196 if (uinfo) {
2197 if (copy_siginfo_to_user(uinfo, &info))
2198 ret = -EFAULT;
2200 } else {
2201 ret = -EAGAIN;
2202 if (timeout)
2203 ret = -EINTR;
2206 return ret;
2209 asmlinkage long
2210 sys_kill(int pid, int sig)
2212 struct siginfo info;
2214 info.si_signo = sig;
2215 info.si_errno = 0;
2216 info.si_code = SI_USER;
2217 info.si_pid = current->tgid;
2218 info.si_uid = current->uid;
2220 return kill_something_info(sig, &info, pid);
2223 static int do_tkill(int tgid, int pid, int sig)
2225 int error;
2226 struct siginfo info;
2227 struct task_struct *p;
2229 error = -ESRCH;
2230 info.si_signo = sig;
2231 info.si_errno = 0;
2232 info.si_code = SI_TKILL;
2233 info.si_pid = current->tgid;
2234 info.si_uid = current->uid;
2236 read_lock(&tasklist_lock);
2237 p = find_task_by_pid(pid);
2238 if (p && (tgid <= 0 || p->tgid == tgid)) {
2239 error = check_kill_permission(sig, &info, p);
2241 * The null signal is a permissions and process existence
2242 * probe. No signal is actually delivered.
2244 if (!error && sig && p->sighand) {
2245 spin_lock_irq(&p->sighand->siglock);
2246 handle_stop_signal(sig, p);
2247 error = specific_send_sig_info(sig, &info, p);
2248 spin_unlock_irq(&p->sighand->siglock);
2251 read_unlock(&tasklist_lock);
2253 return error;
2257 * sys_tgkill - send signal to one specific thread
2258 * @tgid: the thread group ID of the thread
2259 * @pid: the PID of the thread
2260 * @sig: signal to be sent
2262 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2263 * exists but it's not belonging to the target process anymore. This
2264 * method solves the problem of threads exiting and PIDs getting reused.
2266 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2268 /* This is only valid for single tasks */
2269 if (pid <= 0 || tgid <= 0)
2270 return -EINVAL;
2272 return do_tkill(tgid, pid, sig);
2276 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2278 asmlinkage long
2279 sys_tkill(int pid, int sig)
2281 /* This is only valid for single tasks */
2282 if (pid <= 0)
2283 return -EINVAL;
2285 return do_tkill(0, pid, sig);
2288 asmlinkage long
2289 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2291 siginfo_t info;
2293 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2294 return -EFAULT;
2296 /* Not even root can pretend to send signals from the kernel.
2297 Nor can they impersonate a kill(), which adds source info. */
2298 if (info.si_code >= 0)
2299 return -EPERM;
2300 info.si_signo = sig;
2302 /* POSIX.1b doesn't mention process groups. */
2303 return kill_proc_info(sig, &info, pid);
2306 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2308 struct k_sigaction *k;
2309 sigset_t mask;
2311 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2312 return -EINVAL;
2314 k = &current->sighand->action[sig-1];
2316 spin_lock_irq(&current->sighand->siglock);
2317 if (signal_pending(current)) {
2319 * If there might be a fatal signal pending on multiple
2320 * threads, make sure we take it before changing the action.
2322 spin_unlock_irq(&current->sighand->siglock);
2323 return -ERESTARTNOINTR;
2326 if (oact)
2327 *oact = *k;
2329 if (act) {
2330 sigdelsetmask(&act->sa.sa_mask,
2331 sigmask(SIGKILL) | sigmask(SIGSTOP));
2332 *k = *act;
2334 * POSIX 3.3.1.3:
2335 * "Setting a signal action to SIG_IGN for a signal that is
2336 * pending shall cause the pending signal to be discarded,
2337 * whether or not it is blocked."
2339 * "Setting a signal action to SIG_DFL for a signal that is
2340 * pending and whose default action is to ignore the signal
2341 * (for example, SIGCHLD), shall cause the pending signal to
2342 * be discarded, whether or not it is blocked"
2344 if (act->sa.sa_handler == SIG_IGN ||
2345 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2346 struct task_struct *t = current;
2347 sigemptyset(&mask);
2348 sigaddset(&mask, sig);
2349 rm_from_queue_full(&mask, &t->signal->shared_pending);
2350 do {
2351 rm_from_queue_full(&mask, &t->pending);
2352 recalc_sigpending_tsk(t);
2353 t = next_thread(t);
2354 } while (t != current);
2358 spin_unlock_irq(&current->sighand->siglock);
2359 return 0;
2362 int
2363 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2365 stack_t oss;
2366 int error;
2368 if (uoss) {
2369 oss.ss_sp = (void __user *) current->sas_ss_sp;
2370 oss.ss_size = current->sas_ss_size;
2371 oss.ss_flags = sas_ss_flags(sp);
2374 if (uss) {
2375 void __user *ss_sp;
2376 size_t ss_size;
2377 int ss_flags;
2379 error = -EFAULT;
2380 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2381 || __get_user(ss_sp, &uss->ss_sp)
2382 || __get_user(ss_flags, &uss->ss_flags)
2383 || __get_user(ss_size, &uss->ss_size))
2384 goto out;
2386 error = -EPERM;
2387 if (on_sig_stack(sp))
2388 goto out;
2390 error = -EINVAL;
2393 * Note - this code used to test ss_flags incorrectly
2394 * old code may have been written using ss_flags==0
2395 * to mean ss_flags==SS_ONSTACK (as this was the only
2396 * way that worked) - this fix preserves that older
2397 * mechanism
2399 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2400 goto out;
2402 if (ss_flags == SS_DISABLE) {
2403 ss_size = 0;
2404 ss_sp = NULL;
2405 } else {
2406 error = -ENOMEM;
2407 if (ss_size < MINSIGSTKSZ)
2408 goto out;
2411 current->sas_ss_sp = (unsigned long) ss_sp;
2412 current->sas_ss_size = ss_size;
2415 if (uoss) {
2416 error = -EFAULT;
2417 if (copy_to_user(uoss, &oss, sizeof(oss)))
2418 goto out;
2421 error = 0;
2422 out:
2423 return error;
2426 #ifdef __ARCH_WANT_SYS_SIGPENDING
2428 asmlinkage long
2429 sys_sigpending(old_sigset_t __user *set)
2431 return do_sigpending(set, sizeof(*set));
2434 #endif
2436 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2437 /* Some platforms have their own version with special arguments others
2438 support only sys_rt_sigprocmask. */
2440 asmlinkage long
2441 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2443 int error;
2444 old_sigset_t old_set, new_set;
2446 if (set) {
2447 error = -EFAULT;
2448 if (copy_from_user(&new_set, set, sizeof(*set)))
2449 goto out;
2450 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2452 spin_lock_irq(&current->sighand->siglock);
2453 old_set = current->blocked.sig[0];
2455 error = 0;
2456 switch (how) {
2457 default:
2458 error = -EINVAL;
2459 break;
2460 case SIG_BLOCK:
2461 sigaddsetmask(&current->blocked, new_set);
2462 break;
2463 case SIG_UNBLOCK:
2464 sigdelsetmask(&current->blocked, new_set);
2465 break;
2466 case SIG_SETMASK:
2467 current->blocked.sig[0] = new_set;
2468 break;
2471 recalc_sigpending();
2472 spin_unlock_irq(&current->sighand->siglock);
2473 if (error)
2474 goto out;
2475 if (oset)
2476 goto set_old;
2477 } else if (oset) {
2478 old_set = current->blocked.sig[0];
2479 set_old:
2480 error = -EFAULT;
2481 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2482 goto out;
2484 error = 0;
2485 out:
2486 return error;
2488 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2490 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2491 asmlinkage long
2492 sys_rt_sigaction(int sig,
2493 const struct sigaction __user *act,
2494 struct sigaction __user *oact,
2495 size_t sigsetsize)
2497 struct k_sigaction new_sa, old_sa;
2498 int ret = -EINVAL;
2500 /* XXX: Don't preclude handling different sized sigset_t's. */
2501 if (sigsetsize != sizeof(sigset_t))
2502 goto out;
2504 if (act) {
2505 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2506 return -EFAULT;
2509 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2511 if (!ret && oact) {
2512 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2513 return -EFAULT;
2515 out:
2516 return ret;
2518 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2520 #ifdef __ARCH_WANT_SYS_SGETMASK
2523 * For backwards compatibility. Functionality superseded by sigprocmask.
2525 asmlinkage long
2526 sys_sgetmask(void)
2528 /* SMP safe */
2529 return current->blocked.sig[0];
2532 asmlinkage long
2533 sys_ssetmask(int newmask)
2535 int old;
2537 spin_lock_irq(&current->sighand->siglock);
2538 old = current->blocked.sig[0];
2540 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2541 sigmask(SIGSTOP)));
2542 recalc_sigpending();
2543 spin_unlock_irq(&current->sighand->siglock);
2545 return old;
2547 #endif /* __ARCH_WANT_SGETMASK */
2549 #ifdef __ARCH_WANT_SYS_SIGNAL
2551 * For backwards compatibility. Functionality superseded by sigaction.
2553 asmlinkage unsigned long
2554 sys_signal(int sig, __sighandler_t handler)
2556 struct k_sigaction new_sa, old_sa;
2557 int ret;
2559 new_sa.sa.sa_handler = handler;
2560 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2561 sigemptyset(&new_sa.sa.sa_mask);
2563 ret = do_sigaction(sig, &new_sa, &old_sa);
2565 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2567 #endif /* __ARCH_WANT_SYS_SIGNAL */
2569 #ifdef __ARCH_WANT_SYS_PAUSE
2571 asmlinkage long
2572 sys_pause(void)
2574 current->state = TASK_INTERRUPTIBLE;
2575 schedule();
2576 return -ERESTARTNOHAND;
2579 #endif
2581 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2582 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2584 sigset_t newset;
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize != sizeof(sigset_t))
2588 return -EINVAL;
2590 if (copy_from_user(&newset, unewset, sizeof(newset)))
2591 return -EFAULT;
2592 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2594 spin_lock_irq(&current->sighand->siglock);
2595 current->saved_sigmask = current->blocked;
2596 current->blocked = newset;
2597 recalc_sigpending();
2598 spin_unlock_irq(&current->sighand->siglock);
2600 current->state = TASK_INTERRUPTIBLE;
2601 schedule();
2602 set_thread_flag(TIF_RESTORE_SIGMASK);
2603 return -ERESTARTNOHAND;
2605 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2607 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2609 return NULL;
2612 void __init signals_init(void)
2614 sigqueue_cachep =
2615 kmem_cache_create("sigqueue",
2616 sizeof(struct sigqueue),
2617 __alignof__(struct sigqueue),
2618 SLAB_PANIC, NULL, NULL);