dm crypt: restructure essiv error path
[linux-2.6/cjktty.git] / drivers / md / dm-crypt.c
blob2301d223f2ae63edd6cc5169086fc1ee7f2b6dcd
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
26 #include <linux/device-mapper.h>
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
32 * context holding the current state of a multi-part conversion
34 struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
47 * per bio private data
49 struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
54 struct convert_context ctx;
56 atomic_t pending;
57 int error;
58 sector_t sector;
59 struct dm_crypt_io *base_io;
62 struct dm_crypt_request {
63 struct convert_context *ctx;
64 struct scatterlist sg_in;
65 struct scatterlist sg_out;
68 struct crypt_config;
70 struct crypt_iv_operations {
71 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72 const char *opts);
73 void (*dtr)(struct crypt_config *cc);
74 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
77 struct iv_essiv_private {
78 struct crypto_cipher *tfm;
81 struct iv_benbi_private {
82 int shift;
86 * Crypt: maps a linear range of a block device
87 * and encrypts / decrypts at the same time.
89 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
90 struct crypt_config {
91 struct dm_dev *dev;
92 sector_t start;
95 * pool for per bio private data, crypto requests and
96 * encryption requeusts/buffer pages
98 mempool_t *io_pool;
99 mempool_t *req_pool;
100 mempool_t *page_pool;
101 struct bio_set *bs;
103 struct workqueue_struct *io_queue;
104 struct workqueue_struct *crypt_queue;
107 * crypto related data
109 struct crypt_iv_operations *iv_gen_ops;
110 char *iv_mode;
111 union {
112 struct iv_essiv_private essiv;
113 struct iv_benbi_private benbi;
114 } iv_gen_private;
115 sector_t iv_offset;
116 unsigned int iv_size;
119 * Layout of each crypto request:
121 * struct ablkcipher_request
122 * context
123 * padding
124 * struct dm_crypt_request
125 * padding
126 * IV
128 * The padding is added so that dm_crypt_request and the IV are
129 * correctly aligned.
131 unsigned int dmreq_start;
132 struct ablkcipher_request *req;
134 char cipher[CRYPTO_MAX_ALG_NAME];
135 char chainmode[CRYPTO_MAX_ALG_NAME];
136 struct crypto_ablkcipher *tfm;
137 unsigned long flags;
138 unsigned int key_size;
139 u8 key[0];
142 #define MIN_IOS 16
143 #define MIN_POOL_PAGES 32
144 #define MIN_BIO_PAGES 8
146 static struct kmem_cache *_crypt_io_pool;
148 static void clone_init(struct dm_crypt_io *, struct bio *);
149 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
152 * Different IV generation algorithms:
154 * plain: the initial vector is the 32-bit little-endian version of the sector
155 * number, padded with zeros if necessary.
157 * essiv: "encrypted sector|salt initial vector", the sector number is
158 * encrypted with the bulk cipher using a salt as key. The salt
159 * should be derived from the bulk cipher's key via hashing.
161 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
162 * (needed for LRW-32-AES and possible other narrow block modes)
164 * null: the initial vector is always zero. Provides compatibility with
165 * obsolete loop_fish2 devices. Do not use for new devices.
167 * plumb: unimplemented, see:
168 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
171 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
173 memset(iv, 0, cc->iv_size);
174 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
176 return 0;
179 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
181 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
183 crypto_free_cipher(essiv->tfm);
184 essiv->tfm = NULL;
187 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
188 const char *opts)
190 struct crypto_cipher *essiv_tfm = NULL;
191 struct crypto_hash *hash_tfm = NULL;
192 struct hash_desc desc;
193 struct scatterlist sg;
194 unsigned int saltsize;
195 u8 *salt = NULL;
196 int err;
198 if (!opts) {
199 ti->error = "Digest algorithm missing for ESSIV mode";
200 return -EINVAL;
203 /* Hash the cipher key with the given hash algorithm */
204 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
205 if (IS_ERR(hash_tfm)) {
206 ti->error = "Error initializing ESSIV hash";
207 err = PTR_ERR(hash_tfm);
208 goto bad;
211 saltsize = crypto_hash_digestsize(hash_tfm);
212 salt = kzalloc(saltsize, GFP_KERNEL);
213 if (!salt) {
214 ti->error = "Error kmallocing salt storage in ESSIV";
215 err = -ENOMEM;
216 goto bad;
219 sg_init_one(&sg, cc->key, cc->key_size);
220 desc.tfm = hash_tfm;
221 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
222 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
223 crypto_free_hash(hash_tfm);
224 hash_tfm = NULL;
226 if (err) {
227 ti->error = "Error calculating hash in ESSIV";
228 goto bad;
231 /* Setup the essiv_tfm with the given salt */
232 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
233 if (IS_ERR(essiv_tfm)) {
234 ti->error = "Error allocating crypto tfm for ESSIV";
235 err = PTR_ERR(essiv_tfm);
236 goto bad;
238 if (crypto_cipher_blocksize(essiv_tfm) !=
239 crypto_ablkcipher_ivsize(cc->tfm)) {
240 ti->error = "Block size of ESSIV cipher does "
241 "not match IV size of block cipher";
242 err = -EINVAL;
243 goto bad;
245 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
246 if (err) {
247 ti->error = "Failed to set key for ESSIV cipher";
248 goto bad;
250 kzfree(salt);
252 cc->iv_gen_private.essiv.tfm = essiv_tfm;
253 return 0;
255 bad:
256 if (essiv_tfm && !IS_ERR(essiv_tfm))
257 crypto_free_cipher(essiv_tfm);
258 if (hash_tfm && !IS_ERR(hash_tfm))
259 crypto_free_hash(hash_tfm);
260 kzfree(salt);
261 return err;
264 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 memset(iv, 0, cc->iv_size);
267 *(u64 *)iv = cpu_to_le64(sector);
268 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
269 return 0;
272 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
273 const char *opts)
275 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
276 int log = ilog2(bs);
278 /* we need to calculate how far we must shift the sector count
279 * to get the cipher block count, we use this shift in _gen */
281 if (1 << log != bs) {
282 ti->error = "cypher blocksize is not a power of 2";
283 return -EINVAL;
286 if (log > 9) {
287 ti->error = "cypher blocksize is > 512";
288 return -EINVAL;
291 cc->iv_gen_private.benbi.shift = 9 - log;
293 return 0;
296 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
300 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
302 __be64 val;
304 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
306 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
307 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
309 return 0;
312 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
314 memset(iv, 0, cc->iv_size);
316 return 0;
319 static struct crypt_iv_operations crypt_iv_plain_ops = {
320 .generator = crypt_iv_plain_gen
323 static struct crypt_iv_operations crypt_iv_essiv_ops = {
324 .ctr = crypt_iv_essiv_ctr,
325 .dtr = crypt_iv_essiv_dtr,
326 .generator = crypt_iv_essiv_gen
329 static struct crypt_iv_operations crypt_iv_benbi_ops = {
330 .ctr = crypt_iv_benbi_ctr,
331 .dtr = crypt_iv_benbi_dtr,
332 .generator = crypt_iv_benbi_gen
335 static struct crypt_iv_operations crypt_iv_null_ops = {
336 .generator = crypt_iv_null_gen
339 static void crypt_convert_init(struct crypt_config *cc,
340 struct convert_context *ctx,
341 struct bio *bio_out, struct bio *bio_in,
342 sector_t sector)
344 ctx->bio_in = bio_in;
345 ctx->bio_out = bio_out;
346 ctx->offset_in = 0;
347 ctx->offset_out = 0;
348 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
349 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
350 ctx->sector = sector + cc->iv_offset;
351 init_completion(&ctx->restart);
354 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
355 struct ablkcipher_request *req)
357 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
360 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
361 struct dm_crypt_request *dmreq)
363 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
366 static int crypt_convert_block(struct crypt_config *cc,
367 struct convert_context *ctx,
368 struct ablkcipher_request *req)
370 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
371 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
372 struct dm_crypt_request *dmreq;
373 u8 *iv;
374 int r = 0;
376 dmreq = dmreq_of_req(cc, req);
377 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
378 crypto_ablkcipher_alignmask(cc->tfm) + 1);
380 dmreq->ctx = ctx;
381 sg_init_table(&dmreq->sg_in, 1);
382 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
383 bv_in->bv_offset + ctx->offset_in);
385 sg_init_table(&dmreq->sg_out, 1);
386 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
387 bv_out->bv_offset + ctx->offset_out);
389 ctx->offset_in += 1 << SECTOR_SHIFT;
390 if (ctx->offset_in >= bv_in->bv_len) {
391 ctx->offset_in = 0;
392 ctx->idx_in++;
395 ctx->offset_out += 1 << SECTOR_SHIFT;
396 if (ctx->offset_out >= bv_out->bv_len) {
397 ctx->offset_out = 0;
398 ctx->idx_out++;
401 if (cc->iv_gen_ops) {
402 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
403 if (r < 0)
404 return r;
407 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
408 1 << SECTOR_SHIFT, iv);
410 if (bio_data_dir(ctx->bio_in) == WRITE)
411 r = crypto_ablkcipher_encrypt(req);
412 else
413 r = crypto_ablkcipher_decrypt(req);
415 return r;
418 static void kcryptd_async_done(struct crypto_async_request *async_req,
419 int error);
420 static void crypt_alloc_req(struct crypt_config *cc,
421 struct convert_context *ctx)
423 if (!cc->req)
424 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
425 ablkcipher_request_set_tfm(cc->req, cc->tfm);
426 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
427 CRYPTO_TFM_REQ_MAY_SLEEP,
428 kcryptd_async_done,
429 dmreq_of_req(cc, cc->req));
433 * Encrypt / decrypt data from one bio to another one (can be the same one)
435 static int crypt_convert(struct crypt_config *cc,
436 struct convert_context *ctx)
438 int r;
440 atomic_set(&ctx->pending, 1);
442 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
443 ctx->idx_out < ctx->bio_out->bi_vcnt) {
445 crypt_alloc_req(cc, ctx);
447 atomic_inc(&ctx->pending);
449 r = crypt_convert_block(cc, ctx, cc->req);
451 switch (r) {
452 /* async */
453 case -EBUSY:
454 wait_for_completion(&ctx->restart);
455 INIT_COMPLETION(ctx->restart);
456 /* fall through*/
457 case -EINPROGRESS:
458 cc->req = NULL;
459 ctx->sector++;
460 continue;
462 /* sync */
463 case 0:
464 atomic_dec(&ctx->pending);
465 ctx->sector++;
466 cond_resched();
467 continue;
469 /* error */
470 default:
471 atomic_dec(&ctx->pending);
472 return r;
476 return 0;
479 static void dm_crypt_bio_destructor(struct bio *bio)
481 struct dm_crypt_io *io = bio->bi_private;
482 struct crypt_config *cc = io->target->private;
484 bio_free(bio, cc->bs);
488 * Generate a new unfragmented bio with the given size
489 * This should never violate the device limitations
490 * May return a smaller bio when running out of pages, indicated by
491 * *out_of_pages set to 1.
493 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
494 unsigned *out_of_pages)
496 struct crypt_config *cc = io->target->private;
497 struct bio *clone;
498 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
499 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
500 unsigned i, len;
501 struct page *page;
503 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
504 if (!clone)
505 return NULL;
507 clone_init(io, clone);
508 *out_of_pages = 0;
510 for (i = 0; i < nr_iovecs; i++) {
511 page = mempool_alloc(cc->page_pool, gfp_mask);
512 if (!page) {
513 *out_of_pages = 1;
514 break;
518 * if additional pages cannot be allocated without waiting,
519 * return a partially allocated bio, the caller will then try
520 * to allocate additional bios while submitting this partial bio
522 if (i == (MIN_BIO_PAGES - 1))
523 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
525 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
527 if (!bio_add_page(clone, page, len, 0)) {
528 mempool_free(page, cc->page_pool);
529 break;
532 size -= len;
535 if (!clone->bi_size) {
536 bio_put(clone);
537 return NULL;
540 return clone;
543 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
545 unsigned int i;
546 struct bio_vec *bv;
548 for (i = 0; i < clone->bi_vcnt; i++) {
549 bv = bio_iovec_idx(clone, i);
550 BUG_ON(!bv->bv_page);
551 mempool_free(bv->bv_page, cc->page_pool);
552 bv->bv_page = NULL;
556 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
557 struct bio *bio, sector_t sector)
559 struct crypt_config *cc = ti->private;
560 struct dm_crypt_io *io;
562 io = mempool_alloc(cc->io_pool, GFP_NOIO);
563 io->target = ti;
564 io->base_bio = bio;
565 io->sector = sector;
566 io->error = 0;
567 io->base_io = NULL;
568 atomic_set(&io->pending, 0);
570 return io;
573 static void crypt_inc_pending(struct dm_crypt_io *io)
575 atomic_inc(&io->pending);
579 * One of the bios was finished. Check for completion of
580 * the whole request and correctly clean up the buffer.
581 * If base_io is set, wait for the last fragment to complete.
583 static void crypt_dec_pending(struct dm_crypt_io *io)
585 struct crypt_config *cc = io->target->private;
586 struct bio *base_bio = io->base_bio;
587 struct dm_crypt_io *base_io = io->base_io;
588 int error = io->error;
590 if (!atomic_dec_and_test(&io->pending))
591 return;
593 mempool_free(io, cc->io_pool);
595 if (likely(!base_io))
596 bio_endio(base_bio, error);
597 else {
598 if (error && !base_io->error)
599 base_io->error = error;
600 crypt_dec_pending(base_io);
605 * kcryptd/kcryptd_io:
607 * Needed because it would be very unwise to do decryption in an
608 * interrupt context.
610 * kcryptd performs the actual encryption or decryption.
612 * kcryptd_io performs the IO submission.
614 * They must be separated as otherwise the final stages could be
615 * starved by new requests which can block in the first stages due
616 * to memory allocation.
618 static void crypt_endio(struct bio *clone, int error)
620 struct dm_crypt_io *io = clone->bi_private;
621 struct crypt_config *cc = io->target->private;
622 unsigned rw = bio_data_dir(clone);
624 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
625 error = -EIO;
628 * free the processed pages
630 if (rw == WRITE)
631 crypt_free_buffer_pages(cc, clone);
633 bio_put(clone);
635 if (rw == READ && !error) {
636 kcryptd_queue_crypt(io);
637 return;
640 if (unlikely(error))
641 io->error = error;
643 crypt_dec_pending(io);
646 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
648 struct crypt_config *cc = io->target->private;
650 clone->bi_private = io;
651 clone->bi_end_io = crypt_endio;
652 clone->bi_bdev = cc->dev->bdev;
653 clone->bi_rw = io->base_bio->bi_rw;
654 clone->bi_destructor = dm_crypt_bio_destructor;
657 static void kcryptd_io_read(struct dm_crypt_io *io)
659 struct crypt_config *cc = io->target->private;
660 struct bio *base_bio = io->base_bio;
661 struct bio *clone;
663 crypt_inc_pending(io);
666 * The block layer might modify the bvec array, so always
667 * copy the required bvecs because we need the original
668 * one in order to decrypt the whole bio data *afterwards*.
670 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
671 if (unlikely(!clone)) {
672 io->error = -ENOMEM;
673 crypt_dec_pending(io);
674 return;
677 clone_init(io, clone);
678 clone->bi_idx = 0;
679 clone->bi_vcnt = bio_segments(base_bio);
680 clone->bi_size = base_bio->bi_size;
681 clone->bi_sector = cc->start + io->sector;
682 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
683 sizeof(struct bio_vec) * clone->bi_vcnt);
685 generic_make_request(clone);
688 static void kcryptd_io_write(struct dm_crypt_io *io)
690 struct bio *clone = io->ctx.bio_out;
691 generic_make_request(clone);
694 static void kcryptd_io(struct work_struct *work)
696 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
698 if (bio_data_dir(io->base_bio) == READ)
699 kcryptd_io_read(io);
700 else
701 kcryptd_io_write(io);
704 static void kcryptd_queue_io(struct dm_crypt_io *io)
706 struct crypt_config *cc = io->target->private;
708 INIT_WORK(&io->work, kcryptd_io);
709 queue_work(cc->io_queue, &io->work);
712 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
713 int error, int async)
715 struct bio *clone = io->ctx.bio_out;
716 struct crypt_config *cc = io->target->private;
718 if (unlikely(error < 0)) {
719 crypt_free_buffer_pages(cc, clone);
720 bio_put(clone);
721 io->error = -EIO;
722 crypt_dec_pending(io);
723 return;
726 /* crypt_convert should have filled the clone bio */
727 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
729 clone->bi_sector = cc->start + io->sector;
731 if (async)
732 kcryptd_queue_io(io);
733 else
734 generic_make_request(clone);
737 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
739 struct crypt_config *cc = io->target->private;
740 struct bio *clone;
741 struct dm_crypt_io *new_io;
742 int crypt_finished;
743 unsigned out_of_pages = 0;
744 unsigned remaining = io->base_bio->bi_size;
745 sector_t sector = io->sector;
746 int r;
749 * Prevent io from disappearing until this function completes.
751 crypt_inc_pending(io);
752 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
755 * The allocated buffers can be smaller than the whole bio,
756 * so repeat the whole process until all the data can be handled.
758 while (remaining) {
759 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
760 if (unlikely(!clone)) {
761 io->error = -ENOMEM;
762 break;
765 io->ctx.bio_out = clone;
766 io->ctx.idx_out = 0;
768 remaining -= clone->bi_size;
769 sector += bio_sectors(clone);
771 crypt_inc_pending(io);
772 r = crypt_convert(cc, &io->ctx);
773 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
775 /* Encryption was already finished, submit io now */
776 if (crypt_finished) {
777 kcryptd_crypt_write_io_submit(io, r, 0);
780 * If there was an error, do not try next fragments.
781 * For async, error is processed in async handler.
783 if (unlikely(r < 0))
784 break;
786 io->sector = sector;
790 * Out of memory -> run queues
791 * But don't wait if split was due to the io size restriction
793 if (unlikely(out_of_pages))
794 congestion_wait(BLK_RW_ASYNC, HZ/100);
797 * With async crypto it is unsafe to share the crypto context
798 * between fragments, so switch to a new dm_crypt_io structure.
800 if (unlikely(!crypt_finished && remaining)) {
801 new_io = crypt_io_alloc(io->target, io->base_bio,
802 sector);
803 crypt_inc_pending(new_io);
804 crypt_convert_init(cc, &new_io->ctx, NULL,
805 io->base_bio, sector);
806 new_io->ctx.idx_in = io->ctx.idx_in;
807 new_io->ctx.offset_in = io->ctx.offset_in;
810 * Fragments after the first use the base_io
811 * pending count.
813 if (!io->base_io)
814 new_io->base_io = io;
815 else {
816 new_io->base_io = io->base_io;
817 crypt_inc_pending(io->base_io);
818 crypt_dec_pending(io);
821 io = new_io;
825 crypt_dec_pending(io);
828 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
830 if (unlikely(error < 0))
831 io->error = -EIO;
833 crypt_dec_pending(io);
836 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
838 struct crypt_config *cc = io->target->private;
839 int r = 0;
841 crypt_inc_pending(io);
843 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
844 io->sector);
846 r = crypt_convert(cc, &io->ctx);
848 if (atomic_dec_and_test(&io->ctx.pending))
849 kcryptd_crypt_read_done(io, r);
851 crypt_dec_pending(io);
854 static void kcryptd_async_done(struct crypto_async_request *async_req,
855 int error)
857 struct dm_crypt_request *dmreq = async_req->data;
858 struct convert_context *ctx = dmreq->ctx;
859 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
860 struct crypt_config *cc = io->target->private;
862 if (error == -EINPROGRESS) {
863 complete(&ctx->restart);
864 return;
867 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
869 if (!atomic_dec_and_test(&ctx->pending))
870 return;
872 if (bio_data_dir(io->base_bio) == READ)
873 kcryptd_crypt_read_done(io, error);
874 else
875 kcryptd_crypt_write_io_submit(io, error, 1);
878 static void kcryptd_crypt(struct work_struct *work)
880 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
882 if (bio_data_dir(io->base_bio) == READ)
883 kcryptd_crypt_read_convert(io);
884 else
885 kcryptd_crypt_write_convert(io);
888 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
890 struct crypt_config *cc = io->target->private;
892 INIT_WORK(&io->work, kcryptd_crypt);
893 queue_work(cc->crypt_queue, &io->work);
897 * Decode key from its hex representation
899 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
901 char buffer[3];
902 char *endp;
903 unsigned int i;
905 buffer[2] = '\0';
907 for (i = 0; i < size; i++) {
908 buffer[0] = *hex++;
909 buffer[1] = *hex++;
911 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
913 if (endp != &buffer[2])
914 return -EINVAL;
917 if (*hex != '\0')
918 return -EINVAL;
920 return 0;
924 * Encode key into its hex representation
926 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
928 unsigned int i;
930 for (i = 0; i < size; i++) {
931 sprintf(hex, "%02x", *key);
932 hex += 2;
933 key++;
937 static int crypt_set_key(struct crypt_config *cc, char *key)
939 unsigned key_size = strlen(key) >> 1;
941 if (cc->key_size && cc->key_size != key_size)
942 return -EINVAL;
944 cc->key_size = key_size; /* initial settings */
946 if ((!key_size && strcmp(key, "-")) ||
947 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
948 return -EINVAL;
950 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
952 return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
955 static int crypt_wipe_key(struct crypt_config *cc)
957 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
958 memset(&cc->key, 0, cc->key_size * sizeof(u8));
959 return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
963 * Construct an encryption mapping:
964 * <cipher> <key> <iv_offset> <dev_path> <start>
966 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
968 struct crypt_config *cc;
969 struct crypto_ablkcipher *tfm;
970 char *tmp;
971 char *cipher;
972 char *chainmode;
973 char *ivmode;
974 char *ivopts;
975 unsigned int key_size;
976 unsigned long long tmpll;
978 if (argc != 5) {
979 ti->error = "Not enough arguments";
980 return -EINVAL;
983 tmp = argv[0];
984 cipher = strsep(&tmp, "-");
985 chainmode = strsep(&tmp, "-");
986 ivopts = strsep(&tmp, "-");
987 ivmode = strsep(&ivopts, ":");
989 if (tmp)
990 DMWARN("Unexpected additional cipher options");
992 key_size = strlen(argv[1]) >> 1;
994 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
995 if (cc == NULL) {
996 ti->error =
997 "Cannot allocate transparent encryption context";
998 return -ENOMEM;
1001 /* Compatibility mode for old dm-crypt cipher strings */
1002 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
1003 chainmode = "cbc";
1004 ivmode = "plain";
1007 if (strcmp(chainmode, "ecb") && !ivmode) {
1008 ti->error = "This chaining mode requires an IV mechanism";
1009 goto bad_cipher;
1012 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1013 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1014 ti->error = "Chain mode + cipher name is too long";
1015 goto bad_cipher;
1018 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1019 if (IS_ERR(tfm)) {
1020 ti->error = "Error allocating crypto tfm";
1021 goto bad_cipher;
1024 strcpy(cc->cipher, cipher);
1025 strcpy(cc->chainmode, chainmode);
1026 cc->tfm = tfm;
1028 if (crypt_set_key(cc, argv[1]) < 0) {
1029 ti->error = "Error decoding and setting key";
1030 goto bad_ivmode;
1034 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1035 * See comments at iv code
1038 if (ivmode == NULL)
1039 cc->iv_gen_ops = NULL;
1040 else if (strcmp(ivmode, "plain") == 0)
1041 cc->iv_gen_ops = &crypt_iv_plain_ops;
1042 else if (strcmp(ivmode, "essiv") == 0)
1043 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1044 else if (strcmp(ivmode, "benbi") == 0)
1045 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1046 else if (strcmp(ivmode, "null") == 0)
1047 cc->iv_gen_ops = &crypt_iv_null_ops;
1048 else {
1049 ti->error = "Invalid IV mode";
1050 goto bad_ivmode;
1053 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1054 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1055 goto bad_ivmode;
1057 cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1058 if (cc->iv_size)
1059 /* at least a 64 bit sector number should fit in our buffer */
1060 cc->iv_size = max(cc->iv_size,
1061 (unsigned int)(sizeof(u64) / sizeof(u8)));
1062 else {
1063 if (cc->iv_gen_ops) {
1064 DMWARN("Selected cipher does not support IVs");
1065 if (cc->iv_gen_ops->dtr)
1066 cc->iv_gen_ops->dtr(cc);
1067 cc->iv_gen_ops = NULL;
1071 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1072 if (!cc->io_pool) {
1073 ti->error = "Cannot allocate crypt io mempool";
1074 goto bad_slab_pool;
1077 cc->dmreq_start = sizeof(struct ablkcipher_request);
1078 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1079 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1080 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1081 ~(crypto_tfm_ctx_alignment() - 1);
1083 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1084 sizeof(struct dm_crypt_request) + cc->iv_size);
1085 if (!cc->req_pool) {
1086 ti->error = "Cannot allocate crypt request mempool";
1087 goto bad_req_pool;
1089 cc->req = NULL;
1091 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1092 if (!cc->page_pool) {
1093 ti->error = "Cannot allocate page mempool";
1094 goto bad_page_pool;
1097 cc->bs = bioset_create(MIN_IOS, 0);
1098 if (!cc->bs) {
1099 ti->error = "Cannot allocate crypt bioset";
1100 goto bad_bs;
1103 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1104 ti->error = "Invalid iv_offset sector";
1105 goto bad_device;
1107 cc->iv_offset = tmpll;
1109 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1110 ti->error = "Invalid device sector";
1111 goto bad_device;
1113 cc->start = tmpll;
1115 if (dm_get_device(ti, argv[3], cc->start, ti->len,
1116 dm_table_get_mode(ti->table), &cc->dev)) {
1117 ti->error = "Device lookup failed";
1118 goto bad_device;
1121 if (ivmode && cc->iv_gen_ops) {
1122 if (ivopts)
1123 *(ivopts - 1) = ':';
1124 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1125 if (!cc->iv_mode) {
1126 ti->error = "Error kmallocing iv_mode string";
1127 goto bad_ivmode_string;
1129 strcpy(cc->iv_mode, ivmode);
1130 } else
1131 cc->iv_mode = NULL;
1133 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1134 if (!cc->io_queue) {
1135 ti->error = "Couldn't create kcryptd io queue";
1136 goto bad_io_queue;
1139 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1140 if (!cc->crypt_queue) {
1141 ti->error = "Couldn't create kcryptd queue";
1142 goto bad_crypt_queue;
1145 ti->num_flush_requests = 1;
1146 ti->private = cc;
1147 return 0;
1149 bad_crypt_queue:
1150 destroy_workqueue(cc->io_queue);
1151 bad_io_queue:
1152 kfree(cc->iv_mode);
1153 bad_ivmode_string:
1154 dm_put_device(ti, cc->dev);
1155 bad_device:
1156 bioset_free(cc->bs);
1157 bad_bs:
1158 mempool_destroy(cc->page_pool);
1159 bad_page_pool:
1160 mempool_destroy(cc->req_pool);
1161 bad_req_pool:
1162 mempool_destroy(cc->io_pool);
1163 bad_slab_pool:
1164 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1165 cc->iv_gen_ops->dtr(cc);
1166 bad_ivmode:
1167 crypto_free_ablkcipher(tfm);
1168 bad_cipher:
1169 /* Must zero key material before freeing */
1170 kzfree(cc);
1171 return -EINVAL;
1174 static void crypt_dtr(struct dm_target *ti)
1176 struct crypt_config *cc = (struct crypt_config *) ti->private;
1178 destroy_workqueue(cc->io_queue);
1179 destroy_workqueue(cc->crypt_queue);
1181 if (cc->req)
1182 mempool_free(cc->req, cc->req_pool);
1184 bioset_free(cc->bs);
1185 mempool_destroy(cc->page_pool);
1186 mempool_destroy(cc->req_pool);
1187 mempool_destroy(cc->io_pool);
1189 kfree(cc->iv_mode);
1190 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1191 cc->iv_gen_ops->dtr(cc);
1192 crypto_free_ablkcipher(cc->tfm);
1193 dm_put_device(ti, cc->dev);
1195 /* Must zero key material before freeing */
1196 kzfree(cc);
1199 static int crypt_map(struct dm_target *ti, struct bio *bio,
1200 union map_info *map_context)
1202 struct dm_crypt_io *io;
1203 struct crypt_config *cc;
1205 if (unlikely(bio_empty_barrier(bio))) {
1206 cc = ti->private;
1207 bio->bi_bdev = cc->dev->bdev;
1208 return DM_MAPIO_REMAPPED;
1211 io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1213 if (bio_data_dir(io->base_bio) == READ)
1214 kcryptd_queue_io(io);
1215 else
1216 kcryptd_queue_crypt(io);
1218 return DM_MAPIO_SUBMITTED;
1221 static int crypt_status(struct dm_target *ti, status_type_t type,
1222 char *result, unsigned int maxlen)
1224 struct crypt_config *cc = (struct crypt_config *) ti->private;
1225 unsigned int sz = 0;
1227 switch (type) {
1228 case STATUSTYPE_INFO:
1229 result[0] = '\0';
1230 break;
1232 case STATUSTYPE_TABLE:
1233 if (cc->iv_mode)
1234 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1235 cc->iv_mode);
1236 else
1237 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1239 if (cc->key_size > 0) {
1240 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1241 return -ENOMEM;
1243 crypt_encode_key(result + sz, cc->key, cc->key_size);
1244 sz += cc->key_size << 1;
1245 } else {
1246 if (sz >= maxlen)
1247 return -ENOMEM;
1248 result[sz++] = '-';
1251 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1252 cc->dev->name, (unsigned long long)cc->start);
1253 break;
1255 return 0;
1258 static void crypt_postsuspend(struct dm_target *ti)
1260 struct crypt_config *cc = ti->private;
1262 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1265 static int crypt_preresume(struct dm_target *ti)
1267 struct crypt_config *cc = ti->private;
1269 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1270 DMERR("aborting resume - crypt key is not set.");
1271 return -EAGAIN;
1274 return 0;
1277 static void crypt_resume(struct dm_target *ti)
1279 struct crypt_config *cc = ti->private;
1281 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1284 /* Message interface
1285 * key set <key>
1286 * key wipe
1288 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1290 struct crypt_config *cc = ti->private;
1292 if (argc < 2)
1293 goto error;
1295 if (!strnicmp(argv[0], MESG_STR("key"))) {
1296 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1297 DMWARN("not suspended during key manipulation.");
1298 return -EINVAL;
1300 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1301 return crypt_set_key(cc, argv[2]);
1302 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1303 return crypt_wipe_key(cc);
1306 error:
1307 DMWARN("unrecognised message received.");
1308 return -EINVAL;
1311 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1312 struct bio_vec *biovec, int max_size)
1314 struct crypt_config *cc = ti->private;
1315 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1317 if (!q->merge_bvec_fn)
1318 return max_size;
1320 bvm->bi_bdev = cc->dev->bdev;
1321 bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1323 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1326 static int crypt_iterate_devices(struct dm_target *ti,
1327 iterate_devices_callout_fn fn, void *data)
1329 struct crypt_config *cc = ti->private;
1331 return fn(ti, cc->dev, cc->start, ti->len, data);
1334 static struct target_type crypt_target = {
1335 .name = "crypt",
1336 .version = {1, 7, 0},
1337 .module = THIS_MODULE,
1338 .ctr = crypt_ctr,
1339 .dtr = crypt_dtr,
1340 .map = crypt_map,
1341 .status = crypt_status,
1342 .postsuspend = crypt_postsuspend,
1343 .preresume = crypt_preresume,
1344 .resume = crypt_resume,
1345 .message = crypt_message,
1346 .merge = crypt_merge,
1347 .iterate_devices = crypt_iterate_devices,
1350 static int __init dm_crypt_init(void)
1352 int r;
1354 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1355 if (!_crypt_io_pool)
1356 return -ENOMEM;
1358 r = dm_register_target(&crypt_target);
1359 if (r < 0) {
1360 DMERR("register failed %d", r);
1361 kmem_cache_destroy(_crypt_io_pool);
1364 return r;
1367 static void __exit dm_crypt_exit(void)
1369 dm_unregister_target(&crypt_target);
1370 kmem_cache_destroy(_crypt_io_pool);
1373 module_init(dm_crypt_init);
1374 module_exit(dm_crypt_exit);
1376 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1377 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1378 MODULE_LICENSE("GPL");