Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6/cjktty.git] / fs / namei.c
blob8f7b41a14882eec85c4ab8e46a9e86f41a0c6c79
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 char * getname(const char __user * filename)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
154 audit_getname(result);
155 return result;
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
170 * This does basic POSIX ACL permission checking
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
175 umode_t mode = inode->i_mode;
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
193 * If the DACs are ok we don't need any capability check.
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
219 int ret;
222 * Do the basic POSIX ACL permission checks.
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
237 * Searching includes executable on directories, else just read.
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
244 return -EACCES;
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
257 int inode_permission(struct inode *inode, int mask)
259 int retval;
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
265 * Nobody gets write access to a read-only fs.
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
272 * Nobody gets write access to an immutable file.
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
284 if (retval)
285 return retval;
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
291 return security_inode_permission(inode, mask);
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
306 int file_permission(struct file *file, int mask)
308 return inode_permission(file->f_path.dentry->d_inode, mask);
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
329 int get_write_access(struct inode * inode)
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
339 return 0;
342 int deny_write_access(struct file * file)
344 struct inode *inode = file->f_path.dentry->d_inode;
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
354 return 0;
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
361 * Given a path increment the reference count to the dentry and the vfsmount.
363 void path_get(struct path *path)
365 mntget(path->mnt);
366 dget(path->dentry);
368 EXPORT_SYMBOL(path_get);
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
374 * Given a path decrement the reference count to the dentry and the vfsmount.
376 void path_put(struct path *path)
378 dput(path->dentry);
379 mntput(path->mnt);
381 EXPORT_SYMBOL(path_put);
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
400 static int nameidata_drop_rcu(struct nameidata *nd)
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
421 mntget(nd->path.mnt);
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
459 * It can be possible to revalidate the dentry that we started
460 * the path walk with. force_reval_path may also revalidate the
461 * dentry already committed to the nameidata.
463 if (unlikely(parent == dentry))
464 return nameidata_drop_rcu(nd);
466 BUG_ON(!(nd->flags & LOOKUP_RCU));
467 if (nd->root.mnt) {
468 spin_lock(&fs->lock);
469 if (nd->root.mnt != fs->root.mnt ||
470 nd->root.dentry != fs->root.dentry)
471 goto err_root;
473 spin_lock(&parent->d_lock);
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err;
478 * If the sequence check on the child dentry passed, then the child has
479 * not been removed from its parent. This means the parent dentry must
480 * be valid and able to take a reference at this point.
482 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
483 BUG_ON(!parent->d_count);
484 parent->d_count++;
485 spin_unlock(&dentry->d_lock);
486 spin_unlock(&parent->d_lock);
487 if (nd->root.mnt) {
488 path_get(&nd->root);
489 spin_unlock(&fs->lock);
491 mntget(nd->path.mnt);
493 rcu_read_unlock();
494 br_read_unlock(vfsmount_lock);
495 nd->flags &= ~LOOKUP_RCU;
496 return 0;
497 err:
498 spin_unlock(&dentry->d_lock);
499 spin_unlock(&parent->d_lock);
500 err_root:
501 if (nd->root.mnt)
502 spin_unlock(&fs->lock);
503 return -ECHILD;
506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
509 if (nd->flags & LOOKUP_RCU)
510 return nameidata_dentry_drop_rcu(nd, dentry);
511 return 0;
515 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
516 * @nd: nameidata pathwalk data to drop
517 * Returns: 0 on success, -ECHILD on failure
519 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
520 * nd->path should be the final element of the lookup, so nd->root is discarded.
521 * Must be called from rcu-walk context.
523 static int nameidata_drop_rcu_last(struct nameidata *nd)
525 struct dentry *dentry = nd->path.dentry;
527 BUG_ON(!(nd->flags & LOOKUP_RCU));
528 nd->flags &= ~LOOKUP_RCU;
529 nd->root.mnt = NULL;
530 spin_lock(&dentry->d_lock);
531 if (!__d_rcu_to_refcount(dentry, nd->seq))
532 goto err_unlock;
533 BUG_ON(nd->inode != dentry->d_inode);
534 spin_unlock(&dentry->d_lock);
536 mntget(nd->path.mnt);
538 rcu_read_unlock();
539 br_read_unlock(vfsmount_lock);
541 return 0;
543 err_unlock:
544 spin_unlock(&dentry->d_lock);
545 rcu_read_unlock();
546 br_read_unlock(vfsmount_lock);
547 return -ECHILD;
550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
553 if (likely(nd->flags & LOOKUP_RCU))
554 return nameidata_drop_rcu_last(nd);
555 return 0;
559 * release_open_intent - free up open intent resources
560 * @nd: pointer to nameidata
562 void release_open_intent(struct nameidata *nd)
564 if (nd->intent.open.file->f_path.dentry == NULL)
565 put_filp(nd->intent.open.file);
566 else
567 fput(nd->intent.open.file);
571 * Call d_revalidate and handle filesystems that request rcu-walk
572 * to be dropped. This may be called and return in rcu-walk mode,
573 * regardless of success or error. If -ECHILD is returned, the caller
574 * must return -ECHILD back up the path walk stack so path walk may
575 * be restarted in ref-walk mode.
577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
579 int status;
581 status = dentry->d_op->d_revalidate(dentry, nd);
582 if (status == -ECHILD) {
583 if (nameidata_dentry_drop_rcu(nd, dentry))
584 return status;
585 status = dentry->d_op->d_revalidate(dentry, nd);
588 return status;
591 static inline struct dentry *
592 do_revalidate(struct dentry *dentry, struct nameidata *nd)
594 int status;
596 status = d_revalidate(dentry, nd);
597 if (unlikely(status <= 0)) {
599 * The dentry failed validation.
600 * If d_revalidate returned 0 attempt to invalidate
601 * the dentry otherwise d_revalidate is asking us
602 * to return a fail status.
604 if (status < 0) {
605 /* If we're in rcu-walk, we don't have a ref */
606 if (!(nd->flags & LOOKUP_RCU))
607 dput(dentry);
608 dentry = ERR_PTR(status);
610 } else {
611 /* Don't d_invalidate in rcu-walk mode */
612 if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
613 return ERR_PTR(-ECHILD);
614 if (!d_invalidate(dentry)) {
615 dput(dentry);
616 dentry = NULL;
620 return dentry;
623 static inline int need_reval_dot(struct dentry *dentry)
625 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
626 return 0;
628 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
629 return 0;
631 return 1;
635 * force_reval_path - force revalidation of a dentry
637 * In some situations the path walking code will trust dentries without
638 * revalidating them. This causes problems for filesystems that depend on
639 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
640 * (which indicates that it's possible for the dentry to go stale), force
641 * a d_revalidate call before proceeding.
643 * Returns 0 if the revalidation was successful. If the revalidation fails,
644 * either return the error returned by d_revalidate or -ESTALE if the
645 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
646 * invalidate the dentry. It's up to the caller to handle putting references
647 * to the path if necessary.
649 static int
650 force_reval_path(struct path *path, struct nameidata *nd)
652 int status;
653 struct dentry *dentry = path->dentry;
656 * only check on filesystems where it's possible for the dentry to
657 * become stale.
659 if (!need_reval_dot(dentry))
660 return 0;
662 status = d_revalidate(dentry, nd);
663 if (status > 0)
664 return 0;
666 if (!status) {
667 /* Don't d_invalidate in rcu-walk mode */
668 if (nameidata_drop_rcu(nd))
669 return -ECHILD;
670 d_invalidate(dentry);
671 status = -ESTALE;
673 return status;
677 * Short-cut version of permission(), for calling on directories
678 * during pathname resolution. Combines parts of permission()
679 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
681 * If appropriate, check DAC only. If not appropriate, or
682 * short-cut DAC fails, then call ->permission() to do more
683 * complete permission check.
685 static inline int exec_permission(struct inode *inode, unsigned int flags)
687 int ret;
689 if (inode->i_op->permission) {
690 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
691 } else {
692 ret = acl_permission_check(inode, MAY_EXEC, flags,
693 inode->i_op->check_acl);
695 if (likely(!ret))
696 goto ok;
697 if (ret == -ECHILD)
698 return ret;
700 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
701 goto ok;
703 return ret;
705 return security_inode_exec_permission(inode, flags);
708 static __always_inline void set_root(struct nameidata *nd)
710 if (!nd->root.mnt)
711 get_fs_root(current->fs, &nd->root);
714 static int link_path_walk(const char *, struct nameidata *);
716 static __always_inline void set_root_rcu(struct nameidata *nd)
718 if (!nd->root.mnt) {
719 struct fs_struct *fs = current->fs;
720 unsigned seq;
722 do {
723 seq = read_seqcount_begin(&fs->seq);
724 nd->root = fs->root;
725 } while (read_seqcount_retry(&fs->seq, seq));
729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
731 int ret;
733 if (IS_ERR(link))
734 goto fail;
736 if (*link == '/') {
737 set_root(nd);
738 path_put(&nd->path);
739 nd->path = nd->root;
740 path_get(&nd->root);
742 nd->inode = nd->path.dentry->d_inode;
744 ret = link_path_walk(link, nd);
745 return ret;
746 fail:
747 path_put(&nd->path);
748 return PTR_ERR(link);
751 static void path_put_conditional(struct path *path, struct nameidata *nd)
753 dput(path->dentry);
754 if (path->mnt != nd->path.mnt)
755 mntput(path->mnt);
758 static inline void path_to_nameidata(const struct path *path,
759 struct nameidata *nd)
761 if (!(nd->flags & LOOKUP_RCU)) {
762 dput(nd->path.dentry);
763 if (nd->path.mnt != path->mnt)
764 mntput(nd->path.mnt);
766 nd->path.mnt = path->mnt;
767 nd->path.dentry = path->dentry;
770 static __always_inline int
771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
773 int error;
774 struct dentry *dentry = link->dentry;
776 touch_atime(link->mnt, dentry);
777 nd_set_link(nd, NULL);
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
782 nd->last_type = LAST_BIND;
783 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
784 error = PTR_ERR(*p);
785 if (!IS_ERR(*p)) {
786 char *s = nd_get_link(nd);
787 error = 0;
788 if (s)
789 error = __vfs_follow_link(nd, s);
790 else if (nd->last_type == LAST_BIND) {
791 error = force_reval_path(&nd->path, nd);
792 if (error)
793 path_put(&nd->path);
796 return error;
800 * This limits recursive symlink follows to 8, while
801 * limiting consecutive symlinks to 40.
803 * Without that kind of total limit, nasty chains of consecutive
804 * symlinks can cause almost arbitrarily long lookups.
806 static inline int do_follow_link(struct path *path, struct nameidata *nd)
808 void *cookie;
809 int err = -ELOOP;
810 if (current->link_count >= MAX_NESTED_LINKS)
811 goto loop;
812 if (current->total_link_count >= 40)
813 goto loop;
814 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
815 cond_resched();
816 err = security_inode_follow_link(path->dentry, nd);
817 if (err)
818 goto loop;
819 current->link_count++;
820 current->total_link_count++;
821 nd->depth++;
822 err = __do_follow_link(path, nd, &cookie);
823 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
824 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
825 path_put(path);
826 current->link_count--;
827 nd->depth--;
828 return err;
829 loop:
830 path_put_conditional(path, nd);
831 path_put(&nd->path);
832 return err;
835 static int follow_up_rcu(struct path *path)
837 struct vfsmount *parent;
838 struct dentry *mountpoint;
840 parent = path->mnt->mnt_parent;
841 if (parent == path->mnt)
842 return 0;
843 mountpoint = path->mnt->mnt_mountpoint;
844 path->dentry = mountpoint;
845 path->mnt = parent;
846 return 1;
849 int follow_up(struct path *path)
851 struct vfsmount *parent;
852 struct dentry *mountpoint;
854 br_read_lock(vfsmount_lock);
855 parent = path->mnt->mnt_parent;
856 if (parent == path->mnt) {
857 br_read_unlock(vfsmount_lock);
858 return 0;
860 mntget(parent);
861 mountpoint = dget(path->mnt->mnt_mountpoint);
862 br_read_unlock(vfsmount_lock);
863 dput(path->dentry);
864 path->dentry = mountpoint;
865 mntput(path->mnt);
866 path->mnt = parent;
867 return 1;
871 * Perform an automount
872 * - return -EISDIR to tell follow_managed() to stop and return the path we
873 * were called with.
875 static int follow_automount(struct path *path, unsigned flags,
876 bool *need_mntput)
878 struct vfsmount *mnt;
879 int err;
881 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
882 return -EREMOTE;
884 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
885 * and this is the terminal part of the path.
887 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
888 return -EISDIR; /* we actually want to stop here */
890 /* We want to mount if someone is trying to open/create a file of any
891 * type under the mountpoint, wants to traverse through the mountpoint
892 * or wants to open the mounted directory.
894 * We don't want to mount if someone's just doing a stat and they've
895 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
896 * appended a '/' to the name.
898 if (!(flags & LOOKUP_FOLLOW) &&
899 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
900 LOOKUP_OPEN | LOOKUP_CREATE)))
901 return -EISDIR;
903 current->total_link_count++;
904 if (current->total_link_count >= 40)
905 return -ELOOP;
907 mnt = path->dentry->d_op->d_automount(path);
908 if (IS_ERR(mnt)) {
910 * The filesystem is allowed to return -EISDIR here to indicate
911 * it doesn't want to automount. For instance, autofs would do
912 * this so that its userspace daemon can mount on this dentry.
914 * However, we can only permit this if it's a terminal point in
915 * the path being looked up; if it wasn't then the remainder of
916 * the path is inaccessible and we should say so.
918 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
919 return -EREMOTE;
920 return PTR_ERR(mnt);
923 if (!mnt) /* mount collision */
924 return 0;
926 /* The new mount record should have at least 2 refs to prevent it being
927 * expired before we get a chance to add it
929 BUG_ON(mnt_get_count(mnt) < 2);
931 if (mnt->mnt_sb == path->mnt->mnt_sb &&
932 mnt->mnt_root == path->dentry) {
933 mnt_clear_expiry(mnt);
934 mntput(mnt);
935 mntput(mnt);
936 return -ELOOP;
939 /* We need to add the mountpoint to the parent. The filesystem may
940 * have placed it on an expiry list, and so we need to make sure it
941 * won't be expired under us if do_add_mount() fails (do_add_mount()
942 * will eat a reference unconditionally).
944 mntget(mnt);
945 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
946 switch (err) {
947 case -EBUSY:
948 /* Someone else made a mount here whilst we were busy */
949 err = 0;
950 default:
951 mnt_clear_expiry(mnt);
952 mntput(mnt);
953 mntput(mnt);
954 return err;
955 case 0:
956 mntput(mnt);
957 dput(path->dentry);
958 if (*need_mntput)
959 mntput(path->mnt);
960 path->mnt = mnt;
961 path->dentry = dget(mnt->mnt_root);
962 *need_mntput = true;
963 return 0;
968 * Handle a dentry that is managed in some way.
969 * - Flagged for transit management (autofs)
970 * - Flagged as mountpoint
971 * - Flagged as automount point
973 * This may only be called in refwalk mode.
975 * Serialization is taken care of in namespace.c
977 static int follow_managed(struct path *path, unsigned flags)
979 unsigned managed;
980 bool need_mntput = false;
981 int ret;
983 /* Given that we're not holding a lock here, we retain the value in a
984 * local variable for each dentry as we look at it so that we don't see
985 * the components of that value change under us */
986 while (managed = ACCESS_ONCE(path->dentry->d_flags),
987 managed &= DCACHE_MANAGED_DENTRY,
988 unlikely(managed != 0)) {
989 /* Allow the filesystem to manage the transit without i_mutex
990 * being held. */
991 if (managed & DCACHE_MANAGE_TRANSIT) {
992 BUG_ON(!path->dentry->d_op);
993 BUG_ON(!path->dentry->d_op->d_manage);
994 ret = path->dentry->d_op->d_manage(path->dentry,
995 false, false);
996 if (ret < 0)
997 return ret == -EISDIR ? 0 : ret;
1000 /* Transit to a mounted filesystem. */
1001 if (managed & DCACHE_MOUNTED) {
1002 struct vfsmount *mounted = lookup_mnt(path);
1003 if (mounted) {
1004 dput(path->dentry);
1005 if (need_mntput)
1006 mntput(path->mnt);
1007 path->mnt = mounted;
1008 path->dentry = dget(mounted->mnt_root);
1009 need_mntput = true;
1010 continue;
1013 /* Something is mounted on this dentry in another
1014 * namespace and/or whatever was mounted there in this
1015 * namespace got unmounted before we managed to get the
1016 * vfsmount_lock */
1019 /* Handle an automount point */
1020 if (managed & DCACHE_NEED_AUTOMOUNT) {
1021 ret = follow_automount(path, flags, &need_mntput);
1022 if (ret < 0)
1023 return ret == -EISDIR ? 0 : ret;
1024 continue;
1027 /* We didn't change the current path point */
1028 break;
1030 return 0;
1033 int follow_down_one(struct path *path)
1035 struct vfsmount *mounted;
1037 mounted = lookup_mnt(path);
1038 if (mounted) {
1039 dput(path->dentry);
1040 mntput(path->mnt);
1041 path->mnt = mounted;
1042 path->dentry = dget(mounted->mnt_root);
1043 return 1;
1045 return 0;
1049 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1050 * meet a managed dentry and we're not walking to "..". True is returned to
1051 * continue, false to abort.
1053 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1054 struct inode **inode, bool reverse_transit)
1056 while (d_mountpoint(path->dentry)) {
1057 struct vfsmount *mounted;
1058 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1059 !reverse_transit &&
1060 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1061 return false;
1062 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1063 if (!mounted)
1064 break;
1065 path->mnt = mounted;
1066 path->dentry = mounted->mnt_root;
1067 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1068 *inode = path->dentry->d_inode;
1071 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1072 return reverse_transit;
1073 return true;
1076 static int follow_dotdot_rcu(struct nameidata *nd)
1078 struct inode *inode = nd->inode;
1080 set_root_rcu(nd);
1082 while (1) {
1083 if (nd->path.dentry == nd->root.dentry &&
1084 nd->path.mnt == nd->root.mnt) {
1085 break;
1087 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1088 struct dentry *old = nd->path.dentry;
1089 struct dentry *parent = old->d_parent;
1090 unsigned seq;
1092 seq = read_seqcount_begin(&parent->d_seq);
1093 if (read_seqcount_retry(&old->d_seq, nd->seq))
1094 return -ECHILD;
1095 inode = parent->d_inode;
1096 nd->path.dentry = parent;
1097 nd->seq = seq;
1098 break;
1100 if (!follow_up_rcu(&nd->path))
1101 break;
1102 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1103 inode = nd->path.dentry->d_inode;
1105 __follow_mount_rcu(nd, &nd->path, &inode, true);
1106 nd->inode = inode;
1108 return 0;
1112 * Follow down to the covering mount currently visible to userspace. At each
1113 * point, the filesystem owning that dentry may be queried as to whether the
1114 * caller is permitted to proceed or not.
1116 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1117 * being true).
1119 int follow_down(struct path *path, bool mounting_here)
1121 unsigned managed;
1122 int ret;
1124 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1125 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1126 /* Allow the filesystem to manage the transit without i_mutex
1127 * being held.
1129 * We indicate to the filesystem if someone is trying to mount
1130 * something here. This gives autofs the chance to deny anyone
1131 * other than its daemon the right to mount on its
1132 * superstructure.
1134 * The filesystem may sleep at this point.
1136 if (managed & DCACHE_MANAGE_TRANSIT) {
1137 BUG_ON(!path->dentry->d_op);
1138 BUG_ON(!path->dentry->d_op->d_manage);
1139 ret = path->dentry->d_op->d_manage(
1140 path->dentry, mounting_here, false);
1141 if (ret < 0)
1142 return ret == -EISDIR ? 0 : ret;
1145 /* Transit to a mounted filesystem. */
1146 if (managed & DCACHE_MOUNTED) {
1147 struct vfsmount *mounted = lookup_mnt(path);
1148 if (!mounted)
1149 break;
1150 dput(path->dentry);
1151 mntput(path->mnt);
1152 path->mnt = mounted;
1153 path->dentry = dget(mounted->mnt_root);
1154 continue;
1157 /* Don't handle automount points here */
1158 break;
1160 return 0;
1164 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1166 static void follow_mount(struct path *path)
1168 while (d_mountpoint(path->dentry)) {
1169 struct vfsmount *mounted = lookup_mnt(path);
1170 if (!mounted)
1171 break;
1172 dput(path->dentry);
1173 mntput(path->mnt);
1174 path->mnt = mounted;
1175 path->dentry = dget(mounted->mnt_root);
1179 static void follow_dotdot(struct nameidata *nd)
1181 set_root(nd);
1183 while(1) {
1184 struct dentry *old = nd->path.dentry;
1186 if (nd->path.dentry == nd->root.dentry &&
1187 nd->path.mnt == nd->root.mnt) {
1188 break;
1190 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1191 /* rare case of legitimate dget_parent()... */
1192 nd->path.dentry = dget_parent(nd->path.dentry);
1193 dput(old);
1194 break;
1196 if (!follow_up(&nd->path))
1197 break;
1199 follow_mount(&nd->path);
1200 nd->inode = nd->path.dentry->d_inode;
1204 * Allocate a dentry with name and parent, and perform a parent
1205 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1206 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1207 * have verified that no child exists while under i_mutex.
1209 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1210 struct qstr *name, struct nameidata *nd)
1212 struct inode *inode = parent->d_inode;
1213 struct dentry *dentry;
1214 struct dentry *old;
1216 /* Don't create child dentry for a dead directory. */
1217 if (unlikely(IS_DEADDIR(inode)))
1218 return ERR_PTR(-ENOENT);
1220 dentry = d_alloc(parent, name);
1221 if (unlikely(!dentry))
1222 return ERR_PTR(-ENOMEM);
1224 old = inode->i_op->lookup(inode, dentry, nd);
1225 if (unlikely(old)) {
1226 dput(dentry);
1227 dentry = old;
1229 return dentry;
1233 * It's more convoluted than I'd like it to be, but... it's still fairly
1234 * small and for now I'd prefer to have fast path as straight as possible.
1235 * It _is_ time-critical.
1237 static int do_lookup(struct nameidata *nd, struct qstr *name,
1238 struct path *path, struct inode **inode)
1240 struct vfsmount *mnt = nd->path.mnt;
1241 struct dentry *dentry, *parent = nd->path.dentry;
1242 struct inode *dir;
1243 int err;
1246 * See if the low-level filesystem might want
1247 * to use its own hash..
1249 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1250 err = parent->d_op->d_hash(parent, nd->inode, name);
1251 if (err < 0)
1252 return err;
1256 * Rename seqlock is not required here because in the off chance
1257 * of a false negative due to a concurrent rename, we're going to
1258 * do the non-racy lookup, below.
1260 if (nd->flags & LOOKUP_RCU) {
1261 unsigned seq;
1263 *inode = nd->inode;
1264 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1265 if (!dentry) {
1266 if (nameidata_drop_rcu(nd))
1267 return -ECHILD;
1268 goto need_lookup;
1270 /* Memory barrier in read_seqcount_begin of child is enough */
1271 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1272 return -ECHILD;
1274 nd->seq = seq;
1275 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1276 goto need_revalidate;
1277 done2:
1278 path->mnt = mnt;
1279 path->dentry = dentry;
1280 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1281 return 0;
1282 if (nameidata_drop_rcu(nd))
1283 return -ECHILD;
1284 /* fallthru */
1286 dentry = __d_lookup(parent, name);
1287 if (!dentry)
1288 goto need_lookup;
1289 found:
1290 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1291 goto need_revalidate;
1292 done:
1293 path->mnt = mnt;
1294 path->dentry = dentry;
1295 err = follow_managed(path, nd->flags);
1296 if (unlikely(err < 0))
1297 return err;
1298 *inode = path->dentry->d_inode;
1299 return 0;
1301 need_lookup:
1302 dir = parent->d_inode;
1303 BUG_ON(nd->inode != dir);
1305 mutex_lock(&dir->i_mutex);
1307 * First re-do the cached lookup just in case it was created
1308 * while we waited for the directory semaphore, or the first
1309 * lookup failed due to an unrelated rename.
1311 * This could use version numbering or similar to avoid unnecessary
1312 * cache lookups, but then we'd have to do the first lookup in the
1313 * non-racy way. However in the common case here, everything should
1314 * be hot in cache, so would it be a big win?
1316 dentry = d_lookup(parent, name);
1317 if (likely(!dentry)) {
1318 dentry = d_alloc_and_lookup(parent, name, nd);
1319 mutex_unlock(&dir->i_mutex);
1320 if (IS_ERR(dentry))
1321 goto fail;
1322 goto done;
1325 * Uhhuh! Nasty case: the cache was re-populated while
1326 * we waited on the semaphore. Need to revalidate.
1328 mutex_unlock(&dir->i_mutex);
1329 goto found;
1331 need_revalidate:
1332 dentry = do_revalidate(dentry, nd);
1333 if (!dentry)
1334 goto need_lookup;
1335 if (IS_ERR(dentry))
1336 goto fail;
1337 if (nd->flags & LOOKUP_RCU)
1338 goto done2;
1339 goto done;
1341 fail:
1342 return PTR_ERR(dentry);
1346 * Name resolution.
1347 * This is the basic name resolution function, turning a pathname into
1348 * the final dentry. We expect 'base' to be positive and a directory.
1350 * Returns 0 and nd will have valid dentry and mnt on success.
1351 * Returns error and drops reference to input namei data on failure.
1353 static int link_path_walk(const char *name, struct nameidata *nd)
1355 struct path next;
1356 int err;
1357 unsigned int lookup_flags = nd->flags;
1359 while (*name=='/')
1360 name++;
1361 if (!*name)
1362 goto return_reval;
1364 if (nd->depth)
1365 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1367 /* At this point we know we have a real path component. */
1368 for(;;) {
1369 struct inode *inode;
1370 unsigned long hash;
1371 struct qstr this;
1372 unsigned int c;
1374 nd->flags |= LOOKUP_CONTINUE;
1375 if (nd->flags & LOOKUP_RCU) {
1376 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1377 if (err == -ECHILD) {
1378 if (nameidata_drop_rcu(nd))
1379 return -ECHILD;
1380 goto exec_again;
1382 } else {
1383 exec_again:
1384 err = exec_permission(nd->inode, 0);
1386 if (err)
1387 break;
1389 this.name = name;
1390 c = *(const unsigned char *)name;
1392 hash = init_name_hash();
1393 do {
1394 name++;
1395 hash = partial_name_hash(c, hash);
1396 c = *(const unsigned char *)name;
1397 } while (c && (c != '/'));
1398 this.len = name - (const char *) this.name;
1399 this.hash = end_name_hash(hash);
1401 /* remove trailing slashes? */
1402 if (!c)
1403 goto last_component;
1404 while (*++name == '/');
1405 if (!*name)
1406 goto last_with_slashes;
1409 * "." and ".." are special - ".." especially so because it has
1410 * to be able to know about the current root directory and
1411 * parent relationships.
1413 if (this.name[0] == '.') switch (this.len) {
1414 default:
1415 break;
1416 case 2:
1417 if (this.name[1] != '.')
1418 break;
1419 if (nd->flags & LOOKUP_RCU) {
1420 if (follow_dotdot_rcu(nd))
1421 return -ECHILD;
1422 } else
1423 follow_dotdot(nd);
1424 /* fallthrough */
1425 case 1:
1426 continue;
1428 /* This does the actual lookups.. */
1429 err = do_lookup(nd, &this, &next, &inode);
1430 if (err)
1431 break;
1432 err = -ENOENT;
1433 if (!inode)
1434 goto out_dput;
1436 if (inode->i_op->follow_link) {
1437 /* We commonly drop rcu-walk here */
1438 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1439 return -ECHILD;
1440 BUG_ON(inode != next.dentry->d_inode);
1441 err = do_follow_link(&next, nd);
1442 if (err)
1443 goto return_err;
1444 nd->inode = nd->path.dentry->d_inode;
1445 err = -ENOENT;
1446 if (!nd->inode)
1447 break;
1448 } else {
1449 path_to_nameidata(&next, nd);
1450 nd->inode = inode;
1452 err = -ENOTDIR;
1453 if (!nd->inode->i_op->lookup)
1454 break;
1455 continue;
1456 /* here ends the main loop */
1458 last_with_slashes:
1459 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1460 last_component:
1461 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1462 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1463 if (lookup_flags & LOOKUP_PARENT)
1464 goto lookup_parent;
1465 if (this.name[0] == '.') switch (this.len) {
1466 default:
1467 break;
1468 case 2:
1469 if (this.name[1] != '.')
1470 break;
1471 if (nd->flags & LOOKUP_RCU) {
1472 if (follow_dotdot_rcu(nd))
1473 return -ECHILD;
1474 } else
1475 follow_dotdot(nd);
1476 /* fallthrough */
1477 case 1:
1478 goto return_reval;
1480 err = do_lookup(nd, &this, &next, &inode);
1481 if (err)
1482 break;
1483 if (inode && unlikely(inode->i_op->follow_link) &&
1484 (lookup_flags & LOOKUP_FOLLOW)) {
1485 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1486 return -ECHILD;
1487 BUG_ON(inode != next.dentry->d_inode);
1488 err = do_follow_link(&next, nd);
1489 if (err)
1490 goto return_err;
1491 nd->inode = nd->path.dentry->d_inode;
1492 } else {
1493 path_to_nameidata(&next, nd);
1494 nd->inode = inode;
1496 err = -ENOENT;
1497 if (!nd->inode)
1498 break;
1499 if (lookup_flags & LOOKUP_DIRECTORY) {
1500 err = -ENOTDIR;
1501 if (!nd->inode->i_op->lookup)
1502 break;
1504 goto return_base;
1505 lookup_parent:
1506 nd->last = this;
1507 nd->last_type = LAST_NORM;
1508 if (this.name[0] != '.')
1509 goto return_base;
1510 if (this.len == 1)
1511 nd->last_type = LAST_DOT;
1512 else if (this.len == 2 && this.name[1] == '.')
1513 nd->last_type = LAST_DOTDOT;
1514 else
1515 goto return_base;
1516 return_reval:
1518 * We bypassed the ordinary revalidation routines.
1519 * We may need to check the cached dentry for staleness.
1521 if (need_reval_dot(nd->path.dentry)) {
1522 /* Note: we do not d_invalidate() */
1523 err = d_revalidate(nd->path.dentry, nd);
1524 if (!err)
1525 err = -ESTALE;
1526 if (err < 0)
1527 break;
1529 return_base:
1530 if (nameidata_drop_rcu_last_maybe(nd))
1531 return -ECHILD;
1532 return 0;
1533 out_dput:
1534 if (!(nd->flags & LOOKUP_RCU))
1535 path_put_conditional(&next, nd);
1536 break;
1538 if (!(nd->flags & LOOKUP_RCU))
1539 path_put(&nd->path);
1540 return_err:
1541 return err;
1544 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1546 current->total_link_count = 0;
1548 return link_path_walk(name, nd);
1551 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1553 current->total_link_count = 0;
1555 return link_path_walk(name, nd);
1558 static int path_walk(const char *name, struct nameidata *nd)
1560 struct path save = nd->path;
1561 int result;
1563 current->total_link_count = 0;
1565 /* make sure the stuff we saved doesn't go away */
1566 path_get(&save);
1568 result = link_path_walk(name, nd);
1569 if (result == -ESTALE) {
1570 /* nd->path had been dropped */
1571 current->total_link_count = 0;
1572 nd->path = save;
1573 path_get(&nd->path);
1574 nd->flags |= LOOKUP_REVAL;
1575 result = link_path_walk(name, nd);
1578 path_put(&save);
1580 return result;
1583 static void path_finish_rcu(struct nameidata *nd)
1585 if (nd->flags & LOOKUP_RCU) {
1586 /* RCU dangling. Cancel it. */
1587 nd->flags &= ~LOOKUP_RCU;
1588 nd->root.mnt = NULL;
1589 rcu_read_unlock();
1590 br_read_unlock(vfsmount_lock);
1592 if (nd->file)
1593 fput(nd->file);
1596 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1598 int retval = 0;
1599 int fput_needed;
1600 struct file *file;
1602 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1603 nd->flags = flags | LOOKUP_RCU;
1604 nd->depth = 0;
1605 nd->root.mnt = NULL;
1606 nd->file = NULL;
1608 if (*name=='/') {
1609 struct fs_struct *fs = current->fs;
1610 unsigned seq;
1612 br_read_lock(vfsmount_lock);
1613 rcu_read_lock();
1615 do {
1616 seq = read_seqcount_begin(&fs->seq);
1617 nd->root = fs->root;
1618 nd->path = nd->root;
1619 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1620 } while (read_seqcount_retry(&fs->seq, seq));
1622 } else if (dfd == AT_FDCWD) {
1623 struct fs_struct *fs = current->fs;
1624 unsigned seq;
1626 br_read_lock(vfsmount_lock);
1627 rcu_read_lock();
1629 do {
1630 seq = read_seqcount_begin(&fs->seq);
1631 nd->path = fs->pwd;
1632 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1633 } while (read_seqcount_retry(&fs->seq, seq));
1635 } else {
1636 struct dentry *dentry;
1638 file = fget_light(dfd, &fput_needed);
1639 retval = -EBADF;
1640 if (!file)
1641 goto out_fail;
1643 dentry = file->f_path.dentry;
1645 retval = -ENOTDIR;
1646 if (!S_ISDIR(dentry->d_inode->i_mode))
1647 goto fput_fail;
1649 retval = file_permission(file, MAY_EXEC);
1650 if (retval)
1651 goto fput_fail;
1653 nd->path = file->f_path;
1654 if (fput_needed)
1655 nd->file = file;
1657 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1658 br_read_lock(vfsmount_lock);
1659 rcu_read_lock();
1661 nd->inode = nd->path.dentry->d_inode;
1662 return 0;
1664 fput_fail:
1665 fput_light(file, fput_needed);
1666 out_fail:
1667 return retval;
1670 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1672 int retval = 0;
1673 int fput_needed;
1674 struct file *file;
1676 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1677 nd->flags = flags;
1678 nd->depth = 0;
1679 nd->root.mnt = NULL;
1681 if (*name=='/') {
1682 set_root(nd);
1683 nd->path = nd->root;
1684 path_get(&nd->root);
1685 } else if (dfd == AT_FDCWD) {
1686 get_fs_pwd(current->fs, &nd->path);
1687 } else {
1688 struct dentry *dentry;
1690 file = fget_light(dfd, &fput_needed);
1691 retval = -EBADF;
1692 if (!file)
1693 goto out_fail;
1695 dentry = file->f_path.dentry;
1697 retval = -ENOTDIR;
1698 if (!S_ISDIR(dentry->d_inode->i_mode))
1699 goto fput_fail;
1701 retval = file_permission(file, MAY_EXEC);
1702 if (retval)
1703 goto fput_fail;
1705 nd->path = file->f_path;
1706 path_get(&file->f_path);
1708 fput_light(file, fput_needed);
1710 nd->inode = nd->path.dentry->d_inode;
1711 return 0;
1713 fput_fail:
1714 fput_light(file, fput_needed);
1715 out_fail:
1716 return retval;
1719 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1720 static int do_path_lookup(int dfd, const char *name,
1721 unsigned int flags, struct nameidata *nd)
1723 int retval;
1726 * Path walking is largely split up into 2 different synchronisation
1727 * schemes, rcu-walk and ref-walk (explained in
1728 * Documentation/filesystems/path-lookup.txt). These share much of the
1729 * path walk code, but some things particularly setup, cleanup, and
1730 * following mounts are sufficiently divergent that functions are
1731 * duplicated. Typically there is a function foo(), and its RCU
1732 * analogue, foo_rcu().
1734 * -ECHILD is the error number of choice (just to avoid clashes) that
1735 * is returned if some aspect of an rcu-walk fails. Such an error must
1736 * be handled by restarting a traditional ref-walk (which will always
1737 * be able to complete).
1739 retval = path_init_rcu(dfd, name, flags, nd);
1740 if (unlikely(retval))
1741 return retval;
1742 retval = path_walk_rcu(name, nd);
1743 path_finish_rcu(nd);
1744 if (nd->root.mnt) {
1745 path_put(&nd->root);
1746 nd->root.mnt = NULL;
1749 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1750 /* slower, locked walk */
1751 if (retval == -ESTALE)
1752 flags |= LOOKUP_REVAL;
1753 retval = path_init(dfd, name, flags, nd);
1754 if (unlikely(retval))
1755 return retval;
1756 retval = path_walk(name, nd);
1757 if (nd->root.mnt) {
1758 path_put(&nd->root);
1759 nd->root.mnt = NULL;
1763 if (likely(!retval)) {
1764 if (unlikely(!audit_dummy_context())) {
1765 if (nd->path.dentry && nd->inode)
1766 audit_inode(name, nd->path.dentry);
1770 return retval;
1773 int path_lookup(const char *name, unsigned int flags,
1774 struct nameidata *nd)
1776 return do_path_lookup(AT_FDCWD, name, flags, nd);
1779 int kern_path(const char *name, unsigned int flags, struct path *path)
1781 struct nameidata nd;
1782 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1783 if (!res)
1784 *path = nd.path;
1785 return res;
1789 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1790 * @dentry: pointer to dentry of the base directory
1791 * @mnt: pointer to vfs mount of the base directory
1792 * @name: pointer to file name
1793 * @flags: lookup flags
1794 * @nd: pointer to nameidata
1796 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1797 const char *name, unsigned int flags,
1798 struct nameidata *nd)
1800 int retval;
1802 /* same as do_path_lookup */
1803 nd->last_type = LAST_ROOT;
1804 nd->flags = flags;
1805 nd->depth = 0;
1807 nd->path.dentry = dentry;
1808 nd->path.mnt = mnt;
1809 path_get(&nd->path);
1810 nd->root = nd->path;
1811 path_get(&nd->root);
1812 nd->inode = nd->path.dentry->d_inode;
1814 retval = path_walk(name, nd);
1815 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1816 nd->inode))
1817 audit_inode(name, nd->path.dentry);
1819 path_put(&nd->root);
1820 nd->root.mnt = NULL;
1822 return retval;
1825 static struct dentry *__lookup_hash(struct qstr *name,
1826 struct dentry *base, struct nameidata *nd)
1828 struct inode *inode = base->d_inode;
1829 struct dentry *dentry;
1830 int err;
1832 err = exec_permission(inode, 0);
1833 if (err)
1834 return ERR_PTR(err);
1837 * See if the low-level filesystem might want
1838 * to use its own hash..
1840 if (base->d_flags & DCACHE_OP_HASH) {
1841 err = base->d_op->d_hash(base, inode, name);
1842 dentry = ERR_PTR(err);
1843 if (err < 0)
1844 goto out;
1848 * Don't bother with __d_lookup: callers are for creat as
1849 * well as unlink, so a lot of the time it would cost
1850 * a double lookup.
1852 dentry = d_lookup(base, name);
1854 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1855 dentry = do_revalidate(dentry, nd);
1857 if (!dentry)
1858 dentry = d_alloc_and_lookup(base, name, nd);
1859 out:
1860 return dentry;
1864 * Restricted form of lookup. Doesn't follow links, single-component only,
1865 * needs parent already locked. Doesn't follow mounts.
1866 * SMP-safe.
1868 static struct dentry *lookup_hash(struct nameidata *nd)
1870 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1873 static int __lookup_one_len(const char *name, struct qstr *this,
1874 struct dentry *base, int len)
1876 unsigned long hash;
1877 unsigned int c;
1879 this->name = name;
1880 this->len = len;
1881 if (!len)
1882 return -EACCES;
1884 hash = init_name_hash();
1885 while (len--) {
1886 c = *(const unsigned char *)name++;
1887 if (c == '/' || c == '\0')
1888 return -EACCES;
1889 hash = partial_name_hash(c, hash);
1891 this->hash = end_name_hash(hash);
1892 return 0;
1896 * lookup_one_len - filesystem helper to lookup single pathname component
1897 * @name: pathname component to lookup
1898 * @base: base directory to lookup from
1899 * @len: maximum length @len should be interpreted to
1901 * Note that this routine is purely a helper for filesystem usage and should
1902 * not be called by generic code. Also note that by using this function the
1903 * nameidata argument is passed to the filesystem methods and a filesystem
1904 * using this helper needs to be prepared for that.
1906 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1908 int err;
1909 struct qstr this;
1911 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1913 err = __lookup_one_len(name, &this, base, len);
1914 if (err)
1915 return ERR_PTR(err);
1917 return __lookup_hash(&this, base, NULL);
1920 int user_path_at(int dfd, const char __user *name, unsigned flags,
1921 struct path *path)
1923 struct nameidata nd;
1924 char *tmp = getname(name);
1925 int err = PTR_ERR(tmp);
1926 if (!IS_ERR(tmp)) {
1928 BUG_ON(flags & LOOKUP_PARENT);
1930 err = do_path_lookup(dfd, tmp, flags, &nd);
1931 putname(tmp);
1932 if (!err)
1933 *path = nd.path;
1935 return err;
1938 static int user_path_parent(int dfd, const char __user *path,
1939 struct nameidata *nd, char **name)
1941 char *s = getname(path);
1942 int error;
1944 if (IS_ERR(s))
1945 return PTR_ERR(s);
1947 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1948 if (error)
1949 putname(s);
1950 else
1951 *name = s;
1953 return error;
1957 * It's inline, so penalty for filesystems that don't use sticky bit is
1958 * minimal.
1960 static inline int check_sticky(struct inode *dir, struct inode *inode)
1962 uid_t fsuid = current_fsuid();
1964 if (!(dir->i_mode & S_ISVTX))
1965 return 0;
1966 if (inode->i_uid == fsuid)
1967 return 0;
1968 if (dir->i_uid == fsuid)
1969 return 0;
1970 return !capable(CAP_FOWNER);
1974 * Check whether we can remove a link victim from directory dir, check
1975 * whether the type of victim is right.
1976 * 1. We can't do it if dir is read-only (done in permission())
1977 * 2. We should have write and exec permissions on dir
1978 * 3. We can't remove anything from append-only dir
1979 * 4. We can't do anything with immutable dir (done in permission())
1980 * 5. If the sticky bit on dir is set we should either
1981 * a. be owner of dir, or
1982 * b. be owner of victim, or
1983 * c. have CAP_FOWNER capability
1984 * 6. If the victim is append-only or immutable we can't do antyhing with
1985 * links pointing to it.
1986 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1987 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1988 * 9. We can't remove a root or mountpoint.
1989 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1990 * nfs_async_unlink().
1992 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1994 int error;
1996 if (!victim->d_inode)
1997 return -ENOENT;
1999 BUG_ON(victim->d_parent->d_inode != dir);
2000 audit_inode_child(victim, dir);
2002 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2003 if (error)
2004 return error;
2005 if (IS_APPEND(dir))
2006 return -EPERM;
2007 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2008 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2009 return -EPERM;
2010 if (isdir) {
2011 if (!S_ISDIR(victim->d_inode->i_mode))
2012 return -ENOTDIR;
2013 if (IS_ROOT(victim))
2014 return -EBUSY;
2015 } else if (S_ISDIR(victim->d_inode->i_mode))
2016 return -EISDIR;
2017 if (IS_DEADDIR(dir))
2018 return -ENOENT;
2019 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2020 return -EBUSY;
2021 return 0;
2024 /* Check whether we can create an object with dentry child in directory
2025 * dir.
2026 * 1. We can't do it if child already exists (open has special treatment for
2027 * this case, but since we are inlined it's OK)
2028 * 2. We can't do it if dir is read-only (done in permission())
2029 * 3. We should have write and exec permissions on dir
2030 * 4. We can't do it if dir is immutable (done in permission())
2032 static inline int may_create(struct inode *dir, struct dentry *child)
2034 if (child->d_inode)
2035 return -EEXIST;
2036 if (IS_DEADDIR(dir))
2037 return -ENOENT;
2038 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2042 * p1 and p2 should be directories on the same fs.
2044 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2046 struct dentry *p;
2048 if (p1 == p2) {
2049 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2050 return NULL;
2053 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2055 p = d_ancestor(p2, p1);
2056 if (p) {
2057 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2058 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2059 return p;
2062 p = d_ancestor(p1, p2);
2063 if (p) {
2064 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2065 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2066 return p;
2069 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2070 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2071 return NULL;
2074 void unlock_rename(struct dentry *p1, struct dentry *p2)
2076 mutex_unlock(&p1->d_inode->i_mutex);
2077 if (p1 != p2) {
2078 mutex_unlock(&p2->d_inode->i_mutex);
2079 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2083 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2084 struct nameidata *nd)
2086 int error = may_create(dir, dentry);
2088 if (error)
2089 return error;
2091 if (!dir->i_op->create)
2092 return -EACCES; /* shouldn't it be ENOSYS? */
2093 mode &= S_IALLUGO;
2094 mode |= S_IFREG;
2095 error = security_inode_create(dir, dentry, mode);
2096 if (error)
2097 return error;
2098 error = dir->i_op->create(dir, dentry, mode, nd);
2099 if (!error)
2100 fsnotify_create(dir, dentry);
2101 return error;
2104 int may_open(struct path *path, int acc_mode, int flag)
2106 struct dentry *dentry = path->dentry;
2107 struct inode *inode = dentry->d_inode;
2108 int error;
2110 if (!inode)
2111 return -ENOENT;
2113 switch (inode->i_mode & S_IFMT) {
2114 case S_IFLNK:
2115 return -ELOOP;
2116 case S_IFDIR:
2117 if (acc_mode & MAY_WRITE)
2118 return -EISDIR;
2119 break;
2120 case S_IFBLK:
2121 case S_IFCHR:
2122 if (path->mnt->mnt_flags & MNT_NODEV)
2123 return -EACCES;
2124 /*FALLTHRU*/
2125 case S_IFIFO:
2126 case S_IFSOCK:
2127 flag &= ~O_TRUNC;
2128 break;
2131 error = inode_permission(inode, acc_mode);
2132 if (error)
2133 return error;
2136 * An append-only file must be opened in append mode for writing.
2138 if (IS_APPEND(inode)) {
2139 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2140 return -EPERM;
2141 if (flag & O_TRUNC)
2142 return -EPERM;
2145 /* O_NOATIME can only be set by the owner or superuser */
2146 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2147 return -EPERM;
2150 * Ensure there are no outstanding leases on the file.
2152 return break_lease(inode, flag);
2155 static int handle_truncate(struct file *filp)
2157 struct path *path = &filp->f_path;
2158 struct inode *inode = path->dentry->d_inode;
2159 int error = get_write_access(inode);
2160 if (error)
2161 return error;
2163 * Refuse to truncate files with mandatory locks held on them.
2165 error = locks_verify_locked(inode);
2166 if (!error)
2167 error = security_path_truncate(path);
2168 if (!error) {
2169 error = do_truncate(path->dentry, 0,
2170 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2171 filp);
2173 put_write_access(inode);
2174 return error;
2178 * Be careful about ever adding any more callers of this
2179 * function. Its flags must be in the namei format, not
2180 * what get passed to sys_open().
2182 static int __open_namei_create(struct nameidata *nd, struct path *path,
2183 int open_flag, int mode)
2185 int error;
2186 struct dentry *dir = nd->path.dentry;
2188 if (!IS_POSIXACL(dir->d_inode))
2189 mode &= ~current_umask();
2190 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2191 if (error)
2192 goto out_unlock;
2193 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2194 out_unlock:
2195 mutex_unlock(&dir->d_inode->i_mutex);
2196 dput(nd->path.dentry);
2197 nd->path.dentry = path->dentry;
2199 if (error)
2200 return error;
2201 /* Don't check for write permission, don't truncate */
2202 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2206 * Note that while the flag value (low two bits) for sys_open means:
2207 * 00 - read-only
2208 * 01 - write-only
2209 * 10 - read-write
2210 * 11 - special
2211 * it is changed into
2212 * 00 - no permissions needed
2213 * 01 - read-permission
2214 * 10 - write-permission
2215 * 11 - read-write
2216 * for the internal routines (ie open_namei()/follow_link() etc)
2217 * This is more logical, and also allows the 00 "no perm needed"
2218 * to be used for symlinks (where the permissions are checked
2219 * later).
2222 static inline int open_to_namei_flags(int flag)
2224 if ((flag+1) & O_ACCMODE)
2225 flag++;
2226 return flag;
2229 static int open_will_truncate(int flag, struct inode *inode)
2232 * We'll never write to the fs underlying
2233 * a device file.
2235 if (special_file(inode->i_mode))
2236 return 0;
2237 return (flag & O_TRUNC);
2240 static struct file *finish_open(struct nameidata *nd,
2241 int open_flag, int acc_mode)
2243 struct file *filp;
2244 int will_truncate;
2245 int error;
2247 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2248 if (will_truncate) {
2249 error = mnt_want_write(nd->path.mnt);
2250 if (error)
2251 goto exit;
2253 error = may_open(&nd->path, acc_mode, open_flag);
2254 if (error) {
2255 if (will_truncate)
2256 mnt_drop_write(nd->path.mnt);
2257 goto exit;
2259 filp = nameidata_to_filp(nd);
2260 if (!IS_ERR(filp)) {
2261 error = ima_file_check(filp, acc_mode);
2262 if (error) {
2263 fput(filp);
2264 filp = ERR_PTR(error);
2267 if (!IS_ERR(filp)) {
2268 if (will_truncate) {
2269 error = handle_truncate(filp);
2270 if (error) {
2271 fput(filp);
2272 filp = ERR_PTR(error);
2277 * It is now safe to drop the mnt write
2278 * because the filp has had a write taken
2279 * on its behalf.
2281 if (will_truncate)
2282 mnt_drop_write(nd->path.mnt);
2283 path_put(&nd->path);
2284 return filp;
2286 exit:
2287 if (!IS_ERR(nd->intent.open.file))
2288 release_open_intent(nd);
2289 path_put(&nd->path);
2290 return ERR_PTR(error);
2294 * Handle O_CREAT case for do_filp_open
2296 static struct file *do_last(struct nameidata *nd, struct path *path,
2297 int open_flag, int acc_mode,
2298 int mode, const char *pathname)
2300 struct dentry *dir = nd->path.dentry;
2301 struct file *filp;
2302 int error = -EISDIR;
2304 switch (nd->last_type) {
2305 case LAST_DOTDOT:
2306 follow_dotdot(nd);
2307 dir = nd->path.dentry;
2308 case LAST_DOT:
2309 if (need_reval_dot(dir)) {
2310 int status = d_revalidate(nd->path.dentry, nd);
2311 if (!status)
2312 status = -ESTALE;
2313 if (status < 0) {
2314 error = status;
2315 goto exit;
2318 /* fallthrough */
2319 case LAST_ROOT:
2320 goto exit;
2321 case LAST_BIND:
2322 audit_inode(pathname, dir);
2323 goto ok;
2326 /* trailing slashes? */
2327 if (nd->last.name[nd->last.len])
2328 goto exit;
2330 mutex_lock(&dir->d_inode->i_mutex);
2332 path->dentry = lookup_hash(nd);
2333 path->mnt = nd->path.mnt;
2335 error = PTR_ERR(path->dentry);
2336 if (IS_ERR(path->dentry)) {
2337 mutex_unlock(&dir->d_inode->i_mutex);
2338 goto exit;
2341 if (IS_ERR(nd->intent.open.file)) {
2342 error = PTR_ERR(nd->intent.open.file);
2343 goto exit_mutex_unlock;
2346 /* Negative dentry, just create the file */
2347 if (!path->dentry->d_inode) {
2349 * This write is needed to ensure that a
2350 * ro->rw transition does not occur between
2351 * the time when the file is created and when
2352 * a permanent write count is taken through
2353 * the 'struct file' in nameidata_to_filp().
2355 error = mnt_want_write(nd->path.mnt);
2356 if (error)
2357 goto exit_mutex_unlock;
2358 error = __open_namei_create(nd, path, open_flag, mode);
2359 if (error) {
2360 mnt_drop_write(nd->path.mnt);
2361 goto exit;
2363 filp = nameidata_to_filp(nd);
2364 mnt_drop_write(nd->path.mnt);
2365 path_put(&nd->path);
2366 if (!IS_ERR(filp)) {
2367 error = ima_file_check(filp, acc_mode);
2368 if (error) {
2369 fput(filp);
2370 filp = ERR_PTR(error);
2373 return filp;
2377 * It already exists.
2379 mutex_unlock(&dir->d_inode->i_mutex);
2380 audit_inode(pathname, path->dentry);
2382 error = -EEXIST;
2383 if (open_flag & O_EXCL)
2384 goto exit_dput;
2386 error = follow_managed(path, nd->flags);
2387 if (error < 0)
2388 goto exit_dput;
2390 error = -ENOENT;
2391 if (!path->dentry->d_inode)
2392 goto exit_dput;
2394 if (path->dentry->d_inode->i_op->follow_link)
2395 return NULL;
2397 path_to_nameidata(path, nd);
2398 nd->inode = path->dentry->d_inode;
2399 error = -EISDIR;
2400 if (S_ISDIR(nd->inode->i_mode))
2401 goto exit;
2403 filp = finish_open(nd, open_flag, acc_mode);
2404 return filp;
2406 exit_mutex_unlock:
2407 mutex_unlock(&dir->d_inode->i_mutex);
2408 exit_dput:
2409 path_put_conditional(path, nd);
2410 exit:
2411 if (!IS_ERR(nd->intent.open.file))
2412 release_open_intent(nd);
2413 path_put(&nd->path);
2414 return ERR_PTR(error);
2418 * Note that the low bits of the passed in "open_flag"
2419 * are not the same as in the local variable "flag". See
2420 * open_to_namei_flags() for more details.
2422 struct file *do_filp_open(int dfd, const char *pathname,
2423 int open_flag, int mode, int acc_mode)
2425 struct file *filp;
2426 struct nameidata nd;
2427 int error;
2428 struct path path;
2429 int count = 0;
2430 int flag = open_to_namei_flags(open_flag);
2431 int flags;
2433 if (!(open_flag & O_CREAT))
2434 mode = 0;
2436 /* Must never be set by userspace */
2437 open_flag &= ~FMODE_NONOTIFY;
2440 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2441 * check for O_DSYNC if the need any syncing at all we enforce it's
2442 * always set instead of having to deal with possibly weird behaviour
2443 * for malicious applications setting only __O_SYNC.
2445 if (open_flag & __O_SYNC)
2446 open_flag |= O_DSYNC;
2448 if (!acc_mode)
2449 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2451 /* O_TRUNC implies we need access checks for write permissions */
2452 if (open_flag & O_TRUNC)
2453 acc_mode |= MAY_WRITE;
2455 /* Allow the LSM permission hook to distinguish append
2456 access from general write access. */
2457 if (open_flag & O_APPEND)
2458 acc_mode |= MAY_APPEND;
2460 flags = LOOKUP_OPEN;
2461 if (open_flag & O_CREAT) {
2462 flags |= LOOKUP_CREATE;
2463 if (open_flag & O_EXCL)
2464 flags |= LOOKUP_EXCL;
2466 if (open_flag & O_DIRECTORY)
2467 flags |= LOOKUP_DIRECTORY;
2468 if (!(open_flag & O_NOFOLLOW))
2469 flags |= LOOKUP_FOLLOW;
2471 filp = get_empty_filp();
2472 if (!filp)
2473 return ERR_PTR(-ENFILE);
2475 filp->f_flags = open_flag;
2476 nd.intent.open.file = filp;
2477 nd.intent.open.flags = flag;
2478 nd.intent.open.create_mode = mode;
2480 if (open_flag & O_CREAT)
2481 goto creat;
2483 /* !O_CREAT, simple open */
2484 error = do_path_lookup(dfd, pathname, flags, &nd);
2485 if (unlikely(error))
2486 goto out_filp;
2487 error = -ELOOP;
2488 if (!(nd.flags & LOOKUP_FOLLOW)) {
2489 if (nd.inode->i_op->follow_link)
2490 goto out_path;
2492 error = -ENOTDIR;
2493 if (nd.flags & LOOKUP_DIRECTORY) {
2494 if (!nd.inode->i_op->lookup)
2495 goto out_path;
2497 audit_inode(pathname, nd.path.dentry);
2498 filp = finish_open(&nd, open_flag, acc_mode);
2499 return filp;
2501 creat:
2502 /* OK, have to create the file. Find the parent. */
2503 error = path_init_rcu(dfd, pathname,
2504 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2505 if (error)
2506 goto out_filp;
2507 error = path_walk_rcu(pathname, &nd);
2508 path_finish_rcu(&nd);
2509 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2510 /* slower, locked walk */
2511 if (error == -ESTALE) {
2512 reval:
2513 flags |= LOOKUP_REVAL;
2515 error = path_init(dfd, pathname,
2516 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2517 if (error)
2518 goto out_filp;
2520 error = path_walk_simple(pathname, &nd);
2522 if (unlikely(error))
2523 goto out_filp;
2524 if (unlikely(!audit_dummy_context()))
2525 audit_inode(pathname, nd.path.dentry);
2528 * We have the parent and last component.
2530 nd.flags = flags;
2531 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2532 while (unlikely(!filp)) { /* trailing symlink */
2533 struct path link = path;
2534 struct inode *linki = link.dentry->d_inode;
2535 void *cookie;
2536 error = -ELOOP;
2537 if (!(nd.flags & LOOKUP_FOLLOW))
2538 goto exit_dput;
2539 if (count++ == 32)
2540 goto exit_dput;
2542 * This is subtle. Instead of calling do_follow_link() we do
2543 * the thing by hands. The reason is that this way we have zero
2544 * link_count and path_walk() (called from ->follow_link)
2545 * honoring LOOKUP_PARENT. After that we have the parent and
2546 * last component, i.e. we are in the same situation as after
2547 * the first path_walk(). Well, almost - if the last component
2548 * is normal we get its copy stored in nd->last.name and we will
2549 * have to putname() it when we are done. Procfs-like symlinks
2550 * just set LAST_BIND.
2552 nd.flags |= LOOKUP_PARENT;
2553 error = security_inode_follow_link(link.dentry, &nd);
2554 if (error)
2555 goto exit_dput;
2556 error = __do_follow_link(&link, &nd, &cookie);
2557 if (unlikely(error)) {
2558 if (!IS_ERR(cookie) && linki->i_op->put_link)
2559 linki->i_op->put_link(link.dentry, &nd, cookie);
2560 /* nd.path had been dropped */
2561 nd.path = link;
2562 goto out_path;
2564 nd.flags &= ~LOOKUP_PARENT;
2565 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2566 if (linki->i_op->put_link)
2567 linki->i_op->put_link(link.dentry, &nd, cookie);
2568 path_put(&link);
2570 out:
2571 if (nd.root.mnt)
2572 path_put(&nd.root);
2573 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2574 goto reval;
2575 return filp;
2577 exit_dput:
2578 path_put_conditional(&path, &nd);
2579 out_path:
2580 path_put(&nd.path);
2581 out_filp:
2582 if (!IS_ERR(nd.intent.open.file))
2583 release_open_intent(&nd);
2584 filp = ERR_PTR(error);
2585 goto out;
2589 * filp_open - open file and return file pointer
2591 * @filename: path to open
2592 * @flags: open flags as per the open(2) second argument
2593 * @mode: mode for the new file if O_CREAT is set, else ignored
2595 * This is the helper to open a file from kernelspace if you really
2596 * have to. But in generally you should not do this, so please move
2597 * along, nothing to see here..
2599 struct file *filp_open(const char *filename, int flags, int mode)
2601 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2603 EXPORT_SYMBOL(filp_open);
2606 * lookup_create - lookup a dentry, creating it if it doesn't exist
2607 * @nd: nameidata info
2608 * @is_dir: directory flag
2610 * Simple function to lookup and return a dentry and create it
2611 * if it doesn't exist. Is SMP-safe.
2613 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2615 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2617 struct dentry *dentry = ERR_PTR(-EEXIST);
2619 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2621 * Yucky last component or no last component at all?
2622 * (foo/., foo/.., /////)
2624 if (nd->last_type != LAST_NORM)
2625 goto fail;
2626 nd->flags &= ~LOOKUP_PARENT;
2627 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2628 nd->intent.open.flags = O_EXCL;
2631 * Do the final lookup.
2633 dentry = lookup_hash(nd);
2634 if (IS_ERR(dentry))
2635 goto fail;
2637 if (dentry->d_inode)
2638 goto eexist;
2640 * Special case - lookup gave negative, but... we had foo/bar/
2641 * From the vfs_mknod() POV we just have a negative dentry -
2642 * all is fine. Let's be bastards - you had / on the end, you've
2643 * been asking for (non-existent) directory. -ENOENT for you.
2645 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2646 dput(dentry);
2647 dentry = ERR_PTR(-ENOENT);
2649 return dentry;
2650 eexist:
2651 dput(dentry);
2652 dentry = ERR_PTR(-EEXIST);
2653 fail:
2654 return dentry;
2656 EXPORT_SYMBOL_GPL(lookup_create);
2658 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2660 int error = may_create(dir, dentry);
2662 if (error)
2663 return error;
2665 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2666 return -EPERM;
2668 if (!dir->i_op->mknod)
2669 return -EPERM;
2671 error = devcgroup_inode_mknod(mode, dev);
2672 if (error)
2673 return error;
2675 error = security_inode_mknod(dir, dentry, mode, dev);
2676 if (error)
2677 return error;
2679 error = dir->i_op->mknod(dir, dentry, mode, dev);
2680 if (!error)
2681 fsnotify_create(dir, dentry);
2682 return error;
2685 static int may_mknod(mode_t mode)
2687 switch (mode & S_IFMT) {
2688 case S_IFREG:
2689 case S_IFCHR:
2690 case S_IFBLK:
2691 case S_IFIFO:
2692 case S_IFSOCK:
2693 case 0: /* zero mode translates to S_IFREG */
2694 return 0;
2695 case S_IFDIR:
2696 return -EPERM;
2697 default:
2698 return -EINVAL;
2702 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2703 unsigned, dev)
2705 int error;
2706 char *tmp;
2707 struct dentry *dentry;
2708 struct nameidata nd;
2710 if (S_ISDIR(mode))
2711 return -EPERM;
2713 error = user_path_parent(dfd, filename, &nd, &tmp);
2714 if (error)
2715 return error;
2717 dentry = lookup_create(&nd, 0);
2718 if (IS_ERR(dentry)) {
2719 error = PTR_ERR(dentry);
2720 goto out_unlock;
2722 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2723 mode &= ~current_umask();
2724 error = may_mknod(mode);
2725 if (error)
2726 goto out_dput;
2727 error = mnt_want_write(nd.path.mnt);
2728 if (error)
2729 goto out_dput;
2730 error = security_path_mknod(&nd.path, dentry, mode, dev);
2731 if (error)
2732 goto out_drop_write;
2733 switch (mode & S_IFMT) {
2734 case 0: case S_IFREG:
2735 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2736 break;
2737 case S_IFCHR: case S_IFBLK:
2738 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2739 new_decode_dev(dev));
2740 break;
2741 case S_IFIFO: case S_IFSOCK:
2742 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2743 break;
2745 out_drop_write:
2746 mnt_drop_write(nd.path.mnt);
2747 out_dput:
2748 dput(dentry);
2749 out_unlock:
2750 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2751 path_put(&nd.path);
2752 putname(tmp);
2754 return error;
2757 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2759 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2762 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2764 int error = may_create(dir, dentry);
2766 if (error)
2767 return error;
2769 if (!dir->i_op->mkdir)
2770 return -EPERM;
2772 mode &= (S_IRWXUGO|S_ISVTX);
2773 error = security_inode_mkdir(dir, dentry, mode);
2774 if (error)
2775 return error;
2777 error = dir->i_op->mkdir(dir, dentry, mode);
2778 if (!error)
2779 fsnotify_mkdir(dir, dentry);
2780 return error;
2783 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2785 int error = 0;
2786 char * tmp;
2787 struct dentry *dentry;
2788 struct nameidata nd;
2790 error = user_path_parent(dfd, pathname, &nd, &tmp);
2791 if (error)
2792 goto out_err;
2794 dentry = lookup_create(&nd, 1);
2795 error = PTR_ERR(dentry);
2796 if (IS_ERR(dentry))
2797 goto out_unlock;
2799 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2800 mode &= ~current_umask();
2801 error = mnt_want_write(nd.path.mnt);
2802 if (error)
2803 goto out_dput;
2804 error = security_path_mkdir(&nd.path, dentry, mode);
2805 if (error)
2806 goto out_drop_write;
2807 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2808 out_drop_write:
2809 mnt_drop_write(nd.path.mnt);
2810 out_dput:
2811 dput(dentry);
2812 out_unlock:
2813 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2814 path_put(&nd.path);
2815 putname(tmp);
2816 out_err:
2817 return error;
2820 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2822 return sys_mkdirat(AT_FDCWD, pathname, mode);
2826 * We try to drop the dentry early: we should have
2827 * a usage count of 2 if we're the only user of this
2828 * dentry, and if that is true (possibly after pruning
2829 * the dcache), then we drop the dentry now.
2831 * A low-level filesystem can, if it choses, legally
2832 * do a
2834 * if (!d_unhashed(dentry))
2835 * return -EBUSY;
2837 * if it cannot handle the case of removing a directory
2838 * that is still in use by something else..
2840 void dentry_unhash(struct dentry *dentry)
2842 dget(dentry);
2843 shrink_dcache_parent(dentry);
2844 spin_lock(&dentry->d_lock);
2845 if (dentry->d_count == 2)
2846 __d_drop(dentry);
2847 spin_unlock(&dentry->d_lock);
2850 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2852 int error = may_delete(dir, dentry, 1);
2854 if (error)
2855 return error;
2857 if (!dir->i_op->rmdir)
2858 return -EPERM;
2860 mutex_lock(&dentry->d_inode->i_mutex);
2861 dentry_unhash(dentry);
2862 if (d_mountpoint(dentry))
2863 error = -EBUSY;
2864 else {
2865 error = security_inode_rmdir(dir, dentry);
2866 if (!error) {
2867 error = dir->i_op->rmdir(dir, dentry);
2868 if (!error) {
2869 dentry->d_inode->i_flags |= S_DEAD;
2870 dont_mount(dentry);
2874 mutex_unlock(&dentry->d_inode->i_mutex);
2875 if (!error) {
2876 d_delete(dentry);
2878 dput(dentry);
2880 return error;
2883 static long do_rmdir(int dfd, const char __user *pathname)
2885 int error = 0;
2886 char * name;
2887 struct dentry *dentry;
2888 struct nameidata nd;
2890 error = user_path_parent(dfd, pathname, &nd, &name);
2891 if (error)
2892 return error;
2894 switch(nd.last_type) {
2895 case LAST_DOTDOT:
2896 error = -ENOTEMPTY;
2897 goto exit1;
2898 case LAST_DOT:
2899 error = -EINVAL;
2900 goto exit1;
2901 case LAST_ROOT:
2902 error = -EBUSY;
2903 goto exit1;
2906 nd.flags &= ~LOOKUP_PARENT;
2908 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2909 dentry = lookup_hash(&nd);
2910 error = PTR_ERR(dentry);
2911 if (IS_ERR(dentry))
2912 goto exit2;
2913 error = mnt_want_write(nd.path.mnt);
2914 if (error)
2915 goto exit3;
2916 error = security_path_rmdir(&nd.path, dentry);
2917 if (error)
2918 goto exit4;
2919 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2920 exit4:
2921 mnt_drop_write(nd.path.mnt);
2922 exit3:
2923 dput(dentry);
2924 exit2:
2925 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2926 exit1:
2927 path_put(&nd.path);
2928 putname(name);
2929 return error;
2932 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2934 return do_rmdir(AT_FDCWD, pathname);
2937 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2939 int error = may_delete(dir, dentry, 0);
2941 if (error)
2942 return error;
2944 if (!dir->i_op->unlink)
2945 return -EPERM;
2947 mutex_lock(&dentry->d_inode->i_mutex);
2948 if (d_mountpoint(dentry))
2949 error = -EBUSY;
2950 else {
2951 error = security_inode_unlink(dir, dentry);
2952 if (!error) {
2953 error = dir->i_op->unlink(dir, dentry);
2954 if (!error)
2955 dont_mount(dentry);
2958 mutex_unlock(&dentry->d_inode->i_mutex);
2960 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2961 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2962 fsnotify_link_count(dentry->d_inode);
2963 d_delete(dentry);
2966 return error;
2970 * Make sure that the actual truncation of the file will occur outside its
2971 * directory's i_mutex. Truncate can take a long time if there is a lot of
2972 * writeout happening, and we don't want to prevent access to the directory
2973 * while waiting on the I/O.
2975 static long do_unlinkat(int dfd, const char __user *pathname)
2977 int error;
2978 char *name;
2979 struct dentry *dentry;
2980 struct nameidata nd;
2981 struct inode *inode = NULL;
2983 error = user_path_parent(dfd, pathname, &nd, &name);
2984 if (error)
2985 return error;
2987 error = -EISDIR;
2988 if (nd.last_type != LAST_NORM)
2989 goto exit1;
2991 nd.flags &= ~LOOKUP_PARENT;
2993 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2994 dentry = lookup_hash(&nd);
2995 error = PTR_ERR(dentry);
2996 if (!IS_ERR(dentry)) {
2997 /* Why not before? Because we want correct error value */
2998 if (nd.last.name[nd.last.len])
2999 goto slashes;
3000 inode = dentry->d_inode;
3001 if (inode)
3002 ihold(inode);
3003 error = mnt_want_write(nd.path.mnt);
3004 if (error)
3005 goto exit2;
3006 error = security_path_unlink(&nd.path, dentry);
3007 if (error)
3008 goto exit3;
3009 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3010 exit3:
3011 mnt_drop_write(nd.path.mnt);
3012 exit2:
3013 dput(dentry);
3015 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3016 if (inode)
3017 iput(inode); /* truncate the inode here */
3018 exit1:
3019 path_put(&nd.path);
3020 putname(name);
3021 return error;
3023 slashes:
3024 error = !dentry->d_inode ? -ENOENT :
3025 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3026 goto exit2;
3029 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3031 if ((flag & ~AT_REMOVEDIR) != 0)
3032 return -EINVAL;
3034 if (flag & AT_REMOVEDIR)
3035 return do_rmdir(dfd, pathname);
3037 return do_unlinkat(dfd, pathname);
3040 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3042 return do_unlinkat(AT_FDCWD, pathname);
3045 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3047 int error = may_create(dir, dentry);
3049 if (error)
3050 return error;
3052 if (!dir->i_op->symlink)
3053 return -EPERM;
3055 error = security_inode_symlink(dir, dentry, oldname);
3056 if (error)
3057 return error;
3059 error = dir->i_op->symlink(dir, dentry, oldname);
3060 if (!error)
3061 fsnotify_create(dir, dentry);
3062 return error;
3065 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3066 int, newdfd, const char __user *, newname)
3068 int error;
3069 char *from;
3070 char *to;
3071 struct dentry *dentry;
3072 struct nameidata nd;
3074 from = getname(oldname);
3075 if (IS_ERR(from))
3076 return PTR_ERR(from);
3078 error = user_path_parent(newdfd, newname, &nd, &to);
3079 if (error)
3080 goto out_putname;
3082 dentry = lookup_create(&nd, 0);
3083 error = PTR_ERR(dentry);
3084 if (IS_ERR(dentry))
3085 goto out_unlock;
3087 error = mnt_want_write(nd.path.mnt);
3088 if (error)
3089 goto out_dput;
3090 error = security_path_symlink(&nd.path, dentry, from);
3091 if (error)
3092 goto out_drop_write;
3093 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3094 out_drop_write:
3095 mnt_drop_write(nd.path.mnt);
3096 out_dput:
3097 dput(dentry);
3098 out_unlock:
3099 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3100 path_put(&nd.path);
3101 putname(to);
3102 out_putname:
3103 putname(from);
3104 return error;
3107 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3109 return sys_symlinkat(oldname, AT_FDCWD, newname);
3112 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3114 struct inode *inode = old_dentry->d_inode;
3115 int error;
3117 if (!inode)
3118 return -ENOENT;
3120 error = may_create(dir, new_dentry);
3121 if (error)
3122 return error;
3124 if (dir->i_sb != inode->i_sb)
3125 return -EXDEV;
3128 * A link to an append-only or immutable file cannot be created.
3130 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3131 return -EPERM;
3132 if (!dir->i_op->link)
3133 return -EPERM;
3134 if (S_ISDIR(inode->i_mode))
3135 return -EPERM;
3137 error = security_inode_link(old_dentry, dir, new_dentry);
3138 if (error)
3139 return error;
3141 mutex_lock(&inode->i_mutex);
3142 error = dir->i_op->link(old_dentry, dir, new_dentry);
3143 mutex_unlock(&inode->i_mutex);
3144 if (!error)
3145 fsnotify_link(dir, inode, new_dentry);
3146 return error;
3150 * Hardlinks are often used in delicate situations. We avoid
3151 * security-related surprises by not following symlinks on the
3152 * newname. --KAB
3154 * We don't follow them on the oldname either to be compatible
3155 * with linux 2.0, and to avoid hard-linking to directories
3156 * and other special files. --ADM
3158 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3159 int, newdfd, const char __user *, newname, int, flags)
3161 struct dentry *new_dentry;
3162 struct nameidata nd;
3163 struct path old_path;
3164 int error;
3165 char *to;
3167 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3168 return -EINVAL;
3170 error = user_path_at(olddfd, oldname,
3171 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3172 &old_path);
3173 if (error)
3174 return error;
3176 error = user_path_parent(newdfd, newname, &nd, &to);
3177 if (error)
3178 goto out;
3179 error = -EXDEV;
3180 if (old_path.mnt != nd.path.mnt)
3181 goto out_release;
3182 new_dentry = lookup_create(&nd, 0);
3183 error = PTR_ERR(new_dentry);
3184 if (IS_ERR(new_dentry))
3185 goto out_unlock;
3186 error = mnt_want_write(nd.path.mnt);
3187 if (error)
3188 goto out_dput;
3189 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3190 if (error)
3191 goto out_drop_write;
3192 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3193 out_drop_write:
3194 mnt_drop_write(nd.path.mnt);
3195 out_dput:
3196 dput(new_dentry);
3197 out_unlock:
3198 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3199 out_release:
3200 path_put(&nd.path);
3201 putname(to);
3202 out:
3203 path_put(&old_path);
3205 return error;
3208 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3210 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3214 * The worst of all namespace operations - renaming directory. "Perverted"
3215 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3216 * Problems:
3217 * a) we can get into loop creation. Check is done in is_subdir().
3218 * b) race potential - two innocent renames can create a loop together.
3219 * That's where 4.4 screws up. Current fix: serialization on
3220 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3221 * story.
3222 * c) we have to lock _three_ objects - parents and victim (if it exists).
3223 * And that - after we got ->i_mutex on parents (until then we don't know
3224 * whether the target exists). Solution: try to be smart with locking
3225 * order for inodes. We rely on the fact that tree topology may change
3226 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3227 * move will be locked. Thus we can rank directories by the tree
3228 * (ancestors first) and rank all non-directories after them.
3229 * That works since everybody except rename does "lock parent, lookup,
3230 * lock child" and rename is under ->s_vfs_rename_mutex.
3231 * HOWEVER, it relies on the assumption that any object with ->lookup()
3232 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3233 * we'd better make sure that there's no link(2) for them.
3234 * d) some filesystems don't support opened-but-unlinked directories,
3235 * either because of layout or because they are not ready to deal with
3236 * all cases correctly. The latter will be fixed (taking this sort of
3237 * stuff into VFS), but the former is not going away. Solution: the same
3238 * trick as in rmdir().
3239 * e) conversion from fhandle to dentry may come in the wrong moment - when
3240 * we are removing the target. Solution: we will have to grab ->i_mutex
3241 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3242 * ->i_mutex on parents, which works but leads to some truly excessive
3243 * locking].
3245 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3246 struct inode *new_dir, struct dentry *new_dentry)
3248 int error = 0;
3249 struct inode *target;
3252 * If we are going to change the parent - check write permissions,
3253 * we'll need to flip '..'.
3255 if (new_dir != old_dir) {
3256 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3257 if (error)
3258 return error;
3261 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3262 if (error)
3263 return error;
3265 target = new_dentry->d_inode;
3266 if (target)
3267 mutex_lock(&target->i_mutex);
3268 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3269 error = -EBUSY;
3270 else {
3271 if (target)
3272 dentry_unhash(new_dentry);
3273 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3275 if (target) {
3276 if (!error) {
3277 target->i_flags |= S_DEAD;
3278 dont_mount(new_dentry);
3280 mutex_unlock(&target->i_mutex);
3281 if (d_unhashed(new_dentry))
3282 d_rehash(new_dentry);
3283 dput(new_dentry);
3285 if (!error)
3286 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3287 d_move(old_dentry,new_dentry);
3288 return error;
3291 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3292 struct inode *new_dir, struct dentry *new_dentry)
3294 struct inode *target;
3295 int error;
3297 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3298 if (error)
3299 return error;
3301 dget(new_dentry);
3302 target = new_dentry->d_inode;
3303 if (target)
3304 mutex_lock(&target->i_mutex);
3305 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3306 error = -EBUSY;
3307 else
3308 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3309 if (!error) {
3310 if (target)
3311 dont_mount(new_dentry);
3312 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3313 d_move(old_dentry, new_dentry);
3315 if (target)
3316 mutex_unlock(&target->i_mutex);
3317 dput(new_dentry);
3318 return error;
3321 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3322 struct inode *new_dir, struct dentry *new_dentry)
3324 int error;
3325 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3326 const unsigned char *old_name;
3328 if (old_dentry->d_inode == new_dentry->d_inode)
3329 return 0;
3331 error = may_delete(old_dir, old_dentry, is_dir);
3332 if (error)
3333 return error;
3335 if (!new_dentry->d_inode)
3336 error = may_create(new_dir, new_dentry);
3337 else
3338 error = may_delete(new_dir, new_dentry, is_dir);
3339 if (error)
3340 return error;
3342 if (!old_dir->i_op->rename)
3343 return -EPERM;
3345 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3347 if (is_dir)
3348 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3349 else
3350 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3351 if (!error)
3352 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3353 new_dentry->d_inode, old_dentry);
3354 fsnotify_oldname_free(old_name);
3356 return error;
3359 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3360 int, newdfd, const char __user *, newname)
3362 struct dentry *old_dir, *new_dir;
3363 struct dentry *old_dentry, *new_dentry;
3364 struct dentry *trap;
3365 struct nameidata oldnd, newnd;
3366 char *from;
3367 char *to;
3368 int error;
3370 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3371 if (error)
3372 goto exit;
3374 error = user_path_parent(newdfd, newname, &newnd, &to);
3375 if (error)
3376 goto exit1;
3378 error = -EXDEV;
3379 if (oldnd.path.mnt != newnd.path.mnt)
3380 goto exit2;
3382 old_dir = oldnd.path.dentry;
3383 error = -EBUSY;
3384 if (oldnd.last_type != LAST_NORM)
3385 goto exit2;
3387 new_dir = newnd.path.dentry;
3388 if (newnd.last_type != LAST_NORM)
3389 goto exit2;
3391 oldnd.flags &= ~LOOKUP_PARENT;
3392 newnd.flags &= ~LOOKUP_PARENT;
3393 newnd.flags |= LOOKUP_RENAME_TARGET;
3395 trap = lock_rename(new_dir, old_dir);
3397 old_dentry = lookup_hash(&oldnd);
3398 error = PTR_ERR(old_dentry);
3399 if (IS_ERR(old_dentry))
3400 goto exit3;
3401 /* source must exist */
3402 error = -ENOENT;
3403 if (!old_dentry->d_inode)
3404 goto exit4;
3405 /* unless the source is a directory trailing slashes give -ENOTDIR */
3406 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3407 error = -ENOTDIR;
3408 if (oldnd.last.name[oldnd.last.len])
3409 goto exit4;
3410 if (newnd.last.name[newnd.last.len])
3411 goto exit4;
3413 /* source should not be ancestor of target */
3414 error = -EINVAL;
3415 if (old_dentry == trap)
3416 goto exit4;
3417 new_dentry = lookup_hash(&newnd);
3418 error = PTR_ERR(new_dentry);
3419 if (IS_ERR(new_dentry))
3420 goto exit4;
3421 /* target should not be an ancestor of source */
3422 error = -ENOTEMPTY;
3423 if (new_dentry == trap)
3424 goto exit5;
3426 error = mnt_want_write(oldnd.path.mnt);
3427 if (error)
3428 goto exit5;
3429 error = security_path_rename(&oldnd.path, old_dentry,
3430 &newnd.path, new_dentry);
3431 if (error)
3432 goto exit6;
3433 error = vfs_rename(old_dir->d_inode, old_dentry,
3434 new_dir->d_inode, new_dentry);
3435 exit6:
3436 mnt_drop_write(oldnd.path.mnt);
3437 exit5:
3438 dput(new_dentry);
3439 exit4:
3440 dput(old_dentry);
3441 exit3:
3442 unlock_rename(new_dir, old_dir);
3443 exit2:
3444 path_put(&newnd.path);
3445 putname(to);
3446 exit1:
3447 path_put(&oldnd.path);
3448 putname(from);
3449 exit:
3450 return error;
3453 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3455 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3458 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3460 int len;
3462 len = PTR_ERR(link);
3463 if (IS_ERR(link))
3464 goto out;
3466 len = strlen(link);
3467 if (len > (unsigned) buflen)
3468 len = buflen;
3469 if (copy_to_user(buffer, link, len))
3470 len = -EFAULT;
3471 out:
3472 return len;
3476 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3477 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3478 * using) it for any given inode is up to filesystem.
3480 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3482 struct nameidata nd;
3483 void *cookie;
3484 int res;
3486 nd.depth = 0;
3487 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3488 if (IS_ERR(cookie))
3489 return PTR_ERR(cookie);
3491 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3492 if (dentry->d_inode->i_op->put_link)
3493 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3494 return res;
3497 int vfs_follow_link(struct nameidata *nd, const char *link)
3499 return __vfs_follow_link(nd, link);
3502 /* get the link contents into pagecache */
3503 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3505 char *kaddr;
3506 struct page *page;
3507 struct address_space *mapping = dentry->d_inode->i_mapping;
3508 page = read_mapping_page(mapping, 0, NULL);
3509 if (IS_ERR(page))
3510 return (char*)page;
3511 *ppage = page;
3512 kaddr = kmap(page);
3513 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3514 return kaddr;
3517 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3519 struct page *page = NULL;
3520 char *s = page_getlink(dentry, &page);
3521 int res = vfs_readlink(dentry,buffer,buflen,s);
3522 if (page) {
3523 kunmap(page);
3524 page_cache_release(page);
3526 return res;
3529 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3531 struct page *page = NULL;
3532 nd_set_link(nd, page_getlink(dentry, &page));
3533 return page;
3536 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3538 struct page *page = cookie;
3540 if (page) {
3541 kunmap(page);
3542 page_cache_release(page);
3547 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3549 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3551 struct address_space *mapping = inode->i_mapping;
3552 struct page *page;
3553 void *fsdata;
3554 int err;
3555 char *kaddr;
3556 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3557 if (nofs)
3558 flags |= AOP_FLAG_NOFS;
3560 retry:
3561 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3562 flags, &page, &fsdata);
3563 if (err)
3564 goto fail;
3566 kaddr = kmap_atomic(page, KM_USER0);
3567 memcpy(kaddr, symname, len-1);
3568 kunmap_atomic(kaddr, KM_USER0);
3570 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3571 page, fsdata);
3572 if (err < 0)
3573 goto fail;
3574 if (err < len-1)
3575 goto retry;
3577 mark_inode_dirty(inode);
3578 return 0;
3579 fail:
3580 return err;
3583 int page_symlink(struct inode *inode, const char *symname, int len)
3585 return __page_symlink(inode, symname, len,
3586 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3589 const struct inode_operations page_symlink_inode_operations = {
3590 .readlink = generic_readlink,
3591 .follow_link = page_follow_link_light,
3592 .put_link = page_put_link,
3595 EXPORT_SYMBOL(user_path_at);
3596 EXPORT_SYMBOL(follow_down_one);
3597 EXPORT_SYMBOL(follow_down);
3598 EXPORT_SYMBOL(follow_up);
3599 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3600 EXPORT_SYMBOL(getname);
3601 EXPORT_SYMBOL(lock_rename);
3602 EXPORT_SYMBOL(lookup_one_len);
3603 EXPORT_SYMBOL(page_follow_link_light);
3604 EXPORT_SYMBOL(page_put_link);
3605 EXPORT_SYMBOL(page_readlink);
3606 EXPORT_SYMBOL(__page_symlink);
3607 EXPORT_SYMBOL(page_symlink);
3608 EXPORT_SYMBOL(page_symlink_inode_operations);
3609 EXPORT_SYMBOL(path_lookup);
3610 EXPORT_SYMBOL(kern_path);
3611 EXPORT_SYMBOL(vfs_path_lookup);
3612 EXPORT_SYMBOL(inode_permission);
3613 EXPORT_SYMBOL(file_permission);
3614 EXPORT_SYMBOL(unlock_rename);
3615 EXPORT_SYMBOL(vfs_create);
3616 EXPORT_SYMBOL(vfs_follow_link);
3617 EXPORT_SYMBOL(vfs_link);
3618 EXPORT_SYMBOL(vfs_mkdir);
3619 EXPORT_SYMBOL(vfs_mknod);
3620 EXPORT_SYMBOL(generic_permission);
3621 EXPORT_SYMBOL(vfs_readlink);
3622 EXPORT_SYMBOL(vfs_rename);
3623 EXPORT_SYMBOL(vfs_rmdir);
3624 EXPORT_SYMBOL(vfs_symlink);
3625 EXPORT_SYMBOL(vfs_unlink);
3626 EXPORT_SYMBOL(dentry_unhash);
3627 EXPORT_SYMBOL(generic_readlink);