powerpc/pcm{030,032}: add pagesize to dts
[linux-2.6/cjktty.git] / mm / page_alloc.c
blobff7e158723987d4355ec84a2c090716ec8accbe9
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
78 * Array of node states.
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
91 EXPORT_SYMBOL(node_states);
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
132 static void __free_pages_ok(struct page *page, unsigned int order);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
154 #endif
158 EXPORT_SYMBOL(totalram_pages);
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
174 int min_free_kbytes = 1024;
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
221 int page_group_by_mobility_disabled __read_mostly;
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
233 bool oom_killer_disabled __read_mostly;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
250 return ret;
253 static int page_is_consistent(struct zone *zone, struct page *page)
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
260 return 1;
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone *zone, struct page *page)
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
272 return 0;
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
277 return 0;
279 #endif
281 static void bad_page(struct page *page)
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
308 nr_shown = 0;
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
321 add_taint(TAINT_BAD_PAGE);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page *page)
341 __free_pages_ok(page, compound_order(page));
344 void prep_compound_page(struct page *page, unsigned long order)
346 int i;
347 int nr_pages = 1 << order;
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
355 __SetPageTail(p);
356 p->first_page = page;
360 static int destroy_compound_page(struct page *page, unsigned long order)
362 int i;
363 int nr_pages = 1 << order;
364 int bad = 0;
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
368 bad_page(page);
369 bad++;
372 __ClearPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 bad_page(page);
379 bad++;
381 __ClearPageTail(p);
384 return bad;
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 int i;
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
400 static inline void set_page_order(struct page *page, int order)
402 set_page_private(page, order);
403 __SetPageBuddy(page);
406 static inline void rmv_page_order(struct page *page)
408 __ClearPageBuddy(page);
409 set_page_private(page, 0);
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
418 * B2 = B1 ^ (1 << O)
419 * For example, if the starting buddy (buddy2) is #8 its order
420 * 1 buddy is #10:
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
425 * P = B & ~(1 << O)
427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429 static inline struct page *
430 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
432 unsigned long buddy_idx = page_idx ^ (1 << order);
434 return page + (buddy_idx - page_idx);
437 static inline unsigned long
438 __find_combined_index(unsigned long page_idx, unsigned int order)
440 return (page_idx & ~(1 << order));
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
446 * (a) the buddy is not in a hole &&
447 * (b) the buddy is in the buddy system &&
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
454 * For recording page's order, we use page_private(page).
456 static inline int page_is_buddy(struct page *page, struct page *buddy,
457 int order)
459 if (!pfn_valid_within(page_to_pfn(buddy)))
460 return 0;
462 if (page_zone_id(page) != page_zone_id(buddy))
463 return 0;
465 if (PageBuddy(buddy) && page_order(buddy) == order) {
466 VM_BUG_ON(page_count(buddy) != 0);
467 return 1;
469 return 0;
473 * Freeing function for a buddy system allocator.
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
486 * order is recorded in page_private(page) field.
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
493 * -- wli
496 static inline void __free_one_page(struct page *page,
497 struct zone *zone, unsigned int order,
498 int migratetype)
500 unsigned long page_idx;
501 unsigned long combined_idx;
502 struct page *buddy;
504 if (unlikely(PageCompound(page)))
505 if (unlikely(destroy_compound_page(page, order)))
506 return;
508 VM_BUG_ON(migratetype == -1);
510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
512 VM_BUG_ON(page_idx & ((1 << order) - 1));
513 VM_BUG_ON(bad_range(zone, page));
515 while (order < MAX_ORDER-1) {
516 buddy = __page_find_buddy(page, page_idx, order);
517 if (!page_is_buddy(page, buddy, order))
518 break;
520 /* Our buddy is free, merge with it and move up one order. */
521 list_del(&buddy->lru);
522 zone->free_area[order].nr_free--;
523 rmv_page_order(buddy);
524 combined_idx = __find_combined_index(page_idx, order);
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
529 set_page_order(page, order);
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
540 struct page *higher_page, *higher_buddy;
541 combined_idx = __find_combined_index(page_idx, order);
542 higher_page = page + combined_idx - page_idx;
543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 zone->free_area[order].nr_free++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page *page)
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
567 static inline int free_pages_check(struct page *page)
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
571 (atomic_read(&page->_count) != 0) |
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
573 bad_page(page);
574 return 1;
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
582 * Frees a number of pages from the PCP lists
583 * Assumes all pages on list are in same zone, and of same order.
584 * count is the number of pages to free.
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
592 static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
595 int migratetype = 0;
596 int batch_free = 0;
597 int to_free = count;
599 spin_lock(&zone->lock);
600 zone->all_unreclaimable = 0;
601 zone->pages_scanned = 0;
603 while (to_free) {
604 struct page *page;
605 struct list_head *list;
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
614 do {
615 batch_free++;
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
628 } while (--to_free && --batch_free && !list_empty(list));
630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
631 spin_unlock(&zone->lock);
634 static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
637 spin_lock(&zone->lock);
638 zone->all_unreclaimable = 0;
639 zone->pages_scanned = 0;
641 __free_one_page(page, zone, order, migratetype);
642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
643 spin_unlock(&zone->lock);
646 static bool free_pages_prepare(struct page *page, unsigned int order)
648 int i;
649 int bad = 0;
651 trace_mm_page_free_direct(page, order);
652 kmemcheck_free_shadow(page, order);
654 for (i = 0; i < (1 << order); i++) {
655 struct page *pg = page + i;
657 if (PageAnon(pg))
658 pg->mapping = NULL;
659 bad += free_pages_check(pg);
661 if (bad)
662 return false;
664 if (!PageHighMem(page)) {
665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
669 arch_free_page(page, order);
670 kernel_map_pages(page, 1 << order, 0);
672 return true;
675 static void __free_pages_ok(struct page *page, unsigned int order)
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
680 if (!free_pages_prepare(page, order))
681 return;
683 local_irq_save(flags);
684 if (unlikely(wasMlocked))
685 free_page_mlock(page);
686 __count_vm_events(PGFREE, 1 << order);
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
689 local_irq_restore(flags);
693 * permit the bootmem allocator to evade page validation on high-order frees
695 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
700 set_page_refcounted(page);
701 __free_page(page);
702 } else {
703 int loop;
705 prefetchw(page);
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
715 set_page_refcounted(page);
716 __free_pages(page, order);
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
733 * -- wli
735 static inline void expand(struct zone *zone, struct page *page,
736 int low, int high, struct free_area *area,
737 int migratetype)
739 unsigned long size = 1 << high;
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
745 VM_BUG_ON(bad_range(zone, &page[size]));
746 list_add(&page[size].lru, &area->free_list[migratetype]);
747 area->nr_free++;
748 set_page_order(&page[size], high);
753 * This page is about to be returned from the page allocator
755 static inline int check_new_page(struct page *page)
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
759 (atomic_read(&page->_count) != 0) |
760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
761 bad_page(page);
762 return 1;
764 return 0;
767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
769 int i;
771 for (i = 0; i < (1 << order); i++) {
772 struct page *p = page + i;
773 if (unlikely(check_new_page(p)))
774 return 1;
777 set_page_private(page, 0);
778 set_page_refcounted(page);
780 arch_alloc_page(page, order);
781 kernel_map_pages(page, 1 << order, 1);
783 if (gfp_flags & __GFP_ZERO)
784 prep_zero_page(page, order, gfp_flags);
786 if (order && (gfp_flags & __GFP_COMP))
787 prep_compound_page(page, order);
789 return 0;
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
796 static inline
797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
798 int migratetype)
800 unsigned int current_order;
801 struct free_area * area;
802 struct page *page;
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 list_del(&page->lru);
813 rmv_page_order(page);
814 area->nr_free--;
815 expand(zone, page, order, current_order, area, migratetype);
816 return page;
819 return NULL;
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
835 * Move the free pages in a range to the free lists of the requested type.
836 * Note that start_page and end_pages are not aligned on a pageblock
837 * boundary. If alignment is required, use move_freepages_block()
839 static int move_freepages(struct zone *zone,
840 struct page *start_page, struct page *end_page,
841 int migratetype)
843 struct page *page;
844 unsigned long order;
845 int pages_moved = 0;
847 #ifndef CONFIG_HOLES_IN_ZONE
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
853 * grouping pages by mobility
855 BUG_ON(page_zone(start_page) != page_zone(end_page));
856 #endif
858 for (page = start_page; page <= end_page;) {
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
862 if (!pfn_valid_within(page_to_pfn(page))) {
863 page++;
864 continue;
867 if (!PageBuddy(page)) {
868 page++;
869 continue;
872 order = page_order(page);
873 list_del(&page->lru);
874 list_add(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
877 pages_moved += 1 << order;
880 return pages_moved;
883 static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
889 start_pfn = page_to_pfn(page);
890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
891 start_page = pfn_to_page(start_pfn);
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
901 return move_freepages(zone, start_page, end_page, migratetype);
904 static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
915 /* Remove an element from the buddy allocator from the fallback list */
916 static inline struct page *
917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
943 * If breaking a large block of pages, move all free
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * agressive about taking ownership of free pages
948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
955 /* Claim the whole block if over half of it is free */
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
958 set_pageblock_migratetype(page,
959 start_migratetype);
961 migratetype = start_migratetype;
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
971 start_migratetype);
973 expand(zone, page, order, current_order, area, migratetype);
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
978 return page;
982 return NULL;
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
989 static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
992 struct page *page;
994 retry_reserve:
995 page = __rmqueue_smallest(zone, order, migratetype);
997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
998 page = __rmqueue_fallback(zone, order, migratetype);
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1012 return page;
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1020 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1021 unsigned long count, struct list_head *list,
1022 int migratetype, int cold)
1024 int i;
1026 spin_lock(&zone->lock);
1027 for (i = 0; i < count; ++i) {
1028 struct page *page = __rmqueue(zone, order, migratetype);
1029 if (unlikely(page == NULL))
1030 break;
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
1045 set_page_private(page, migratetype);
1046 list = &page->lru;
1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1049 spin_unlock(&zone->lock);
1050 return i;
1053 #ifdef CONFIG_NUMA
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
1062 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1064 unsigned long flags;
1065 int to_drain;
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
1072 free_pcppages_bulk(zone, to_drain, pcp);
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
1076 #endif
1079 * Drain pages of the indicated processor.
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1085 static void drain_pages(unsigned int cpu)
1087 unsigned long flags;
1088 struct zone *zone;
1090 for_each_populated_zone(zone) {
1091 struct per_cpu_pageset *pset;
1092 struct per_cpu_pages *pcp;
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
1097 pcp = &pset->pcp;
1098 free_pcppages_bulk(zone, pcp->count, pcp);
1099 pcp->count = 0;
1100 local_irq_restore(flags);
1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1107 void drain_local_pages(void *arg)
1109 drain_pages(smp_processor_id());
1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1115 void drain_all_pages(void)
1117 on_each_cpu(drain_local_pages, NULL, 1);
1120 #ifdef CONFIG_HIBERNATION
1122 void mark_free_pages(struct zone *zone)
1124 unsigned long pfn, max_zone_pfn;
1125 unsigned long flags;
1126 int order, t;
1127 struct list_head *curr;
1129 if (!zone->spanned_pages)
1130 return;
1132 spin_lock_irqsave(&zone->lock, flags);
1134 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1135 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1136 if (pfn_valid(pfn)) {
1137 struct page *page = pfn_to_page(pfn);
1139 if (!swsusp_page_is_forbidden(page))
1140 swsusp_unset_page_free(page);
1143 for_each_migratetype_order(order, t) {
1144 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1145 unsigned long i;
1147 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1148 for (i = 0; i < (1UL << order); i++)
1149 swsusp_set_page_free(pfn_to_page(pfn + i));
1152 spin_unlock_irqrestore(&zone->lock, flags);
1154 #endif /* CONFIG_PM */
1157 * Free a 0-order page
1158 * cold == 1 ? free a cold page : free a hot page
1160 void free_hot_cold_page(struct page *page, int cold)
1162 struct zone *zone = page_zone(page);
1163 struct per_cpu_pages *pcp;
1164 unsigned long flags;
1165 int migratetype;
1166 int wasMlocked = __TestClearPageMlocked(page);
1168 if (!free_pages_prepare(page, 0))
1169 return;
1171 migratetype = get_pageblock_migratetype(page);
1172 set_page_private(page, migratetype);
1173 local_irq_save(flags);
1174 if (unlikely(wasMlocked))
1175 free_page_mlock(page);
1176 __count_vm_event(PGFREE);
1179 * We only track unmovable, reclaimable and movable on pcp lists.
1180 * Free ISOLATE pages back to the allocator because they are being
1181 * offlined but treat RESERVE as movable pages so we can get those
1182 * areas back if necessary. Otherwise, we may have to free
1183 * excessively into the page allocator
1185 if (migratetype >= MIGRATE_PCPTYPES) {
1186 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1187 free_one_page(zone, page, 0, migratetype);
1188 goto out;
1190 migratetype = MIGRATE_MOVABLE;
1193 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1194 if (cold)
1195 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1196 else
1197 list_add(&page->lru, &pcp->lists[migratetype]);
1198 pcp->count++;
1199 if (pcp->count >= pcp->high) {
1200 free_pcppages_bulk(zone, pcp->batch, pcp);
1201 pcp->count -= pcp->batch;
1204 out:
1205 local_irq_restore(flags);
1209 * split_page takes a non-compound higher-order page, and splits it into
1210 * n (1<<order) sub-pages: page[0..n]
1211 * Each sub-page must be freed individually.
1213 * Note: this is probably too low level an operation for use in drivers.
1214 * Please consult with lkml before using this in your driver.
1216 void split_page(struct page *page, unsigned int order)
1218 int i;
1220 VM_BUG_ON(PageCompound(page));
1221 VM_BUG_ON(!page_count(page));
1223 #ifdef CONFIG_KMEMCHECK
1225 * Split shadow pages too, because free(page[0]) would
1226 * otherwise free the whole shadow.
1228 if (kmemcheck_page_is_tracked(page))
1229 split_page(virt_to_page(page[0].shadow), order);
1230 #endif
1232 for (i = 1; i < (1 << order); i++)
1233 set_page_refcounted(page + i);
1237 * Similar to split_page except the page is already free. As this is only
1238 * being used for migration, the migratetype of the block also changes.
1239 * As this is called with interrupts disabled, the caller is responsible
1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1241 * are enabled.
1243 * Note: this is probably too low level an operation for use in drivers.
1244 * Please consult with lkml before using this in your driver.
1246 int split_free_page(struct page *page)
1248 unsigned int order;
1249 unsigned long watermark;
1250 struct zone *zone;
1252 BUG_ON(!PageBuddy(page));
1254 zone = page_zone(page);
1255 order = page_order(page);
1257 /* Obey watermarks as if the page was being allocated */
1258 watermark = low_wmark_pages(zone) + (1 << order);
1259 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1260 return 0;
1262 /* Remove page from free list */
1263 list_del(&page->lru);
1264 zone->free_area[order].nr_free--;
1265 rmv_page_order(page);
1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1268 /* Split into individual pages */
1269 set_page_refcounted(page);
1270 split_page(page, order);
1272 if (order >= pageblock_order - 1) {
1273 struct page *endpage = page + (1 << order) - 1;
1274 for (; page < endpage; page += pageblock_nr_pages)
1275 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1278 return 1 << order;
1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1284 * or two.
1286 static inline
1287 struct page *buffered_rmqueue(struct zone *preferred_zone,
1288 struct zone *zone, int order, gfp_t gfp_flags,
1289 int migratetype)
1291 unsigned long flags;
1292 struct page *page;
1293 int cold = !!(gfp_flags & __GFP_COLD);
1295 again:
1296 if (likely(order == 0)) {
1297 struct per_cpu_pages *pcp;
1298 struct list_head *list;
1300 local_irq_save(flags);
1301 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1302 list = &pcp->lists[migratetype];
1303 if (list_empty(list)) {
1304 pcp->count += rmqueue_bulk(zone, 0,
1305 pcp->batch, list,
1306 migratetype, cold);
1307 if (unlikely(list_empty(list)))
1308 goto failed;
1311 if (cold)
1312 page = list_entry(list->prev, struct page, lru);
1313 else
1314 page = list_entry(list->next, struct page, lru);
1316 list_del(&page->lru);
1317 pcp->count--;
1318 } else {
1319 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1321 * __GFP_NOFAIL is not to be used in new code.
1323 * All __GFP_NOFAIL callers should be fixed so that they
1324 * properly detect and handle allocation failures.
1326 * We most definitely don't want callers attempting to
1327 * allocate greater than order-1 page units with
1328 * __GFP_NOFAIL.
1330 WARN_ON_ONCE(order > 1);
1332 spin_lock_irqsave(&zone->lock, flags);
1333 page = __rmqueue(zone, order, migratetype);
1334 spin_unlock(&zone->lock);
1335 if (!page)
1336 goto failed;
1337 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1340 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1341 zone_statistics(preferred_zone, zone);
1342 local_irq_restore(flags);
1344 VM_BUG_ON(bad_range(zone, page));
1345 if (prep_new_page(page, order, gfp_flags))
1346 goto again;
1347 return page;
1349 failed:
1350 local_irq_restore(flags);
1351 return NULL;
1354 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355 #define ALLOC_WMARK_MIN WMARK_MIN
1356 #define ALLOC_WMARK_LOW WMARK_LOW
1357 #define ALLOC_WMARK_HIGH WMARK_HIGH
1358 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1360 /* Mask to get the watermark bits */
1361 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1363 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1364 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1365 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1367 #ifdef CONFIG_FAIL_PAGE_ALLOC
1369 static struct fail_page_alloc_attr {
1370 struct fault_attr attr;
1372 u32 ignore_gfp_highmem;
1373 u32 ignore_gfp_wait;
1374 u32 min_order;
1376 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1378 struct dentry *ignore_gfp_highmem_file;
1379 struct dentry *ignore_gfp_wait_file;
1380 struct dentry *min_order_file;
1382 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1384 } fail_page_alloc = {
1385 .attr = FAULT_ATTR_INITIALIZER,
1386 .ignore_gfp_wait = 1,
1387 .ignore_gfp_highmem = 1,
1388 .min_order = 1,
1391 static int __init setup_fail_page_alloc(char *str)
1393 return setup_fault_attr(&fail_page_alloc.attr, str);
1395 __setup("fail_page_alloc=", setup_fail_page_alloc);
1397 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1399 if (order < fail_page_alloc.min_order)
1400 return 0;
1401 if (gfp_mask & __GFP_NOFAIL)
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1406 return 0;
1408 return should_fail(&fail_page_alloc.attr, 1 << order);
1411 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1413 static int __init fail_page_alloc_debugfs(void)
1415 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1416 struct dentry *dir;
1417 int err;
1419 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1420 "fail_page_alloc");
1421 if (err)
1422 return err;
1423 dir = fail_page_alloc.attr.dentries.dir;
1425 fail_page_alloc.ignore_gfp_wait_file =
1426 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1427 &fail_page_alloc.ignore_gfp_wait);
1429 fail_page_alloc.ignore_gfp_highmem_file =
1430 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1431 &fail_page_alloc.ignore_gfp_highmem);
1432 fail_page_alloc.min_order_file =
1433 debugfs_create_u32("min-order", mode, dir,
1434 &fail_page_alloc.min_order);
1436 if (!fail_page_alloc.ignore_gfp_wait_file ||
1437 !fail_page_alloc.ignore_gfp_highmem_file ||
1438 !fail_page_alloc.min_order_file) {
1439 err = -ENOMEM;
1440 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1441 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1442 debugfs_remove(fail_page_alloc.min_order_file);
1443 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1446 return err;
1449 late_initcall(fail_page_alloc_debugfs);
1451 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1453 #else /* CONFIG_FAIL_PAGE_ALLOC */
1455 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1457 return 0;
1460 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1463 * Return 1 if free pages are above 'mark'. This takes into account the order
1464 * of the allocation.
1466 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1467 int classzone_idx, int alloc_flags)
1469 /* free_pages my go negative - that's OK */
1470 long min = mark;
1471 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1472 int o;
1474 if (alloc_flags & ALLOC_HIGH)
1475 min -= min / 2;
1476 if (alloc_flags & ALLOC_HARDER)
1477 min -= min / 4;
1479 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1480 return 0;
1481 for (o = 0; o < order; o++) {
1482 /* At the next order, this order's pages become unavailable */
1483 free_pages -= z->free_area[o].nr_free << o;
1485 /* Require fewer higher order pages to be free */
1486 min >>= 1;
1488 if (free_pages <= min)
1489 return 0;
1491 return 1;
1494 #ifdef CONFIG_NUMA
1496 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1497 * skip over zones that are not allowed by the cpuset, or that have
1498 * been recently (in last second) found to be nearly full. See further
1499 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1500 * that have to skip over a lot of full or unallowed zones.
1502 * If the zonelist cache is present in the passed in zonelist, then
1503 * returns a pointer to the allowed node mask (either the current
1504 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1506 * If the zonelist cache is not available for this zonelist, does
1507 * nothing and returns NULL.
1509 * If the fullzones BITMAP in the zonelist cache is stale (more than
1510 * a second since last zap'd) then we zap it out (clear its bits.)
1512 * We hold off even calling zlc_setup, until after we've checked the
1513 * first zone in the zonelist, on the theory that most allocations will
1514 * be satisfied from that first zone, so best to examine that zone as
1515 * quickly as we can.
1517 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1519 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1520 nodemask_t *allowednodes; /* zonelist_cache approximation */
1522 zlc = zonelist->zlcache_ptr;
1523 if (!zlc)
1524 return NULL;
1526 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1527 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1528 zlc->last_full_zap = jiffies;
1531 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1532 &cpuset_current_mems_allowed :
1533 &node_states[N_HIGH_MEMORY];
1534 return allowednodes;
1538 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1539 * if it is worth looking at further for free memory:
1540 * 1) Check that the zone isn't thought to be full (doesn't have its
1541 * bit set in the zonelist_cache fullzones BITMAP).
1542 * 2) Check that the zones node (obtained from the zonelist_cache
1543 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1544 * Return true (non-zero) if zone is worth looking at further, or
1545 * else return false (zero) if it is not.
1547 * This check -ignores- the distinction between various watermarks,
1548 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1549 * found to be full for any variation of these watermarks, it will
1550 * be considered full for up to one second by all requests, unless
1551 * we are so low on memory on all allowed nodes that we are forced
1552 * into the second scan of the zonelist.
1554 * In the second scan we ignore this zonelist cache and exactly
1555 * apply the watermarks to all zones, even it is slower to do so.
1556 * We are low on memory in the second scan, and should leave no stone
1557 * unturned looking for a free page.
1559 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1560 nodemask_t *allowednodes)
1562 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1563 int i; /* index of *z in zonelist zones */
1564 int n; /* node that zone *z is on */
1566 zlc = zonelist->zlcache_ptr;
1567 if (!zlc)
1568 return 1;
1570 i = z - zonelist->_zonerefs;
1571 n = zlc->z_to_n[i];
1573 /* This zone is worth trying if it is allowed but not full */
1574 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1578 * Given 'z' scanning a zonelist, set the corresponding bit in
1579 * zlc->fullzones, so that subsequent attempts to allocate a page
1580 * from that zone don't waste time re-examining it.
1582 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1585 int i; /* index of *z in zonelist zones */
1587 zlc = zonelist->zlcache_ptr;
1588 if (!zlc)
1589 return;
1591 i = z - zonelist->_zonerefs;
1593 set_bit(i, zlc->fullzones);
1596 #else /* CONFIG_NUMA */
1598 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1600 return NULL;
1603 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1604 nodemask_t *allowednodes)
1606 return 1;
1609 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1612 #endif /* CONFIG_NUMA */
1615 * get_page_from_freelist goes through the zonelist trying to allocate
1616 * a page.
1618 static struct page *
1619 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1620 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1621 struct zone *preferred_zone, int migratetype)
1623 struct zoneref *z;
1624 struct page *page = NULL;
1625 int classzone_idx;
1626 struct zone *zone;
1627 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1628 int zlc_active = 0; /* set if using zonelist_cache */
1629 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1631 classzone_idx = zone_idx(preferred_zone);
1632 zonelist_scan:
1634 * Scan zonelist, looking for a zone with enough free.
1635 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1637 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1638 high_zoneidx, nodemask) {
1639 if (NUMA_BUILD && zlc_active &&
1640 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1641 continue;
1642 if ((alloc_flags & ALLOC_CPUSET) &&
1643 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1644 goto try_next_zone;
1646 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1647 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1648 unsigned long mark;
1649 int ret;
1651 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1652 if (zone_watermark_ok(zone, order, mark,
1653 classzone_idx, alloc_flags))
1654 goto try_this_zone;
1656 if (zone_reclaim_mode == 0)
1657 goto this_zone_full;
1659 ret = zone_reclaim(zone, gfp_mask, order);
1660 switch (ret) {
1661 case ZONE_RECLAIM_NOSCAN:
1662 /* did not scan */
1663 goto try_next_zone;
1664 case ZONE_RECLAIM_FULL:
1665 /* scanned but unreclaimable */
1666 goto this_zone_full;
1667 default:
1668 /* did we reclaim enough */
1669 if (!zone_watermark_ok(zone, order, mark,
1670 classzone_idx, alloc_flags))
1671 goto this_zone_full;
1675 try_this_zone:
1676 page = buffered_rmqueue(preferred_zone, zone, order,
1677 gfp_mask, migratetype);
1678 if (page)
1679 break;
1680 this_zone_full:
1681 if (NUMA_BUILD)
1682 zlc_mark_zone_full(zonelist, z);
1683 try_next_zone:
1684 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1686 * we do zlc_setup after the first zone is tried but only
1687 * if there are multiple nodes make it worthwhile
1689 allowednodes = zlc_setup(zonelist, alloc_flags);
1690 zlc_active = 1;
1691 did_zlc_setup = 1;
1695 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1696 /* Disable zlc cache for second zonelist scan */
1697 zlc_active = 0;
1698 goto zonelist_scan;
1700 return page;
1703 static inline int
1704 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1705 unsigned long pages_reclaimed)
1707 /* Do not loop if specifically requested */
1708 if (gfp_mask & __GFP_NORETRY)
1709 return 0;
1712 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1713 * means __GFP_NOFAIL, but that may not be true in other
1714 * implementations.
1716 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1717 return 1;
1720 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1721 * specified, then we retry until we no longer reclaim any pages
1722 * (above), or we've reclaimed an order of pages at least as
1723 * large as the allocation's order. In both cases, if the
1724 * allocation still fails, we stop retrying.
1726 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1727 return 1;
1730 * Don't let big-order allocations loop unless the caller
1731 * explicitly requests that.
1733 if (gfp_mask & __GFP_NOFAIL)
1734 return 1;
1736 return 0;
1739 static inline struct page *
1740 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1741 struct zonelist *zonelist, enum zone_type high_zoneidx,
1742 nodemask_t *nodemask, struct zone *preferred_zone,
1743 int migratetype)
1745 struct page *page;
1747 /* Acquire the OOM killer lock for the zones in zonelist */
1748 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1749 schedule_timeout_uninterruptible(1);
1750 return NULL;
1754 * Go through the zonelist yet one more time, keep very high watermark
1755 * here, this is only to catch a parallel oom killing, we must fail if
1756 * we're still under heavy pressure.
1758 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1759 order, zonelist, high_zoneidx,
1760 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1761 preferred_zone, migratetype);
1762 if (page)
1763 goto out;
1765 if (!(gfp_mask & __GFP_NOFAIL)) {
1766 /* The OOM killer will not help higher order allocs */
1767 if (order > PAGE_ALLOC_COSTLY_ORDER)
1768 goto out;
1769 /* The OOM killer does not needlessly kill tasks for lowmem */
1770 if (high_zoneidx < ZONE_NORMAL)
1771 goto out;
1773 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1774 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1775 * The caller should handle page allocation failure by itself if
1776 * it specifies __GFP_THISNODE.
1777 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1779 if (gfp_mask & __GFP_THISNODE)
1780 goto out;
1782 /* Exhausted what can be done so it's blamo time */
1783 out_of_memory(zonelist, gfp_mask, order, nodemask);
1785 out:
1786 clear_zonelist_oom(zonelist, gfp_mask);
1787 return page;
1790 #ifdef CONFIG_COMPACTION
1791 /* Try memory compaction for high-order allocations before reclaim */
1792 static struct page *
1793 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1794 struct zonelist *zonelist, enum zone_type high_zoneidx,
1795 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1796 int migratetype, unsigned long *did_some_progress)
1798 struct page *page;
1800 if (!order || compaction_deferred(preferred_zone))
1801 return NULL;
1803 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1804 nodemask);
1805 if (*did_some_progress != COMPACT_SKIPPED) {
1807 /* Page migration frees to the PCP lists but we want merging */
1808 drain_pages(get_cpu());
1809 put_cpu();
1811 page = get_page_from_freelist(gfp_mask, nodemask,
1812 order, zonelist, high_zoneidx,
1813 alloc_flags, preferred_zone,
1814 migratetype);
1815 if (page) {
1816 preferred_zone->compact_considered = 0;
1817 preferred_zone->compact_defer_shift = 0;
1818 count_vm_event(COMPACTSUCCESS);
1819 return page;
1823 * It's bad if compaction run occurs and fails.
1824 * The most likely reason is that pages exist,
1825 * but not enough to satisfy watermarks.
1827 count_vm_event(COMPACTFAIL);
1828 defer_compaction(preferred_zone);
1830 cond_resched();
1833 return NULL;
1835 #else
1836 static inline struct page *
1837 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1838 struct zonelist *zonelist, enum zone_type high_zoneidx,
1839 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1840 int migratetype, unsigned long *did_some_progress)
1842 return NULL;
1844 #endif /* CONFIG_COMPACTION */
1846 /* The really slow allocator path where we enter direct reclaim */
1847 static inline struct page *
1848 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1849 struct zonelist *zonelist, enum zone_type high_zoneidx,
1850 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1851 int migratetype, unsigned long *did_some_progress)
1853 struct page *page = NULL;
1854 struct reclaim_state reclaim_state;
1855 struct task_struct *p = current;
1856 bool drained = false;
1858 cond_resched();
1860 /* We now go into synchronous reclaim */
1861 cpuset_memory_pressure_bump();
1862 p->flags |= PF_MEMALLOC;
1863 lockdep_set_current_reclaim_state(gfp_mask);
1864 reclaim_state.reclaimed_slab = 0;
1865 p->reclaim_state = &reclaim_state;
1867 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1869 p->reclaim_state = NULL;
1870 lockdep_clear_current_reclaim_state();
1871 p->flags &= ~PF_MEMALLOC;
1873 cond_resched();
1875 if (unlikely(!(*did_some_progress)))
1876 return NULL;
1878 retry:
1879 page = get_page_from_freelist(gfp_mask, nodemask, order,
1880 zonelist, high_zoneidx,
1881 alloc_flags, preferred_zone,
1882 migratetype);
1885 * If an allocation failed after direct reclaim, it could be because
1886 * pages are pinned on the per-cpu lists. Drain them and try again
1888 if (!page && !drained) {
1889 drain_all_pages();
1890 drained = true;
1891 goto retry;
1894 return page;
1898 * This is called in the allocator slow-path if the allocation request is of
1899 * sufficient urgency to ignore watermarks and take other desperate measures
1901 static inline struct page *
1902 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1903 struct zonelist *zonelist, enum zone_type high_zoneidx,
1904 nodemask_t *nodemask, struct zone *preferred_zone,
1905 int migratetype)
1907 struct page *page;
1909 do {
1910 page = get_page_from_freelist(gfp_mask, nodemask, order,
1911 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1912 preferred_zone, migratetype);
1914 if (!page && gfp_mask & __GFP_NOFAIL)
1915 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1916 } while (!page && (gfp_mask & __GFP_NOFAIL));
1918 return page;
1921 static inline
1922 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1923 enum zone_type high_zoneidx)
1925 struct zoneref *z;
1926 struct zone *zone;
1928 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1929 wakeup_kswapd(zone, order);
1932 static inline int
1933 gfp_to_alloc_flags(gfp_t gfp_mask)
1935 struct task_struct *p = current;
1936 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1937 const gfp_t wait = gfp_mask & __GFP_WAIT;
1939 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1940 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1943 * The caller may dip into page reserves a bit more if the caller
1944 * cannot run direct reclaim, or if the caller has realtime scheduling
1945 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1946 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1948 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1950 if (!wait) {
1951 alloc_flags |= ALLOC_HARDER;
1953 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1954 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1956 alloc_flags &= ~ALLOC_CPUSET;
1957 } else if (unlikely(rt_task(p)) && !in_interrupt())
1958 alloc_flags |= ALLOC_HARDER;
1960 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1961 if (!in_interrupt() &&
1962 ((p->flags & PF_MEMALLOC) ||
1963 unlikely(test_thread_flag(TIF_MEMDIE))))
1964 alloc_flags |= ALLOC_NO_WATERMARKS;
1967 return alloc_flags;
1970 static inline struct page *
1971 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1972 struct zonelist *zonelist, enum zone_type high_zoneidx,
1973 nodemask_t *nodemask, struct zone *preferred_zone,
1974 int migratetype)
1976 const gfp_t wait = gfp_mask & __GFP_WAIT;
1977 struct page *page = NULL;
1978 int alloc_flags;
1979 unsigned long pages_reclaimed = 0;
1980 unsigned long did_some_progress;
1981 struct task_struct *p = current;
1984 * In the slowpath, we sanity check order to avoid ever trying to
1985 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1986 * be using allocators in order of preference for an area that is
1987 * too large.
1989 if (order >= MAX_ORDER) {
1990 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1991 return NULL;
1995 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1996 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1997 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1998 * using a larger set of nodes after it has established that the
1999 * allowed per node queues are empty and that nodes are
2000 * over allocated.
2002 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2003 goto nopage;
2005 restart:
2006 wake_all_kswapd(order, zonelist, high_zoneidx);
2009 * OK, we're below the kswapd watermark and have kicked background
2010 * reclaim. Now things get more complex, so set up alloc_flags according
2011 * to how we want to proceed.
2013 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2015 /* This is the last chance, in general, before the goto nopage. */
2016 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2017 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2018 preferred_zone, migratetype);
2019 if (page)
2020 goto got_pg;
2022 rebalance:
2023 /* Allocate without watermarks if the context allows */
2024 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2025 page = __alloc_pages_high_priority(gfp_mask, order,
2026 zonelist, high_zoneidx, nodemask,
2027 preferred_zone, migratetype);
2028 if (page)
2029 goto got_pg;
2032 /* Atomic allocations - we can't balance anything */
2033 if (!wait)
2034 goto nopage;
2036 /* Avoid recursion of direct reclaim */
2037 if (p->flags & PF_MEMALLOC)
2038 goto nopage;
2040 /* Avoid allocations with no watermarks from looping endlessly */
2041 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2042 goto nopage;
2044 /* Try direct compaction */
2045 page = __alloc_pages_direct_compact(gfp_mask, order,
2046 zonelist, high_zoneidx,
2047 nodemask,
2048 alloc_flags, preferred_zone,
2049 migratetype, &did_some_progress);
2050 if (page)
2051 goto got_pg;
2053 /* Try direct reclaim and then allocating */
2054 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2055 zonelist, high_zoneidx,
2056 nodemask,
2057 alloc_flags, preferred_zone,
2058 migratetype, &did_some_progress);
2059 if (page)
2060 goto got_pg;
2063 * If we failed to make any progress reclaiming, then we are
2064 * running out of options and have to consider going OOM
2066 if (!did_some_progress) {
2067 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2068 if (oom_killer_disabled)
2069 goto nopage;
2070 page = __alloc_pages_may_oom(gfp_mask, order,
2071 zonelist, high_zoneidx,
2072 nodemask, preferred_zone,
2073 migratetype);
2074 if (page)
2075 goto got_pg;
2077 if (!(gfp_mask & __GFP_NOFAIL)) {
2079 * The oom killer is not called for high-order
2080 * allocations that may fail, so if no progress
2081 * is being made, there are no other options and
2082 * retrying is unlikely to help.
2084 if (order > PAGE_ALLOC_COSTLY_ORDER)
2085 goto nopage;
2087 * The oom killer is not called for lowmem
2088 * allocations to prevent needlessly killing
2089 * innocent tasks.
2091 if (high_zoneidx < ZONE_NORMAL)
2092 goto nopage;
2095 goto restart;
2099 /* Check if we should retry the allocation */
2100 pages_reclaimed += did_some_progress;
2101 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2102 /* Wait for some write requests to complete then retry */
2103 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2104 goto rebalance;
2107 nopage:
2108 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2109 printk(KERN_WARNING "%s: page allocation failure."
2110 " order:%d, mode:0x%x\n",
2111 p->comm, order, gfp_mask);
2112 dump_stack();
2113 show_mem();
2115 return page;
2116 got_pg:
2117 if (kmemcheck_enabled)
2118 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2119 return page;
2124 * This is the 'heart' of the zoned buddy allocator.
2126 struct page *
2127 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2128 struct zonelist *zonelist, nodemask_t *nodemask)
2130 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2131 struct zone *preferred_zone;
2132 struct page *page;
2133 int migratetype = allocflags_to_migratetype(gfp_mask);
2135 gfp_mask &= gfp_allowed_mask;
2137 lockdep_trace_alloc(gfp_mask);
2139 might_sleep_if(gfp_mask & __GFP_WAIT);
2141 if (should_fail_alloc_page(gfp_mask, order))
2142 return NULL;
2145 * Check the zones suitable for the gfp_mask contain at least one
2146 * valid zone. It's possible to have an empty zonelist as a result
2147 * of GFP_THISNODE and a memoryless node
2149 if (unlikely(!zonelist->_zonerefs->zone))
2150 return NULL;
2152 get_mems_allowed();
2153 /* The preferred zone is used for statistics later */
2154 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2155 if (!preferred_zone) {
2156 put_mems_allowed();
2157 return NULL;
2160 /* First allocation attempt */
2161 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2162 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2163 preferred_zone, migratetype);
2164 if (unlikely(!page))
2165 page = __alloc_pages_slowpath(gfp_mask, order,
2166 zonelist, high_zoneidx, nodemask,
2167 preferred_zone, migratetype);
2168 put_mems_allowed();
2170 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2171 return page;
2173 EXPORT_SYMBOL(__alloc_pages_nodemask);
2176 * Common helper functions.
2178 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2180 struct page *page;
2183 * __get_free_pages() returns a 32-bit address, which cannot represent
2184 * a highmem page
2186 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2188 page = alloc_pages(gfp_mask, order);
2189 if (!page)
2190 return 0;
2191 return (unsigned long) page_address(page);
2193 EXPORT_SYMBOL(__get_free_pages);
2195 unsigned long get_zeroed_page(gfp_t gfp_mask)
2197 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2199 EXPORT_SYMBOL(get_zeroed_page);
2201 void __pagevec_free(struct pagevec *pvec)
2203 int i = pagevec_count(pvec);
2205 while (--i >= 0) {
2206 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2207 free_hot_cold_page(pvec->pages[i], pvec->cold);
2211 void __free_pages(struct page *page, unsigned int order)
2213 if (put_page_testzero(page)) {
2214 if (order == 0)
2215 free_hot_cold_page(page, 0);
2216 else
2217 __free_pages_ok(page, order);
2221 EXPORT_SYMBOL(__free_pages);
2223 void free_pages(unsigned long addr, unsigned int order)
2225 if (addr != 0) {
2226 VM_BUG_ON(!virt_addr_valid((void *)addr));
2227 __free_pages(virt_to_page((void *)addr), order);
2231 EXPORT_SYMBOL(free_pages);
2234 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2235 * @size: the number of bytes to allocate
2236 * @gfp_mask: GFP flags for the allocation
2238 * This function is similar to alloc_pages(), except that it allocates the
2239 * minimum number of pages to satisfy the request. alloc_pages() can only
2240 * allocate memory in power-of-two pages.
2242 * This function is also limited by MAX_ORDER.
2244 * Memory allocated by this function must be released by free_pages_exact().
2246 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2248 unsigned int order = get_order(size);
2249 unsigned long addr;
2251 addr = __get_free_pages(gfp_mask, order);
2252 if (addr) {
2253 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2254 unsigned long used = addr + PAGE_ALIGN(size);
2256 split_page(virt_to_page((void *)addr), order);
2257 while (used < alloc_end) {
2258 free_page(used);
2259 used += PAGE_SIZE;
2263 return (void *)addr;
2265 EXPORT_SYMBOL(alloc_pages_exact);
2268 * free_pages_exact - release memory allocated via alloc_pages_exact()
2269 * @virt: the value returned by alloc_pages_exact.
2270 * @size: size of allocation, same value as passed to alloc_pages_exact().
2272 * Release the memory allocated by a previous call to alloc_pages_exact.
2274 void free_pages_exact(void *virt, size_t size)
2276 unsigned long addr = (unsigned long)virt;
2277 unsigned long end = addr + PAGE_ALIGN(size);
2279 while (addr < end) {
2280 free_page(addr);
2281 addr += PAGE_SIZE;
2284 EXPORT_SYMBOL(free_pages_exact);
2286 static unsigned int nr_free_zone_pages(int offset)
2288 struct zoneref *z;
2289 struct zone *zone;
2291 /* Just pick one node, since fallback list is circular */
2292 unsigned int sum = 0;
2294 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2296 for_each_zone_zonelist(zone, z, zonelist, offset) {
2297 unsigned long size = zone->present_pages;
2298 unsigned long high = high_wmark_pages(zone);
2299 if (size > high)
2300 sum += size - high;
2303 return sum;
2307 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2309 unsigned int nr_free_buffer_pages(void)
2311 return nr_free_zone_pages(gfp_zone(GFP_USER));
2313 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2316 * Amount of free RAM allocatable within all zones
2318 unsigned int nr_free_pagecache_pages(void)
2320 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2323 static inline void show_node(struct zone *zone)
2325 if (NUMA_BUILD)
2326 printk("Node %d ", zone_to_nid(zone));
2329 void si_meminfo(struct sysinfo *val)
2331 val->totalram = totalram_pages;
2332 val->sharedram = 0;
2333 val->freeram = global_page_state(NR_FREE_PAGES);
2334 val->bufferram = nr_blockdev_pages();
2335 val->totalhigh = totalhigh_pages;
2336 val->freehigh = nr_free_highpages();
2337 val->mem_unit = PAGE_SIZE;
2340 EXPORT_SYMBOL(si_meminfo);
2342 #ifdef CONFIG_NUMA
2343 void si_meminfo_node(struct sysinfo *val, int nid)
2345 pg_data_t *pgdat = NODE_DATA(nid);
2347 val->totalram = pgdat->node_present_pages;
2348 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2349 #ifdef CONFIG_HIGHMEM
2350 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2351 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2352 NR_FREE_PAGES);
2353 #else
2354 val->totalhigh = 0;
2355 val->freehigh = 0;
2356 #endif
2357 val->mem_unit = PAGE_SIZE;
2359 #endif
2361 #define K(x) ((x) << (PAGE_SHIFT-10))
2364 * Show free area list (used inside shift_scroll-lock stuff)
2365 * We also calculate the percentage fragmentation. We do this by counting the
2366 * memory on each free list with the exception of the first item on the list.
2368 void show_free_areas(void)
2370 int cpu;
2371 struct zone *zone;
2373 for_each_populated_zone(zone) {
2374 show_node(zone);
2375 printk("%s per-cpu:\n", zone->name);
2377 for_each_online_cpu(cpu) {
2378 struct per_cpu_pageset *pageset;
2380 pageset = per_cpu_ptr(zone->pageset, cpu);
2382 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2383 cpu, pageset->pcp.high,
2384 pageset->pcp.batch, pageset->pcp.count);
2388 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2389 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2390 " unevictable:%lu"
2391 " dirty:%lu writeback:%lu unstable:%lu\n"
2392 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2393 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2394 global_page_state(NR_ACTIVE_ANON),
2395 global_page_state(NR_INACTIVE_ANON),
2396 global_page_state(NR_ISOLATED_ANON),
2397 global_page_state(NR_ACTIVE_FILE),
2398 global_page_state(NR_INACTIVE_FILE),
2399 global_page_state(NR_ISOLATED_FILE),
2400 global_page_state(NR_UNEVICTABLE),
2401 global_page_state(NR_FILE_DIRTY),
2402 global_page_state(NR_WRITEBACK),
2403 global_page_state(NR_UNSTABLE_NFS),
2404 global_page_state(NR_FREE_PAGES),
2405 global_page_state(NR_SLAB_RECLAIMABLE),
2406 global_page_state(NR_SLAB_UNRECLAIMABLE),
2407 global_page_state(NR_FILE_MAPPED),
2408 global_page_state(NR_SHMEM),
2409 global_page_state(NR_PAGETABLE),
2410 global_page_state(NR_BOUNCE));
2412 for_each_populated_zone(zone) {
2413 int i;
2415 show_node(zone);
2416 printk("%s"
2417 " free:%lukB"
2418 " min:%lukB"
2419 " low:%lukB"
2420 " high:%lukB"
2421 " active_anon:%lukB"
2422 " inactive_anon:%lukB"
2423 " active_file:%lukB"
2424 " inactive_file:%lukB"
2425 " unevictable:%lukB"
2426 " isolated(anon):%lukB"
2427 " isolated(file):%lukB"
2428 " present:%lukB"
2429 " mlocked:%lukB"
2430 " dirty:%lukB"
2431 " writeback:%lukB"
2432 " mapped:%lukB"
2433 " shmem:%lukB"
2434 " slab_reclaimable:%lukB"
2435 " slab_unreclaimable:%lukB"
2436 " kernel_stack:%lukB"
2437 " pagetables:%lukB"
2438 " unstable:%lukB"
2439 " bounce:%lukB"
2440 " writeback_tmp:%lukB"
2441 " pages_scanned:%lu"
2442 " all_unreclaimable? %s"
2443 "\n",
2444 zone->name,
2445 K(zone_nr_free_pages(zone)),
2446 K(min_wmark_pages(zone)),
2447 K(low_wmark_pages(zone)),
2448 K(high_wmark_pages(zone)),
2449 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2450 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2451 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2452 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2453 K(zone_page_state(zone, NR_UNEVICTABLE)),
2454 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2455 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2456 K(zone->present_pages),
2457 K(zone_page_state(zone, NR_MLOCK)),
2458 K(zone_page_state(zone, NR_FILE_DIRTY)),
2459 K(zone_page_state(zone, NR_WRITEBACK)),
2460 K(zone_page_state(zone, NR_FILE_MAPPED)),
2461 K(zone_page_state(zone, NR_SHMEM)),
2462 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2463 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2464 zone_page_state(zone, NR_KERNEL_STACK) *
2465 THREAD_SIZE / 1024,
2466 K(zone_page_state(zone, NR_PAGETABLE)),
2467 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2468 K(zone_page_state(zone, NR_BOUNCE)),
2469 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2470 zone->pages_scanned,
2471 (zone->all_unreclaimable ? "yes" : "no")
2473 printk("lowmem_reserve[]:");
2474 for (i = 0; i < MAX_NR_ZONES; i++)
2475 printk(" %lu", zone->lowmem_reserve[i]);
2476 printk("\n");
2479 for_each_populated_zone(zone) {
2480 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2482 show_node(zone);
2483 printk("%s: ", zone->name);
2485 spin_lock_irqsave(&zone->lock, flags);
2486 for (order = 0; order < MAX_ORDER; order++) {
2487 nr[order] = zone->free_area[order].nr_free;
2488 total += nr[order] << order;
2490 spin_unlock_irqrestore(&zone->lock, flags);
2491 for (order = 0; order < MAX_ORDER; order++)
2492 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2493 printk("= %lukB\n", K(total));
2496 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2498 show_swap_cache_info();
2501 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2503 zoneref->zone = zone;
2504 zoneref->zone_idx = zone_idx(zone);
2508 * Builds allocation fallback zone lists.
2510 * Add all populated zones of a node to the zonelist.
2512 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2513 int nr_zones, enum zone_type zone_type)
2515 struct zone *zone;
2517 BUG_ON(zone_type >= MAX_NR_ZONES);
2518 zone_type++;
2520 do {
2521 zone_type--;
2522 zone = pgdat->node_zones + zone_type;
2523 if (populated_zone(zone)) {
2524 zoneref_set_zone(zone,
2525 &zonelist->_zonerefs[nr_zones++]);
2526 check_highest_zone(zone_type);
2529 } while (zone_type);
2530 return nr_zones;
2535 * zonelist_order:
2536 * 0 = automatic detection of better ordering.
2537 * 1 = order by ([node] distance, -zonetype)
2538 * 2 = order by (-zonetype, [node] distance)
2540 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2541 * the same zonelist. So only NUMA can configure this param.
2543 #define ZONELIST_ORDER_DEFAULT 0
2544 #define ZONELIST_ORDER_NODE 1
2545 #define ZONELIST_ORDER_ZONE 2
2547 /* zonelist order in the kernel.
2548 * set_zonelist_order() will set this to NODE or ZONE.
2550 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2551 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2554 #ifdef CONFIG_NUMA
2555 /* The value user specified ....changed by config */
2556 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2557 /* string for sysctl */
2558 #define NUMA_ZONELIST_ORDER_LEN 16
2559 char numa_zonelist_order[16] = "default";
2562 * interface for configure zonelist ordering.
2563 * command line option "numa_zonelist_order"
2564 * = "[dD]efault - default, automatic configuration.
2565 * = "[nN]ode - order by node locality, then by zone within node
2566 * = "[zZ]one - order by zone, then by locality within zone
2569 static int __parse_numa_zonelist_order(char *s)
2571 if (*s == 'd' || *s == 'D') {
2572 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2573 } else if (*s == 'n' || *s == 'N') {
2574 user_zonelist_order = ZONELIST_ORDER_NODE;
2575 } else if (*s == 'z' || *s == 'Z') {
2576 user_zonelist_order = ZONELIST_ORDER_ZONE;
2577 } else {
2578 printk(KERN_WARNING
2579 "Ignoring invalid numa_zonelist_order value: "
2580 "%s\n", s);
2581 return -EINVAL;
2583 return 0;
2586 static __init int setup_numa_zonelist_order(char *s)
2588 if (s)
2589 return __parse_numa_zonelist_order(s);
2590 return 0;
2592 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2595 * sysctl handler for numa_zonelist_order
2597 int numa_zonelist_order_handler(ctl_table *table, int write,
2598 void __user *buffer, size_t *length,
2599 loff_t *ppos)
2601 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2602 int ret;
2603 static DEFINE_MUTEX(zl_order_mutex);
2605 mutex_lock(&zl_order_mutex);
2606 if (write)
2607 strcpy(saved_string, (char*)table->data);
2608 ret = proc_dostring(table, write, buffer, length, ppos);
2609 if (ret)
2610 goto out;
2611 if (write) {
2612 int oldval = user_zonelist_order;
2613 if (__parse_numa_zonelist_order((char*)table->data)) {
2615 * bogus value. restore saved string
2617 strncpy((char*)table->data, saved_string,
2618 NUMA_ZONELIST_ORDER_LEN);
2619 user_zonelist_order = oldval;
2620 } else if (oldval != user_zonelist_order) {
2621 mutex_lock(&zonelists_mutex);
2622 build_all_zonelists(NULL);
2623 mutex_unlock(&zonelists_mutex);
2626 out:
2627 mutex_unlock(&zl_order_mutex);
2628 return ret;
2632 #define MAX_NODE_LOAD (nr_online_nodes)
2633 static int node_load[MAX_NUMNODES];
2636 * find_next_best_node - find the next node that should appear in a given node's fallback list
2637 * @node: node whose fallback list we're appending
2638 * @used_node_mask: nodemask_t of already used nodes
2640 * We use a number of factors to determine which is the next node that should
2641 * appear on a given node's fallback list. The node should not have appeared
2642 * already in @node's fallback list, and it should be the next closest node
2643 * according to the distance array (which contains arbitrary distance values
2644 * from each node to each node in the system), and should also prefer nodes
2645 * with no CPUs, since presumably they'll have very little allocation pressure
2646 * on them otherwise.
2647 * It returns -1 if no node is found.
2649 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2651 int n, val;
2652 int min_val = INT_MAX;
2653 int best_node = -1;
2654 const struct cpumask *tmp = cpumask_of_node(0);
2656 /* Use the local node if we haven't already */
2657 if (!node_isset(node, *used_node_mask)) {
2658 node_set(node, *used_node_mask);
2659 return node;
2662 for_each_node_state(n, N_HIGH_MEMORY) {
2664 /* Don't want a node to appear more than once */
2665 if (node_isset(n, *used_node_mask))
2666 continue;
2668 /* Use the distance array to find the distance */
2669 val = node_distance(node, n);
2671 /* Penalize nodes under us ("prefer the next node") */
2672 val += (n < node);
2674 /* Give preference to headless and unused nodes */
2675 tmp = cpumask_of_node(n);
2676 if (!cpumask_empty(tmp))
2677 val += PENALTY_FOR_NODE_WITH_CPUS;
2679 /* Slight preference for less loaded node */
2680 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2681 val += node_load[n];
2683 if (val < min_val) {
2684 min_val = val;
2685 best_node = n;
2689 if (best_node >= 0)
2690 node_set(best_node, *used_node_mask);
2692 return best_node;
2697 * Build zonelists ordered by node and zones within node.
2698 * This results in maximum locality--normal zone overflows into local
2699 * DMA zone, if any--but risks exhausting DMA zone.
2701 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2703 int j;
2704 struct zonelist *zonelist;
2706 zonelist = &pgdat->node_zonelists[0];
2707 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2709 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2710 MAX_NR_ZONES - 1);
2711 zonelist->_zonerefs[j].zone = NULL;
2712 zonelist->_zonerefs[j].zone_idx = 0;
2716 * Build gfp_thisnode zonelists
2718 static void build_thisnode_zonelists(pg_data_t *pgdat)
2720 int j;
2721 struct zonelist *zonelist;
2723 zonelist = &pgdat->node_zonelists[1];
2724 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2725 zonelist->_zonerefs[j].zone = NULL;
2726 zonelist->_zonerefs[j].zone_idx = 0;
2730 * Build zonelists ordered by zone and nodes within zones.
2731 * This results in conserving DMA zone[s] until all Normal memory is
2732 * exhausted, but results in overflowing to remote node while memory
2733 * may still exist in local DMA zone.
2735 static int node_order[MAX_NUMNODES];
2737 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2739 int pos, j, node;
2740 int zone_type; /* needs to be signed */
2741 struct zone *z;
2742 struct zonelist *zonelist;
2744 zonelist = &pgdat->node_zonelists[0];
2745 pos = 0;
2746 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2747 for (j = 0; j < nr_nodes; j++) {
2748 node = node_order[j];
2749 z = &NODE_DATA(node)->node_zones[zone_type];
2750 if (populated_zone(z)) {
2751 zoneref_set_zone(z,
2752 &zonelist->_zonerefs[pos++]);
2753 check_highest_zone(zone_type);
2757 zonelist->_zonerefs[pos].zone = NULL;
2758 zonelist->_zonerefs[pos].zone_idx = 0;
2761 static int default_zonelist_order(void)
2763 int nid, zone_type;
2764 unsigned long low_kmem_size,total_size;
2765 struct zone *z;
2766 int average_size;
2768 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2769 * If they are really small and used heavily, the system can fall
2770 * into OOM very easily.
2771 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2773 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2774 low_kmem_size = 0;
2775 total_size = 0;
2776 for_each_online_node(nid) {
2777 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2778 z = &NODE_DATA(nid)->node_zones[zone_type];
2779 if (populated_zone(z)) {
2780 if (zone_type < ZONE_NORMAL)
2781 low_kmem_size += z->present_pages;
2782 total_size += z->present_pages;
2783 } else if (zone_type == ZONE_NORMAL) {
2785 * If any node has only lowmem, then node order
2786 * is preferred to allow kernel allocations
2787 * locally; otherwise, they can easily infringe
2788 * on other nodes when there is an abundance of
2789 * lowmem available to allocate from.
2791 return ZONELIST_ORDER_NODE;
2795 if (!low_kmem_size || /* there are no DMA area. */
2796 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2797 return ZONELIST_ORDER_NODE;
2799 * look into each node's config.
2800 * If there is a node whose DMA/DMA32 memory is very big area on
2801 * local memory, NODE_ORDER may be suitable.
2803 average_size = total_size /
2804 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2805 for_each_online_node(nid) {
2806 low_kmem_size = 0;
2807 total_size = 0;
2808 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2809 z = &NODE_DATA(nid)->node_zones[zone_type];
2810 if (populated_zone(z)) {
2811 if (zone_type < ZONE_NORMAL)
2812 low_kmem_size += z->present_pages;
2813 total_size += z->present_pages;
2816 if (low_kmem_size &&
2817 total_size > average_size && /* ignore small node */
2818 low_kmem_size > total_size * 70/100)
2819 return ZONELIST_ORDER_NODE;
2821 return ZONELIST_ORDER_ZONE;
2824 static void set_zonelist_order(void)
2826 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2827 current_zonelist_order = default_zonelist_order();
2828 else
2829 current_zonelist_order = user_zonelist_order;
2832 static void build_zonelists(pg_data_t *pgdat)
2834 int j, node, load;
2835 enum zone_type i;
2836 nodemask_t used_mask;
2837 int local_node, prev_node;
2838 struct zonelist *zonelist;
2839 int order = current_zonelist_order;
2841 /* initialize zonelists */
2842 for (i = 0; i < MAX_ZONELISTS; i++) {
2843 zonelist = pgdat->node_zonelists + i;
2844 zonelist->_zonerefs[0].zone = NULL;
2845 zonelist->_zonerefs[0].zone_idx = 0;
2848 /* NUMA-aware ordering of nodes */
2849 local_node = pgdat->node_id;
2850 load = nr_online_nodes;
2851 prev_node = local_node;
2852 nodes_clear(used_mask);
2854 memset(node_order, 0, sizeof(node_order));
2855 j = 0;
2857 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2858 int distance = node_distance(local_node, node);
2861 * If another node is sufficiently far away then it is better
2862 * to reclaim pages in a zone before going off node.
2864 if (distance > RECLAIM_DISTANCE)
2865 zone_reclaim_mode = 1;
2868 * We don't want to pressure a particular node.
2869 * So adding penalty to the first node in same
2870 * distance group to make it round-robin.
2872 if (distance != node_distance(local_node, prev_node))
2873 node_load[node] = load;
2875 prev_node = node;
2876 load--;
2877 if (order == ZONELIST_ORDER_NODE)
2878 build_zonelists_in_node_order(pgdat, node);
2879 else
2880 node_order[j++] = node; /* remember order */
2883 if (order == ZONELIST_ORDER_ZONE) {
2884 /* calculate node order -- i.e., DMA last! */
2885 build_zonelists_in_zone_order(pgdat, j);
2888 build_thisnode_zonelists(pgdat);
2891 /* Construct the zonelist performance cache - see further mmzone.h */
2892 static void build_zonelist_cache(pg_data_t *pgdat)
2894 struct zonelist *zonelist;
2895 struct zonelist_cache *zlc;
2896 struct zoneref *z;
2898 zonelist = &pgdat->node_zonelists[0];
2899 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2900 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2901 for (z = zonelist->_zonerefs; z->zone; z++)
2902 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2905 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2907 * Return node id of node used for "local" allocations.
2908 * I.e., first node id of first zone in arg node's generic zonelist.
2909 * Used for initializing percpu 'numa_mem', which is used primarily
2910 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2912 int local_memory_node(int node)
2914 struct zone *zone;
2916 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2917 gfp_zone(GFP_KERNEL),
2918 NULL,
2919 &zone);
2920 return zone->node;
2922 #endif
2924 #else /* CONFIG_NUMA */
2926 static void set_zonelist_order(void)
2928 current_zonelist_order = ZONELIST_ORDER_ZONE;
2931 static void build_zonelists(pg_data_t *pgdat)
2933 int node, local_node;
2934 enum zone_type j;
2935 struct zonelist *zonelist;
2937 local_node = pgdat->node_id;
2939 zonelist = &pgdat->node_zonelists[0];
2940 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2943 * Now we build the zonelist so that it contains the zones
2944 * of all the other nodes.
2945 * We don't want to pressure a particular node, so when
2946 * building the zones for node N, we make sure that the
2947 * zones coming right after the local ones are those from
2948 * node N+1 (modulo N)
2950 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2951 if (!node_online(node))
2952 continue;
2953 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2954 MAX_NR_ZONES - 1);
2956 for (node = 0; node < local_node; node++) {
2957 if (!node_online(node))
2958 continue;
2959 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2960 MAX_NR_ZONES - 1);
2963 zonelist->_zonerefs[j].zone = NULL;
2964 zonelist->_zonerefs[j].zone_idx = 0;
2967 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2968 static void build_zonelist_cache(pg_data_t *pgdat)
2970 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2973 #endif /* CONFIG_NUMA */
2976 * Boot pageset table. One per cpu which is going to be used for all
2977 * zones and all nodes. The parameters will be set in such a way
2978 * that an item put on a list will immediately be handed over to
2979 * the buddy list. This is safe since pageset manipulation is done
2980 * with interrupts disabled.
2982 * The boot_pagesets must be kept even after bootup is complete for
2983 * unused processors and/or zones. They do play a role for bootstrapping
2984 * hotplugged processors.
2986 * zoneinfo_show() and maybe other functions do
2987 * not check if the processor is online before following the pageset pointer.
2988 * Other parts of the kernel may not check if the zone is available.
2990 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2991 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2992 static void setup_zone_pageset(struct zone *zone);
2995 * Global mutex to protect against size modification of zonelists
2996 * as well as to serialize pageset setup for the new populated zone.
2998 DEFINE_MUTEX(zonelists_mutex);
3000 /* return values int ....just for stop_machine() */
3001 static __init_refok int __build_all_zonelists(void *data)
3003 int nid;
3004 int cpu;
3006 #ifdef CONFIG_NUMA
3007 memset(node_load, 0, sizeof(node_load));
3008 #endif
3009 for_each_online_node(nid) {
3010 pg_data_t *pgdat = NODE_DATA(nid);
3012 build_zonelists(pgdat);
3013 build_zonelist_cache(pgdat);
3017 * Initialize the boot_pagesets that are going to be used
3018 * for bootstrapping processors. The real pagesets for
3019 * each zone will be allocated later when the per cpu
3020 * allocator is available.
3022 * boot_pagesets are used also for bootstrapping offline
3023 * cpus if the system is already booted because the pagesets
3024 * are needed to initialize allocators on a specific cpu too.
3025 * F.e. the percpu allocator needs the page allocator which
3026 * needs the percpu allocator in order to allocate its pagesets
3027 * (a chicken-egg dilemma).
3029 for_each_possible_cpu(cpu) {
3030 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3032 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3034 * We now know the "local memory node" for each node--
3035 * i.e., the node of the first zone in the generic zonelist.
3036 * Set up numa_mem percpu variable for on-line cpus. During
3037 * boot, only the boot cpu should be on-line; we'll init the
3038 * secondary cpus' numa_mem as they come on-line. During
3039 * node/memory hotplug, we'll fixup all on-line cpus.
3041 if (cpu_online(cpu))
3042 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3043 #endif
3046 return 0;
3050 * Called with zonelists_mutex held always
3051 * unless system_state == SYSTEM_BOOTING.
3053 void build_all_zonelists(void *data)
3055 set_zonelist_order();
3057 if (system_state == SYSTEM_BOOTING) {
3058 __build_all_zonelists(NULL);
3059 mminit_verify_zonelist();
3060 cpuset_init_current_mems_allowed();
3061 } else {
3062 /* we have to stop all cpus to guarantee there is no user
3063 of zonelist */
3064 #ifdef CONFIG_MEMORY_HOTPLUG
3065 if (data)
3066 setup_zone_pageset((struct zone *)data);
3067 #endif
3068 stop_machine(__build_all_zonelists, NULL, NULL);
3069 /* cpuset refresh routine should be here */
3071 vm_total_pages = nr_free_pagecache_pages();
3073 * Disable grouping by mobility if the number of pages in the
3074 * system is too low to allow the mechanism to work. It would be
3075 * more accurate, but expensive to check per-zone. This check is
3076 * made on memory-hotadd so a system can start with mobility
3077 * disabled and enable it later
3079 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3080 page_group_by_mobility_disabled = 1;
3081 else
3082 page_group_by_mobility_disabled = 0;
3084 printk("Built %i zonelists in %s order, mobility grouping %s. "
3085 "Total pages: %ld\n",
3086 nr_online_nodes,
3087 zonelist_order_name[current_zonelist_order],
3088 page_group_by_mobility_disabled ? "off" : "on",
3089 vm_total_pages);
3090 #ifdef CONFIG_NUMA
3091 printk("Policy zone: %s\n", zone_names[policy_zone]);
3092 #endif
3096 * Helper functions to size the waitqueue hash table.
3097 * Essentially these want to choose hash table sizes sufficiently
3098 * large so that collisions trying to wait on pages are rare.
3099 * But in fact, the number of active page waitqueues on typical
3100 * systems is ridiculously low, less than 200. So this is even
3101 * conservative, even though it seems large.
3103 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3104 * waitqueues, i.e. the size of the waitq table given the number of pages.
3106 #define PAGES_PER_WAITQUEUE 256
3108 #ifndef CONFIG_MEMORY_HOTPLUG
3109 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3111 unsigned long size = 1;
3113 pages /= PAGES_PER_WAITQUEUE;
3115 while (size < pages)
3116 size <<= 1;
3119 * Once we have dozens or even hundreds of threads sleeping
3120 * on IO we've got bigger problems than wait queue collision.
3121 * Limit the size of the wait table to a reasonable size.
3123 size = min(size, 4096UL);
3125 return max(size, 4UL);
3127 #else
3129 * A zone's size might be changed by hot-add, so it is not possible to determine
3130 * a suitable size for its wait_table. So we use the maximum size now.
3132 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3134 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3135 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3136 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3138 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3139 * or more by the traditional way. (See above). It equals:
3141 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3142 * ia64(16K page size) : = ( 8G + 4M)byte.
3143 * powerpc (64K page size) : = (32G +16M)byte.
3145 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3147 return 4096UL;
3149 #endif
3152 * This is an integer logarithm so that shifts can be used later
3153 * to extract the more random high bits from the multiplicative
3154 * hash function before the remainder is taken.
3156 static inline unsigned long wait_table_bits(unsigned long size)
3158 return ffz(~size);
3161 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3164 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3165 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3166 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3167 * higher will lead to a bigger reserve which will get freed as contiguous
3168 * blocks as reclaim kicks in
3170 static void setup_zone_migrate_reserve(struct zone *zone)
3172 unsigned long start_pfn, pfn, end_pfn;
3173 struct page *page;
3174 unsigned long block_migratetype;
3175 int reserve;
3177 /* Get the start pfn, end pfn and the number of blocks to reserve */
3178 start_pfn = zone->zone_start_pfn;
3179 end_pfn = start_pfn + zone->spanned_pages;
3180 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3181 pageblock_order;
3184 * Reserve blocks are generally in place to help high-order atomic
3185 * allocations that are short-lived. A min_free_kbytes value that
3186 * would result in more than 2 reserve blocks for atomic allocations
3187 * is assumed to be in place to help anti-fragmentation for the
3188 * future allocation of hugepages at runtime.
3190 reserve = min(2, reserve);
3192 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3193 if (!pfn_valid(pfn))
3194 continue;
3195 page = pfn_to_page(pfn);
3197 /* Watch out for overlapping nodes */
3198 if (page_to_nid(page) != zone_to_nid(zone))
3199 continue;
3201 /* Blocks with reserved pages will never free, skip them. */
3202 if (PageReserved(page))
3203 continue;
3205 block_migratetype = get_pageblock_migratetype(page);
3207 /* If this block is reserved, account for it */
3208 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3209 reserve--;
3210 continue;
3213 /* Suitable for reserving if this block is movable */
3214 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3215 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3216 move_freepages_block(zone, page, MIGRATE_RESERVE);
3217 reserve--;
3218 continue;
3222 * If the reserve is met and this is a previous reserved block,
3223 * take it back
3225 if (block_migratetype == MIGRATE_RESERVE) {
3226 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3227 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3233 * Initially all pages are reserved - free ones are freed
3234 * up by free_all_bootmem() once the early boot process is
3235 * done. Non-atomic initialization, single-pass.
3237 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3238 unsigned long start_pfn, enum memmap_context context)
3240 struct page *page;
3241 unsigned long end_pfn = start_pfn + size;
3242 unsigned long pfn;
3243 struct zone *z;
3245 if (highest_memmap_pfn < end_pfn - 1)
3246 highest_memmap_pfn = end_pfn - 1;
3248 z = &NODE_DATA(nid)->node_zones[zone];
3249 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3251 * There can be holes in boot-time mem_map[]s
3252 * handed to this function. They do not
3253 * exist on hotplugged memory.
3255 if (context == MEMMAP_EARLY) {
3256 if (!early_pfn_valid(pfn))
3257 continue;
3258 if (!early_pfn_in_nid(pfn, nid))
3259 continue;
3261 page = pfn_to_page(pfn);
3262 set_page_links(page, zone, nid, pfn);
3263 mminit_verify_page_links(page, zone, nid, pfn);
3264 init_page_count(page);
3265 reset_page_mapcount(page);
3266 SetPageReserved(page);
3268 * Mark the block movable so that blocks are reserved for
3269 * movable at startup. This will force kernel allocations
3270 * to reserve their blocks rather than leaking throughout
3271 * the address space during boot when many long-lived
3272 * kernel allocations are made. Later some blocks near
3273 * the start are marked MIGRATE_RESERVE by
3274 * setup_zone_migrate_reserve()
3276 * bitmap is created for zone's valid pfn range. but memmap
3277 * can be created for invalid pages (for alignment)
3278 * check here not to call set_pageblock_migratetype() against
3279 * pfn out of zone.
3281 if ((z->zone_start_pfn <= pfn)
3282 && (pfn < z->zone_start_pfn + z->spanned_pages)
3283 && !(pfn & (pageblock_nr_pages - 1)))
3284 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3286 INIT_LIST_HEAD(&page->lru);
3287 #ifdef WANT_PAGE_VIRTUAL
3288 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3289 if (!is_highmem_idx(zone))
3290 set_page_address(page, __va(pfn << PAGE_SHIFT));
3291 #endif
3295 static void __meminit zone_init_free_lists(struct zone *zone)
3297 int order, t;
3298 for_each_migratetype_order(order, t) {
3299 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3300 zone->free_area[order].nr_free = 0;
3304 #ifndef __HAVE_ARCH_MEMMAP_INIT
3305 #define memmap_init(size, nid, zone, start_pfn) \
3306 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3307 #endif
3309 static int zone_batchsize(struct zone *zone)
3311 #ifdef CONFIG_MMU
3312 int batch;
3315 * The per-cpu-pages pools are set to around 1000th of the
3316 * size of the zone. But no more than 1/2 of a meg.
3318 * OK, so we don't know how big the cache is. So guess.
3320 batch = zone->present_pages / 1024;
3321 if (batch * PAGE_SIZE > 512 * 1024)
3322 batch = (512 * 1024) / PAGE_SIZE;
3323 batch /= 4; /* We effectively *= 4 below */
3324 if (batch < 1)
3325 batch = 1;
3328 * Clamp the batch to a 2^n - 1 value. Having a power
3329 * of 2 value was found to be more likely to have
3330 * suboptimal cache aliasing properties in some cases.
3332 * For example if 2 tasks are alternately allocating
3333 * batches of pages, one task can end up with a lot
3334 * of pages of one half of the possible page colors
3335 * and the other with pages of the other colors.
3337 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3339 return batch;
3341 #else
3342 /* The deferral and batching of frees should be suppressed under NOMMU
3343 * conditions.
3345 * The problem is that NOMMU needs to be able to allocate large chunks
3346 * of contiguous memory as there's no hardware page translation to
3347 * assemble apparent contiguous memory from discontiguous pages.
3349 * Queueing large contiguous runs of pages for batching, however,
3350 * causes the pages to actually be freed in smaller chunks. As there
3351 * can be a significant delay between the individual batches being
3352 * recycled, this leads to the once large chunks of space being
3353 * fragmented and becoming unavailable for high-order allocations.
3355 return 0;
3356 #endif
3359 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3361 struct per_cpu_pages *pcp;
3362 int migratetype;
3364 memset(p, 0, sizeof(*p));
3366 pcp = &p->pcp;
3367 pcp->count = 0;
3368 pcp->high = 6 * batch;
3369 pcp->batch = max(1UL, 1 * batch);
3370 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3371 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3375 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3376 * to the value high for the pageset p.
3379 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3380 unsigned long high)
3382 struct per_cpu_pages *pcp;
3384 pcp = &p->pcp;
3385 pcp->high = high;
3386 pcp->batch = max(1UL, high/4);
3387 if ((high/4) > (PAGE_SHIFT * 8))
3388 pcp->batch = PAGE_SHIFT * 8;
3391 static __meminit void setup_zone_pageset(struct zone *zone)
3393 int cpu;
3395 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3397 for_each_possible_cpu(cpu) {
3398 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3400 setup_pageset(pcp, zone_batchsize(zone));
3402 if (percpu_pagelist_fraction)
3403 setup_pagelist_highmark(pcp,
3404 (zone->present_pages /
3405 percpu_pagelist_fraction));
3410 * Allocate per cpu pagesets and initialize them.
3411 * Before this call only boot pagesets were available.
3413 void __init setup_per_cpu_pageset(void)
3415 struct zone *zone;
3417 for_each_populated_zone(zone)
3418 setup_zone_pageset(zone);
3421 static noinline __init_refok
3422 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3424 int i;
3425 struct pglist_data *pgdat = zone->zone_pgdat;
3426 size_t alloc_size;
3429 * The per-page waitqueue mechanism uses hashed waitqueues
3430 * per zone.
3432 zone->wait_table_hash_nr_entries =
3433 wait_table_hash_nr_entries(zone_size_pages);
3434 zone->wait_table_bits =
3435 wait_table_bits(zone->wait_table_hash_nr_entries);
3436 alloc_size = zone->wait_table_hash_nr_entries
3437 * sizeof(wait_queue_head_t);
3439 if (!slab_is_available()) {
3440 zone->wait_table = (wait_queue_head_t *)
3441 alloc_bootmem_node(pgdat, alloc_size);
3442 } else {
3444 * This case means that a zone whose size was 0 gets new memory
3445 * via memory hot-add.
3446 * But it may be the case that a new node was hot-added. In
3447 * this case vmalloc() will not be able to use this new node's
3448 * memory - this wait_table must be initialized to use this new
3449 * node itself as well.
3450 * To use this new node's memory, further consideration will be
3451 * necessary.
3453 zone->wait_table = vmalloc(alloc_size);
3455 if (!zone->wait_table)
3456 return -ENOMEM;
3458 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3459 init_waitqueue_head(zone->wait_table + i);
3461 return 0;
3464 static int __zone_pcp_update(void *data)
3466 struct zone *zone = data;
3467 int cpu;
3468 unsigned long batch = zone_batchsize(zone), flags;
3470 for_each_possible_cpu(cpu) {
3471 struct per_cpu_pageset *pset;
3472 struct per_cpu_pages *pcp;
3474 pset = per_cpu_ptr(zone->pageset, cpu);
3475 pcp = &pset->pcp;
3477 local_irq_save(flags);
3478 free_pcppages_bulk(zone, pcp->count, pcp);
3479 setup_pageset(pset, batch);
3480 local_irq_restore(flags);
3482 return 0;
3485 void zone_pcp_update(struct zone *zone)
3487 stop_machine(__zone_pcp_update, zone, NULL);
3490 static __meminit void zone_pcp_init(struct zone *zone)
3493 * per cpu subsystem is not up at this point. The following code
3494 * relies on the ability of the linker to provide the
3495 * offset of a (static) per cpu variable into the per cpu area.
3497 zone->pageset = &boot_pageset;
3499 if (zone->present_pages)
3500 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3501 zone->name, zone->present_pages,
3502 zone_batchsize(zone));
3505 __meminit int init_currently_empty_zone(struct zone *zone,
3506 unsigned long zone_start_pfn,
3507 unsigned long size,
3508 enum memmap_context context)
3510 struct pglist_data *pgdat = zone->zone_pgdat;
3511 int ret;
3512 ret = zone_wait_table_init(zone, size);
3513 if (ret)
3514 return ret;
3515 pgdat->nr_zones = zone_idx(zone) + 1;
3517 zone->zone_start_pfn = zone_start_pfn;
3519 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3520 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3521 pgdat->node_id,
3522 (unsigned long)zone_idx(zone),
3523 zone_start_pfn, (zone_start_pfn + size));
3525 zone_init_free_lists(zone);
3527 return 0;
3530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3532 * Basic iterator support. Return the first range of PFNs for a node
3533 * Note: nid == MAX_NUMNODES returns first region regardless of node
3535 static int __meminit first_active_region_index_in_nid(int nid)
3537 int i;
3539 for (i = 0; i < nr_nodemap_entries; i++)
3540 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3541 return i;
3543 return -1;
3547 * Basic iterator support. Return the next active range of PFNs for a node
3548 * Note: nid == MAX_NUMNODES returns next region regardless of node
3550 static int __meminit next_active_region_index_in_nid(int index, int nid)
3552 for (index = index + 1; index < nr_nodemap_entries; index++)
3553 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3554 return index;
3556 return -1;
3559 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3561 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3562 * Architectures may implement their own version but if add_active_range()
3563 * was used and there are no special requirements, this is a convenient
3564 * alternative
3566 int __meminit __early_pfn_to_nid(unsigned long pfn)
3568 int i;
3570 for (i = 0; i < nr_nodemap_entries; i++) {
3571 unsigned long start_pfn = early_node_map[i].start_pfn;
3572 unsigned long end_pfn = early_node_map[i].end_pfn;
3574 if (start_pfn <= pfn && pfn < end_pfn)
3575 return early_node_map[i].nid;
3577 /* This is a memory hole */
3578 return -1;
3580 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3582 int __meminit early_pfn_to_nid(unsigned long pfn)
3584 int nid;
3586 nid = __early_pfn_to_nid(pfn);
3587 if (nid >= 0)
3588 return nid;
3589 /* just returns 0 */
3590 return 0;
3593 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3594 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3596 int nid;
3598 nid = __early_pfn_to_nid(pfn);
3599 if (nid >= 0 && nid != node)
3600 return false;
3601 return true;
3603 #endif
3605 /* Basic iterator support to walk early_node_map[] */
3606 #define for_each_active_range_index_in_nid(i, nid) \
3607 for (i = first_active_region_index_in_nid(nid); i != -1; \
3608 i = next_active_region_index_in_nid(i, nid))
3611 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3612 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3613 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3615 * If an architecture guarantees that all ranges registered with
3616 * add_active_ranges() contain no holes and may be freed, this
3617 * this function may be used instead of calling free_bootmem() manually.
3619 void __init free_bootmem_with_active_regions(int nid,
3620 unsigned long max_low_pfn)
3622 int i;
3624 for_each_active_range_index_in_nid(i, nid) {
3625 unsigned long size_pages = 0;
3626 unsigned long end_pfn = early_node_map[i].end_pfn;
3628 if (early_node_map[i].start_pfn >= max_low_pfn)
3629 continue;
3631 if (end_pfn > max_low_pfn)
3632 end_pfn = max_low_pfn;
3634 size_pages = end_pfn - early_node_map[i].start_pfn;
3635 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3636 PFN_PHYS(early_node_map[i].start_pfn),
3637 size_pages << PAGE_SHIFT);
3641 #ifdef CONFIG_HAVE_MEMBLOCK
3642 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3643 u64 goal, u64 limit)
3645 int i;
3647 /* Need to go over early_node_map to find out good range for node */
3648 for_each_active_range_index_in_nid(i, nid) {
3649 u64 addr;
3650 u64 ei_start, ei_last;
3651 u64 final_start, final_end;
3653 ei_last = early_node_map[i].end_pfn;
3654 ei_last <<= PAGE_SHIFT;
3655 ei_start = early_node_map[i].start_pfn;
3656 ei_start <<= PAGE_SHIFT;
3658 final_start = max(ei_start, goal);
3659 final_end = min(ei_last, limit);
3661 if (final_start >= final_end)
3662 continue;
3664 addr = memblock_find_in_range(final_start, final_end, size, align);
3666 if (addr == MEMBLOCK_ERROR)
3667 continue;
3669 return addr;
3672 return MEMBLOCK_ERROR;
3674 #endif
3676 int __init add_from_early_node_map(struct range *range, int az,
3677 int nr_range, int nid)
3679 int i;
3680 u64 start, end;
3682 /* need to go over early_node_map to find out good range for node */
3683 for_each_active_range_index_in_nid(i, nid) {
3684 start = early_node_map[i].start_pfn;
3685 end = early_node_map[i].end_pfn;
3686 nr_range = add_range(range, az, nr_range, start, end);
3688 return nr_range;
3691 #ifdef CONFIG_NO_BOOTMEM
3692 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3693 u64 goal, u64 limit)
3695 void *ptr;
3696 u64 addr;
3698 if (limit > memblock.current_limit)
3699 limit = memblock.current_limit;
3701 addr = find_memory_core_early(nid, size, align, goal, limit);
3703 if (addr == MEMBLOCK_ERROR)
3704 return NULL;
3706 ptr = phys_to_virt(addr);
3707 memset(ptr, 0, size);
3708 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3710 * The min_count is set to 0 so that bootmem allocated blocks
3711 * are never reported as leaks.
3713 kmemleak_alloc(ptr, size, 0, 0);
3714 return ptr;
3716 #endif
3719 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3721 int i;
3722 int ret;
3724 for_each_active_range_index_in_nid(i, nid) {
3725 ret = work_fn(early_node_map[i].start_pfn,
3726 early_node_map[i].end_pfn, data);
3727 if (ret)
3728 break;
3732 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3733 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3735 * If an architecture guarantees that all ranges registered with
3736 * add_active_ranges() contain no holes and may be freed, this
3737 * function may be used instead of calling memory_present() manually.
3739 void __init sparse_memory_present_with_active_regions(int nid)
3741 int i;
3743 for_each_active_range_index_in_nid(i, nid)
3744 memory_present(early_node_map[i].nid,
3745 early_node_map[i].start_pfn,
3746 early_node_map[i].end_pfn);
3750 * get_pfn_range_for_nid - Return the start and end page frames for a node
3751 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3752 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3753 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3755 * It returns the start and end page frame of a node based on information
3756 * provided by an arch calling add_active_range(). If called for a node
3757 * with no available memory, a warning is printed and the start and end
3758 * PFNs will be 0.
3760 void __meminit get_pfn_range_for_nid(unsigned int nid,
3761 unsigned long *start_pfn, unsigned long *end_pfn)
3763 int i;
3764 *start_pfn = -1UL;
3765 *end_pfn = 0;
3767 for_each_active_range_index_in_nid(i, nid) {
3768 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3769 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3772 if (*start_pfn == -1UL)
3773 *start_pfn = 0;
3777 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3778 * assumption is made that zones within a node are ordered in monotonic
3779 * increasing memory addresses so that the "highest" populated zone is used
3781 static void __init find_usable_zone_for_movable(void)
3783 int zone_index;
3784 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3785 if (zone_index == ZONE_MOVABLE)
3786 continue;
3788 if (arch_zone_highest_possible_pfn[zone_index] >
3789 arch_zone_lowest_possible_pfn[zone_index])
3790 break;
3793 VM_BUG_ON(zone_index == -1);
3794 movable_zone = zone_index;
3798 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3799 * because it is sized independant of architecture. Unlike the other zones,
3800 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3801 * in each node depending on the size of each node and how evenly kernelcore
3802 * is distributed. This helper function adjusts the zone ranges
3803 * provided by the architecture for a given node by using the end of the
3804 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3805 * zones within a node are in order of monotonic increases memory addresses
3807 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3808 unsigned long zone_type,
3809 unsigned long node_start_pfn,
3810 unsigned long node_end_pfn,
3811 unsigned long *zone_start_pfn,
3812 unsigned long *zone_end_pfn)
3814 /* Only adjust if ZONE_MOVABLE is on this node */
3815 if (zone_movable_pfn[nid]) {
3816 /* Size ZONE_MOVABLE */
3817 if (zone_type == ZONE_MOVABLE) {
3818 *zone_start_pfn = zone_movable_pfn[nid];
3819 *zone_end_pfn = min(node_end_pfn,
3820 arch_zone_highest_possible_pfn[movable_zone]);
3822 /* Adjust for ZONE_MOVABLE starting within this range */
3823 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3824 *zone_end_pfn > zone_movable_pfn[nid]) {
3825 *zone_end_pfn = zone_movable_pfn[nid];
3827 /* Check if this whole range is within ZONE_MOVABLE */
3828 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3829 *zone_start_pfn = *zone_end_pfn;
3834 * Return the number of pages a zone spans in a node, including holes
3835 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3837 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3838 unsigned long zone_type,
3839 unsigned long *ignored)
3841 unsigned long node_start_pfn, node_end_pfn;
3842 unsigned long zone_start_pfn, zone_end_pfn;
3844 /* Get the start and end of the node and zone */
3845 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3846 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3847 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3848 adjust_zone_range_for_zone_movable(nid, zone_type,
3849 node_start_pfn, node_end_pfn,
3850 &zone_start_pfn, &zone_end_pfn);
3852 /* Check that this node has pages within the zone's required range */
3853 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3854 return 0;
3856 /* Move the zone boundaries inside the node if necessary */
3857 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3858 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3860 /* Return the spanned pages */
3861 return zone_end_pfn - zone_start_pfn;
3865 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3866 * then all holes in the requested range will be accounted for.
3868 unsigned long __meminit __absent_pages_in_range(int nid,
3869 unsigned long range_start_pfn,
3870 unsigned long range_end_pfn)
3872 int i = 0;
3873 unsigned long prev_end_pfn = 0, hole_pages = 0;
3874 unsigned long start_pfn;
3876 /* Find the end_pfn of the first active range of pfns in the node */
3877 i = first_active_region_index_in_nid(nid);
3878 if (i == -1)
3879 return 0;
3881 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3883 /* Account for ranges before physical memory on this node */
3884 if (early_node_map[i].start_pfn > range_start_pfn)
3885 hole_pages = prev_end_pfn - range_start_pfn;
3887 /* Find all holes for the zone within the node */
3888 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3890 /* No need to continue if prev_end_pfn is outside the zone */
3891 if (prev_end_pfn >= range_end_pfn)
3892 break;
3894 /* Make sure the end of the zone is not within the hole */
3895 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3896 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3898 /* Update the hole size cound and move on */
3899 if (start_pfn > range_start_pfn) {
3900 BUG_ON(prev_end_pfn > start_pfn);
3901 hole_pages += start_pfn - prev_end_pfn;
3903 prev_end_pfn = early_node_map[i].end_pfn;
3906 /* Account for ranges past physical memory on this node */
3907 if (range_end_pfn > prev_end_pfn)
3908 hole_pages += range_end_pfn -
3909 max(range_start_pfn, prev_end_pfn);
3911 return hole_pages;
3915 * absent_pages_in_range - Return number of page frames in holes within a range
3916 * @start_pfn: The start PFN to start searching for holes
3917 * @end_pfn: The end PFN to stop searching for holes
3919 * It returns the number of pages frames in memory holes within a range.
3921 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3922 unsigned long end_pfn)
3924 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3927 /* Return the number of page frames in holes in a zone on a node */
3928 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3929 unsigned long zone_type,
3930 unsigned long *ignored)
3932 unsigned long node_start_pfn, node_end_pfn;
3933 unsigned long zone_start_pfn, zone_end_pfn;
3935 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3936 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3937 node_start_pfn);
3938 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3939 node_end_pfn);
3941 adjust_zone_range_for_zone_movable(nid, zone_type,
3942 node_start_pfn, node_end_pfn,
3943 &zone_start_pfn, &zone_end_pfn);
3944 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3947 #else
3948 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3949 unsigned long zone_type,
3950 unsigned long *zones_size)
3952 return zones_size[zone_type];
3955 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3956 unsigned long zone_type,
3957 unsigned long *zholes_size)
3959 if (!zholes_size)
3960 return 0;
3962 return zholes_size[zone_type];
3965 #endif
3967 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3968 unsigned long *zones_size, unsigned long *zholes_size)
3970 unsigned long realtotalpages, totalpages = 0;
3971 enum zone_type i;
3973 for (i = 0; i < MAX_NR_ZONES; i++)
3974 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3975 zones_size);
3976 pgdat->node_spanned_pages = totalpages;
3978 realtotalpages = totalpages;
3979 for (i = 0; i < MAX_NR_ZONES; i++)
3980 realtotalpages -=
3981 zone_absent_pages_in_node(pgdat->node_id, i,
3982 zholes_size);
3983 pgdat->node_present_pages = realtotalpages;
3984 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3985 realtotalpages);
3988 #ifndef CONFIG_SPARSEMEM
3990 * Calculate the size of the zone->blockflags rounded to an unsigned long
3991 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3992 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3993 * round what is now in bits to nearest long in bits, then return it in
3994 * bytes.
3996 static unsigned long __init usemap_size(unsigned long zonesize)
3998 unsigned long usemapsize;
4000 usemapsize = roundup(zonesize, pageblock_nr_pages);
4001 usemapsize = usemapsize >> pageblock_order;
4002 usemapsize *= NR_PAGEBLOCK_BITS;
4003 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4005 return usemapsize / 8;
4008 static void __init setup_usemap(struct pglist_data *pgdat,
4009 struct zone *zone, unsigned long zonesize)
4011 unsigned long usemapsize = usemap_size(zonesize);
4012 zone->pageblock_flags = NULL;
4013 if (usemapsize)
4014 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4016 #else
4017 static void inline setup_usemap(struct pglist_data *pgdat,
4018 struct zone *zone, unsigned long zonesize) {}
4019 #endif /* CONFIG_SPARSEMEM */
4021 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4023 /* Return a sensible default order for the pageblock size. */
4024 static inline int pageblock_default_order(void)
4026 if (HPAGE_SHIFT > PAGE_SHIFT)
4027 return HUGETLB_PAGE_ORDER;
4029 return MAX_ORDER-1;
4032 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4033 static inline void __init set_pageblock_order(unsigned int order)
4035 /* Check that pageblock_nr_pages has not already been setup */
4036 if (pageblock_order)
4037 return;
4040 * Assume the largest contiguous order of interest is a huge page.
4041 * This value may be variable depending on boot parameters on IA64
4043 pageblock_order = order;
4045 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4048 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4049 * and pageblock_default_order() are unused as pageblock_order is set
4050 * at compile-time. See include/linux/pageblock-flags.h for the values of
4051 * pageblock_order based on the kernel config
4053 static inline int pageblock_default_order(unsigned int order)
4055 return MAX_ORDER-1;
4057 #define set_pageblock_order(x) do {} while (0)
4059 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4062 * Set up the zone data structures:
4063 * - mark all pages reserved
4064 * - mark all memory queues empty
4065 * - clear the memory bitmaps
4067 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4068 unsigned long *zones_size, unsigned long *zholes_size)
4070 enum zone_type j;
4071 int nid = pgdat->node_id;
4072 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4073 int ret;
4075 pgdat_resize_init(pgdat);
4076 pgdat->nr_zones = 0;
4077 init_waitqueue_head(&pgdat->kswapd_wait);
4078 pgdat->kswapd_max_order = 0;
4079 pgdat_page_cgroup_init(pgdat);
4081 for (j = 0; j < MAX_NR_ZONES; j++) {
4082 struct zone *zone = pgdat->node_zones + j;
4083 unsigned long size, realsize, memmap_pages;
4084 enum lru_list l;
4086 size = zone_spanned_pages_in_node(nid, j, zones_size);
4087 realsize = size - zone_absent_pages_in_node(nid, j,
4088 zholes_size);
4091 * Adjust realsize so that it accounts for how much memory
4092 * is used by this zone for memmap. This affects the watermark
4093 * and per-cpu initialisations
4095 memmap_pages =
4096 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4097 if (realsize >= memmap_pages) {
4098 realsize -= memmap_pages;
4099 if (memmap_pages)
4100 printk(KERN_DEBUG
4101 " %s zone: %lu pages used for memmap\n",
4102 zone_names[j], memmap_pages);
4103 } else
4104 printk(KERN_WARNING
4105 " %s zone: %lu pages exceeds realsize %lu\n",
4106 zone_names[j], memmap_pages, realsize);
4108 /* Account for reserved pages */
4109 if (j == 0 && realsize > dma_reserve) {
4110 realsize -= dma_reserve;
4111 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4112 zone_names[0], dma_reserve);
4115 if (!is_highmem_idx(j))
4116 nr_kernel_pages += realsize;
4117 nr_all_pages += realsize;
4119 zone->spanned_pages = size;
4120 zone->present_pages = realsize;
4121 #ifdef CONFIG_NUMA
4122 zone->node = nid;
4123 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4124 / 100;
4125 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4126 #endif
4127 zone->name = zone_names[j];
4128 spin_lock_init(&zone->lock);
4129 spin_lock_init(&zone->lru_lock);
4130 zone_seqlock_init(zone);
4131 zone->zone_pgdat = pgdat;
4133 zone_pcp_init(zone);
4134 for_each_lru(l) {
4135 INIT_LIST_HEAD(&zone->lru[l].list);
4136 zone->reclaim_stat.nr_saved_scan[l] = 0;
4138 zone->reclaim_stat.recent_rotated[0] = 0;
4139 zone->reclaim_stat.recent_rotated[1] = 0;
4140 zone->reclaim_stat.recent_scanned[0] = 0;
4141 zone->reclaim_stat.recent_scanned[1] = 0;
4142 zap_zone_vm_stats(zone);
4143 zone->flags = 0;
4144 if (!size)
4145 continue;
4147 set_pageblock_order(pageblock_default_order());
4148 setup_usemap(pgdat, zone, size);
4149 ret = init_currently_empty_zone(zone, zone_start_pfn,
4150 size, MEMMAP_EARLY);
4151 BUG_ON(ret);
4152 memmap_init(size, nid, j, zone_start_pfn);
4153 zone_start_pfn += size;
4157 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4159 /* Skip empty nodes */
4160 if (!pgdat->node_spanned_pages)
4161 return;
4163 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4164 /* ia64 gets its own node_mem_map, before this, without bootmem */
4165 if (!pgdat->node_mem_map) {
4166 unsigned long size, start, end;
4167 struct page *map;
4170 * The zone's endpoints aren't required to be MAX_ORDER
4171 * aligned but the node_mem_map endpoints must be in order
4172 * for the buddy allocator to function correctly.
4174 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4175 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4176 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4177 size = (end - start) * sizeof(struct page);
4178 map = alloc_remap(pgdat->node_id, size);
4179 if (!map)
4180 map = alloc_bootmem_node(pgdat, size);
4181 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4183 #ifndef CONFIG_NEED_MULTIPLE_NODES
4185 * With no DISCONTIG, the global mem_map is just set as node 0's
4187 if (pgdat == NODE_DATA(0)) {
4188 mem_map = NODE_DATA(0)->node_mem_map;
4189 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4190 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4191 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4192 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4194 #endif
4195 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4198 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4199 unsigned long node_start_pfn, unsigned long *zholes_size)
4201 pg_data_t *pgdat = NODE_DATA(nid);
4203 pgdat->node_id = nid;
4204 pgdat->node_start_pfn = node_start_pfn;
4205 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4207 alloc_node_mem_map(pgdat);
4208 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4209 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4210 nid, (unsigned long)pgdat,
4211 (unsigned long)pgdat->node_mem_map);
4212 #endif
4214 free_area_init_core(pgdat, zones_size, zholes_size);
4217 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4219 #if MAX_NUMNODES > 1
4221 * Figure out the number of possible node ids.
4223 static void __init setup_nr_node_ids(void)
4225 unsigned int node;
4226 unsigned int highest = 0;
4228 for_each_node_mask(node, node_possible_map)
4229 highest = node;
4230 nr_node_ids = highest + 1;
4232 #else
4233 static inline void setup_nr_node_ids(void)
4236 #endif
4239 * add_active_range - Register a range of PFNs backed by physical memory
4240 * @nid: The node ID the range resides on
4241 * @start_pfn: The start PFN of the available physical memory
4242 * @end_pfn: The end PFN of the available physical memory
4244 * These ranges are stored in an early_node_map[] and later used by
4245 * free_area_init_nodes() to calculate zone sizes and holes. If the
4246 * range spans a memory hole, it is up to the architecture to ensure
4247 * the memory is not freed by the bootmem allocator. If possible
4248 * the range being registered will be merged with existing ranges.
4250 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4251 unsigned long end_pfn)
4253 int i;
4255 mminit_dprintk(MMINIT_TRACE, "memory_register",
4256 "Entering add_active_range(%d, %#lx, %#lx) "
4257 "%d entries of %d used\n",
4258 nid, start_pfn, end_pfn,
4259 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4261 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4263 /* Merge with existing active regions if possible */
4264 for (i = 0; i < nr_nodemap_entries; i++) {
4265 if (early_node_map[i].nid != nid)
4266 continue;
4268 /* Skip if an existing region covers this new one */
4269 if (start_pfn >= early_node_map[i].start_pfn &&
4270 end_pfn <= early_node_map[i].end_pfn)
4271 return;
4273 /* Merge forward if suitable */
4274 if (start_pfn <= early_node_map[i].end_pfn &&
4275 end_pfn > early_node_map[i].end_pfn) {
4276 early_node_map[i].end_pfn = end_pfn;
4277 return;
4280 /* Merge backward if suitable */
4281 if (start_pfn < early_node_map[i].start_pfn &&
4282 end_pfn >= early_node_map[i].start_pfn) {
4283 early_node_map[i].start_pfn = start_pfn;
4284 return;
4288 /* Check that early_node_map is large enough */
4289 if (i >= MAX_ACTIVE_REGIONS) {
4290 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4291 MAX_ACTIVE_REGIONS);
4292 return;
4295 early_node_map[i].nid = nid;
4296 early_node_map[i].start_pfn = start_pfn;
4297 early_node_map[i].end_pfn = end_pfn;
4298 nr_nodemap_entries = i + 1;
4302 * remove_active_range - Shrink an existing registered range of PFNs
4303 * @nid: The node id the range is on that should be shrunk
4304 * @start_pfn: The new PFN of the range
4305 * @end_pfn: The new PFN of the range
4307 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4308 * The map is kept near the end physical page range that has already been
4309 * registered. This function allows an arch to shrink an existing registered
4310 * range.
4312 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4313 unsigned long end_pfn)
4315 int i, j;
4316 int removed = 0;
4318 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4319 nid, start_pfn, end_pfn);
4321 /* Find the old active region end and shrink */
4322 for_each_active_range_index_in_nid(i, nid) {
4323 if (early_node_map[i].start_pfn >= start_pfn &&
4324 early_node_map[i].end_pfn <= end_pfn) {
4325 /* clear it */
4326 early_node_map[i].start_pfn = 0;
4327 early_node_map[i].end_pfn = 0;
4328 removed = 1;
4329 continue;
4331 if (early_node_map[i].start_pfn < start_pfn &&
4332 early_node_map[i].end_pfn > start_pfn) {
4333 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4334 early_node_map[i].end_pfn = start_pfn;
4335 if (temp_end_pfn > end_pfn)
4336 add_active_range(nid, end_pfn, temp_end_pfn);
4337 continue;
4339 if (early_node_map[i].start_pfn >= start_pfn &&
4340 early_node_map[i].end_pfn > end_pfn &&
4341 early_node_map[i].start_pfn < end_pfn) {
4342 early_node_map[i].start_pfn = end_pfn;
4343 continue;
4347 if (!removed)
4348 return;
4350 /* remove the blank ones */
4351 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4352 if (early_node_map[i].nid != nid)
4353 continue;
4354 if (early_node_map[i].end_pfn)
4355 continue;
4356 /* we found it, get rid of it */
4357 for (j = i; j < nr_nodemap_entries - 1; j++)
4358 memcpy(&early_node_map[j], &early_node_map[j+1],
4359 sizeof(early_node_map[j]));
4360 j = nr_nodemap_entries - 1;
4361 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4362 nr_nodemap_entries--;
4367 * remove_all_active_ranges - Remove all currently registered regions
4369 * During discovery, it may be found that a table like SRAT is invalid
4370 * and an alternative discovery method must be used. This function removes
4371 * all currently registered regions.
4373 void __init remove_all_active_ranges(void)
4375 memset(early_node_map, 0, sizeof(early_node_map));
4376 nr_nodemap_entries = 0;
4379 /* Compare two active node_active_regions */
4380 static int __init cmp_node_active_region(const void *a, const void *b)
4382 struct node_active_region *arange = (struct node_active_region *)a;
4383 struct node_active_region *brange = (struct node_active_region *)b;
4385 /* Done this way to avoid overflows */
4386 if (arange->start_pfn > brange->start_pfn)
4387 return 1;
4388 if (arange->start_pfn < brange->start_pfn)
4389 return -1;
4391 return 0;
4394 /* sort the node_map by start_pfn */
4395 void __init sort_node_map(void)
4397 sort(early_node_map, (size_t)nr_nodemap_entries,
4398 sizeof(struct node_active_region),
4399 cmp_node_active_region, NULL);
4402 /* Find the lowest pfn for a node */
4403 static unsigned long __init find_min_pfn_for_node(int nid)
4405 int i;
4406 unsigned long min_pfn = ULONG_MAX;
4408 /* Assuming a sorted map, the first range found has the starting pfn */
4409 for_each_active_range_index_in_nid(i, nid)
4410 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4412 if (min_pfn == ULONG_MAX) {
4413 printk(KERN_WARNING
4414 "Could not find start_pfn for node %d\n", nid);
4415 return 0;
4418 return min_pfn;
4422 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4424 * It returns the minimum PFN based on information provided via
4425 * add_active_range().
4427 unsigned long __init find_min_pfn_with_active_regions(void)
4429 return find_min_pfn_for_node(MAX_NUMNODES);
4433 * early_calculate_totalpages()
4434 * Sum pages in active regions for movable zone.
4435 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4437 static unsigned long __init early_calculate_totalpages(void)
4439 int i;
4440 unsigned long totalpages = 0;
4442 for (i = 0; i < nr_nodemap_entries; i++) {
4443 unsigned long pages = early_node_map[i].end_pfn -
4444 early_node_map[i].start_pfn;
4445 totalpages += pages;
4446 if (pages)
4447 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4449 return totalpages;
4453 * Find the PFN the Movable zone begins in each node. Kernel memory
4454 * is spread evenly between nodes as long as the nodes have enough
4455 * memory. When they don't, some nodes will have more kernelcore than
4456 * others
4458 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4460 int i, nid;
4461 unsigned long usable_startpfn;
4462 unsigned long kernelcore_node, kernelcore_remaining;
4463 /* save the state before borrow the nodemask */
4464 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4465 unsigned long totalpages = early_calculate_totalpages();
4466 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4469 * If movablecore was specified, calculate what size of
4470 * kernelcore that corresponds so that memory usable for
4471 * any allocation type is evenly spread. If both kernelcore
4472 * and movablecore are specified, then the value of kernelcore
4473 * will be used for required_kernelcore if it's greater than
4474 * what movablecore would have allowed.
4476 if (required_movablecore) {
4477 unsigned long corepages;
4480 * Round-up so that ZONE_MOVABLE is at least as large as what
4481 * was requested by the user
4483 required_movablecore =
4484 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4485 corepages = totalpages - required_movablecore;
4487 required_kernelcore = max(required_kernelcore, corepages);
4490 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4491 if (!required_kernelcore)
4492 goto out;
4494 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4495 find_usable_zone_for_movable();
4496 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4498 restart:
4499 /* Spread kernelcore memory as evenly as possible throughout nodes */
4500 kernelcore_node = required_kernelcore / usable_nodes;
4501 for_each_node_state(nid, N_HIGH_MEMORY) {
4503 * Recalculate kernelcore_node if the division per node
4504 * now exceeds what is necessary to satisfy the requested
4505 * amount of memory for the kernel
4507 if (required_kernelcore < kernelcore_node)
4508 kernelcore_node = required_kernelcore / usable_nodes;
4511 * As the map is walked, we track how much memory is usable
4512 * by the kernel using kernelcore_remaining. When it is
4513 * 0, the rest of the node is usable by ZONE_MOVABLE
4515 kernelcore_remaining = kernelcore_node;
4517 /* Go through each range of PFNs within this node */
4518 for_each_active_range_index_in_nid(i, nid) {
4519 unsigned long start_pfn, end_pfn;
4520 unsigned long size_pages;
4522 start_pfn = max(early_node_map[i].start_pfn,
4523 zone_movable_pfn[nid]);
4524 end_pfn = early_node_map[i].end_pfn;
4525 if (start_pfn >= end_pfn)
4526 continue;
4528 /* Account for what is only usable for kernelcore */
4529 if (start_pfn < usable_startpfn) {
4530 unsigned long kernel_pages;
4531 kernel_pages = min(end_pfn, usable_startpfn)
4532 - start_pfn;
4534 kernelcore_remaining -= min(kernel_pages,
4535 kernelcore_remaining);
4536 required_kernelcore -= min(kernel_pages,
4537 required_kernelcore);
4539 /* Continue if range is now fully accounted */
4540 if (end_pfn <= usable_startpfn) {
4543 * Push zone_movable_pfn to the end so
4544 * that if we have to rebalance
4545 * kernelcore across nodes, we will
4546 * not double account here
4548 zone_movable_pfn[nid] = end_pfn;
4549 continue;
4551 start_pfn = usable_startpfn;
4555 * The usable PFN range for ZONE_MOVABLE is from
4556 * start_pfn->end_pfn. Calculate size_pages as the
4557 * number of pages used as kernelcore
4559 size_pages = end_pfn - start_pfn;
4560 if (size_pages > kernelcore_remaining)
4561 size_pages = kernelcore_remaining;
4562 zone_movable_pfn[nid] = start_pfn + size_pages;
4565 * Some kernelcore has been met, update counts and
4566 * break if the kernelcore for this node has been
4567 * satisified
4569 required_kernelcore -= min(required_kernelcore,
4570 size_pages);
4571 kernelcore_remaining -= size_pages;
4572 if (!kernelcore_remaining)
4573 break;
4578 * If there is still required_kernelcore, we do another pass with one
4579 * less node in the count. This will push zone_movable_pfn[nid] further
4580 * along on the nodes that still have memory until kernelcore is
4581 * satisified
4583 usable_nodes--;
4584 if (usable_nodes && required_kernelcore > usable_nodes)
4585 goto restart;
4587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4588 for (nid = 0; nid < MAX_NUMNODES; nid++)
4589 zone_movable_pfn[nid] =
4590 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4592 out:
4593 /* restore the node_state */
4594 node_states[N_HIGH_MEMORY] = saved_node_state;
4597 /* Any regular memory on that node ? */
4598 static void check_for_regular_memory(pg_data_t *pgdat)
4600 #ifdef CONFIG_HIGHMEM
4601 enum zone_type zone_type;
4603 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4604 struct zone *zone = &pgdat->node_zones[zone_type];
4605 if (zone->present_pages)
4606 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4608 #endif
4612 * free_area_init_nodes - Initialise all pg_data_t and zone data
4613 * @max_zone_pfn: an array of max PFNs for each zone
4615 * This will call free_area_init_node() for each active node in the system.
4616 * Using the page ranges provided by add_active_range(), the size of each
4617 * zone in each node and their holes is calculated. If the maximum PFN
4618 * between two adjacent zones match, it is assumed that the zone is empty.
4619 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4620 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4621 * starts where the previous one ended. For example, ZONE_DMA32 starts
4622 * at arch_max_dma_pfn.
4624 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4626 unsigned long nid;
4627 int i;
4629 /* Sort early_node_map as initialisation assumes it is sorted */
4630 sort_node_map();
4632 /* Record where the zone boundaries are */
4633 memset(arch_zone_lowest_possible_pfn, 0,
4634 sizeof(arch_zone_lowest_possible_pfn));
4635 memset(arch_zone_highest_possible_pfn, 0,
4636 sizeof(arch_zone_highest_possible_pfn));
4637 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4638 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4639 for (i = 1; i < MAX_NR_ZONES; i++) {
4640 if (i == ZONE_MOVABLE)
4641 continue;
4642 arch_zone_lowest_possible_pfn[i] =
4643 arch_zone_highest_possible_pfn[i-1];
4644 arch_zone_highest_possible_pfn[i] =
4645 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4647 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4648 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4650 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4651 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4652 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4654 /* Print out the zone ranges */
4655 printk("Zone PFN ranges:\n");
4656 for (i = 0; i < MAX_NR_ZONES; i++) {
4657 if (i == ZONE_MOVABLE)
4658 continue;
4659 printk(" %-8s ", zone_names[i]);
4660 if (arch_zone_lowest_possible_pfn[i] ==
4661 arch_zone_highest_possible_pfn[i])
4662 printk("empty\n");
4663 else
4664 printk("%0#10lx -> %0#10lx\n",
4665 arch_zone_lowest_possible_pfn[i],
4666 arch_zone_highest_possible_pfn[i]);
4669 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4670 printk("Movable zone start PFN for each node\n");
4671 for (i = 0; i < MAX_NUMNODES; i++) {
4672 if (zone_movable_pfn[i])
4673 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4676 /* Print out the early_node_map[] */
4677 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4678 for (i = 0; i < nr_nodemap_entries; i++)
4679 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4680 early_node_map[i].start_pfn,
4681 early_node_map[i].end_pfn);
4683 /* Initialise every node */
4684 mminit_verify_pageflags_layout();
4685 setup_nr_node_ids();
4686 for_each_online_node(nid) {
4687 pg_data_t *pgdat = NODE_DATA(nid);
4688 free_area_init_node(nid, NULL,
4689 find_min_pfn_for_node(nid), NULL);
4691 /* Any memory on that node */
4692 if (pgdat->node_present_pages)
4693 node_set_state(nid, N_HIGH_MEMORY);
4694 check_for_regular_memory(pgdat);
4698 static int __init cmdline_parse_core(char *p, unsigned long *core)
4700 unsigned long long coremem;
4701 if (!p)
4702 return -EINVAL;
4704 coremem = memparse(p, &p);
4705 *core = coremem >> PAGE_SHIFT;
4707 /* Paranoid check that UL is enough for the coremem value */
4708 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4710 return 0;
4714 * kernelcore=size sets the amount of memory for use for allocations that
4715 * cannot be reclaimed or migrated.
4717 static int __init cmdline_parse_kernelcore(char *p)
4719 return cmdline_parse_core(p, &required_kernelcore);
4723 * movablecore=size sets the amount of memory for use for allocations that
4724 * can be reclaimed or migrated.
4726 static int __init cmdline_parse_movablecore(char *p)
4728 return cmdline_parse_core(p, &required_movablecore);
4731 early_param("kernelcore", cmdline_parse_kernelcore);
4732 early_param("movablecore", cmdline_parse_movablecore);
4734 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4737 * set_dma_reserve - set the specified number of pages reserved in the first zone
4738 * @new_dma_reserve: The number of pages to mark reserved
4740 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4741 * In the DMA zone, a significant percentage may be consumed by kernel image
4742 * and other unfreeable allocations which can skew the watermarks badly. This
4743 * function may optionally be used to account for unfreeable pages in the
4744 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4745 * smaller per-cpu batchsize.
4747 void __init set_dma_reserve(unsigned long new_dma_reserve)
4749 dma_reserve = new_dma_reserve;
4752 #ifndef CONFIG_NEED_MULTIPLE_NODES
4753 struct pglist_data __refdata contig_page_data = {
4754 #ifndef CONFIG_NO_BOOTMEM
4755 .bdata = &bootmem_node_data[0]
4756 #endif
4758 EXPORT_SYMBOL(contig_page_data);
4759 #endif
4761 void __init free_area_init(unsigned long *zones_size)
4763 free_area_init_node(0, zones_size,
4764 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4767 static int page_alloc_cpu_notify(struct notifier_block *self,
4768 unsigned long action, void *hcpu)
4770 int cpu = (unsigned long)hcpu;
4772 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4773 drain_pages(cpu);
4776 * Spill the event counters of the dead processor
4777 * into the current processors event counters.
4778 * This artificially elevates the count of the current
4779 * processor.
4781 vm_events_fold_cpu(cpu);
4784 * Zero the differential counters of the dead processor
4785 * so that the vm statistics are consistent.
4787 * This is only okay since the processor is dead and cannot
4788 * race with what we are doing.
4790 refresh_cpu_vm_stats(cpu);
4792 return NOTIFY_OK;
4795 void __init page_alloc_init(void)
4797 hotcpu_notifier(page_alloc_cpu_notify, 0);
4801 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4802 * or min_free_kbytes changes.
4804 static void calculate_totalreserve_pages(void)
4806 struct pglist_data *pgdat;
4807 unsigned long reserve_pages = 0;
4808 enum zone_type i, j;
4810 for_each_online_pgdat(pgdat) {
4811 for (i = 0; i < MAX_NR_ZONES; i++) {
4812 struct zone *zone = pgdat->node_zones + i;
4813 unsigned long max = 0;
4815 /* Find valid and maximum lowmem_reserve in the zone */
4816 for (j = i; j < MAX_NR_ZONES; j++) {
4817 if (zone->lowmem_reserve[j] > max)
4818 max = zone->lowmem_reserve[j];
4821 /* we treat the high watermark as reserved pages. */
4822 max += high_wmark_pages(zone);
4824 if (max > zone->present_pages)
4825 max = zone->present_pages;
4826 reserve_pages += max;
4829 totalreserve_pages = reserve_pages;
4833 * setup_per_zone_lowmem_reserve - called whenever
4834 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4835 * has a correct pages reserved value, so an adequate number of
4836 * pages are left in the zone after a successful __alloc_pages().
4838 static void setup_per_zone_lowmem_reserve(void)
4840 struct pglist_data *pgdat;
4841 enum zone_type j, idx;
4843 for_each_online_pgdat(pgdat) {
4844 for (j = 0; j < MAX_NR_ZONES; j++) {
4845 struct zone *zone = pgdat->node_zones + j;
4846 unsigned long present_pages = zone->present_pages;
4848 zone->lowmem_reserve[j] = 0;
4850 idx = j;
4851 while (idx) {
4852 struct zone *lower_zone;
4854 idx--;
4856 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4857 sysctl_lowmem_reserve_ratio[idx] = 1;
4859 lower_zone = pgdat->node_zones + idx;
4860 lower_zone->lowmem_reserve[j] = present_pages /
4861 sysctl_lowmem_reserve_ratio[idx];
4862 present_pages += lower_zone->present_pages;
4867 /* update totalreserve_pages */
4868 calculate_totalreserve_pages();
4872 * setup_per_zone_wmarks - called when min_free_kbytes changes
4873 * or when memory is hot-{added|removed}
4875 * Ensures that the watermark[min,low,high] values for each zone are set
4876 * correctly with respect to min_free_kbytes.
4878 void setup_per_zone_wmarks(void)
4880 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4881 unsigned long lowmem_pages = 0;
4882 struct zone *zone;
4883 unsigned long flags;
4885 /* Calculate total number of !ZONE_HIGHMEM pages */
4886 for_each_zone(zone) {
4887 if (!is_highmem(zone))
4888 lowmem_pages += zone->present_pages;
4891 for_each_zone(zone) {
4892 u64 tmp;
4894 spin_lock_irqsave(&zone->lock, flags);
4895 tmp = (u64)pages_min * zone->present_pages;
4896 do_div(tmp, lowmem_pages);
4897 if (is_highmem(zone)) {
4899 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4900 * need highmem pages, so cap pages_min to a small
4901 * value here.
4903 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4904 * deltas controls asynch page reclaim, and so should
4905 * not be capped for highmem.
4907 int min_pages;
4909 min_pages = zone->present_pages / 1024;
4910 if (min_pages < SWAP_CLUSTER_MAX)
4911 min_pages = SWAP_CLUSTER_MAX;
4912 if (min_pages > 128)
4913 min_pages = 128;
4914 zone->watermark[WMARK_MIN] = min_pages;
4915 } else {
4917 * If it's a lowmem zone, reserve a number of pages
4918 * proportionate to the zone's size.
4920 zone->watermark[WMARK_MIN] = tmp;
4923 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4924 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4925 setup_zone_migrate_reserve(zone);
4926 spin_unlock_irqrestore(&zone->lock, flags);
4929 /* update totalreserve_pages */
4930 calculate_totalreserve_pages();
4934 * The inactive anon list should be small enough that the VM never has to
4935 * do too much work, but large enough that each inactive page has a chance
4936 * to be referenced again before it is swapped out.
4938 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4939 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4940 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4941 * the anonymous pages are kept on the inactive list.
4943 * total target max
4944 * memory ratio inactive anon
4945 * -------------------------------------
4946 * 10MB 1 5MB
4947 * 100MB 1 50MB
4948 * 1GB 3 250MB
4949 * 10GB 10 0.9GB
4950 * 100GB 31 3GB
4951 * 1TB 101 10GB
4952 * 10TB 320 32GB
4954 void calculate_zone_inactive_ratio(struct zone *zone)
4956 unsigned int gb, ratio;
4958 /* Zone size in gigabytes */
4959 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4960 if (gb)
4961 ratio = int_sqrt(10 * gb);
4962 else
4963 ratio = 1;
4965 zone->inactive_ratio = ratio;
4968 static void __init setup_per_zone_inactive_ratio(void)
4970 struct zone *zone;
4972 for_each_zone(zone)
4973 calculate_zone_inactive_ratio(zone);
4977 * Initialise min_free_kbytes.
4979 * For small machines we want it small (128k min). For large machines
4980 * we want it large (64MB max). But it is not linear, because network
4981 * bandwidth does not increase linearly with machine size. We use
4983 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4984 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4986 * which yields
4988 * 16MB: 512k
4989 * 32MB: 724k
4990 * 64MB: 1024k
4991 * 128MB: 1448k
4992 * 256MB: 2048k
4993 * 512MB: 2896k
4994 * 1024MB: 4096k
4995 * 2048MB: 5792k
4996 * 4096MB: 8192k
4997 * 8192MB: 11584k
4998 * 16384MB: 16384k
5000 static int __init init_per_zone_wmark_min(void)
5002 unsigned long lowmem_kbytes;
5004 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5006 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5007 if (min_free_kbytes < 128)
5008 min_free_kbytes = 128;
5009 if (min_free_kbytes > 65536)
5010 min_free_kbytes = 65536;
5011 setup_per_zone_wmarks();
5012 setup_per_zone_lowmem_reserve();
5013 setup_per_zone_inactive_ratio();
5014 return 0;
5016 module_init(init_per_zone_wmark_min)
5019 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5020 * that we can call two helper functions whenever min_free_kbytes
5021 * changes.
5023 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5024 void __user *buffer, size_t *length, loff_t *ppos)
5026 proc_dointvec(table, write, buffer, length, ppos);
5027 if (write)
5028 setup_per_zone_wmarks();
5029 return 0;
5032 #ifdef CONFIG_NUMA
5033 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5034 void __user *buffer, size_t *length, loff_t *ppos)
5036 struct zone *zone;
5037 int rc;
5039 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5040 if (rc)
5041 return rc;
5043 for_each_zone(zone)
5044 zone->min_unmapped_pages = (zone->present_pages *
5045 sysctl_min_unmapped_ratio) / 100;
5046 return 0;
5049 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5050 void __user *buffer, size_t *length, loff_t *ppos)
5052 struct zone *zone;
5053 int rc;
5055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5056 if (rc)
5057 return rc;
5059 for_each_zone(zone)
5060 zone->min_slab_pages = (zone->present_pages *
5061 sysctl_min_slab_ratio) / 100;
5062 return 0;
5064 #endif
5067 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5068 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5069 * whenever sysctl_lowmem_reserve_ratio changes.
5071 * The reserve ratio obviously has absolutely no relation with the
5072 * minimum watermarks. The lowmem reserve ratio can only make sense
5073 * if in function of the boot time zone sizes.
5075 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5076 void __user *buffer, size_t *length, loff_t *ppos)
5078 proc_dointvec_minmax(table, write, buffer, length, ppos);
5079 setup_per_zone_lowmem_reserve();
5080 return 0;
5084 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5085 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5086 * can have before it gets flushed back to buddy allocator.
5089 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5090 void __user *buffer, size_t *length, loff_t *ppos)
5092 struct zone *zone;
5093 unsigned int cpu;
5094 int ret;
5096 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5097 if (!write || (ret == -EINVAL))
5098 return ret;
5099 for_each_populated_zone(zone) {
5100 for_each_possible_cpu(cpu) {
5101 unsigned long high;
5102 high = zone->present_pages / percpu_pagelist_fraction;
5103 setup_pagelist_highmark(
5104 per_cpu_ptr(zone->pageset, cpu), high);
5107 return 0;
5110 int hashdist = HASHDIST_DEFAULT;
5112 #ifdef CONFIG_NUMA
5113 static int __init set_hashdist(char *str)
5115 if (!str)
5116 return 0;
5117 hashdist = simple_strtoul(str, &str, 0);
5118 return 1;
5120 __setup("hashdist=", set_hashdist);
5121 #endif
5124 * allocate a large system hash table from bootmem
5125 * - it is assumed that the hash table must contain an exact power-of-2
5126 * quantity of entries
5127 * - limit is the number of hash buckets, not the total allocation size
5129 void *__init alloc_large_system_hash(const char *tablename,
5130 unsigned long bucketsize,
5131 unsigned long numentries,
5132 int scale,
5133 int flags,
5134 unsigned int *_hash_shift,
5135 unsigned int *_hash_mask,
5136 unsigned long limit)
5138 unsigned long long max = limit;
5139 unsigned long log2qty, size;
5140 void *table = NULL;
5142 /* allow the kernel cmdline to have a say */
5143 if (!numentries) {
5144 /* round applicable memory size up to nearest megabyte */
5145 numentries = nr_kernel_pages;
5146 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5147 numentries >>= 20 - PAGE_SHIFT;
5148 numentries <<= 20 - PAGE_SHIFT;
5150 /* limit to 1 bucket per 2^scale bytes of low memory */
5151 if (scale > PAGE_SHIFT)
5152 numentries >>= (scale - PAGE_SHIFT);
5153 else
5154 numentries <<= (PAGE_SHIFT - scale);
5156 /* Make sure we've got at least a 0-order allocation.. */
5157 if (unlikely(flags & HASH_SMALL)) {
5158 /* Makes no sense without HASH_EARLY */
5159 WARN_ON(!(flags & HASH_EARLY));
5160 if (!(numentries >> *_hash_shift)) {
5161 numentries = 1UL << *_hash_shift;
5162 BUG_ON(!numentries);
5164 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5165 numentries = PAGE_SIZE / bucketsize;
5167 numentries = roundup_pow_of_two(numentries);
5169 /* limit allocation size to 1/16 total memory by default */
5170 if (max == 0) {
5171 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5172 do_div(max, bucketsize);
5175 if (numentries > max)
5176 numentries = max;
5178 log2qty = ilog2(numentries);
5180 do {
5181 size = bucketsize << log2qty;
5182 if (flags & HASH_EARLY)
5183 table = alloc_bootmem_nopanic(size);
5184 else if (hashdist)
5185 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5186 else {
5188 * If bucketsize is not a power-of-two, we may free
5189 * some pages at the end of hash table which
5190 * alloc_pages_exact() automatically does
5192 if (get_order(size) < MAX_ORDER) {
5193 table = alloc_pages_exact(size, GFP_ATOMIC);
5194 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5197 } while (!table && size > PAGE_SIZE && --log2qty);
5199 if (!table)
5200 panic("Failed to allocate %s hash table\n", tablename);
5202 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5203 tablename,
5204 (1UL << log2qty),
5205 ilog2(size) - PAGE_SHIFT,
5206 size);
5208 if (_hash_shift)
5209 *_hash_shift = log2qty;
5210 if (_hash_mask)
5211 *_hash_mask = (1 << log2qty) - 1;
5213 return table;
5216 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5217 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5218 unsigned long pfn)
5220 #ifdef CONFIG_SPARSEMEM
5221 return __pfn_to_section(pfn)->pageblock_flags;
5222 #else
5223 return zone->pageblock_flags;
5224 #endif /* CONFIG_SPARSEMEM */
5227 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5229 #ifdef CONFIG_SPARSEMEM
5230 pfn &= (PAGES_PER_SECTION-1);
5231 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5232 #else
5233 pfn = pfn - zone->zone_start_pfn;
5234 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5235 #endif /* CONFIG_SPARSEMEM */
5239 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5240 * @page: The page within the block of interest
5241 * @start_bitidx: The first bit of interest to retrieve
5242 * @end_bitidx: The last bit of interest
5243 * returns pageblock_bits flags
5245 unsigned long get_pageblock_flags_group(struct page *page,
5246 int start_bitidx, int end_bitidx)
5248 struct zone *zone;
5249 unsigned long *bitmap;
5250 unsigned long pfn, bitidx;
5251 unsigned long flags = 0;
5252 unsigned long value = 1;
5254 zone = page_zone(page);
5255 pfn = page_to_pfn(page);
5256 bitmap = get_pageblock_bitmap(zone, pfn);
5257 bitidx = pfn_to_bitidx(zone, pfn);
5259 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5260 if (test_bit(bitidx + start_bitidx, bitmap))
5261 flags |= value;
5263 return flags;
5267 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5268 * @page: The page within the block of interest
5269 * @start_bitidx: The first bit of interest
5270 * @end_bitidx: The last bit of interest
5271 * @flags: The flags to set
5273 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5274 int start_bitidx, int end_bitidx)
5276 struct zone *zone;
5277 unsigned long *bitmap;
5278 unsigned long pfn, bitidx;
5279 unsigned long value = 1;
5281 zone = page_zone(page);
5282 pfn = page_to_pfn(page);
5283 bitmap = get_pageblock_bitmap(zone, pfn);
5284 bitidx = pfn_to_bitidx(zone, pfn);
5285 VM_BUG_ON(pfn < zone->zone_start_pfn);
5286 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5288 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5289 if (flags & value)
5290 __set_bit(bitidx + start_bitidx, bitmap);
5291 else
5292 __clear_bit(bitidx + start_bitidx, bitmap);
5296 * This is designed as sub function...plz see page_isolation.c also.
5297 * set/clear page block's type to be ISOLATE.
5298 * page allocater never alloc memory from ISOLATE block.
5301 static int
5302 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5304 unsigned long pfn, iter, found;
5306 * For avoiding noise data, lru_add_drain_all() should be called
5307 * If ZONE_MOVABLE, the zone never contains immobile pages
5309 if (zone_idx(zone) == ZONE_MOVABLE)
5310 return true;
5312 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5313 return true;
5315 pfn = page_to_pfn(page);
5316 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5317 unsigned long check = pfn + iter;
5319 if (!pfn_valid_within(check)) {
5320 iter++;
5321 continue;
5323 page = pfn_to_page(check);
5324 if (!page_count(page)) {
5325 if (PageBuddy(page))
5326 iter += (1 << page_order(page)) - 1;
5327 continue;
5329 if (!PageLRU(page))
5330 found++;
5332 * If there are RECLAIMABLE pages, we need to check it.
5333 * But now, memory offline itself doesn't call shrink_slab()
5334 * and it still to be fixed.
5337 * If the page is not RAM, page_count()should be 0.
5338 * we don't need more check. This is an _used_ not-movable page.
5340 * The problematic thing here is PG_reserved pages. PG_reserved
5341 * is set to both of a memory hole page and a _used_ kernel
5342 * page at boot.
5344 if (found > count)
5345 return false;
5347 return true;
5350 bool is_pageblock_removable_nolock(struct page *page)
5352 struct zone *zone = page_zone(page);
5353 return __count_immobile_pages(zone, page, 0);
5356 int set_migratetype_isolate(struct page *page)
5358 struct zone *zone;
5359 unsigned long flags, pfn;
5360 struct memory_isolate_notify arg;
5361 int notifier_ret;
5362 int ret = -EBUSY;
5363 int zone_idx;
5365 zone = page_zone(page);
5366 zone_idx = zone_idx(zone);
5368 spin_lock_irqsave(&zone->lock, flags);
5370 pfn = page_to_pfn(page);
5371 arg.start_pfn = pfn;
5372 arg.nr_pages = pageblock_nr_pages;
5373 arg.pages_found = 0;
5376 * It may be possible to isolate a pageblock even if the
5377 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5378 * notifier chain is used by balloon drivers to return the
5379 * number of pages in a range that are held by the balloon
5380 * driver to shrink memory. If all the pages are accounted for
5381 * by balloons, are free, or on the LRU, isolation can continue.
5382 * Later, for example, when memory hotplug notifier runs, these
5383 * pages reported as "can be isolated" should be isolated(freed)
5384 * by the balloon driver through the memory notifier chain.
5386 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5387 notifier_ret = notifier_to_errno(notifier_ret);
5388 if (notifier_ret)
5389 goto out;
5391 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5392 * We just check MOVABLE pages.
5394 if (__count_immobile_pages(zone, page, arg.pages_found))
5395 ret = 0;
5398 * immobile means "not-on-lru" paes. If immobile is larger than
5399 * removable-by-driver pages reported by notifier, we'll fail.
5402 out:
5403 if (!ret) {
5404 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5405 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5408 spin_unlock_irqrestore(&zone->lock, flags);
5409 if (!ret)
5410 drain_all_pages();
5411 return ret;
5414 void unset_migratetype_isolate(struct page *page)
5416 struct zone *zone;
5417 unsigned long flags;
5418 zone = page_zone(page);
5419 spin_lock_irqsave(&zone->lock, flags);
5420 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5421 goto out;
5422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5423 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5424 out:
5425 spin_unlock_irqrestore(&zone->lock, flags);
5428 #ifdef CONFIG_MEMORY_HOTREMOVE
5430 * All pages in the range must be isolated before calling this.
5432 void
5433 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5435 struct page *page;
5436 struct zone *zone;
5437 int order, i;
5438 unsigned long pfn;
5439 unsigned long flags;
5440 /* find the first valid pfn */
5441 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5442 if (pfn_valid(pfn))
5443 break;
5444 if (pfn == end_pfn)
5445 return;
5446 zone = page_zone(pfn_to_page(pfn));
5447 spin_lock_irqsave(&zone->lock, flags);
5448 pfn = start_pfn;
5449 while (pfn < end_pfn) {
5450 if (!pfn_valid(pfn)) {
5451 pfn++;
5452 continue;
5454 page = pfn_to_page(pfn);
5455 BUG_ON(page_count(page));
5456 BUG_ON(!PageBuddy(page));
5457 order = page_order(page);
5458 #ifdef CONFIG_DEBUG_VM
5459 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5460 pfn, 1 << order, end_pfn);
5461 #endif
5462 list_del(&page->lru);
5463 rmv_page_order(page);
5464 zone->free_area[order].nr_free--;
5465 __mod_zone_page_state(zone, NR_FREE_PAGES,
5466 - (1UL << order));
5467 for (i = 0; i < (1 << order); i++)
5468 SetPageReserved((page+i));
5469 pfn += (1 << order);
5471 spin_unlock_irqrestore(&zone->lock, flags);
5473 #endif
5475 #ifdef CONFIG_MEMORY_FAILURE
5476 bool is_free_buddy_page(struct page *page)
5478 struct zone *zone = page_zone(page);
5479 unsigned long pfn = page_to_pfn(page);
5480 unsigned long flags;
5481 int order;
5483 spin_lock_irqsave(&zone->lock, flags);
5484 for (order = 0; order < MAX_ORDER; order++) {
5485 struct page *page_head = page - (pfn & ((1 << order) - 1));
5487 if (PageBuddy(page_head) && page_order(page_head) >= order)
5488 break;
5490 spin_unlock_irqrestore(&zone->lock, flags);
5492 return order < MAX_ORDER;
5494 #endif
5496 static struct trace_print_flags pageflag_names[] = {
5497 {1UL << PG_locked, "locked" },
5498 {1UL << PG_error, "error" },
5499 {1UL << PG_referenced, "referenced" },
5500 {1UL << PG_uptodate, "uptodate" },
5501 {1UL << PG_dirty, "dirty" },
5502 {1UL << PG_lru, "lru" },
5503 {1UL << PG_active, "active" },
5504 {1UL << PG_slab, "slab" },
5505 {1UL << PG_owner_priv_1, "owner_priv_1" },
5506 {1UL << PG_arch_1, "arch_1" },
5507 {1UL << PG_reserved, "reserved" },
5508 {1UL << PG_private, "private" },
5509 {1UL << PG_private_2, "private_2" },
5510 {1UL << PG_writeback, "writeback" },
5511 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5512 {1UL << PG_head, "head" },
5513 {1UL << PG_tail, "tail" },
5514 #else
5515 {1UL << PG_compound, "compound" },
5516 #endif
5517 {1UL << PG_swapcache, "swapcache" },
5518 {1UL << PG_mappedtodisk, "mappedtodisk" },
5519 {1UL << PG_reclaim, "reclaim" },
5520 {1UL << PG_buddy, "buddy" },
5521 {1UL << PG_swapbacked, "swapbacked" },
5522 {1UL << PG_unevictable, "unevictable" },
5523 #ifdef CONFIG_MMU
5524 {1UL << PG_mlocked, "mlocked" },
5525 #endif
5526 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5527 {1UL << PG_uncached, "uncached" },
5528 #endif
5529 #ifdef CONFIG_MEMORY_FAILURE
5530 {1UL << PG_hwpoison, "hwpoison" },
5531 #endif
5532 {-1UL, NULL },
5535 static void dump_page_flags(unsigned long flags)
5537 const char *delim = "";
5538 unsigned long mask;
5539 int i;
5541 printk(KERN_ALERT "page flags: %#lx(", flags);
5543 /* remove zone id */
5544 flags &= (1UL << NR_PAGEFLAGS) - 1;
5546 for (i = 0; pageflag_names[i].name && flags; i++) {
5548 mask = pageflag_names[i].mask;
5549 if ((flags & mask) != mask)
5550 continue;
5552 flags &= ~mask;
5553 printk("%s%s", delim, pageflag_names[i].name);
5554 delim = "|";
5557 /* check for left over flags */
5558 if (flags)
5559 printk("%s%#lx", delim, flags);
5561 printk(")\n");
5564 void dump_page(struct page *page)
5566 printk(KERN_ALERT
5567 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5568 page, page_count(page), page_mapcount(page),
5569 page->mapping, page->index);
5570 dump_page_flags(page->flags);