Revert "cpumask: use work_on_cpu in acpi-cpufreq.c for drv_read and drv_write"
[linux-2.6/cjktty.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
blob6f11e029e8c58a9e1ba12d404c3aac0a90f55606
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/ftrace.h>
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
54 enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
60 #define INTEL_MSR_RANGE (0xffff)
61 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
63 struct acpi_cpufreq_data {
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
66 unsigned int max_freq;
67 unsigned int resume;
68 unsigned int cpu_feature;
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
73 /* acpi_perf_data is a pointer to percpu data. */
74 static struct acpi_processor_performance *acpi_perf_data;
76 static struct cpufreq_driver acpi_cpufreq_driver;
78 static unsigned int acpi_pstate_strict;
80 static int check_est_cpu(unsigned int cpuid)
82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
85 !cpu_has(cpu, X86_FEATURE_EST))
86 return 0;
88 return 1;
91 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
93 struct acpi_processor_performance *perf;
94 int i;
96 perf = data->acpi_data;
98 for (i=0; i<perf->state_count; i++) {
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
102 return 0;
105 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
107 int i;
108 struct acpi_processor_performance *perf;
110 msr &= INTEL_MSR_RANGE;
111 perf = data->acpi_data;
113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
114 if (msr == perf->states[data->freq_table[i].index].status)
115 return data->freq_table[i].frequency;
117 return data->freq_table[0].frequency;
120 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
122 switch (data->cpu_feature) {
123 case SYSTEM_INTEL_MSR_CAPABLE:
124 return extract_msr(val, data);
125 case SYSTEM_IO_CAPABLE:
126 return extract_io(val, data);
127 default:
128 return 0;
132 struct msr_addr {
133 u32 reg;
136 struct io_addr {
137 u16 port;
138 u8 bit_width;
141 typedef union {
142 struct msr_addr msr;
143 struct io_addr io;
144 } drv_addr_union;
146 struct drv_cmd {
147 unsigned int type;
148 cpumask_var_t mask;
149 drv_addr_union addr;
150 u32 val;
153 static void do_drv_read(struct drv_cmd *cmd)
155 u32 h;
157 switch (cmd->type) {
158 case SYSTEM_INTEL_MSR_CAPABLE:
159 rdmsr(cmd->addr.msr.reg, cmd->val, h);
160 break;
161 case SYSTEM_IO_CAPABLE:
162 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
163 &cmd->val,
164 (u32)cmd->addr.io.bit_width);
165 break;
166 default:
167 break;
171 static void do_drv_write(struct drv_cmd *cmd)
173 u32 lo, hi;
175 switch (cmd->type) {
176 case SYSTEM_INTEL_MSR_CAPABLE:
177 rdmsr(cmd->addr.msr.reg, lo, hi);
178 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179 wrmsr(cmd->addr.msr.reg, lo, hi);
180 break;
181 case SYSTEM_IO_CAPABLE:
182 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183 cmd->val,
184 (u32)cmd->addr.io.bit_width);
185 break;
186 default:
187 break;
191 static void drv_read(struct drv_cmd *cmd)
193 cpumask_t saved_mask = current->cpus_allowed;
194 cmd->val = 0;
196 set_cpus_allowed_ptr(current, cmd->mask);
197 do_drv_read(cmd);
198 set_cpus_allowed_ptr(current, &saved_mask);
201 static void drv_write(struct drv_cmd *cmd)
203 cpumask_t saved_mask = current->cpus_allowed;
204 unsigned int i;
206 for_each_cpu(i, cmd->mask) {
207 set_cpus_allowed_ptr(current, cpumask_of(i));
208 do_drv_write(cmd);
211 set_cpus_allowed_ptr(current, &saved_mask);
212 return;
215 static u32 get_cur_val(const struct cpumask *mask)
217 struct acpi_processor_performance *perf;
218 struct drv_cmd cmd;
220 if (unlikely(cpumask_empty(mask)))
221 return 0;
223 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
224 case SYSTEM_INTEL_MSR_CAPABLE:
225 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
226 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
227 break;
228 case SYSTEM_IO_CAPABLE:
229 cmd.type = SYSTEM_IO_CAPABLE;
230 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
231 cmd.addr.io.port = perf->control_register.address;
232 cmd.addr.io.bit_width = perf->control_register.bit_width;
233 break;
234 default:
235 return 0;
238 cpumask_copy(cmd.mask, mask);
240 drv_read(&cmd);
242 dprintk("get_cur_val = %u\n", cmd.val);
244 return cmd.val;
247 struct perf_cur {
248 union {
249 struct {
250 u32 lo;
251 u32 hi;
252 } split;
253 u64 whole;
254 } aperf_cur, mperf_cur;
258 static long read_measured_perf_ctrs(void *_cur)
260 struct perf_cur *cur = _cur;
262 rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
263 rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
265 wrmsr(MSR_IA32_APERF, 0, 0);
266 wrmsr(MSR_IA32_MPERF, 0, 0);
268 return 0;
272 * Return the measured active (C0) frequency on this CPU since last call
273 * to this function.
274 * Input: cpu number
275 * Return: Average CPU frequency in terms of max frequency (zero on error)
277 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
278 * over a period of time, while CPU is in C0 state.
279 * IA32_MPERF counts at the rate of max advertised frequency
280 * IA32_APERF counts at the rate of actual CPU frequency
281 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
282 * no meaning should be associated with absolute values of these MSRs.
284 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
285 unsigned int cpu)
287 struct perf_cur cur;
288 unsigned int perf_percent;
289 unsigned int retval;
291 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
292 return 0;
294 #ifdef __i386__
296 * We dont want to do 64 bit divide with 32 bit kernel
297 * Get an approximate value. Return failure in case we cannot get
298 * an approximate value.
300 if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
301 int shift_count;
302 u32 h;
304 h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
305 shift_count = fls(h);
307 cur.aperf_cur.whole >>= shift_count;
308 cur.mperf_cur.whole >>= shift_count;
311 if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
312 int shift_count = 7;
313 cur.aperf_cur.split.lo >>= shift_count;
314 cur.mperf_cur.split.lo >>= shift_count;
317 if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
318 perf_percent = (cur.aperf_cur.split.lo * 100) /
319 cur.mperf_cur.split.lo;
320 else
321 perf_percent = 0;
323 #else
324 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
325 int shift_count = 7;
326 cur.aperf_cur.whole >>= shift_count;
327 cur.mperf_cur.whole >>= shift_count;
330 if (cur.aperf_cur.whole && cur.mperf_cur.whole)
331 perf_percent = (cur.aperf_cur.whole * 100) /
332 cur.mperf_cur.whole;
333 else
334 perf_percent = 0;
336 #endif
338 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
340 return retval;
343 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
345 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
346 unsigned int freq;
347 unsigned int cached_freq;
349 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
351 if (unlikely(data == NULL ||
352 data->acpi_data == NULL || data->freq_table == NULL)) {
353 return 0;
356 cached_freq = data->freq_table[data->acpi_data->state].frequency;
357 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
358 if (freq != cached_freq) {
360 * The dreaded BIOS frequency change behind our back.
361 * Force set the frequency on next target call.
363 data->resume = 1;
366 dprintk("cur freq = %u\n", freq);
368 return freq;
371 static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
372 struct acpi_cpufreq_data *data)
374 unsigned int cur_freq;
375 unsigned int i;
377 for (i=0; i<100; i++) {
378 cur_freq = extract_freq(get_cur_val(mask), data);
379 if (cur_freq == freq)
380 return 1;
381 udelay(10);
383 return 0;
386 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
387 unsigned int target_freq, unsigned int relation)
389 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
390 struct acpi_processor_performance *perf;
391 struct cpufreq_freqs freqs;
392 struct drv_cmd cmd;
393 unsigned int next_state = 0; /* Index into freq_table */
394 unsigned int next_perf_state = 0; /* Index into perf table */
395 unsigned int i;
396 int result = 0;
397 struct power_trace it;
399 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
401 if (unlikely(data == NULL ||
402 data->acpi_data == NULL || data->freq_table == NULL)) {
403 return -ENODEV;
406 if (unlikely(!alloc_cpumask_var(&cmd.mask, GFP_KERNEL)))
407 return -ENOMEM;
409 perf = data->acpi_data;
410 result = cpufreq_frequency_table_target(policy,
411 data->freq_table,
412 target_freq,
413 relation, &next_state);
414 if (unlikely(result)) {
415 result = -ENODEV;
416 goto out;
419 next_perf_state = data->freq_table[next_state].index;
420 if (perf->state == next_perf_state) {
421 if (unlikely(data->resume)) {
422 dprintk("Called after resume, resetting to P%d\n",
423 next_perf_state);
424 data->resume = 0;
425 } else {
426 dprintk("Already at target state (P%d)\n",
427 next_perf_state);
428 goto out;
432 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
434 switch (data->cpu_feature) {
435 case SYSTEM_INTEL_MSR_CAPABLE:
436 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
437 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
438 cmd.val = (u32) perf->states[next_perf_state].control;
439 break;
440 case SYSTEM_IO_CAPABLE:
441 cmd.type = SYSTEM_IO_CAPABLE;
442 cmd.addr.io.port = perf->control_register.address;
443 cmd.addr.io.bit_width = perf->control_register.bit_width;
444 cmd.val = (u32) perf->states[next_perf_state].control;
445 break;
446 default:
447 result = -ENODEV;
448 goto out;
451 /* cpufreq holds the hotplug lock, so we are safe from here on */
452 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
453 cpumask_and(cmd.mask, cpu_online_mask, policy->cpus);
454 else
455 cpumask_copy(cmd.mask, cpumask_of(policy->cpu));
457 freqs.old = perf->states[perf->state].core_frequency * 1000;
458 freqs.new = data->freq_table[next_state].frequency;
459 for_each_cpu(i, cmd.mask) {
460 freqs.cpu = i;
461 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
464 drv_write(&cmd);
466 if (acpi_pstate_strict) {
467 if (!check_freqs(cmd.mask, freqs.new, data)) {
468 dprintk("acpi_cpufreq_target failed (%d)\n",
469 policy->cpu);
470 result = -EAGAIN;
471 goto out;
475 for_each_cpu(i, cmd.mask) {
476 freqs.cpu = i;
477 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
479 perf->state = next_perf_state;
481 out:
482 free_cpumask_var(cmd.mask);
483 return result;
486 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
488 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
490 dprintk("acpi_cpufreq_verify\n");
492 return cpufreq_frequency_table_verify(policy, data->freq_table);
495 static unsigned long
496 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
498 struct acpi_processor_performance *perf = data->acpi_data;
500 if (cpu_khz) {
501 /* search the closest match to cpu_khz */
502 unsigned int i;
503 unsigned long freq;
504 unsigned long freqn = perf->states[0].core_frequency * 1000;
506 for (i=0; i<(perf->state_count-1); i++) {
507 freq = freqn;
508 freqn = perf->states[i+1].core_frequency * 1000;
509 if ((2 * cpu_khz) > (freqn + freq)) {
510 perf->state = i;
511 return freq;
514 perf->state = perf->state_count-1;
515 return freqn;
516 } else {
517 /* assume CPU is at P0... */
518 perf->state = 0;
519 return perf->states[0].core_frequency * 1000;
523 static void free_acpi_perf_data(void)
525 unsigned int i;
527 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
528 for_each_possible_cpu(i)
529 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
530 ->shared_cpu_map);
531 free_percpu(acpi_perf_data);
535 * acpi_cpufreq_early_init - initialize ACPI P-States library
537 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
538 * in order to determine correct frequency and voltage pairings. We can
539 * do _PDC and _PSD and find out the processor dependency for the
540 * actual init that will happen later...
542 static int __init acpi_cpufreq_early_init(void)
544 unsigned int i;
545 dprintk("acpi_cpufreq_early_init\n");
547 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
548 if (!acpi_perf_data) {
549 dprintk("Memory allocation error for acpi_perf_data.\n");
550 return -ENOMEM;
552 for_each_possible_cpu(i) {
553 if (!alloc_cpumask_var_node(
554 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
555 GFP_KERNEL, cpu_to_node(i))) {
557 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
558 free_acpi_perf_data();
559 return -ENOMEM;
563 /* Do initialization in ACPI core */
564 acpi_processor_preregister_performance(acpi_perf_data);
565 return 0;
568 #ifdef CONFIG_SMP
570 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
571 * or do it in BIOS firmware and won't inform about it to OS. If not
572 * detected, this has a side effect of making CPU run at a different speed
573 * than OS intended it to run at. Detect it and handle it cleanly.
575 static int bios_with_sw_any_bug;
577 static int sw_any_bug_found(const struct dmi_system_id *d)
579 bios_with_sw_any_bug = 1;
580 return 0;
583 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
585 .callback = sw_any_bug_found,
586 .ident = "Supermicro Server X6DLP",
587 .matches = {
588 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
589 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
590 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
595 #endif
597 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
599 unsigned int i;
600 unsigned int valid_states = 0;
601 unsigned int cpu = policy->cpu;
602 struct acpi_cpufreq_data *data;
603 unsigned int result = 0;
604 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
605 struct acpi_processor_performance *perf;
607 dprintk("acpi_cpufreq_cpu_init\n");
609 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
610 if (!data)
611 return -ENOMEM;
613 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
614 per_cpu(drv_data, cpu) = data;
616 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
617 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
619 result = acpi_processor_register_performance(data->acpi_data, cpu);
620 if (result)
621 goto err_free;
623 perf = data->acpi_data;
624 policy->shared_type = perf->shared_type;
627 * Will let policy->cpus know about dependency only when software
628 * coordination is required.
630 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
631 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
632 cpumask_copy(policy->cpus, perf->shared_cpu_map);
634 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
636 #ifdef CONFIG_SMP
637 dmi_check_system(sw_any_bug_dmi_table);
638 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
639 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
640 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
642 #endif
644 /* capability check */
645 if (perf->state_count <= 1) {
646 dprintk("No P-States\n");
647 result = -ENODEV;
648 goto err_unreg;
651 if (perf->control_register.space_id != perf->status_register.space_id) {
652 result = -ENODEV;
653 goto err_unreg;
656 switch (perf->control_register.space_id) {
657 case ACPI_ADR_SPACE_SYSTEM_IO:
658 dprintk("SYSTEM IO addr space\n");
659 data->cpu_feature = SYSTEM_IO_CAPABLE;
660 break;
661 case ACPI_ADR_SPACE_FIXED_HARDWARE:
662 dprintk("HARDWARE addr space\n");
663 if (!check_est_cpu(cpu)) {
664 result = -ENODEV;
665 goto err_unreg;
667 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
668 break;
669 default:
670 dprintk("Unknown addr space %d\n",
671 (u32) (perf->control_register.space_id));
672 result = -ENODEV;
673 goto err_unreg;
676 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
677 (perf->state_count+1), GFP_KERNEL);
678 if (!data->freq_table) {
679 result = -ENOMEM;
680 goto err_unreg;
683 /* detect transition latency */
684 policy->cpuinfo.transition_latency = 0;
685 for (i=0; i<perf->state_count; i++) {
686 if ((perf->states[i].transition_latency * 1000) >
687 policy->cpuinfo.transition_latency)
688 policy->cpuinfo.transition_latency =
689 perf->states[i].transition_latency * 1000;
692 data->max_freq = perf->states[0].core_frequency * 1000;
693 /* table init */
694 for (i=0; i<perf->state_count; i++) {
695 if (i>0 && perf->states[i].core_frequency >=
696 data->freq_table[valid_states-1].frequency / 1000)
697 continue;
699 data->freq_table[valid_states].index = i;
700 data->freq_table[valid_states].frequency =
701 perf->states[i].core_frequency * 1000;
702 valid_states++;
704 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
705 perf->state = 0;
707 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
708 if (result)
709 goto err_freqfree;
711 switch (perf->control_register.space_id) {
712 case ACPI_ADR_SPACE_SYSTEM_IO:
713 /* Current speed is unknown and not detectable by IO port */
714 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
715 break;
716 case ACPI_ADR_SPACE_FIXED_HARDWARE:
717 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
718 policy->cur = get_cur_freq_on_cpu(cpu);
719 break;
720 default:
721 break;
724 /* notify BIOS that we exist */
725 acpi_processor_notify_smm(THIS_MODULE);
727 /* Check for APERF/MPERF support in hardware */
728 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
729 unsigned int ecx;
730 ecx = cpuid_ecx(6);
731 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
732 acpi_cpufreq_driver.getavg = get_measured_perf;
735 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
736 for (i = 0; i < perf->state_count; i++)
737 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
738 (i == perf->state ? '*' : ' '), i,
739 (u32) perf->states[i].core_frequency,
740 (u32) perf->states[i].power,
741 (u32) perf->states[i].transition_latency);
743 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
746 * the first call to ->target() should result in us actually
747 * writing something to the appropriate registers.
749 data->resume = 1;
751 return result;
753 err_freqfree:
754 kfree(data->freq_table);
755 err_unreg:
756 acpi_processor_unregister_performance(perf, cpu);
757 err_free:
758 kfree(data);
759 per_cpu(drv_data, cpu) = NULL;
761 return result;
764 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
766 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
768 dprintk("acpi_cpufreq_cpu_exit\n");
770 if (data) {
771 cpufreq_frequency_table_put_attr(policy->cpu);
772 per_cpu(drv_data, policy->cpu) = NULL;
773 acpi_processor_unregister_performance(data->acpi_data,
774 policy->cpu);
775 kfree(data);
778 return 0;
781 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
783 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
785 dprintk("acpi_cpufreq_resume\n");
787 data->resume = 1;
789 return 0;
792 static struct freq_attr *acpi_cpufreq_attr[] = {
793 &cpufreq_freq_attr_scaling_available_freqs,
794 NULL,
797 static struct cpufreq_driver acpi_cpufreq_driver = {
798 .verify = acpi_cpufreq_verify,
799 .target = acpi_cpufreq_target,
800 .init = acpi_cpufreq_cpu_init,
801 .exit = acpi_cpufreq_cpu_exit,
802 .resume = acpi_cpufreq_resume,
803 .name = "acpi-cpufreq",
804 .owner = THIS_MODULE,
805 .attr = acpi_cpufreq_attr,
808 static int __init acpi_cpufreq_init(void)
810 int ret;
812 if (acpi_disabled)
813 return 0;
815 dprintk("acpi_cpufreq_init\n");
817 ret = acpi_cpufreq_early_init();
818 if (ret)
819 return ret;
821 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
822 if (ret)
823 free_acpi_perf_data();
825 return ret;
828 static void __exit acpi_cpufreq_exit(void)
830 dprintk("acpi_cpufreq_exit\n");
832 cpufreq_unregister_driver(&acpi_cpufreq_driver);
834 free_percpu(acpi_perf_data);
837 module_param(acpi_pstate_strict, uint, 0644);
838 MODULE_PARM_DESC(acpi_pstate_strict,
839 "value 0 or non-zero. non-zero -> strict ACPI checks are "
840 "performed during frequency changes.");
842 late_initcall(acpi_cpufreq_init);
843 module_exit(acpi_cpufreq_exit);
845 MODULE_ALIAS("acpi");