[NET] gso: Fix GSO feature mask in sk_setup_caps
[linux-2.6/cjktty.git] / net / core / sock.c
blobc14ce0198d25d7be42762ee3dae5df76ba9ec8d6
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
85 * To Fix:
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
146 static const char *af_family_key_strings[AF_MAX+1] = {
147 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
148 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
149 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
150 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
151 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
152 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
153 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
154 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
155 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
156 "sk_lock-27" , "sk_lock-28" , "sk_lock-29" ,
157 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
158 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 static const char *af_family_slock_key_strings[AF_MAX+1] = {
161 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
162 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
163 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
164 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
165 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
166 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
167 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
168 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
169 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
170 "slock-27" , "slock-28" , "slock-29" ,
171 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
172 "slock-AF_RXRPC" , "slock-AF_MAX"
174 #endif
177 * sk_callback_lock locking rules are per-address-family,
178 * so split the lock classes by using a per-AF key:
180 static struct lock_class_key af_callback_keys[AF_MAX];
182 /* Take into consideration the size of the struct sk_buff overhead in the
183 * determination of these values, since that is non-constant across
184 * platforms. This makes socket queueing behavior and performance
185 * not depend upon such differences.
187 #define _SK_MEM_PACKETS 256
188 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
189 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
190 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
192 /* Run time adjustable parameters. */
193 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
194 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
195 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
196 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
198 /* Maximal space eaten by iovec or ancilliary data plus some space */
199 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
201 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
203 struct timeval tv;
205 if (optlen < sizeof(tv))
206 return -EINVAL;
207 if (copy_from_user(&tv, optval, sizeof(tv)))
208 return -EFAULT;
209 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
210 return -EDOM;
212 if (tv.tv_sec < 0) {
213 static int warned = 0;
214 *timeo_p = 0;
215 if (warned < 10 && net_ratelimit())
216 warned++;
217 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
218 "tries to set negative timeout\n",
219 current->comm, current->pid);
220 return 0;
222 *timeo_p = MAX_SCHEDULE_TIMEOUT;
223 if (tv.tv_sec == 0 && tv.tv_usec == 0)
224 return 0;
225 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
226 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
227 return 0;
230 static void sock_warn_obsolete_bsdism(const char *name)
232 static int warned;
233 static char warncomm[TASK_COMM_LEN];
234 if (strcmp(warncomm, current->comm) && warned < 5) {
235 strcpy(warncomm, current->comm);
236 printk(KERN_WARNING "process `%s' is using obsolete "
237 "%s SO_BSDCOMPAT\n", warncomm, name);
238 warned++;
242 static void sock_disable_timestamp(struct sock *sk)
244 if (sock_flag(sk, SOCK_TIMESTAMP)) {
245 sock_reset_flag(sk, SOCK_TIMESTAMP);
246 net_disable_timestamp();
251 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
253 int err = 0;
254 int skb_len;
256 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
257 number of warnings when compiling with -W --ANK
259 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
260 (unsigned)sk->sk_rcvbuf) {
261 err = -ENOMEM;
262 goto out;
265 err = sk_filter(sk, skb);
266 if (err)
267 goto out;
269 skb->dev = NULL;
270 skb_set_owner_r(skb, sk);
272 /* Cache the SKB length before we tack it onto the receive
273 * queue. Once it is added it no longer belongs to us and
274 * may be freed by other threads of control pulling packets
275 * from the queue.
277 skb_len = skb->len;
279 skb_queue_tail(&sk->sk_receive_queue, skb);
281 if (!sock_flag(sk, SOCK_DEAD))
282 sk->sk_data_ready(sk, skb_len);
283 out:
284 return err;
286 EXPORT_SYMBOL(sock_queue_rcv_skb);
288 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
290 int rc = NET_RX_SUCCESS;
292 if (sk_filter(sk, skb))
293 goto discard_and_relse;
295 skb->dev = NULL;
297 if (nested)
298 bh_lock_sock_nested(sk);
299 else
300 bh_lock_sock(sk);
301 if (!sock_owned_by_user(sk)) {
303 * trylock + unlock semantics:
305 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
307 rc = sk->sk_backlog_rcv(sk, skb);
309 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
310 } else
311 sk_add_backlog(sk, skb);
312 bh_unlock_sock(sk);
313 out:
314 sock_put(sk);
315 return rc;
316 discard_and_relse:
317 kfree_skb(skb);
318 goto out;
320 EXPORT_SYMBOL(sk_receive_skb);
322 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
324 struct dst_entry *dst = sk->sk_dst_cache;
326 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327 sk->sk_dst_cache = NULL;
328 dst_release(dst);
329 return NULL;
332 return dst;
334 EXPORT_SYMBOL(__sk_dst_check);
336 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
338 struct dst_entry *dst = sk_dst_get(sk);
340 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
341 sk_dst_reset(sk);
342 dst_release(dst);
343 return NULL;
346 return dst;
348 EXPORT_SYMBOL(sk_dst_check);
351 * This is meant for all protocols to use and covers goings on
352 * at the socket level. Everything here is generic.
355 int sock_setsockopt(struct socket *sock, int level, int optname,
356 char __user *optval, int optlen)
358 struct sock *sk=sock->sk;
359 struct sk_filter *filter;
360 int val;
361 int valbool;
362 struct linger ling;
363 int ret = 0;
366 * Options without arguments
369 #ifdef SO_DONTLINGER /* Compatibility item... */
370 if (optname == SO_DONTLINGER) {
371 lock_sock(sk);
372 sock_reset_flag(sk, SOCK_LINGER);
373 release_sock(sk);
374 return 0;
376 #endif
378 if (optlen < sizeof(int))
379 return -EINVAL;
381 if (get_user(val, (int __user *)optval))
382 return -EFAULT;
384 valbool = val?1:0;
386 lock_sock(sk);
388 switch(optname) {
389 case SO_DEBUG:
390 if (val && !capable(CAP_NET_ADMIN)) {
391 ret = -EACCES;
393 else if (valbool)
394 sock_set_flag(sk, SOCK_DBG);
395 else
396 sock_reset_flag(sk, SOCK_DBG);
397 break;
398 case SO_REUSEADDR:
399 sk->sk_reuse = valbool;
400 break;
401 case SO_TYPE:
402 case SO_ERROR:
403 ret = -ENOPROTOOPT;
404 break;
405 case SO_DONTROUTE:
406 if (valbool)
407 sock_set_flag(sk, SOCK_LOCALROUTE);
408 else
409 sock_reset_flag(sk, SOCK_LOCALROUTE);
410 break;
411 case SO_BROADCAST:
412 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
413 break;
414 case SO_SNDBUF:
415 /* Don't error on this BSD doesn't and if you think
416 about it this is right. Otherwise apps have to
417 play 'guess the biggest size' games. RCVBUF/SNDBUF
418 are treated in BSD as hints */
420 if (val > sysctl_wmem_max)
421 val = sysctl_wmem_max;
422 set_sndbuf:
423 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
424 if ((val * 2) < SOCK_MIN_SNDBUF)
425 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
426 else
427 sk->sk_sndbuf = val * 2;
430 * Wake up sending tasks if we
431 * upped the value.
433 sk->sk_write_space(sk);
434 break;
436 case SO_SNDBUFFORCE:
437 if (!capable(CAP_NET_ADMIN)) {
438 ret = -EPERM;
439 break;
441 goto set_sndbuf;
443 case SO_RCVBUF:
444 /* Don't error on this BSD doesn't and if you think
445 about it this is right. Otherwise apps have to
446 play 'guess the biggest size' games. RCVBUF/SNDBUF
447 are treated in BSD as hints */
449 if (val > sysctl_rmem_max)
450 val = sysctl_rmem_max;
451 set_rcvbuf:
452 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
454 * We double it on the way in to account for
455 * "struct sk_buff" etc. overhead. Applications
456 * assume that the SO_RCVBUF setting they make will
457 * allow that much actual data to be received on that
458 * socket.
460 * Applications are unaware that "struct sk_buff" and
461 * other overheads allocate from the receive buffer
462 * during socket buffer allocation.
464 * And after considering the possible alternatives,
465 * returning the value we actually used in getsockopt
466 * is the most desirable behavior.
468 if ((val * 2) < SOCK_MIN_RCVBUF)
469 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
470 else
471 sk->sk_rcvbuf = val * 2;
472 break;
474 case SO_RCVBUFFORCE:
475 if (!capable(CAP_NET_ADMIN)) {
476 ret = -EPERM;
477 break;
479 goto set_rcvbuf;
481 case SO_KEEPALIVE:
482 #ifdef CONFIG_INET
483 if (sk->sk_protocol == IPPROTO_TCP)
484 tcp_set_keepalive(sk, valbool);
485 #endif
486 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
487 break;
489 case SO_OOBINLINE:
490 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
491 break;
493 case SO_NO_CHECK:
494 sk->sk_no_check = valbool;
495 break;
497 case SO_PRIORITY:
498 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
499 sk->sk_priority = val;
500 else
501 ret = -EPERM;
502 break;
504 case SO_LINGER:
505 if (optlen < sizeof(ling)) {
506 ret = -EINVAL; /* 1003.1g */
507 break;
509 if (copy_from_user(&ling,optval,sizeof(ling))) {
510 ret = -EFAULT;
511 break;
513 if (!ling.l_onoff)
514 sock_reset_flag(sk, SOCK_LINGER);
515 else {
516 #if (BITS_PER_LONG == 32)
517 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
518 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
519 else
520 #endif
521 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
522 sock_set_flag(sk, SOCK_LINGER);
524 break;
526 case SO_BSDCOMPAT:
527 sock_warn_obsolete_bsdism("setsockopt");
528 break;
530 case SO_PASSCRED:
531 if (valbool)
532 set_bit(SOCK_PASSCRED, &sock->flags);
533 else
534 clear_bit(SOCK_PASSCRED, &sock->flags);
535 break;
537 case SO_TIMESTAMP:
538 case SO_TIMESTAMPNS:
539 if (valbool) {
540 if (optname == SO_TIMESTAMP)
541 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
542 else
543 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
544 sock_set_flag(sk, SOCK_RCVTSTAMP);
545 sock_enable_timestamp(sk);
546 } else {
547 sock_reset_flag(sk, SOCK_RCVTSTAMP);
548 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
550 break;
552 case SO_RCVLOWAT:
553 if (val < 0)
554 val = INT_MAX;
555 sk->sk_rcvlowat = val ? : 1;
556 break;
558 case SO_RCVTIMEO:
559 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
560 break;
562 case SO_SNDTIMEO:
563 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
564 break;
566 #ifdef CONFIG_NETDEVICES
567 case SO_BINDTODEVICE:
569 char devname[IFNAMSIZ];
571 /* Sorry... */
572 if (!capable(CAP_NET_RAW)) {
573 ret = -EPERM;
574 break;
577 /* Bind this socket to a particular device like "eth0",
578 * as specified in the passed interface name. If the
579 * name is "" or the option length is zero the socket
580 * is not bound.
583 if (!valbool) {
584 sk->sk_bound_dev_if = 0;
585 } else {
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
589 if (copy_from_user(devname, optval, optlen)) {
590 ret = -EFAULT;
591 break;
594 /* Remove any cached route for this socket. */
595 sk_dst_reset(sk);
597 if (devname[0] == '\0') {
598 sk->sk_bound_dev_if = 0;
599 } else {
600 struct net_device *dev = dev_get_by_name(devname);
601 if (!dev) {
602 ret = -ENODEV;
603 break;
605 sk->sk_bound_dev_if = dev->ifindex;
606 dev_put(dev);
609 break;
611 #endif
614 case SO_ATTACH_FILTER:
615 ret = -EINVAL;
616 if (optlen == sizeof(struct sock_fprog)) {
617 struct sock_fprog fprog;
619 ret = -EFAULT;
620 if (copy_from_user(&fprog, optval, sizeof(fprog)))
621 break;
623 ret = sk_attach_filter(&fprog, sk);
625 break;
627 case SO_DETACH_FILTER:
628 rcu_read_lock_bh();
629 filter = rcu_dereference(sk->sk_filter);
630 if (filter) {
631 rcu_assign_pointer(sk->sk_filter, NULL);
632 sk_filter_release(sk, filter);
633 rcu_read_unlock_bh();
634 break;
636 rcu_read_unlock_bh();
637 ret = -ENONET;
638 break;
640 case SO_PASSSEC:
641 if (valbool)
642 set_bit(SOCK_PASSSEC, &sock->flags);
643 else
644 clear_bit(SOCK_PASSSEC, &sock->flags);
645 break;
647 /* We implement the SO_SNDLOWAT etc to
648 not be settable (1003.1g 5.3) */
649 default:
650 ret = -ENOPROTOOPT;
651 break;
653 release_sock(sk);
654 return ret;
658 int sock_getsockopt(struct socket *sock, int level, int optname,
659 char __user *optval, int __user *optlen)
661 struct sock *sk = sock->sk;
663 union {
664 int val;
665 struct linger ling;
666 struct timeval tm;
667 } v;
669 unsigned int lv = sizeof(int);
670 int len;
672 if (get_user(len, optlen))
673 return -EFAULT;
674 if (len < 0)
675 return -EINVAL;
677 switch(optname) {
678 case SO_DEBUG:
679 v.val = sock_flag(sk, SOCK_DBG);
680 break;
682 case SO_DONTROUTE:
683 v.val = sock_flag(sk, SOCK_LOCALROUTE);
684 break;
686 case SO_BROADCAST:
687 v.val = !!sock_flag(sk, SOCK_BROADCAST);
688 break;
690 case SO_SNDBUF:
691 v.val = sk->sk_sndbuf;
692 break;
694 case SO_RCVBUF:
695 v.val = sk->sk_rcvbuf;
696 break;
698 case SO_REUSEADDR:
699 v.val = sk->sk_reuse;
700 break;
702 case SO_KEEPALIVE:
703 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
704 break;
706 case SO_TYPE:
707 v.val = sk->sk_type;
708 break;
710 case SO_ERROR:
711 v.val = -sock_error(sk);
712 if (v.val==0)
713 v.val = xchg(&sk->sk_err_soft, 0);
714 break;
716 case SO_OOBINLINE:
717 v.val = !!sock_flag(sk, SOCK_URGINLINE);
718 break;
720 case SO_NO_CHECK:
721 v.val = sk->sk_no_check;
722 break;
724 case SO_PRIORITY:
725 v.val = sk->sk_priority;
726 break;
728 case SO_LINGER:
729 lv = sizeof(v.ling);
730 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
731 v.ling.l_linger = sk->sk_lingertime / HZ;
732 break;
734 case SO_BSDCOMPAT:
735 sock_warn_obsolete_bsdism("getsockopt");
736 break;
738 case SO_TIMESTAMP:
739 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
740 !sock_flag(sk, SOCK_RCVTSTAMPNS);
741 break;
743 case SO_TIMESTAMPNS:
744 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
745 break;
747 case SO_RCVTIMEO:
748 lv=sizeof(struct timeval);
749 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
750 v.tm.tv_sec = 0;
751 v.tm.tv_usec = 0;
752 } else {
753 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
754 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
756 break;
758 case SO_SNDTIMEO:
759 lv=sizeof(struct timeval);
760 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
761 v.tm.tv_sec = 0;
762 v.tm.tv_usec = 0;
763 } else {
764 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
765 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
767 break;
769 case SO_RCVLOWAT:
770 v.val = sk->sk_rcvlowat;
771 break;
773 case SO_SNDLOWAT:
774 v.val=1;
775 break;
777 case SO_PASSCRED:
778 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
779 break;
781 case SO_PEERCRED:
782 if (len > sizeof(sk->sk_peercred))
783 len = sizeof(sk->sk_peercred);
784 if (copy_to_user(optval, &sk->sk_peercred, len))
785 return -EFAULT;
786 goto lenout;
788 case SO_PEERNAME:
790 char address[128];
792 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
793 return -ENOTCONN;
794 if (lv < len)
795 return -EINVAL;
796 if (copy_to_user(optval, address, len))
797 return -EFAULT;
798 goto lenout;
801 /* Dubious BSD thing... Probably nobody even uses it, but
802 * the UNIX standard wants it for whatever reason... -DaveM
804 case SO_ACCEPTCONN:
805 v.val = sk->sk_state == TCP_LISTEN;
806 break;
808 case SO_PASSSEC:
809 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
810 break;
812 case SO_PEERSEC:
813 return security_socket_getpeersec_stream(sock, optval, optlen, len);
815 default:
816 return -ENOPROTOOPT;
819 if (len > lv)
820 len = lv;
821 if (copy_to_user(optval, &v, len))
822 return -EFAULT;
823 lenout:
824 if (put_user(len, optlen))
825 return -EFAULT;
826 return 0;
830 * Initialize an sk_lock.
832 * (We also register the sk_lock with the lock validator.)
834 static inline void sock_lock_init(struct sock *sk)
836 sock_lock_init_class_and_name(sk,
837 af_family_slock_key_strings[sk->sk_family],
838 af_family_slock_keys + sk->sk_family,
839 af_family_key_strings[sk->sk_family],
840 af_family_keys + sk->sk_family);
844 * sk_alloc - All socket objects are allocated here
845 * @family: protocol family
846 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
847 * @prot: struct proto associated with this new sock instance
848 * @zero_it: if we should zero the newly allocated sock
850 struct sock *sk_alloc(int family, gfp_t priority,
851 struct proto *prot, int zero_it)
853 struct sock *sk = NULL;
854 struct kmem_cache *slab = prot->slab;
856 if (slab != NULL)
857 sk = kmem_cache_alloc(slab, priority);
858 else
859 sk = kmalloc(prot->obj_size, priority);
861 if (sk) {
862 if (zero_it) {
863 memset(sk, 0, prot->obj_size);
864 sk->sk_family = family;
866 * See comment in struct sock definition to understand
867 * why we need sk_prot_creator -acme
869 sk->sk_prot = sk->sk_prot_creator = prot;
870 sock_lock_init(sk);
873 if (security_sk_alloc(sk, family, priority))
874 goto out_free;
876 if (!try_module_get(prot->owner))
877 goto out_free;
879 return sk;
881 out_free:
882 if (slab != NULL)
883 kmem_cache_free(slab, sk);
884 else
885 kfree(sk);
886 return NULL;
889 void sk_free(struct sock *sk)
891 struct sk_filter *filter;
892 struct module *owner = sk->sk_prot_creator->owner;
894 if (sk->sk_destruct)
895 sk->sk_destruct(sk);
897 filter = rcu_dereference(sk->sk_filter);
898 if (filter) {
899 sk_filter_release(sk, filter);
900 rcu_assign_pointer(sk->sk_filter, NULL);
903 sock_disable_timestamp(sk);
905 if (atomic_read(&sk->sk_omem_alloc))
906 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
907 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
909 security_sk_free(sk);
910 if (sk->sk_prot_creator->slab != NULL)
911 kmem_cache_free(sk->sk_prot_creator->slab, sk);
912 else
913 kfree(sk);
914 module_put(owner);
917 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
919 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
921 if (newsk != NULL) {
922 struct sk_filter *filter;
924 sock_copy(newsk, sk);
926 /* SANITY */
927 sk_node_init(&newsk->sk_node);
928 sock_lock_init(newsk);
929 bh_lock_sock(newsk);
930 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
932 atomic_set(&newsk->sk_rmem_alloc, 0);
933 atomic_set(&newsk->sk_wmem_alloc, 0);
934 atomic_set(&newsk->sk_omem_alloc, 0);
935 skb_queue_head_init(&newsk->sk_receive_queue);
936 skb_queue_head_init(&newsk->sk_write_queue);
937 #ifdef CONFIG_NET_DMA
938 skb_queue_head_init(&newsk->sk_async_wait_queue);
939 #endif
941 rwlock_init(&newsk->sk_dst_lock);
942 rwlock_init(&newsk->sk_callback_lock);
943 lockdep_set_class(&newsk->sk_callback_lock,
944 af_callback_keys + newsk->sk_family);
946 newsk->sk_dst_cache = NULL;
947 newsk->sk_wmem_queued = 0;
948 newsk->sk_forward_alloc = 0;
949 newsk->sk_send_head = NULL;
950 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
952 sock_reset_flag(newsk, SOCK_DONE);
953 skb_queue_head_init(&newsk->sk_error_queue);
955 filter = newsk->sk_filter;
956 if (filter != NULL)
957 sk_filter_charge(newsk, filter);
959 if (unlikely(xfrm_sk_clone_policy(newsk))) {
960 /* It is still raw copy of parent, so invalidate
961 * destructor and make plain sk_free() */
962 newsk->sk_destruct = NULL;
963 sk_free(newsk);
964 newsk = NULL;
965 goto out;
968 newsk->sk_err = 0;
969 newsk->sk_priority = 0;
970 atomic_set(&newsk->sk_refcnt, 2);
973 * Increment the counter in the same struct proto as the master
974 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
975 * is the same as sk->sk_prot->socks, as this field was copied
976 * with memcpy).
978 * This _changes_ the previous behaviour, where
979 * tcp_create_openreq_child always was incrementing the
980 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
981 * to be taken into account in all callers. -acme
983 sk_refcnt_debug_inc(newsk);
984 newsk->sk_socket = NULL;
985 newsk->sk_sleep = NULL;
987 if (newsk->sk_prot->sockets_allocated)
988 atomic_inc(newsk->sk_prot->sockets_allocated);
990 out:
991 return newsk;
994 EXPORT_SYMBOL_GPL(sk_clone);
996 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
998 __sk_dst_set(sk, dst);
999 sk->sk_route_caps = dst->dev->features;
1000 if (sk->sk_route_caps & NETIF_F_GSO)
1001 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1002 if (sk_can_gso(sk)) {
1003 if (dst->header_len)
1004 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1005 else
1006 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1009 EXPORT_SYMBOL_GPL(sk_setup_caps);
1011 void __init sk_init(void)
1013 if (num_physpages <= 4096) {
1014 sysctl_wmem_max = 32767;
1015 sysctl_rmem_max = 32767;
1016 sysctl_wmem_default = 32767;
1017 sysctl_rmem_default = 32767;
1018 } else if (num_physpages >= 131072) {
1019 sysctl_wmem_max = 131071;
1020 sysctl_rmem_max = 131071;
1025 * Simple resource managers for sockets.
1030 * Write buffer destructor automatically called from kfree_skb.
1032 void sock_wfree(struct sk_buff *skb)
1034 struct sock *sk = skb->sk;
1036 /* In case it might be waiting for more memory. */
1037 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1038 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1039 sk->sk_write_space(sk);
1040 sock_put(sk);
1044 * Read buffer destructor automatically called from kfree_skb.
1046 void sock_rfree(struct sk_buff *skb)
1048 struct sock *sk = skb->sk;
1050 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1054 int sock_i_uid(struct sock *sk)
1056 int uid;
1058 read_lock(&sk->sk_callback_lock);
1059 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1060 read_unlock(&sk->sk_callback_lock);
1061 return uid;
1064 unsigned long sock_i_ino(struct sock *sk)
1066 unsigned long ino;
1068 read_lock(&sk->sk_callback_lock);
1069 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1070 read_unlock(&sk->sk_callback_lock);
1071 return ino;
1075 * Allocate a skb from the socket's send buffer.
1077 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1078 gfp_t priority)
1080 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1081 struct sk_buff * skb = alloc_skb(size, priority);
1082 if (skb) {
1083 skb_set_owner_w(skb, sk);
1084 return skb;
1087 return NULL;
1091 * Allocate a skb from the socket's receive buffer.
1093 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1094 gfp_t priority)
1096 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1097 struct sk_buff *skb = alloc_skb(size, priority);
1098 if (skb) {
1099 skb_set_owner_r(skb, sk);
1100 return skb;
1103 return NULL;
1107 * Allocate a memory block from the socket's option memory buffer.
1109 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1111 if ((unsigned)size <= sysctl_optmem_max &&
1112 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1113 void *mem;
1114 /* First do the add, to avoid the race if kmalloc
1115 * might sleep.
1117 atomic_add(size, &sk->sk_omem_alloc);
1118 mem = kmalloc(size, priority);
1119 if (mem)
1120 return mem;
1121 atomic_sub(size, &sk->sk_omem_alloc);
1123 return NULL;
1127 * Free an option memory block.
1129 void sock_kfree_s(struct sock *sk, void *mem, int size)
1131 kfree(mem);
1132 atomic_sub(size, &sk->sk_omem_alloc);
1135 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1136 I think, these locks should be removed for datagram sockets.
1138 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1140 DEFINE_WAIT(wait);
1142 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1143 for (;;) {
1144 if (!timeo)
1145 break;
1146 if (signal_pending(current))
1147 break;
1148 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1149 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1150 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1151 break;
1152 if (sk->sk_shutdown & SEND_SHUTDOWN)
1153 break;
1154 if (sk->sk_err)
1155 break;
1156 timeo = schedule_timeout(timeo);
1158 finish_wait(sk->sk_sleep, &wait);
1159 return timeo;
1164 * Generic send/receive buffer handlers
1167 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1168 unsigned long header_len,
1169 unsigned long data_len,
1170 int noblock, int *errcode)
1172 struct sk_buff *skb;
1173 gfp_t gfp_mask;
1174 long timeo;
1175 int err;
1177 gfp_mask = sk->sk_allocation;
1178 if (gfp_mask & __GFP_WAIT)
1179 gfp_mask |= __GFP_REPEAT;
1181 timeo = sock_sndtimeo(sk, noblock);
1182 while (1) {
1183 err = sock_error(sk);
1184 if (err != 0)
1185 goto failure;
1187 err = -EPIPE;
1188 if (sk->sk_shutdown & SEND_SHUTDOWN)
1189 goto failure;
1191 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1192 skb = alloc_skb(header_len, gfp_mask);
1193 if (skb) {
1194 int npages;
1195 int i;
1197 /* No pages, we're done... */
1198 if (!data_len)
1199 break;
1201 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1202 skb->truesize += data_len;
1203 skb_shinfo(skb)->nr_frags = npages;
1204 for (i = 0; i < npages; i++) {
1205 struct page *page;
1206 skb_frag_t *frag;
1208 page = alloc_pages(sk->sk_allocation, 0);
1209 if (!page) {
1210 err = -ENOBUFS;
1211 skb_shinfo(skb)->nr_frags = i;
1212 kfree_skb(skb);
1213 goto failure;
1216 frag = &skb_shinfo(skb)->frags[i];
1217 frag->page = page;
1218 frag->page_offset = 0;
1219 frag->size = (data_len >= PAGE_SIZE ?
1220 PAGE_SIZE :
1221 data_len);
1222 data_len -= PAGE_SIZE;
1225 /* Full success... */
1226 break;
1228 err = -ENOBUFS;
1229 goto failure;
1231 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1232 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1233 err = -EAGAIN;
1234 if (!timeo)
1235 goto failure;
1236 if (signal_pending(current))
1237 goto interrupted;
1238 timeo = sock_wait_for_wmem(sk, timeo);
1241 skb_set_owner_w(skb, sk);
1242 return skb;
1244 interrupted:
1245 err = sock_intr_errno(timeo);
1246 failure:
1247 *errcode = err;
1248 return NULL;
1251 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1252 int noblock, int *errcode)
1254 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1257 static void __lock_sock(struct sock *sk)
1259 DEFINE_WAIT(wait);
1261 for (;;) {
1262 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1263 TASK_UNINTERRUPTIBLE);
1264 spin_unlock_bh(&sk->sk_lock.slock);
1265 schedule();
1266 spin_lock_bh(&sk->sk_lock.slock);
1267 if (!sock_owned_by_user(sk))
1268 break;
1270 finish_wait(&sk->sk_lock.wq, &wait);
1273 static void __release_sock(struct sock *sk)
1275 struct sk_buff *skb = sk->sk_backlog.head;
1277 do {
1278 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1279 bh_unlock_sock(sk);
1281 do {
1282 struct sk_buff *next = skb->next;
1284 skb->next = NULL;
1285 sk->sk_backlog_rcv(sk, skb);
1288 * We are in process context here with softirqs
1289 * disabled, use cond_resched_softirq() to preempt.
1290 * This is safe to do because we've taken the backlog
1291 * queue private:
1293 cond_resched_softirq();
1295 skb = next;
1296 } while (skb != NULL);
1298 bh_lock_sock(sk);
1299 } while ((skb = sk->sk_backlog.head) != NULL);
1303 * sk_wait_data - wait for data to arrive at sk_receive_queue
1304 * @sk: sock to wait on
1305 * @timeo: for how long
1307 * Now socket state including sk->sk_err is changed only under lock,
1308 * hence we may omit checks after joining wait queue.
1309 * We check receive queue before schedule() only as optimization;
1310 * it is very likely that release_sock() added new data.
1312 int sk_wait_data(struct sock *sk, long *timeo)
1314 int rc;
1315 DEFINE_WAIT(wait);
1317 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1318 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1319 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1320 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1321 finish_wait(sk->sk_sleep, &wait);
1322 return rc;
1325 EXPORT_SYMBOL(sk_wait_data);
1328 * Set of default routines for initialising struct proto_ops when
1329 * the protocol does not support a particular function. In certain
1330 * cases where it makes no sense for a protocol to have a "do nothing"
1331 * function, some default processing is provided.
1334 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1336 return -EOPNOTSUPP;
1339 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1340 int len, int flags)
1342 return -EOPNOTSUPP;
1345 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1347 return -EOPNOTSUPP;
1350 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1352 return -EOPNOTSUPP;
1355 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1356 int *len, int peer)
1358 return -EOPNOTSUPP;
1361 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1363 return 0;
1366 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1368 return -EOPNOTSUPP;
1371 int sock_no_listen(struct socket *sock, int backlog)
1373 return -EOPNOTSUPP;
1376 int sock_no_shutdown(struct socket *sock, int how)
1378 return -EOPNOTSUPP;
1381 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1382 char __user *optval, int optlen)
1384 return -EOPNOTSUPP;
1387 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1388 char __user *optval, int __user *optlen)
1390 return -EOPNOTSUPP;
1393 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1394 size_t len)
1396 return -EOPNOTSUPP;
1399 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1400 size_t len, int flags)
1402 return -EOPNOTSUPP;
1405 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1407 /* Mirror missing mmap method error code */
1408 return -ENODEV;
1411 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1413 ssize_t res;
1414 struct msghdr msg = {.msg_flags = flags};
1415 struct kvec iov;
1416 char *kaddr = kmap(page);
1417 iov.iov_base = kaddr + offset;
1418 iov.iov_len = size;
1419 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1420 kunmap(page);
1421 return res;
1425 * Default Socket Callbacks
1428 static void sock_def_wakeup(struct sock *sk)
1430 read_lock(&sk->sk_callback_lock);
1431 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1432 wake_up_interruptible_all(sk->sk_sleep);
1433 read_unlock(&sk->sk_callback_lock);
1436 static void sock_def_error_report(struct sock *sk)
1438 read_lock(&sk->sk_callback_lock);
1439 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1440 wake_up_interruptible(sk->sk_sleep);
1441 sk_wake_async(sk,0,POLL_ERR);
1442 read_unlock(&sk->sk_callback_lock);
1445 static void sock_def_readable(struct sock *sk, int len)
1447 read_lock(&sk->sk_callback_lock);
1448 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1449 wake_up_interruptible(sk->sk_sleep);
1450 sk_wake_async(sk,1,POLL_IN);
1451 read_unlock(&sk->sk_callback_lock);
1454 static void sock_def_write_space(struct sock *sk)
1456 read_lock(&sk->sk_callback_lock);
1458 /* Do not wake up a writer until he can make "significant"
1459 * progress. --DaveM
1461 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1462 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1463 wake_up_interruptible(sk->sk_sleep);
1465 /* Should agree with poll, otherwise some programs break */
1466 if (sock_writeable(sk))
1467 sk_wake_async(sk, 2, POLL_OUT);
1470 read_unlock(&sk->sk_callback_lock);
1473 static void sock_def_destruct(struct sock *sk)
1475 kfree(sk->sk_protinfo);
1478 void sk_send_sigurg(struct sock *sk)
1480 if (sk->sk_socket && sk->sk_socket->file)
1481 if (send_sigurg(&sk->sk_socket->file->f_owner))
1482 sk_wake_async(sk, 3, POLL_PRI);
1485 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1486 unsigned long expires)
1488 if (!mod_timer(timer, expires))
1489 sock_hold(sk);
1492 EXPORT_SYMBOL(sk_reset_timer);
1494 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1496 if (timer_pending(timer) && del_timer(timer))
1497 __sock_put(sk);
1500 EXPORT_SYMBOL(sk_stop_timer);
1502 void sock_init_data(struct socket *sock, struct sock *sk)
1504 skb_queue_head_init(&sk->sk_receive_queue);
1505 skb_queue_head_init(&sk->sk_write_queue);
1506 skb_queue_head_init(&sk->sk_error_queue);
1507 #ifdef CONFIG_NET_DMA
1508 skb_queue_head_init(&sk->sk_async_wait_queue);
1509 #endif
1511 sk->sk_send_head = NULL;
1513 init_timer(&sk->sk_timer);
1515 sk->sk_allocation = GFP_KERNEL;
1516 sk->sk_rcvbuf = sysctl_rmem_default;
1517 sk->sk_sndbuf = sysctl_wmem_default;
1518 sk->sk_state = TCP_CLOSE;
1519 sk->sk_socket = sock;
1521 sock_set_flag(sk, SOCK_ZAPPED);
1523 if (sock) {
1524 sk->sk_type = sock->type;
1525 sk->sk_sleep = &sock->wait;
1526 sock->sk = sk;
1527 } else
1528 sk->sk_sleep = NULL;
1530 rwlock_init(&sk->sk_dst_lock);
1531 rwlock_init(&sk->sk_callback_lock);
1532 lockdep_set_class(&sk->sk_callback_lock,
1533 af_callback_keys + sk->sk_family);
1535 sk->sk_state_change = sock_def_wakeup;
1536 sk->sk_data_ready = sock_def_readable;
1537 sk->sk_write_space = sock_def_write_space;
1538 sk->sk_error_report = sock_def_error_report;
1539 sk->sk_destruct = sock_def_destruct;
1541 sk->sk_sndmsg_page = NULL;
1542 sk->sk_sndmsg_off = 0;
1544 sk->sk_peercred.pid = 0;
1545 sk->sk_peercred.uid = -1;
1546 sk->sk_peercred.gid = -1;
1547 sk->sk_write_pending = 0;
1548 sk->sk_rcvlowat = 1;
1549 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1550 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1552 sk->sk_stamp = ktime_set(-1L, -1L);
1554 atomic_set(&sk->sk_refcnt, 1);
1557 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1559 might_sleep();
1560 spin_lock_bh(&sk->sk_lock.slock);
1561 if (sk->sk_lock.owner)
1562 __lock_sock(sk);
1563 sk->sk_lock.owner = (void *)1;
1564 spin_unlock(&sk->sk_lock.slock);
1566 * The sk_lock has mutex_lock() semantics here:
1568 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1569 local_bh_enable();
1572 EXPORT_SYMBOL(lock_sock_nested);
1574 void fastcall release_sock(struct sock *sk)
1577 * The sk_lock has mutex_unlock() semantics:
1579 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1581 spin_lock_bh(&sk->sk_lock.slock);
1582 if (sk->sk_backlog.tail)
1583 __release_sock(sk);
1584 sk->sk_lock.owner = NULL;
1585 if (waitqueue_active(&sk->sk_lock.wq))
1586 wake_up(&sk->sk_lock.wq);
1587 spin_unlock_bh(&sk->sk_lock.slock);
1589 EXPORT_SYMBOL(release_sock);
1591 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1593 struct timeval tv;
1594 if (!sock_flag(sk, SOCK_TIMESTAMP))
1595 sock_enable_timestamp(sk);
1596 tv = ktime_to_timeval(sk->sk_stamp);
1597 if (tv.tv_sec == -1)
1598 return -ENOENT;
1599 if (tv.tv_sec == 0) {
1600 sk->sk_stamp = ktime_get_real();
1601 tv = ktime_to_timeval(sk->sk_stamp);
1603 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1605 EXPORT_SYMBOL(sock_get_timestamp);
1607 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1609 struct timespec ts;
1610 if (!sock_flag(sk, SOCK_TIMESTAMP))
1611 sock_enable_timestamp(sk);
1612 ts = ktime_to_timespec(sk->sk_stamp);
1613 if (ts.tv_sec == -1)
1614 return -ENOENT;
1615 if (ts.tv_sec == 0) {
1616 sk->sk_stamp = ktime_get_real();
1617 ts = ktime_to_timespec(sk->sk_stamp);
1619 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1621 EXPORT_SYMBOL(sock_get_timestampns);
1623 void sock_enable_timestamp(struct sock *sk)
1625 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1626 sock_set_flag(sk, SOCK_TIMESTAMP);
1627 net_enable_timestamp();
1630 EXPORT_SYMBOL(sock_enable_timestamp);
1633 * Get a socket option on an socket.
1635 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1636 * asynchronous errors should be reported by getsockopt. We assume
1637 * this means if you specify SO_ERROR (otherwise whats the point of it).
1639 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1640 char __user *optval, int __user *optlen)
1642 struct sock *sk = sock->sk;
1644 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1647 EXPORT_SYMBOL(sock_common_getsockopt);
1649 #ifdef CONFIG_COMPAT
1650 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1651 char __user *optval, int __user *optlen)
1653 struct sock *sk = sock->sk;
1655 if (sk->sk_prot->compat_getsockopt != NULL)
1656 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1657 optval, optlen);
1658 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1660 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1661 #endif
1663 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1664 struct msghdr *msg, size_t size, int flags)
1666 struct sock *sk = sock->sk;
1667 int addr_len = 0;
1668 int err;
1670 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1671 flags & ~MSG_DONTWAIT, &addr_len);
1672 if (err >= 0)
1673 msg->msg_namelen = addr_len;
1674 return err;
1677 EXPORT_SYMBOL(sock_common_recvmsg);
1680 * Set socket options on an inet socket.
1682 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1683 char __user *optval, int optlen)
1685 struct sock *sk = sock->sk;
1687 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1690 EXPORT_SYMBOL(sock_common_setsockopt);
1692 #ifdef CONFIG_COMPAT
1693 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1694 char __user *optval, int optlen)
1696 struct sock *sk = sock->sk;
1698 if (sk->sk_prot->compat_setsockopt != NULL)
1699 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1700 optval, optlen);
1701 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1703 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1704 #endif
1706 void sk_common_release(struct sock *sk)
1708 if (sk->sk_prot->destroy)
1709 sk->sk_prot->destroy(sk);
1712 * Observation: when sock_common_release is called, processes have
1713 * no access to socket. But net still has.
1714 * Step one, detach it from networking:
1716 * A. Remove from hash tables.
1719 sk->sk_prot->unhash(sk);
1722 * In this point socket cannot receive new packets, but it is possible
1723 * that some packets are in flight because some CPU runs receiver and
1724 * did hash table lookup before we unhashed socket. They will achieve
1725 * receive queue and will be purged by socket destructor.
1727 * Also we still have packets pending on receive queue and probably,
1728 * our own packets waiting in device queues. sock_destroy will drain
1729 * receive queue, but transmitted packets will delay socket destruction
1730 * until the last reference will be released.
1733 sock_orphan(sk);
1735 xfrm_sk_free_policy(sk);
1737 sk_refcnt_debug_release(sk);
1738 sock_put(sk);
1741 EXPORT_SYMBOL(sk_common_release);
1743 static DEFINE_RWLOCK(proto_list_lock);
1744 static LIST_HEAD(proto_list);
1746 int proto_register(struct proto *prot, int alloc_slab)
1748 char *request_sock_slab_name = NULL;
1749 char *timewait_sock_slab_name;
1750 int rc = -ENOBUFS;
1752 if (alloc_slab) {
1753 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1754 SLAB_HWCACHE_ALIGN, NULL, NULL);
1756 if (prot->slab == NULL) {
1757 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1758 prot->name);
1759 goto out;
1762 if (prot->rsk_prot != NULL) {
1763 static const char mask[] = "request_sock_%s";
1765 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1766 if (request_sock_slab_name == NULL)
1767 goto out_free_sock_slab;
1769 sprintf(request_sock_slab_name, mask, prot->name);
1770 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1771 prot->rsk_prot->obj_size, 0,
1772 SLAB_HWCACHE_ALIGN, NULL, NULL);
1774 if (prot->rsk_prot->slab == NULL) {
1775 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1776 prot->name);
1777 goto out_free_request_sock_slab_name;
1781 if (prot->twsk_prot != NULL) {
1782 static const char mask[] = "tw_sock_%s";
1784 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1786 if (timewait_sock_slab_name == NULL)
1787 goto out_free_request_sock_slab;
1789 sprintf(timewait_sock_slab_name, mask, prot->name);
1790 prot->twsk_prot->twsk_slab =
1791 kmem_cache_create(timewait_sock_slab_name,
1792 prot->twsk_prot->twsk_obj_size,
1793 0, SLAB_HWCACHE_ALIGN,
1794 NULL, NULL);
1795 if (prot->twsk_prot->twsk_slab == NULL)
1796 goto out_free_timewait_sock_slab_name;
1800 write_lock(&proto_list_lock);
1801 list_add(&prot->node, &proto_list);
1802 write_unlock(&proto_list_lock);
1803 rc = 0;
1804 out:
1805 return rc;
1806 out_free_timewait_sock_slab_name:
1807 kfree(timewait_sock_slab_name);
1808 out_free_request_sock_slab:
1809 if (prot->rsk_prot && prot->rsk_prot->slab) {
1810 kmem_cache_destroy(prot->rsk_prot->slab);
1811 prot->rsk_prot->slab = NULL;
1813 out_free_request_sock_slab_name:
1814 kfree(request_sock_slab_name);
1815 out_free_sock_slab:
1816 kmem_cache_destroy(prot->slab);
1817 prot->slab = NULL;
1818 goto out;
1821 EXPORT_SYMBOL(proto_register);
1823 void proto_unregister(struct proto *prot)
1825 write_lock(&proto_list_lock);
1826 list_del(&prot->node);
1827 write_unlock(&proto_list_lock);
1829 if (prot->slab != NULL) {
1830 kmem_cache_destroy(prot->slab);
1831 prot->slab = NULL;
1834 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1835 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1837 kmem_cache_destroy(prot->rsk_prot->slab);
1838 kfree(name);
1839 prot->rsk_prot->slab = NULL;
1842 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1843 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1845 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1846 kfree(name);
1847 prot->twsk_prot->twsk_slab = NULL;
1851 EXPORT_SYMBOL(proto_unregister);
1853 #ifdef CONFIG_PROC_FS
1854 static inline struct proto *__proto_head(void)
1856 return list_entry(proto_list.next, struct proto, node);
1859 static inline struct proto *proto_head(void)
1861 return list_empty(&proto_list) ? NULL : __proto_head();
1864 static inline struct proto *proto_next(struct proto *proto)
1866 return proto->node.next == &proto_list ? NULL :
1867 list_entry(proto->node.next, struct proto, node);
1870 static inline struct proto *proto_get_idx(loff_t pos)
1872 struct proto *proto;
1873 loff_t i = 0;
1875 list_for_each_entry(proto, &proto_list, node)
1876 if (i++ == pos)
1877 goto out;
1879 proto = NULL;
1880 out:
1881 return proto;
1884 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1886 read_lock(&proto_list_lock);
1887 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1890 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1892 ++*pos;
1893 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1896 static void proto_seq_stop(struct seq_file *seq, void *v)
1898 read_unlock(&proto_list_lock);
1901 static char proto_method_implemented(const void *method)
1903 return method == NULL ? 'n' : 'y';
1906 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1908 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1909 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1910 proto->name,
1911 proto->obj_size,
1912 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1913 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1914 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1915 proto->max_header,
1916 proto->slab == NULL ? "no" : "yes",
1917 module_name(proto->owner),
1918 proto_method_implemented(proto->close),
1919 proto_method_implemented(proto->connect),
1920 proto_method_implemented(proto->disconnect),
1921 proto_method_implemented(proto->accept),
1922 proto_method_implemented(proto->ioctl),
1923 proto_method_implemented(proto->init),
1924 proto_method_implemented(proto->destroy),
1925 proto_method_implemented(proto->shutdown),
1926 proto_method_implemented(proto->setsockopt),
1927 proto_method_implemented(proto->getsockopt),
1928 proto_method_implemented(proto->sendmsg),
1929 proto_method_implemented(proto->recvmsg),
1930 proto_method_implemented(proto->sendpage),
1931 proto_method_implemented(proto->bind),
1932 proto_method_implemented(proto->backlog_rcv),
1933 proto_method_implemented(proto->hash),
1934 proto_method_implemented(proto->unhash),
1935 proto_method_implemented(proto->get_port),
1936 proto_method_implemented(proto->enter_memory_pressure));
1939 static int proto_seq_show(struct seq_file *seq, void *v)
1941 if (v == SEQ_START_TOKEN)
1942 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1943 "protocol",
1944 "size",
1945 "sockets",
1946 "memory",
1947 "press",
1948 "maxhdr",
1949 "slab",
1950 "module",
1951 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1952 else
1953 proto_seq_printf(seq, v);
1954 return 0;
1957 static const struct seq_operations proto_seq_ops = {
1958 .start = proto_seq_start,
1959 .next = proto_seq_next,
1960 .stop = proto_seq_stop,
1961 .show = proto_seq_show,
1964 static int proto_seq_open(struct inode *inode, struct file *file)
1966 return seq_open(file, &proto_seq_ops);
1969 static const struct file_operations proto_seq_fops = {
1970 .owner = THIS_MODULE,
1971 .open = proto_seq_open,
1972 .read = seq_read,
1973 .llseek = seq_lseek,
1974 .release = seq_release,
1977 static int __init proto_init(void)
1979 /* register /proc/net/protocols */
1980 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1983 subsys_initcall(proto_init);
1985 #endif /* PROC_FS */
1987 EXPORT_SYMBOL(sk_alloc);
1988 EXPORT_SYMBOL(sk_free);
1989 EXPORT_SYMBOL(sk_send_sigurg);
1990 EXPORT_SYMBOL(sock_alloc_send_skb);
1991 EXPORT_SYMBOL(sock_init_data);
1992 EXPORT_SYMBOL(sock_kfree_s);
1993 EXPORT_SYMBOL(sock_kmalloc);
1994 EXPORT_SYMBOL(sock_no_accept);
1995 EXPORT_SYMBOL(sock_no_bind);
1996 EXPORT_SYMBOL(sock_no_connect);
1997 EXPORT_SYMBOL(sock_no_getname);
1998 EXPORT_SYMBOL(sock_no_getsockopt);
1999 EXPORT_SYMBOL(sock_no_ioctl);
2000 EXPORT_SYMBOL(sock_no_listen);
2001 EXPORT_SYMBOL(sock_no_mmap);
2002 EXPORT_SYMBOL(sock_no_poll);
2003 EXPORT_SYMBOL(sock_no_recvmsg);
2004 EXPORT_SYMBOL(sock_no_sendmsg);
2005 EXPORT_SYMBOL(sock_no_sendpage);
2006 EXPORT_SYMBOL(sock_no_setsockopt);
2007 EXPORT_SYMBOL(sock_no_shutdown);
2008 EXPORT_SYMBOL(sock_no_socketpair);
2009 EXPORT_SYMBOL(sock_rfree);
2010 EXPORT_SYMBOL(sock_setsockopt);
2011 EXPORT_SYMBOL(sock_wfree);
2012 EXPORT_SYMBOL(sock_wmalloc);
2013 EXPORT_SYMBOL(sock_i_uid);
2014 EXPORT_SYMBOL(sock_i_ino);
2015 EXPORT_SYMBOL(sysctl_optmem_max);
2016 #ifdef CONFIG_SYSCTL
2017 EXPORT_SYMBOL(sysctl_rmem_max);
2018 EXPORT_SYMBOL(sysctl_wmem_max);
2019 #endif