net: Update kernel-doc for netif_set_real_num_rx_queues()
[linux-2.6/cjktty.git] / net / core / dev.c
blob4962c8afd606f6bca3efe043c1e264b43f5e7434
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
134 #include "net-sysfs.h"
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 static inline void rps_lock(struct softnet_data *sd)
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
217 static inline void rps_unlock(struct softnet_data *sd)
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
229 ASSERT_RTNL();
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
243 static void unlist_netdevice(struct net_device *dev)
245 ASSERT_RTNL();
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
256 * Our notifier list
259 static RAW_NOTIFIER_HEAD(netdev_chain);
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
269 #ifdef CONFIG_LOCKDEP
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE};
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"};
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 int i;
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
327 int i;
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 int i;
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 #endif
353 /*******************************************************************************
355 Protocol management and registration routines
357 *******************************************************************************/
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all;
379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
396 void dev_add_pack(struct packet_type *pt)
398 struct list_head *head = ptype_head(pt);
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
404 EXPORT_SYMBOL(dev_add_pack);
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
419 void __dev_remove_pack(struct packet_type *pt)
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
424 spin_lock(&ptype_lock);
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
437 EXPORT_SYMBOL(__dev_remove_pack);
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
451 void dev_remove_pack(struct packet_type *pt)
453 __dev_remove_pack(pt);
455 synchronize_net();
457 EXPORT_SYMBOL(dev_remove_pack);
459 /******************************************************************************
461 Device Boot-time Settings Routines
463 *******************************************************************************/
465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device
471 * @map: configured settings for the device
473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices.
477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
479 struct netdev_boot_setup *s;
480 int i;
482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break;
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice
499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are.
504 int netdev_boot_setup_check(struct net_device *dev)
506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i;
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end;
516 return 1;
519 return 0;
521 EXPORT_SYMBOL(netdev_boot_setup_check);
525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device
527 * @unit: id for network device
529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used
531 * later in the device probing.
532 * Returns 0 if no settings found.
534 unsigned long netdev_boot_base(const char *prefix, int unit)
536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ];
538 int i;
540 sprintf(name, "%s%d", prefix, unit);
543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface
546 if (__dev_get_by_name(&init_net, name))
547 return 1;
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr;
552 return 0;
556 * Saves at boot time configured settings for any netdevice.
558 int __init netdev_boot_setup(char *str)
560 int ints[5];
561 struct ifmap map;
563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str)
565 return 0;
567 /* Save settings */
568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0)
570 map.irq = ints[1];
571 if (ints[0] > 1)
572 map.base_addr = ints[2];
573 if (ints[0] > 2)
574 map.mem_start = ints[3];
575 if (ints[0] > 3)
576 map.mem_end = ints[4];
578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map);
582 __setup("netdev=", netdev_boot_setup);
584 /*******************************************************************************
586 Device Interface Subroutines
588 *******************************************************************************/
591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace
593 * @name: name to find
595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be
599 * careful with locks.
602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
604 struct hlist_node *p;
605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name);
608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev;
612 return NULL;
614 EXPORT_SYMBOL(__dev_get_by_name);
617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace
619 * @name: name to find
621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock.
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
630 struct hlist_node *p;
631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name);
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev;
638 return NULL;
640 EXPORT_SYMBOL(dev_get_by_name_rcu);
643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace
645 * @name: name to find
647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found.
654 struct net_device *dev_get_by_name(struct net *net, const char *name)
656 struct net_device *dev;
658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name);
660 if (dev)
661 dev_hold(dev);
662 rcu_read_unlock();
663 return dev;
665 EXPORT_SYMBOL(dev_get_by_name);
668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace
670 * @ifindex: index of device
672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock.
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
681 struct hlist_node *p;
682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex);
685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex)
687 return dev;
689 return NULL;
691 EXPORT_SYMBOL(__dev_get_by_index);
694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace
696 * @ifindex: index of device
698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock.
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
706 struct hlist_node *p;
707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex);
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex)
712 return dev;
714 return NULL;
716 EXPORT_SYMBOL(dev_get_by_index_rcu);
720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace
722 * @ifindex: index of device
724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
732 struct net_device *dev;
734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev)
737 dev_hold(dev);
738 rcu_read_unlock();
739 return dev;
741 EXPORT_SYMBOL(dev_get_by_index);
744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace
746 * @type: media type of device
747 * @ha: hardware address
749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking
754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
760 struct net_device *dev;
762 ASSERT_RTNL();
764 for_each_netdev(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
769 return NULL;
771 EXPORT_SYMBOL(dev_getbyhwaddr);
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 struct net_device *dev;
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
782 return NULL;
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 struct net_device *dev, *ret = NULL;
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
797 rcu_read_unlock();
798 return ret;
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
816 struct net_device *dev, *ret;
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
825 return ret;
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
837 int dev_valid_name(const char *name)
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
851 return 1;
853 EXPORT_SYMBOL(dev_valid_name);
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
918 return -ENFILE;
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
935 int dev_alloc_name(struct net_device *dev, const char *name)
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
948 EXPORT_SYMBOL(dev_alloc_name);
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 struct net *net;
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
957 if (!dev_valid_name(name))
958 return -EINVAL;
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
967 return 0;
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
978 int dev_change_name(struct net_device *dev, const char *newname)
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
995 memcpy(oldname, dev->name, IFNAMSIZ);
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1012 synchronize_rcu();
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1034 return err;
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1043 * Set ifalias for a device,
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 ASSERT_RTNL();
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1057 return 0;
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1073 * Called to indicate a device has changed features.
1075 void netdev_features_change(struct net_device *dev)
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 EXPORT_SYMBOL(netdev_features_change);
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1089 void netdev_state_change(struct net_device *dev)
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 EXPORT_SYMBOL(netdev_state_change);
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 return call_netdevice_notifiers(event, dev);
1102 EXPORT_SYMBOL(netdev_bonding_change);
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1114 void dev_load(struct net *net, const char *name)
1116 struct net_device *dev;
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1125 EXPORT_SYMBOL(dev_load);
1127 static int __dev_open(struct net_device *dev)
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1132 ASSERT_RTNL();
1135 * Is it even present?
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1146 * Call device private open method
1148 set_bit(__LINK_STATE_START, &dev->state);
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1157 * If it went open OK then:
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1164 * Set the flags.
1166 dev->flags |= IFF_UP;
1169 * Enable NET_DMA
1171 net_dmaengine_get();
1174 * Initialize multicasting status
1176 dev_set_rx_mode(dev);
1179 * Wakeup transmit queue engine
1181 dev_activate(dev);
1184 return ret;
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1199 int dev_open(struct net_device *dev)
1201 int ret;
1204 * Is it already up?
1206 if (dev->flags & IFF_UP)
1207 return 0;
1210 * Open device
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1217 * ... and announce new interface.
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1222 return ret;
1224 EXPORT_SYMBOL(dev_open);
1226 static int __dev_close(struct net_device *dev)
1228 const struct net_device_ops *ops = dev->netdev_ops;
1230 ASSERT_RTNL();
1231 might_sleep();
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239 clear_bit(__LINK_STATE_START, &dev->state);
1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running().
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249 dev_deactivate(dev);
1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP
1255 * We allow it to be called even after a DETACH hot-plug
1256 * event.
1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev);
1262 * Device is now down.
1265 dev->flags &= ~IFF_UP;
1268 * Shutdown NET_DMA
1270 net_dmaengine_put();
1272 return 0;
1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown
1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain.
1284 int dev_close(struct net_device *dev)
1286 if (!(dev->flags & IFF_UP))
1287 return 0;
1289 __dev_close(dev);
1292 * Tell people we are down
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1297 return 0;
1299 EXPORT_SYMBOL(dev_close);
1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device
1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface.
1310 void dev_disable_lro(struct net_device *dev)
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags);
1320 WARN_ON(dev->features & NETIF_F_LRO);
1322 EXPORT_SYMBOL(dev_disable_lro);
1325 static int dev_boot_phase = 1;
1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world.
1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier
1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure.
1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list.
1346 int register_netdevice_notifier(struct notifier_block *nb)
1348 struct net_device *dev;
1349 struct net_device *last;
1350 struct net *net;
1351 int err;
1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err)
1356 goto unlock;
1357 if (dev_boot_phase)
1358 goto unlock;
1359 for_each_net(net) {
1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err);
1363 if (err)
1364 goto rollback;
1366 if (!(dev->flags & IFF_UP))
1367 continue;
1369 nb->notifier_call(nb, NETDEV_UP, dev);
1373 unlock:
1374 rtnl_unlock();
1375 return err;
1377 rollback:
1378 last = dev;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 if (dev == last)
1382 break;
1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock;
1396 EXPORT_SYMBOL(register_netdevice_notifier);
1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier
1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure.
1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1410 int err;
1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock();
1415 return err;
1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function
1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain().
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1437 void net_enable_timestamp(void)
1439 atomic_inc(&netstamp_needed);
1441 EXPORT_SYMBOL(net_enable_timestamp);
1443 void net_disable_timestamp(void)
1445 atomic_dec(&netstamp_needed);
1447 EXPORT_SYMBOL(net_disable_timestamp);
1449 static inline void net_timestamp_set(struct sk_buff *skb)
1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb);
1453 else
1454 skb->tstamp.tv64 = 0;
1457 static inline void net_timestamp_check(struct sk_buff *skb)
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1464 * dev_forward_skb - loopback an skb to another netif
1466 * @dev: destination network device
1467 * @skb: buffer to forward
1469 * return values:
1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed)
1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue
1475 * of another device.
1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation.
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483 skb_orphan(skb);
1484 nf_reset(skb);
1486 if (unlikely(!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len)))) {
1488 atomic_long_inc(&dev->rx_dropped);
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 struct packet_type *ptype;
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512 #else
1513 net_timestamp_set(skb);
1514 #endif
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1532 skb_reset_mac_header(skb2);
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 rcu_read_unlock();
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1556 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1558 unsigned int real_num = dev->real_num_tx_queues;
1560 if (unlikely(txq > dev->num_tx_queues))
1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq);
1569 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1571 #ifdef CONFIG_RPS
1573 * netif_set_real_num_rx_queues - set actual number of RX queues used
1574 * @dev: Network device
1575 * @rxq: Actual number of RX queues
1577 * This must be called either with the rtnl_lock held or before
1578 * registration of the net device. Returns 0 on success, or a
1579 * negative error code. If called before registration, it always
1580 * succeeds.
1582 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1584 int rc;
1586 if (dev->reg_state == NETREG_REGISTERED) {
1587 ASSERT_RTNL();
1589 if (rxq > dev->num_rx_queues)
1590 return -EINVAL;
1592 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1593 rxq);
1594 if (rc)
1595 return rc;
1598 dev->real_num_rx_queues = rxq;
1599 return 0;
1601 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1602 #endif
1604 static inline void __netif_reschedule(struct Qdisc *q)
1606 struct softnet_data *sd;
1607 unsigned long flags;
1609 local_irq_save(flags);
1610 sd = &__get_cpu_var(softnet_data);
1611 q->next_sched = NULL;
1612 *sd->output_queue_tailp = q;
1613 sd->output_queue_tailp = &q->next_sched;
1614 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1615 local_irq_restore(flags);
1618 void __netif_schedule(struct Qdisc *q)
1620 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1621 __netif_reschedule(q);
1623 EXPORT_SYMBOL(__netif_schedule);
1625 void dev_kfree_skb_irq(struct sk_buff *skb)
1627 if (atomic_dec_and_test(&skb->users)) {
1628 struct softnet_data *sd;
1629 unsigned long flags;
1631 local_irq_save(flags);
1632 sd = &__get_cpu_var(softnet_data);
1633 skb->next = sd->completion_queue;
1634 sd->completion_queue = skb;
1635 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1636 local_irq_restore(flags);
1639 EXPORT_SYMBOL(dev_kfree_skb_irq);
1641 void dev_kfree_skb_any(struct sk_buff *skb)
1643 if (in_irq() || irqs_disabled())
1644 dev_kfree_skb_irq(skb);
1645 else
1646 dev_kfree_skb(skb);
1648 EXPORT_SYMBOL(dev_kfree_skb_any);
1652 * netif_device_detach - mark device as removed
1653 * @dev: network device
1655 * Mark device as removed from system and therefore no longer available.
1657 void netif_device_detach(struct net_device *dev)
1659 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1660 netif_running(dev)) {
1661 netif_tx_stop_all_queues(dev);
1664 EXPORT_SYMBOL(netif_device_detach);
1667 * netif_device_attach - mark device as attached
1668 * @dev: network device
1670 * Mark device as attached from system and restart if needed.
1672 void netif_device_attach(struct net_device *dev)
1674 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1675 netif_running(dev)) {
1676 netif_tx_wake_all_queues(dev);
1677 __netdev_watchdog_up(dev);
1680 EXPORT_SYMBOL(netif_device_attach);
1682 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1684 return ((features & NETIF_F_GEN_CSUM) ||
1685 ((features & NETIF_F_IP_CSUM) &&
1686 protocol == htons(ETH_P_IP)) ||
1687 ((features & NETIF_F_IPV6_CSUM) &&
1688 protocol == htons(ETH_P_IPV6)) ||
1689 ((features & NETIF_F_FCOE_CRC) &&
1690 protocol == htons(ETH_P_FCOE)));
1693 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1695 if (can_checksum_protocol(dev->features, skb->protocol))
1696 return true;
1698 if (skb->protocol == htons(ETH_P_8021Q)) {
1699 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1700 if (can_checksum_protocol(dev->features & dev->vlan_features,
1701 veh->h_vlan_encapsulated_proto))
1702 return true;
1705 return false;
1709 * skb_dev_set -- assign a new device to a buffer
1710 * @skb: buffer for the new device
1711 * @dev: network device
1713 * If an skb is owned by a device already, we have to reset
1714 * all data private to the namespace a device belongs to
1715 * before assigning it a new device.
1717 #ifdef CONFIG_NET_NS
1718 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1720 skb_dst_drop(skb);
1721 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1722 secpath_reset(skb);
1723 nf_reset(skb);
1724 skb_init_secmark(skb);
1725 skb->mark = 0;
1726 skb->priority = 0;
1727 skb->nf_trace = 0;
1728 skb->ipvs_property = 0;
1729 #ifdef CONFIG_NET_SCHED
1730 skb->tc_index = 0;
1731 #endif
1733 skb->dev = dev;
1735 EXPORT_SYMBOL(skb_set_dev);
1736 #endif /* CONFIG_NET_NS */
1739 * Invalidate hardware checksum when packet is to be mangled, and
1740 * complete checksum manually on outgoing path.
1742 int skb_checksum_help(struct sk_buff *skb)
1744 __wsum csum;
1745 int ret = 0, offset;
1747 if (skb->ip_summed == CHECKSUM_COMPLETE)
1748 goto out_set_summed;
1750 if (unlikely(skb_shinfo(skb)->gso_size)) {
1751 /* Let GSO fix up the checksum. */
1752 goto out_set_summed;
1755 offset = skb->csum_start - skb_headroom(skb);
1756 BUG_ON(offset >= skb_headlen(skb));
1757 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1759 offset += skb->csum_offset;
1760 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1762 if (skb_cloned(skb) &&
1763 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1764 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1765 if (ret)
1766 goto out;
1769 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1770 out_set_summed:
1771 skb->ip_summed = CHECKSUM_NONE;
1772 out:
1773 return ret;
1775 EXPORT_SYMBOL(skb_checksum_help);
1778 * skb_gso_segment - Perform segmentation on skb.
1779 * @skb: buffer to segment
1780 * @features: features for the output path (see dev->features)
1782 * This function segments the given skb and returns a list of segments.
1784 * It may return NULL if the skb requires no segmentation. This is
1785 * only possible when GSO is used for verifying header integrity.
1787 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1789 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1790 struct packet_type *ptype;
1791 __be16 type = skb->protocol;
1792 int err;
1794 skb_reset_mac_header(skb);
1795 skb->mac_len = skb->network_header - skb->mac_header;
1796 __skb_pull(skb, skb->mac_len);
1798 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1799 struct net_device *dev = skb->dev;
1800 struct ethtool_drvinfo info = {};
1802 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1803 dev->ethtool_ops->get_drvinfo(dev, &info);
1805 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1806 "ip_summed=%d",
1807 info.driver, dev ? dev->features : 0L,
1808 skb->sk ? skb->sk->sk_route_caps : 0L,
1809 skb->len, skb->data_len, skb->ip_summed);
1811 if (skb_header_cloned(skb) &&
1812 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1813 return ERR_PTR(err);
1816 rcu_read_lock();
1817 list_for_each_entry_rcu(ptype,
1818 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1819 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1820 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1821 err = ptype->gso_send_check(skb);
1822 segs = ERR_PTR(err);
1823 if (err || skb_gso_ok(skb, features))
1824 break;
1825 __skb_push(skb, (skb->data -
1826 skb_network_header(skb)));
1828 segs = ptype->gso_segment(skb, features);
1829 break;
1832 rcu_read_unlock();
1834 __skb_push(skb, skb->data - skb_mac_header(skb));
1836 return segs;
1838 EXPORT_SYMBOL(skb_gso_segment);
1840 /* Take action when hardware reception checksum errors are detected. */
1841 #ifdef CONFIG_BUG
1842 void netdev_rx_csum_fault(struct net_device *dev)
1844 if (net_ratelimit()) {
1845 printk(KERN_ERR "%s: hw csum failure.\n",
1846 dev ? dev->name : "<unknown>");
1847 dump_stack();
1850 EXPORT_SYMBOL(netdev_rx_csum_fault);
1851 #endif
1853 /* Actually, we should eliminate this check as soon as we know, that:
1854 * 1. IOMMU is present and allows to map all the memory.
1855 * 2. No high memory really exists on this machine.
1858 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1860 #ifdef CONFIG_HIGHMEM
1861 int i;
1862 if (!(dev->features & NETIF_F_HIGHDMA)) {
1863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1864 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1865 return 1;
1868 if (PCI_DMA_BUS_IS_PHYS) {
1869 struct device *pdev = dev->dev.parent;
1871 if (!pdev)
1872 return 0;
1873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1874 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1875 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1876 return 1;
1879 #endif
1880 return 0;
1883 struct dev_gso_cb {
1884 void (*destructor)(struct sk_buff *skb);
1887 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1889 static void dev_gso_skb_destructor(struct sk_buff *skb)
1891 struct dev_gso_cb *cb;
1893 do {
1894 struct sk_buff *nskb = skb->next;
1896 skb->next = nskb->next;
1897 nskb->next = NULL;
1898 kfree_skb(nskb);
1899 } while (skb->next);
1901 cb = DEV_GSO_CB(skb);
1902 if (cb->destructor)
1903 cb->destructor(skb);
1907 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1908 * @skb: buffer to segment
1910 * This function segments the given skb and stores the list of segments
1911 * in skb->next.
1913 static int dev_gso_segment(struct sk_buff *skb)
1915 struct net_device *dev = skb->dev;
1916 struct sk_buff *segs;
1917 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1918 NETIF_F_SG : 0);
1920 segs = skb_gso_segment(skb, features);
1922 /* Verifying header integrity only. */
1923 if (!segs)
1924 return 0;
1926 if (IS_ERR(segs))
1927 return PTR_ERR(segs);
1929 skb->next = segs;
1930 DEV_GSO_CB(skb)->destructor = skb->destructor;
1931 skb->destructor = dev_gso_skb_destructor;
1933 return 0;
1937 * Try to orphan skb early, right before transmission by the device.
1938 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1939 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1941 static inline void skb_orphan_try(struct sk_buff *skb)
1943 struct sock *sk = skb->sk;
1945 if (sk && !skb_shinfo(skb)->tx_flags) {
1946 /* skb_tx_hash() wont be able to get sk.
1947 * We copy sk_hash into skb->rxhash
1949 if (!skb->rxhash)
1950 skb->rxhash = sk->sk_hash;
1951 skb_orphan(skb);
1956 * Returns true if either:
1957 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1958 * 2. skb is fragmented and the device does not support SG, or if
1959 * at least one of fragments is in highmem and device does not
1960 * support DMA from it.
1962 static inline int skb_needs_linearize(struct sk_buff *skb,
1963 struct net_device *dev)
1965 return skb_is_nonlinear(skb) &&
1966 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1967 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1968 illegal_highdma(dev, skb))));
1971 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1972 struct netdev_queue *txq)
1974 const struct net_device_ops *ops = dev->netdev_ops;
1975 int rc = NETDEV_TX_OK;
1977 if (likely(!skb->next)) {
1978 if (!list_empty(&ptype_all))
1979 dev_queue_xmit_nit(skb, dev);
1982 * If device doesnt need skb->dst, release it right now while
1983 * its hot in this cpu cache
1985 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1986 skb_dst_drop(skb);
1988 skb_orphan_try(skb);
1990 if (netif_needs_gso(dev, skb)) {
1991 if (unlikely(dev_gso_segment(skb)))
1992 goto out_kfree_skb;
1993 if (skb->next)
1994 goto gso;
1995 } else {
1996 if (skb_needs_linearize(skb, dev) &&
1997 __skb_linearize(skb))
1998 goto out_kfree_skb;
2000 /* If packet is not checksummed and device does not
2001 * support checksumming for this protocol, complete
2002 * checksumming here.
2004 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2005 skb_set_transport_header(skb, skb->csum_start -
2006 skb_headroom(skb));
2007 if (!dev_can_checksum(dev, skb) &&
2008 skb_checksum_help(skb))
2009 goto out_kfree_skb;
2013 rc = ops->ndo_start_xmit(skb, dev);
2014 if (rc == NETDEV_TX_OK)
2015 txq_trans_update(txq);
2016 return rc;
2019 gso:
2020 do {
2021 struct sk_buff *nskb = skb->next;
2023 skb->next = nskb->next;
2024 nskb->next = NULL;
2027 * If device doesnt need nskb->dst, release it right now while
2028 * its hot in this cpu cache
2030 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2031 skb_dst_drop(nskb);
2033 rc = ops->ndo_start_xmit(nskb, dev);
2034 if (unlikely(rc != NETDEV_TX_OK)) {
2035 if (rc & ~NETDEV_TX_MASK)
2036 goto out_kfree_gso_skb;
2037 nskb->next = skb->next;
2038 skb->next = nskb;
2039 return rc;
2041 txq_trans_update(txq);
2042 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2043 return NETDEV_TX_BUSY;
2044 } while (skb->next);
2046 out_kfree_gso_skb:
2047 if (likely(skb->next == NULL))
2048 skb->destructor = DEV_GSO_CB(skb)->destructor;
2049 out_kfree_skb:
2050 kfree_skb(skb);
2051 return rc;
2054 static u32 hashrnd __read_mostly;
2056 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2058 u32 hash;
2060 if (skb_rx_queue_recorded(skb)) {
2061 hash = skb_get_rx_queue(skb);
2062 while (unlikely(hash >= dev->real_num_tx_queues))
2063 hash -= dev->real_num_tx_queues;
2064 return hash;
2067 if (skb->sk && skb->sk->sk_hash)
2068 hash = skb->sk->sk_hash;
2069 else
2070 hash = (__force u16) skb->protocol ^ skb->rxhash;
2071 hash = jhash_1word(hash, hashrnd);
2073 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2075 EXPORT_SYMBOL(skb_tx_hash);
2077 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2079 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2080 if (net_ratelimit()) {
2081 pr_warning("%s selects TX queue %d, but "
2082 "real number of TX queues is %d\n",
2083 dev->name, queue_index, dev->real_num_tx_queues);
2085 return 0;
2087 return queue_index;
2090 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2091 struct sk_buff *skb)
2093 int queue_index;
2094 const struct net_device_ops *ops = dev->netdev_ops;
2096 if (ops->ndo_select_queue) {
2097 queue_index = ops->ndo_select_queue(dev, skb);
2098 queue_index = dev_cap_txqueue(dev, queue_index);
2099 } else {
2100 struct sock *sk = skb->sk;
2101 queue_index = sk_tx_queue_get(sk);
2102 if (queue_index < 0) {
2104 queue_index = 0;
2105 if (dev->real_num_tx_queues > 1)
2106 queue_index = skb_tx_hash(dev, skb);
2108 if (sk) {
2109 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2111 if (dst && skb_dst(skb) == dst)
2112 sk_tx_queue_set(sk, queue_index);
2117 skb_set_queue_mapping(skb, queue_index);
2118 return netdev_get_tx_queue(dev, queue_index);
2121 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2122 struct net_device *dev,
2123 struct netdev_queue *txq)
2125 spinlock_t *root_lock = qdisc_lock(q);
2126 bool contended = qdisc_is_running(q);
2127 int rc;
2130 * Heuristic to force contended enqueues to serialize on a
2131 * separate lock before trying to get qdisc main lock.
2132 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2133 * and dequeue packets faster.
2135 if (unlikely(contended))
2136 spin_lock(&q->busylock);
2138 spin_lock(root_lock);
2139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2140 kfree_skb(skb);
2141 rc = NET_XMIT_DROP;
2142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2143 qdisc_run_begin(q)) {
2145 * This is a work-conserving queue; there are no old skbs
2146 * waiting to be sent out; and the qdisc is not running -
2147 * xmit the skb directly.
2149 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2150 skb_dst_force(skb);
2151 __qdisc_update_bstats(q, skb->len);
2152 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2153 if (unlikely(contended)) {
2154 spin_unlock(&q->busylock);
2155 contended = false;
2157 __qdisc_run(q);
2158 } else
2159 qdisc_run_end(q);
2161 rc = NET_XMIT_SUCCESS;
2162 } else {
2163 skb_dst_force(skb);
2164 rc = qdisc_enqueue_root(skb, q);
2165 if (qdisc_run_begin(q)) {
2166 if (unlikely(contended)) {
2167 spin_unlock(&q->busylock);
2168 contended = false;
2170 __qdisc_run(q);
2173 spin_unlock(root_lock);
2174 if (unlikely(contended))
2175 spin_unlock(&q->busylock);
2176 return rc;
2179 static DEFINE_PER_CPU(int, xmit_recursion);
2180 #define RECURSION_LIMIT 3
2183 * dev_queue_xmit - transmit a buffer
2184 * @skb: buffer to transmit
2186 * Queue a buffer for transmission to a network device. The caller must
2187 * have set the device and priority and built the buffer before calling
2188 * this function. The function can be called from an interrupt.
2190 * A negative errno code is returned on a failure. A success does not
2191 * guarantee the frame will be transmitted as it may be dropped due
2192 * to congestion or traffic shaping.
2194 * -----------------------------------------------------------------------------------
2195 * I notice this method can also return errors from the queue disciplines,
2196 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2197 * be positive.
2199 * Regardless of the return value, the skb is consumed, so it is currently
2200 * difficult to retry a send to this method. (You can bump the ref count
2201 * before sending to hold a reference for retry if you are careful.)
2203 * When calling this method, interrupts MUST be enabled. This is because
2204 * the BH enable code must have IRQs enabled so that it will not deadlock.
2205 * --BLG
2207 int dev_queue_xmit(struct sk_buff *skb)
2209 struct net_device *dev = skb->dev;
2210 struct netdev_queue *txq;
2211 struct Qdisc *q;
2212 int rc = -ENOMEM;
2214 /* Disable soft irqs for various locks below. Also
2215 * stops preemption for RCU.
2217 rcu_read_lock_bh();
2219 txq = dev_pick_tx(dev, skb);
2220 q = rcu_dereference_bh(txq->qdisc);
2222 #ifdef CONFIG_NET_CLS_ACT
2223 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2224 #endif
2225 if (q->enqueue) {
2226 rc = __dev_xmit_skb(skb, q, dev, txq);
2227 goto out;
2230 /* The device has no queue. Common case for software devices:
2231 loopback, all the sorts of tunnels...
2233 Really, it is unlikely that netif_tx_lock protection is necessary
2234 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2235 counters.)
2236 However, it is possible, that they rely on protection
2237 made by us here.
2239 Check this and shot the lock. It is not prone from deadlocks.
2240 Either shot noqueue qdisc, it is even simpler 8)
2242 if (dev->flags & IFF_UP) {
2243 int cpu = smp_processor_id(); /* ok because BHs are off */
2245 if (txq->xmit_lock_owner != cpu) {
2247 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2248 goto recursion_alert;
2250 HARD_TX_LOCK(dev, txq, cpu);
2252 if (!netif_tx_queue_stopped(txq)) {
2253 __this_cpu_inc(xmit_recursion);
2254 rc = dev_hard_start_xmit(skb, dev, txq);
2255 __this_cpu_dec(xmit_recursion);
2256 if (dev_xmit_complete(rc)) {
2257 HARD_TX_UNLOCK(dev, txq);
2258 goto out;
2261 HARD_TX_UNLOCK(dev, txq);
2262 if (net_ratelimit())
2263 printk(KERN_CRIT "Virtual device %s asks to "
2264 "queue packet!\n", dev->name);
2265 } else {
2266 /* Recursion is detected! It is possible,
2267 * unfortunately
2269 recursion_alert:
2270 if (net_ratelimit())
2271 printk(KERN_CRIT "Dead loop on virtual device "
2272 "%s, fix it urgently!\n", dev->name);
2276 rc = -ENETDOWN;
2277 rcu_read_unlock_bh();
2279 kfree_skb(skb);
2280 return rc;
2281 out:
2282 rcu_read_unlock_bh();
2283 return rc;
2285 EXPORT_SYMBOL(dev_queue_xmit);
2288 /*=======================================================================
2289 Receiver routines
2290 =======================================================================*/
2292 int netdev_max_backlog __read_mostly = 1000;
2293 int netdev_tstamp_prequeue __read_mostly = 1;
2294 int netdev_budget __read_mostly = 300;
2295 int weight_p __read_mostly = 64; /* old backlog weight */
2297 /* Called with irq disabled */
2298 static inline void ____napi_schedule(struct softnet_data *sd,
2299 struct napi_struct *napi)
2301 list_add_tail(&napi->poll_list, &sd->poll_list);
2302 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2306 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2307 * and src/dst port numbers. Returns a non-zero hash number on success
2308 * and 0 on failure.
2310 __u32 __skb_get_rxhash(struct sk_buff *skb)
2312 int nhoff, hash = 0, poff;
2313 struct ipv6hdr *ip6;
2314 struct iphdr *ip;
2315 u8 ip_proto;
2316 u32 addr1, addr2, ihl;
2317 union {
2318 u32 v32;
2319 u16 v16[2];
2320 } ports;
2322 nhoff = skb_network_offset(skb);
2324 switch (skb->protocol) {
2325 case __constant_htons(ETH_P_IP):
2326 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2327 goto done;
2329 ip = (struct iphdr *) (skb->data + nhoff);
2330 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2331 ip_proto = 0;
2332 else
2333 ip_proto = ip->protocol;
2334 addr1 = (__force u32) ip->saddr;
2335 addr2 = (__force u32) ip->daddr;
2336 ihl = ip->ihl;
2337 break;
2338 case __constant_htons(ETH_P_IPV6):
2339 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2340 goto done;
2342 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2343 ip_proto = ip6->nexthdr;
2344 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2345 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2346 ihl = (40 >> 2);
2347 break;
2348 default:
2349 goto done;
2352 ports.v32 = 0;
2353 poff = proto_ports_offset(ip_proto);
2354 if (poff >= 0) {
2355 nhoff += ihl * 4 + poff;
2356 if (pskb_may_pull(skb, nhoff + 4)) {
2357 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2358 if (ports.v16[1] < ports.v16[0])
2359 swap(ports.v16[0], ports.v16[1]);
2363 /* get a consistent hash (same value on both flow directions) */
2364 if (addr2 < addr1)
2365 swap(addr1, addr2);
2367 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2368 if (!hash)
2369 hash = 1;
2371 done:
2372 return hash;
2374 EXPORT_SYMBOL(__skb_get_rxhash);
2376 #ifdef CONFIG_RPS
2378 /* One global table that all flow-based protocols share. */
2379 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2380 EXPORT_SYMBOL(rps_sock_flow_table);
2383 * get_rps_cpu is called from netif_receive_skb and returns the target
2384 * CPU from the RPS map of the receiving queue for a given skb.
2385 * rcu_read_lock must be held on entry.
2387 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2388 struct rps_dev_flow **rflowp)
2390 struct netdev_rx_queue *rxqueue;
2391 struct rps_map *map = NULL;
2392 struct rps_dev_flow_table *flow_table;
2393 struct rps_sock_flow_table *sock_flow_table;
2394 int cpu = -1;
2395 u16 tcpu;
2397 if (skb_rx_queue_recorded(skb)) {
2398 u16 index = skb_get_rx_queue(skb);
2399 if (unlikely(index >= dev->real_num_rx_queues)) {
2400 WARN_ONCE(dev->real_num_rx_queues > 1,
2401 "%s received packet on queue %u, but number "
2402 "of RX queues is %u\n",
2403 dev->name, index, dev->real_num_rx_queues);
2404 goto done;
2406 rxqueue = dev->_rx + index;
2407 } else
2408 rxqueue = dev->_rx;
2410 if (rxqueue->rps_map) {
2411 map = rcu_dereference(rxqueue->rps_map);
2412 if (map && map->len == 1) {
2413 tcpu = map->cpus[0];
2414 if (cpu_online(tcpu))
2415 cpu = tcpu;
2416 goto done;
2418 } else if (!rxqueue->rps_flow_table) {
2419 goto done;
2422 skb_reset_network_header(skb);
2423 if (!skb_get_rxhash(skb))
2424 goto done;
2426 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2427 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2428 if (flow_table && sock_flow_table) {
2429 u16 next_cpu;
2430 struct rps_dev_flow *rflow;
2432 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2433 tcpu = rflow->cpu;
2435 next_cpu = sock_flow_table->ents[skb->rxhash &
2436 sock_flow_table->mask];
2439 * If the desired CPU (where last recvmsg was done) is
2440 * different from current CPU (one in the rx-queue flow
2441 * table entry), switch if one of the following holds:
2442 * - Current CPU is unset (equal to RPS_NO_CPU).
2443 * - Current CPU is offline.
2444 * - The current CPU's queue tail has advanced beyond the
2445 * last packet that was enqueued using this table entry.
2446 * This guarantees that all previous packets for the flow
2447 * have been dequeued, thus preserving in order delivery.
2449 if (unlikely(tcpu != next_cpu) &&
2450 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2451 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2452 rflow->last_qtail)) >= 0)) {
2453 tcpu = rflow->cpu = next_cpu;
2454 if (tcpu != RPS_NO_CPU)
2455 rflow->last_qtail = per_cpu(softnet_data,
2456 tcpu).input_queue_head;
2458 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2459 *rflowp = rflow;
2460 cpu = tcpu;
2461 goto done;
2465 if (map) {
2466 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2468 if (cpu_online(tcpu)) {
2469 cpu = tcpu;
2470 goto done;
2474 done:
2475 return cpu;
2478 /* Called from hardirq (IPI) context */
2479 static void rps_trigger_softirq(void *data)
2481 struct softnet_data *sd = data;
2483 ____napi_schedule(sd, &sd->backlog);
2484 sd->received_rps++;
2487 #endif /* CONFIG_RPS */
2490 * Check if this softnet_data structure is another cpu one
2491 * If yes, queue it to our IPI list and return 1
2492 * If no, return 0
2494 static int rps_ipi_queued(struct softnet_data *sd)
2496 #ifdef CONFIG_RPS
2497 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2499 if (sd != mysd) {
2500 sd->rps_ipi_next = mysd->rps_ipi_list;
2501 mysd->rps_ipi_list = sd;
2503 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2504 return 1;
2506 #endif /* CONFIG_RPS */
2507 return 0;
2511 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2512 * queue (may be a remote CPU queue).
2514 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2515 unsigned int *qtail)
2517 struct softnet_data *sd;
2518 unsigned long flags;
2520 sd = &per_cpu(softnet_data, cpu);
2522 local_irq_save(flags);
2524 rps_lock(sd);
2525 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2526 if (skb_queue_len(&sd->input_pkt_queue)) {
2527 enqueue:
2528 __skb_queue_tail(&sd->input_pkt_queue, skb);
2529 input_queue_tail_incr_save(sd, qtail);
2530 rps_unlock(sd);
2531 local_irq_restore(flags);
2532 return NET_RX_SUCCESS;
2535 /* Schedule NAPI for backlog device
2536 * We can use non atomic operation since we own the queue lock
2538 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2539 if (!rps_ipi_queued(sd))
2540 ____napi_schedule(sd, &sd->backlog);
2542 goto enqueue;
2545 sd->dropped++;
2546 rps_unlock(sd);
2548 local_irq_restore(flags);
2550 atomic_long_inc(&skb->dev->rx_dropped);
2551 kfree_skb(skb);
2552 return NET_RX_DROP;
2556 * netif_rx - post buffer to the network code
2557 * @skb: buffer to post
2559 * This function receives a packet from a device driver and queues it for
2560 * the upper (protocol) levels to process. It always succeeds. The buffer
2561 * may be dropped during processing for congestion control or by the
2562 * protocol layers.
2564 * return values:
2565 * NET_RX_SUCCESS (no congestion)
2566 * NET_RX_DROP (packet was dropped)
2570 int netif_rx(struct sk_buff *skb)
2572 int ret;
2574 /* if netpoll wants it, pretend we never saw it */
2575 if (netpoll_rx(skb))
2576 return NET_RX_DROP;
2578 if (netdev_tstamp_prequeue)
2579 net_timestamp_check(skb);
2581 #ifdef CONFIG_RPS
2583 struct rps_dev_flow voidflow, *rflow = &voidflow;
2584 int cpu;
2586 preempt_disable();
2587 rcu_read_lock();
2589 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2590 if (cpu < 0)
2591 cpu = smp_processor_id();
2593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2595 rcu_read_unlock();
2596 preempt_enable();
2598 #else
2600 unsigned int qtail;
2601 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2602 put_cpu();
2604 #endif
2605 return ret;
2607 EXPORT_SYMBOL(netif_rx);
2609 int netif_rx_ni(struct sk_buff *skb)
2611 int err;
2613 preempt_disable();
2614 err = netif_rx(skb);
2615 if (local_softirq_pending())
2616 do_softirq();
2617 preempt_enable();
2619 return err;
2621 EXPORT_SYMBOL(netif_rx_ni);
2623 static void net_tx_action(struct softirq_action *h)
2625 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2627 if (sd->completion_queue) {
2628 struct sk_buff *clist;
2630 local_irq_disable();
2631 clist = sd->completion_queue;
2632 sd->completion_queue = NULL;
2633 local_irq_enable();
2635 while (clist) {
2636 struct sk_buff *skb = clist;
2637 clist = clist->next;
2639 WARN_ON(atomic_read(&skb->users));
2640 __kfree_skb(skb);
2644 if (sd->output_queue) {
2645 struct Qdisc *head;
2647 local_irq_disable();
2648 head = sd->output_queue;
2649 sd->output_queue = NULL;
2650 sd->output_queue_tailp = &sd->output_queue;
2651 local_irq_enable();
2653 while (head) {
2654 struct Qdisc *q = head;
2655 spinlock_t *root_lock;
2657 head = head->next_sched;
2659 root_lock = qdisc_lock(q);
2660 if (spin_trylock(root_lock)) {
2661 smp_mb__before_clear_bit();
2662 clear_bit(__QDISC_STATE_SCHED,
2663 &q->state);
2664 qdisc_run(q);
2665 spin_unlock(root_lock);
2666 } else {
2667 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2668 &q->state)) {
2669 __netif_reschedule(q);
2670 } else {
2671 smp_mb__before_clear_bit();
2672 clear_bit(__QDISC_STATE_SCHED,
2673 &q->state);
2680 static inline int deliver_skb(struct sk_buff *skb,
2681 struct packet_type *pt_prev,
2682 struct net_device *orig_dev)
2684 atomic_inc(&skb->users);
2685 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2688 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2689 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2690 /* This hook is defined here for ATM LANE */
2691 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2692 unsigned char *addr) __read_mostly;
2693 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2694 #endif
2696 #ifdef CONFIG_NET_CLS_ACT
2697 /* TODO: Maybe we should just force sch_ingress to be compiled in
2698 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2699 * a compare and 2 stores extra right now if we dont have it on
2700 * but have CONFIG_NET_CLS_ACT
2701 * NOTE: This doesnt stop any functionality; if you dont have
2702 * the ingress scheduler, you just cant add policies on ingress.
2705 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2707 struct net_device *dev = skb->dev;
2708 u32 ttl = G_TC_RTTL(skb->tc_verd);
2709 int result = TC_ACT_OK;
2710 struct Qdisc *q;
2712 if (unlikely(MAX_RED_LOOP < ttl++)) {
2713 if (net_ratelimit())
2714 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2715 skb->skb_iif, dev->ifindex);
2716 return TC_ACT_SHOT;
2719 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2720 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2722 q = rxq->qdisc;
2723 if (q != &noop_qdisc) {
2724 spin_lock(qdisc_lock(q));
2725 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2726 result = qdisc_enqueue_root(skb, q);
2727 spin_unlock(qdisc_lock(q));
2730 return result;
2733 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2734 struct packet_type **pt_prev,
2735 int *ret, struct net_device *orig_dev)
2737 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2739 if (!rxq || rxq->qdisc == &noop_qdisc)
2740 goto out;
2742 if (*pt_prev) {
2743 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2744 *pt_prev = NULL;
2747 switch (ing_filter(skb, rxq)) {
2748 case TC_ACT_SHOT:
2749 case TC_ACT_STOLEN:
2750 kfree_skb(skb);
2751 return NULL;
2754 out:
2755 skb->tc_verd = 0;
2756 return skb;
2758 #endif
2761 * netif_nit_deliver - deliver received packets to network taps
2762 * @skb: buffer
2764 * This function is used to deliver incoming packets to network
2765 * taps. It should be used when the normal netif_receive_skb path
2766 * is bypassed, for example because of VLAN acceleration.
2768 void netif_nit_deliver(struct sk_buff *skb)
2770 struct packet_type *ptype;
2772 if (list_empty(&ptype_all))
2773 return;
2775 skb_reset_network_header(skb);
2776 skb_reset_transport_header(skb);
2777 skb->mac_len = skb->network_header - skb->mac_header;
2779 rcu_read_lock();
2780 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2781 if (!ptype->dev || ptype->dev == skb->dev)
2782 deliver_skb(skb, ptype, skb->dev);
2784 rcu_read_unlock();
2788 * netdev_rx_handler_register - register receive handler
2789 * @dev: device to register a handler for
2790 * @rx_handler: receive handler to register
2791 * @rx_handler_data: data pointer that is used by rx handler
2793 * Register a receive hander for a device. This handler will then be
2794 * called from __netif_receive_skb. A negative errno code is returned
2795 * on a failure.
2797 * The caller must hold the rtnl_mutex.
2799 int netdev_rx_handler_register(struct net_device *dev,
2800 rx_handler_func_t *rx_handler,
2801 void *rx_handler_data)
2803 ASSERT_RTNL();
2805 if (dev->rx_handler)
2806 return -EBUSY;
2808 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2809 rcu_assign_pointer(dev->rx_handler, rx_handler);
2811 return 0;
2813 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2816 * netdev_rx_handler_unregister - unregister receive handler
2817 * @dev: device to unregister a handler from
2819 * Unregister a receive hander from a device.
2821 * The caller must hold the rtnl_mutex.
2823 void netdev_rx_handler_unregister(struct net_device *dev)
2826 ASSERT_RTNL();
2827 rcu_assign_pointer(dev->rx_handler, NULL);
2828 rcu_assign_pointer(dev->rx_handler_data, NULL);
2830 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2832 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2833 struct net_device *master)
2835 if (skb->pkt_type == PACKET_HOST) {
2836 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2838 memcpy(dest, master->dev_addr, ETH_ALEN);
2842 /* On bonding slaves other than the currently active slave, suppress
2843 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2844 * ARP on active-backup slaves with arp_validate enabled.
2846 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2848 struct net_device *dev = skb->dev;
2850 if (master->priv_flags & IFF_MASTER_ARPMON)
2851 dev->last_rx = jiffies;
2853 if ((master->priv_flags & IFF_MASTER_ALB) &&
2854 (master->priv_flags & IFF_BRIDGE_PORT)) {
2855 /* Do address unmangle. The local destination address
2856 * will be always the one master has. Provides the right
2857 * functionality in a bridge.
2859 skb_bond_set_mac_by_master(skb, master);
2862 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2863 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2864 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2865 return 0;
2867 if (master->priv_flags & IFF_MASTER_ALB) {
2868 if (skb->pkt_type != PACKET_BROADCAST &&
2869 skb->pkt_type != PACKET_MULTICAST)
2870 return 0;
2872 if (master->priv_flags & IFF_MASTER_8023AD &&
2873 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2874 return 0;
2876 return 1;
2878 return 0;
2880 EXPORT_SYMBOL(__skb_bond_should_drop);
2882 static int __netif_receive_skb(struct sk_buff *skb)
2884 struct packet_type *ptype, *pt_prev;
2885 rx_handler_func_t *rx_handler;
2886 struct net_device *orig_dev;
2887 struct net_device *master;
2888 struct net_device *null_or_orig;
2889 struct net_device *orig_or_bond;
2890 int ret = NET_RX_DROP;
2891 __be16 type;
2893 if (!netdev_tstamp_prequeue)
2894 net_timestamp_check(skb);
2896 if (vlan_tx_tag_present(skb))
2897 vlan_hwaccel_do_receive(skb);
2899 /* if we've gotten here through NAPI, check netpoll */
2900 if (netpoll_receive_skb(skb))
2901 return NET_RX_DROP;
2903 if (!skb->skb_iif)
2904 skb->skb_iif = skb->dev->ifindex;
2907 * bonding note: skbs received on inactive slaves should only
2908 * be delivered to pkt handlers that are exact matches. Also
2909 * the deliver_no_wcard flag will be set. If packet handlers
2910 * are sensitive to duplicate packets these skbs will need to
2911 * be dropped at the handler. The vlan accel path may have
2912 * already set the deliver_no_wcard flag.
2914 null_or_orig = NULL;
2915 orig_dev = skb->dev;
2916 master = ACCESS_ONCE(orig_dev->master);
2917 if (skb->deliver_no_wcard)
2918 null_or_orig = orig_dev;
2919 else if (master) {
2920 if (skb_bond_should_drop(skb, master)) {
2921 skb->deliver_no_wcard = 1;
2922 null_or_orig = orig_dev; /* deliver only exact match */
2923 } else
2924 skb->dev = master;
2927 __this_cpu_inc(softnet_data.processed);
2928 skb_reset_network_header(skb);
2929 skb_reset_transport_header(skb);
2930 skb->mac_len = skb->network_header - skb->mac_header;
2932 pt_prev = NULL;
2934 rcu_read_lock();
2936 #ifdef CONFIG_NET_CLS_ACT
2937 if (skb->tc_verd & TC_NCLS) {
2938 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2939 goto ncls;
2941 #endif
2943 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2944 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2945 ptype->dev == orig_dev) {
2946 if (pt_prev)
2947 ret = deliver_skb(skb, pt_prev, orig_dev);
2948 pt_prev = ptype;
2952 #ifdef CONFIG_NET_CLS_ACT
2953 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2954 if (!skb)
2955 goto out;
2956 ncls:
2957 #endif
2959 /* Handle special case of bridge or macvlan */
2960 rx_handler = rcu_dereference(skb->dev->rx_handler);
2961 if (rx_handler) {
2962 if (pt_prev) {
2963 ret = deliver_skb(skb, pt_prev, orig_dev);
2964 pt_prev = NULL;
2966 skb = rx_handler(skb);
2967 if (!skb)
2968 goto out;
2972 * Make sure frames received on VLAN interfaces stacked on
2973 * bonding interfaces still make their way to any base bonding
2974 * device that may have registered for a specific ptype. The
2975 * handler may have to adjust skb->dev and orig_dev.
2977 orig_or_bond = orig_dev;
2978 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2979 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2980 orig_or_bond = vlan_dev_real_dev(skb->dev);
2983 type = skb->protocol;
2984 list_for_each_entry_rcu(ptype,
2985 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2986 if (ptype->type == type && (ptype->dev == null_or_orig ||
2987 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2988 ptype->dev == orig_or_bond)) {
2989 if (pt_prev)
2990 ret = deliver_skb(skb, pt_prev, orig_dev);
2991 pt_prev = ptype;
2995 if (pt_prev) {
2996 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2997 } else {
2998 atomic_long_inc(&skb->dev->rx_dropped);
2999 kfree_skb(skb);
3000 /* Jamal, now you will not able to escape explaining
3001 * me how you were going to use this. :-)
3003 ret = NET_RX_DROP;
3006 out:
3007 rcu_read_unlock();
3008 return ret;
3012 * netif_receive_skb - process receive buffer from network
3013 * @skb: buffer to process
3015 * netif_receive_skb() is the main receive data processing function.
3016 * It always succeeds. The buffer may be dropped during processing
3017 * for congestion control or by the protocol layers.
3019 * This function may only be called from softirq context and interrupts
3020 * should be enabled.
3022 * Return values (usually ignored):
3023 * NET_RX_SUCCESS: no congestion
3024 * NET_RX_DROP: packet was dropped
3026 int netif_receive_skb(struct sk_buff *skb)
3028 if (netdev_tstamp_prequeue)
3029 net_timestamp_check(skb);
3031 if (skb_defer_rx_timestamp(skb))
3032 return NET_RX_SUCCESS;
3034 #ifdef CONFIG_RPS
3036 struct rps_dev_flow voidflow, *rflow = &voidflow;
3037 int cpu, ret;
3039 rcu_read_lock();
3041 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3043 if (cpu >= 0) {
3044 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3045 rcu_read_unlock();
3046 } else {
3047 rcu_read_unlock();
3048 ret = __netif_receive_skb(skb);
3051 return ret;
3053 #else
3054 return __netif_receive_skb(skb);
3055 #endif
3057 EXPORT_SYMBOL(netif_receive_skb);
3059 /* Network device is going away, flush any packets still pending
3060 * Called with irqs disabled.
3062 static void flush_backlog(void *arg)
3064 struct net_device *dev = arg;
3065 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3066 struct sk_buff *skb, *tmp;
3068 rps_lock(sd);
3069 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3070 if (skb->dev == dev) {
3071 __skb_unlink(skb, &sd->input_pkt_queue);
3072 kfree_skb(skb);
3073 input_queue_head_incr(sd);
3076 rps_unlock(sd);
3078 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3079 if (skb->dev == dev) {
3080 __skb_unlink(skb, &sd->process_queue);
3081 kfree_skb(skb);
3082 input_queue_head_incr(sd);
3087 static int napi_gro_complete(struct sk_buff *skb)
3089 struct packet_type *ptype;
3090 __be16 type = skb->protocol;
3091 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3092 int err = -ENOENT;
3094 if (NAPI_GRO_CB(skb)->count == 1) {
3095 skb_shinfo(skb)->gso_size = 0;
3096 goto out;
3099 rcu_read_lock();
3100 list_for_each_entry_rcu(ptype, head, list) {
3101 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3102 continue;
3104 err = ptype->gro_complete(skb);
3105 break;
3107 rcu_read_unlock();
3109 if (err) {
3110 WARN_ON(&ptype->list == head);
3111 kfree_skb(skb);
3112 return NET_RX_SUCCESS;
3115 out:
3116 return netif_receive_skb(skb);
3119 inline void napi_gro_flush(struct napi_struct *napi)
3121 struct sk_buff *skb, *next;
3123 for (skb = napi->gro_list; skb; skb = next) {
3124 next = skb->next;
3125 skb->next = NULL;
3126 napi_gro_complete(skb);
3129 napi->gro_count = 0;
3130 napi->gro_list = NULL;
3132 EXPORT_SYMBOL(napi_gro_flush);
3134 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3136 struct sk_buff **pp = NULL;
3137 struct packet_type *ptype;
3138 __be16 type = skb->protocol;
3139 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3140 int same_flow;
3141 int mac_len;
3142 enum gro_result ret;
3144 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3145 goto normal;
3147 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3148 goto normal;
3150 rcu_read_lock();
3151 list_for_each_entry_rcu(ptype, head, list) {
3152 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3153 continue;
3155 skb_set_network_header(skb, skb_gro_offset(skb));
3156 mac_len = skb->network_header - skb->mac_header;
3157 skb->mac_len = mac_len;
3158 NAPI_GRO_CB(skb)->same_flow = 0;
3159 NAPI_GRO_CB(skb)->flush = 0;
3160 NAPI_GRO_CB(skb)->free = 0;
3162 pp = ptype->gro_receive(&napi->gro_list, skb);
3163 break;
3165 rcu_read_unlock();
3167 if (&ptype->list == head)
3168 goto normal;
3170 same_flow = NAPI_GRO_CB(skb)->same_flow;
3171 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3173 if (pp) {
3174 struct sk_buff *nskb = *pp;
3176 *pp = nskb->next;
3177 nskb->next = NULL;
3178 napi_gro_complete(nskb);
3179 napi->gro_count--;
3182 if (same_flow)
3183 goto ok;
3185 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3186 goto normal;
3188 napi->gro_count++;
3189 NAPI_GRO_CB(skb)->count = 1;
3190 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3191 skb->next = napi->gro_list;
3192 napi->gro_list = skb;
3193 ret = GRO_HELD;
3195 pull:
3196 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3197 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3199 BUG_ON(skb->end - skb->tail < grow);
3201 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3203 skb->tail += grow;
3204 skb->data_len -= grow;
3206 skb_shinfo(skb)->frags[0].page_offset += grow;
3207 skb_shinfo(skb)->frags[0].size -= grow;
3209 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3210 put_page(skb_shinfo(skb)->frags[0].page);
3211 memmove(skb_shinfo(skb)->frags,
3212 skb_shinfo(skb)->frags + 1,
3213 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3218 return ret;
3220 normal:
3221 ret = GRO_NORMAL;
3222 goto pull;
3224 EXPORT_SYMBOL(dev_gro_receive);
3226 static inline gro_result_t
3227 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3229 struct sk_buff *p;
3231 for (p = napi->gro_list; p; p = p->next) {
3232 unsigned long diffs;
3234 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3235 diffs |= compare_ether_header(skb_mac_header(p),
3236 skb_gro_mac_header(skb));
3237 NAPI_GRO_CB(p)->same_flow = !diffs;
3238 NAPI_GRO_CB(p)->flush = 0;
3241 return dev_gro_receive(napi, skb);
3244 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3246 switch (ret) {
3247 case GRO_NORMAL:
3248 if (netif_receive_skb(skb))
3249 ret = GRO_DROP;
3250 break;
3252 case GRO_DROP:
3253 case GRO_MERGED_FREE:
3254 kfree_skb(skb);
3255 break;
3257 case GRO_HELD:
3258 case GRO_MERGED:
3259 break;
3262 return ret;
3264 EXPORT_SYMBOL(napi_skb_finish);
3266 void skb_gro_reset_offset(struct sk_buff *skb)
3268 NAPI_GRO_CB(skb)->data_offset = 0;
3269 NAPI_GRO_CB(skb)->frag0 = NULL;
3270 NAPI_GRO_CB(skb)->frag0_len = 0;
3272 if (skb->mac_header == skb->tail &&
3273 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3274 NAPI_GRO_CB(skb)->frag0 =
3275 page_address(skb_shinfo(skb)->frags[0].page) +
3276 skb_shinfo(skb)->frags[0].page_offset;
3277 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3280 EXPORT_SYMBOL(skb_gro_reset_offset);
3282 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3284 skb_gro_reset_offset(skb);
3286 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3288 EXPORT_SYMBOL(napi_gro_receive);
3290 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3292 __skb_pull(skb, skb_headlen(skb));
3293 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3295 napi->skb = skb;
3297 EXPORT_SYMBOL(napi_reuse_skb);
3299 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3301 struct sk_buff *skb = napi->skb;
3303 if (!skb) {
3304 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3305 if (skb)
3306 napi->skb = skb;
3308 return skb;
3310 EXPORT_SYMBOL(napi_get_frags);
3312 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3313 gro_result_t ret)
3315 switch (ret) {
3316 case GRO_NORMAL:
3317 case GRO_HELD:
3318 skb->protocol = eth_type_trans(skb, skb->dev);
3320 if (ret == GRO_HELD)
3321 skb_gro_pull(skb, -ETH_HLEN);
3322 else if (netif_receive_skb(skb))
3323 ret = GRO_DROP;
3324 break;
3326 case GRO_DROP:
3327 case GRO_MERGED_FREE:
3328 napi_reuse_skb(napi, skb);
3329 break;
3331 case GRO_MERGED:
3332 break;
3335 return ret;
3337 EXPORT_SYMBOL(napi_frags_finish);
3339 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3341 struct sk_buff *skb = napi->skb;
3342 struct ethhdr *eth;
3343 unsigned int hlen;
3344 unsigned int off;
3346 napi->skb = NULL;
3348 skb_reset_mac_header(skb);
3349 skb_gro_reset_offset(skb);
3351 off = skb_gro_offset(skb);
3352 hlen = off + sizeof(*eth);
3353 eth = skb_gro_header_fast(skb, off);
3354 if (skb_gro_header_hard(skb, hlen)) {
3355 eth = skb_gro_header_slow(skb, hlen, off);
3356 if (unlikely(!eth)) {
3357 napi_reuse_skb(napi, skb);
3358 skb = NULL;
3359 goto out;
3363 skb_gro_pull(skb, sizeof(*eth));
3366 * This works because the only protocols we care about don't require
3367 * special handling. We'll fix it up properly at the end.
3369 skb->protocol = eth->h_proto;
3371 out:
3372 return skb;
3374 EXPORT_SYMBOL(napi_frags_skb);
3376 gro_result_t napi_gro_frags(struct napi_struct *napi)
3378 struct sk_buff *skb = napi_frags_skb(napi);
3380 if (!skb)
3381 return GRO_DROP;
3383 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3385 EXPORT_SYMBOL(napi_gro_frags);
3388 * net_rps_action sends any pending IPI's for rps.
3389 * Note: called with local irq disabled, but exits with local irq enabled.
3391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3393 #ifdef CONFIG_RPS
3394 struct softnet_data *remsd = sd->rps_ipi_list;
3396 if (remsd) {
3397 sd->rps_ipi_list = NULL;
3399 local_irq_enable();
3401 /* Send pending IPI's to kick RPS processing on remote cpus. */
3402 while (remsd) {
3403 struct softnet_data *next = remsd->rps_ipi_next;
3405 if (cpu_online(remsd->cpu))
3406 __smp_call_function_single(remsd->cpu,
3407 &remsd->csd, 0);
3408 remsd = next;
3410 } else
3411 #endif
3412 local_irq_enable();
3415 static int process_backlog(struct napi_struct *napi, int quota)
3417 int work = 0;
3418 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3420 #ifdef CONFIG_RPS
3421 /* Check if we have pending ipi, its better to send them now,
3422 * not waiting net_rx_action() end.
3424 if (sd->rps_ipi_list) {
3425 local_irq_disable();
3426 net_rps_action_and_irq_enable(sd);
3428 #endif
3429 napi->weight = weight_p;
3430 local_irq_disable();
3431 while (work < quota) {
3432 struct sk_buff *skb;
3433 unsigned int qlen;
3435 while ((skb = __skb_dequeue(&sd->process_queue))) {
3436 local_irq_enable();
3437 __netif_receive_skb(skb);
3438 local_irq_disable();
3439 input_queue_head_incr(sd);
3440 if (++work >= quota) {
3441 local_irq_enable();
3442 return work;
3446 rps_lock(sd);
3447 qlen = skb_queue_len(&sd->input_pkt_queue);
3448 if (qlen)
3449 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3450 &sd->process_queue);
3452 if (qlen < quota - work) {
3454 * Inline a custom version of __napi_complete().
3455 * only current cpu owns and manipulates this napi,
3456 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3457 * we can use a plain write instead of clear_bit(),
3458 * and we dont need an smp_mb() memory barrier.
3460 list_del(&napi->poll_list);
3461 napi->state = 0;
3463 quota = work + qlen;
3465 rps_unlock(sd);
3467 local_irq_enable();
3469 return work;
3473 * __napi_schedule - schedule for receive
3474 * @n: entry to schedule
3476 * The entry's receive function will be scheduled to run
3478 void __napi_schedule(struct napi_struct *n)
3480 unsigned long flags;
3482 local_irq_save(flags);
3483 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3484 local_irq_restore(flags);
3486 EXPORT_SYMBOL(__napi_schedule);
3488 void __napi_complete(struct napi_struct *n)
3490 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3491 BUG_ON(n->gro_list);
3493 list_del(&n->poll_list);
3494 smp_mb__before_clear_bit();
3495 clear_bit(NAPI_STATE_SCHED, &n->state);
3497 EXPORT_SYMBOL(__napi_complete);
3499 void napi_complete(struct napi_struct *n)
3501 unsigned long flags;
3504 * don't let napi dequeue from the cpu poll list
3505 * just in case its running on a different cpu
3507 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3508 return;
3510 napi_gro_flush(n);
3511 local_irq_save(flags);
3512 __napi_complete(n);
3513 local_irq_restore(flags);
3515 EXPORT_SYMBOL(napi_complete);
3517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3518 int (*poll)(struct napi_struct *, int), int weight)
3520 INIT_LIST_HEAD(&napi->poll_list);
3521 napi->gro_count = 0;
3522 napi->gro_list = NULL;
3523 napi->skb = NULL;
3524 napi->poll = poll;
3525 napi->weight = weight;
3526 list_add(&napi->dev_list, &dev->napi_list);
3527 napi->dev = dev;
3528 #ifdef CONFIG_NETPOLL
3529 spin_lock_init(&napi->poll_lock);
3530 napi->poll_owner = -1;
3531 #endif
3532 set_bit(NAPI_STATE_SCHED, &napi->state);
3534 EXPORT_SYMBOL(netif_napi_add);
3536 void netif_napi_del(struct napi_struct *napi)
3538 struct sk_buff *skb, *next;
3540 list_del_init(&napi->dev_list);
3541 napi_free_frags(napi);
3543 for (skb = napi->gro_list; skb; skb = next) {
3544 next = skb->next;
3545 skb->next = NULL;
3546 kfree_skb(skb);
3549 napi->gro_list = NULL;
3550 napi->gro_count = 0;
3552 EXPORT_SYMBOL(netif_napi_del);
3554 static void net_rx_action(struct softirq_action *h)
3556 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3557 unsigned long time_limit = jiffies + 2;
3558 int budget = netdev_budget;
3559 void *have;
3561 local_irq_disable();
3563 while (!list_empty(&sd->poll_list)) {
3564 struct napi_struct *n;
3565 int work, weight;
3567 /* If softirq window is exhuasted then punt.
3568 * Allow this to run for 2 jiffies since which will allow
3569 * an average latency of 1.5/HZ.
3571 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3572 goto softnet_break;
3574 local_irq_enable();
3576 /* Even though interrupts have been re-enabled, this
3577 * access is safe because interrupts can only add new
3578 * entries to the tail of this list, and only ->poll()
3579 * calls can remove this head entry from the list.
3581 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3583 have = netpoll_poll_lock(n);
3585 weight = n->weight;
3587 /* This NAPI_STATE_SCHED test is for avoiding a race
3588 * with netpoll's poll_napi(). Only the entity which
3589 * obtains the lock and sees NAPI_STATE_SCHED set will
3590 * actually make the ->poll() call. Therefore we avoid
3591 * accidently calling ->poll() when NAPI is not scheduled.
3593 work = 0;
3594 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3595 work = n->poll(n, weight);
3596 trace_napi_poll(n);
3599 WARN_ON_ONCE(work > weight);
3601 budget -= work;
3603 local_irq_disable();
3605 /* Drivers must not modify the NAPI state if they
3606 * consume the entire weight. In such cases this code
3607 * still "owns" the NAPI instance and therefore can
3608 * move the instance around on the list at-will.
3610 if (unlikely(work == weight)) {
3611 if (unlikely(napi_disable_pending(n))) {
3612 local_irq_enable();
3613 napi_complete(n);
3614 local_irq_disable();
3615 } else
3616 list_move_tail(&n->poll_list, &sd->poll_list);
3619 netpoll_poll_unlock(have);
3621 out:
3622 net_rps_action_and_irq_enable(sd);
3624 #ifdef CONFIG_NET_DMA
3626 * There may not be any more sk_buffs coming right now, so push
3627 * any pending DMA copies to hardware
3629 dma_issue_pending_all();
3630 #endif
3632 return;
3634 softnet_break:
3635 sd->time_squeeze++;
3636 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3637 goto out;
3640 static gifconf_func_t *gifconf_list[NPROTO];
3643 * register_gifconf - register a SIOCGIF handler
3644 * @family: Address family
3645 * @gifconf: Function handler
3647 * Register protocol dependent address dumping routines. The handler
3648 * that is passed must not be freed or reused until it has been replaced
3649 * by another handler.
3651 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3653 if (family >= NPROTO)
3654 return -EINVAL;
3655 gifconf_list[family] = gifconf;
3656 return 0;
3658 EXPORT_SYMBOL(register_gifconf);
3662 * Map an interface index to its name (SIOCGIFNAME)
3666 * We need this ioctl for efficient implementation of the
3667 * if_indextoname() function required by the IPv6 API. Without
3668 * it, we would have to search all the interfaces to find a
3669 * match. --pb
3672 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3674 struct net_device *dev;
3675 struct ifreq ifr;
3678 * Fetch the caller's info block.
3681 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3682 return -EFAULT;
3684 rcu_read_lock();
3685 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3686 if (!dev) {
3687 rcu_read_unlock();
3688 return -ENODEV;
3691 strcpy(ifr.ifr_name, dev->name);
3692 rcu_read_unlock();
3694 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3695 return -EFAULT;
3696 return 0;
3700 * Perform a SIOCGIFCONF call. This structure will change
3701 * size eventually, and there is nothing I can do about it.
3702 * Thus we will need a 'compatibility mode'.
3705 static int dev_ifconf(struct net *net, char __user *arg)
3707 struct ifconf ifc;
3708 struct net_device *dev;
3709 char __user *pos;
3710 int len;
3711 int total;
3712 int i;
3715 * Fetch the caller's info block.
3718 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3719 return -EFAULT;
3721 pos = ifc.ifc_buf;
3722 len = ifc.ifc_len;
3725 * Loop over the interfaces, and write an info block for each.
3728 total = 0;
3729 for_each_netdev(net, dev) {
3730 for (i = 0; i < NPROTO; i++) {
3731 if (gifconf_list[i]) {
3732 int done;
3733 if (!pos)
3734 done = gifconf_list[i](dev, NULL, 0);
3735 else
3736 done = gifconf_list[i](dev, pos + total,
3737 len - total);
3738 if (done < 0)
3739 return -EFAULT;
3740 total += done;
3746 * All done. Write the updated control block back to the caller.
3748 ifc.ifc_len = total;
3751 * Both BSD and Solaris return 0 here, so we do too.
3753 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3756 #ifdef CONFIG_PROC_FS
3758 * This is invoked by the /proc filesystem handler to display a device
3759 * in detail.
3761 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3762 __acquires(RCU)
3764 struct net *net = seq_file_net(seq);
3765 loff_t off;
3766 struct net_device *dev;
3768 rcu_read_lock();
3769 if (!*pos)
3770 return SEQ_START_TOKEN;
3772 off = 1;
3773 for_each_netdev_rcu(net, dev)
3774 if (off++ == *pos)
3775 return dev;
3777 return NULL;
3780 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3782 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3783 first_net_device(seq_file_net(seq)) :
3784 next_net_device((struct net_device *)v);
3786 ++*pos;
3787 return rcu_dereference(dev);
3790 void dev_seq_stop(struct seq_file *seq, void *v)
3791 __releases(RCU)
3793 rcu_read_unlock();
3796 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3798 struct rtnl_link_stats64 temp;
3799 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3801 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3802 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3803 dev->name, stats->rx_bytes, stats->rx_packets,
3804 stats->rx_errors,
3805 stats->rx_dropped + stats->rx_missed_errors,
3806 stats->rx_fifo_errors,
3807 stats->rx_length_errors + stats->rx_over_errors +
3808 stats->rx_crc_errors + stats->rx_frame_errors,
3809 stats->rx_compressed, stats->multicast,
3810 stats->tx_bytes, stats->tx_packets,
3811 stats->tx_errors, stats->tx_dropped,
3812 stats->tx_fifo_errors, stats->collisions,
3813 stats->tx_carrier_errors +
3814 stats->tx_aborted_errors +
3815 stats->tx_window_errors +
3816 stats->tx_heartbeat_errors,
3817 stats->tx_compressed);
3821 * Called from the PROCfs module. This now uses the new arbitrary sized
3822 * /proc/net interface to create /proc/net/dev
3824 static int dev_seq_show(struct seq_file *seq, void *v)
3826 if (v == SEQ_START_TOKEN)
3827 seq_puts(seq, "Inter-| Receive "
3828 " | Transmit\n"
3829 " face |bytes packets errs drop fifo frame "
3830 "compressed multicast|bytes packets errs "
3831 "drop fifo colls carrier compressed\n");
3832 else
3833 dev_seq_printf_stats(seq, v);
3834 return 0;
3837 static struct softnet_data *softnet_get_online(loff_t *pos)
3839 struct softnet_data *sd = NULL;
3841 while (*pos < nr_cpu_ids)
3842 if (cpu_online(*pos)) {
3843 sd = &per_cpu(softnet_data, *pos);
3844 break;
3845 } else
3846 ++*pos;
3847 return sd;
3850 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3852 return softnet_get_online(pos);
3855 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3857 ++*pos;
3858 return softnet_get_online(pos);
3861 static void softnet_seq_stop(struct seq_file *seq, void *v)
3865 static int softnet_seq_show(struct seq_file *seq, void *v)
3867 struct softnet_data *sd = v;
3869 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3870 sd->processed, sd->dropped, sd->time_squeeze, 0,
3871 0, 0, 0, 0, /* was fastroute */
3872 sd->cpu_collision, sd->received_rps);
3873 return 0;
3876 static const struct seq_operations dev_seq_ops = {
3877 .start = dev_seq_start,
3878 .next = dev_seq_next,
3879 .stop = dev_seq_stop,
3880 .show = dev_seq_show,
3883 static int dev_seq_open(struct inode *inode, struct file *file)
3885 return seq_open_net(inode, file, &dev_seq_ops,
3886 sizeof(struct seq_net_private));
3889 static const struct file_operations dev_seq_fops = {
3890 .owner = THIS_MODULE,
3891 .open = dev_seq_open,
3892 .read = seq_read,
3893 .llseek = seq_lseek,
3894 .release = seq_release_net,
3897 static const struct seq_operations softnet_seq_ops = {
3898 .start = softnet_seq_start,
3899 .next = softnet_seq_next,
3900 .stop = softnet_seq_stop,
3901 .show = softnet_seq_show,
3904 static int softnet_seq_open(struct inode *inode, struct file *file)
3906 return seq_open(file, &softnet_seq_ops);
3909 static const struct file_operations softnet_seq_fops = {
3910 .owner = THIS_MODULE,
3911 .open = softnet_seq_open,
3912 .read = seq_read,
3913 .llseek = seq_lseek,
3914 .release = seq_release,
3917 static void *ptype_get_idx(loff_t pos)
3919 struct packet_type *pt = NULL;
3920 loff_t i = 0;
3921 int t;
3923 list_for_each_entry_rcu(pt, &ptype_all, list) {
3924 if (i == pos)
3925 return pt;
3926 ++i;
3929 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3930 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3931 if (i == pos)
3932 return pt;
3933 ++i;
3936 return NULL;
3939 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3940 __acquires(RCU)
3942 rcu_read_lock();
3943 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3946 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3948 struct packet_type *pt;
3949 struct list_head *nxt;
3950 int hash;
3952 ++*pos;
3953 if (v == SEQ_START_TOKEN)
3954 return ptype_get_idx(0);
3956 pt = v;
3957 nxt = pt->list.next;
3958 if (pt->type == htons(ETH_P_ALL)) {
3959 if (nxt != &ptype_all)
3960 goto found;
3961 hash = 0;
3962 nxt = ptype_base[0].next;
3963 } else
3964 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3966 while (nxt == &ptype_base[hash]) {
3967 if (++hash >= PTYPE_HASH_SIZE)
3968 return NULL;
3969 nxt = ptype_base[hash].next;
3971 found:
3972 return list_entry(nxt, struct packet_type, list);
3975 static void ptype_seq_stop(struct seq_file *seq, void *v)
3976 __releases(RCU)
3978 rcu_read_unlock();
3981 static int ptype_seq_show(struct seq_file *seq, void *v)
3983 struct packet_type *pt = v;
3985 if (v == SEQ_START_TOKEN)
3986 seq_puts(seq, "Type Device Function\n");
3987 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3988 if (pt->type == htons(ETH_P_ALL))
3989 seq_puts(seq, "ALL ");
3990 else
3991 seq_printf(seq, "%04x", ntohs(pt->type));
3993 seq_printf(seq, " %-8s %pF\n",
3994 pt->dev ? pt->dev->name : "", pt->func);
3997 return 0;
4000 static const struct seq_operations ptype_seq_ops = {
4001 .start = ptype_seq_start,
4002 .next = ptype_seq_next,
4003 .stop = ptype_seq_stop,
4004 .show = ptype_seq_show,
4007 static int ptype_seq_open(struct inode *inode, struct file *file)
4009 return seq_open_net(inode, file, &ptype_seq_ops,
4010 sizeof(struct seq_net_private));
4013 static const struct file_operations ptype_seq_fops = {
4014 .owner = THIS_MODULE,
4015 .open = ptype_seq_open,
4016 .read = seq_read,
4017 .llseek = seq_lseek,
4018 .release = seq_release_net,
4022 static int __net_init dev_proc_net_init(struct net *net)
4024 int rc = -ENOMEM;
4026 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4027 goto out;
4028 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4029 goto out_dev;
4030 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4031 goto out_softnet;
4033 if (wext_proc_init(net))
4034 goto out_ptype;
4035 rc = 0;
4036 out:
4037 return rc;
4038 out_ptype:
4039 proc_net_remove(net, "ptype");
4040 out_softnet:
4041 proc_net_remove(net, "softnet_stat");
4042 out_dev:
4043 proc_net_remove(net, "dev");
4044 goto out;
4047 static void __net_exit dev_proc_net_exit(struct net *net)
4049 wext_proc_exit(net);
4051 proc_net_remove(net, "ptype");
4052 proc_net_remove(net, "softnet_stat");
4053 proc_net_remove(net, "dev");
4056 static struct pernet_operations __net_initdata dev_proc_ops = {
4057 .init = dev_proc_net_init,
4058 .exit = dev_proc_net_exit,
4061 static int __init dev_proc_init(void)
4063 return register_pernet_subsys(&dev_proc_ops);
4065 #else
4066 #define dev_proc_init() 0
4067 #endif /* CONFIG_PROC_FS */
4071 * netdev_set_master - set up master/slave pair
4072 * @slave: slave device
4073 * @master: new master device
4075 * Changes the master device of the slave. Pass %NULL to break the
4076 * bonding. The caller must hold the RTNL semaphore. On a failure
4077 * a negative errno code is returned. On success the reference counts
4078 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4079 * function returns zero.
4081 int netdev_set_master(struct net_device *slave, struct net_device *master)
4083 struct net_device *old = slave->master;
4085 ASSERT_RTNL();
4087 if (master) {
4088 if (old)
4089 return -EBUSY;
4090 dev_hold(master);
4093 slave->master = master;
4095 if (old) {
4096 synchronize_net();
4097 dev_put(old);
4099 if (master)
4100 slave->flags |= IFF_SLAVE;
4101 else
4102 slave->flags &= ~IFF_SLAVE;
4104 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4105 return 0;
4107 EXPORT_SYMBOL(netdev_set_master);
4109 static void dev_change_rx_flags(struct net_device *dev, int flags)
4111 const struct net_device_ops *ops = dev->netdev_ops;
4113 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4114 ops->ndo_change_rx_flags(dev, flags);
4117 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4119 unsigned short old_flags = dev->flags;
4120 uid_t uid;
4121 gid_t gid;
4123 ASSERT_RTNL();
4125 dev->flags |= IFF_PROMISC;
4126 dev->promiscuity += inc;
4127 if (dev->promiscuity == 0) {
4129 * Avoid overflow.
4130 * If inc causes overflow, untouch promisc and return error.
4132 if (inc < 0)
4133 dev->flags &= ~IFF_PROMISC;
4134 else {
4135 dev->promiscuity -= inc;
4136 printk(KERN_WARNING "%s: promiscuity touches roof, "
4137 "set promiscuity failed, promiscuity feature "
4138 "of device might be broken.\n", dev->name);
4139 return -EOVERFLOW;
4142 if (dev->flags != old_flags) {
4143 printk(KERN_INFO "device %s %s promiscuous mode\n",
4144 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4145 "left");
4146 if (audit_enabled) {
4147 current_uid_gid(&uid, &gid);
4148 audit_log(current->audit_context, GFP_ATOMIC,
4149 AUDIT_ANOM_PROMISCUOUS,
4150 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4151 dev->name, (dev->flags & IFF_PROMISC),
4152 (old_flags & IFF_PROMISC),
4153 audit_get_loginuid(current),
4154 uid, gid,
4155 audit_get_sessionid(current));
4158 dev_change_rx_flags(dev, IFF_PROMISC);
4160 return 0;
4164 * dev_set_promiscuity - update promiscuity count on a device
4165 * @dev: device
4166 * @inc: modifier
4168 * Add or remove promiscuity from a device. While the count in the device
4169 * remains above zero the interface remains promiscuous. Once it hits zero
4170 * the device reverts back to normal filtering operation. A negative inc
4171 * value is used to drop promiscuity on the device.
4172 * Return 0 if successful or a negative errno code on error.
4174 int dev_set_promiscuity(struct net_device *dev, int inc)
4176 unsigned short old_flags = dev->flags;
4177 int err;
4179 err = __dev_set_promiscuity(dev, inc);
4180 if (err < 0)
4181 return err;
4182 if (dev->flags != old_flags)
4183 dev_set_rx_mode(dev);
4184 return err;
4186 EXPORT_SYMBOL(dev_set_promiscuity);
4189 * dev_set_allmulti - update allmulti count on a device
4190 * @dev: device
4191 * @inc: modifier
4193 * Add or remove reception of all multicast frames to a device. While the
4194 * count in the device remains above zero the interface remains listening
4195 * to all interfaces. Once it hits zero the device reverts back to normal
4196 * filtering operation. A negative @inc value is used to drop the counter
4197 * when releasing a resource needing all multicasts.
4198 * Return 0 if successful or a negative errno code on error.
4201 int dev_set_allmulti(struct net_device *dev, int inc)
4203 unsigned short old_flags = dev->flags;
4205 ASSERT_RTNL();
4207 dev->flags |= IFF_ALLMULTI;
4208 dev->allmulti += inc;
4209 if (dev->allmulti == 0) {
4211 * Avoid overflow.
4212 * If inc causes overflow, untouch allmulti and return error.
4214 if (inc < 0)
4215 dev->flags &= ~IFF_ALLMULTI;
4216 else {
4217 dev->allmulti -= inc;
4218 printk(KERN_WARNING "%s: allmulti touches roof, "
4219 "set allmulti failed, allmulti feature of "
4220 "device might be broken.\n", dev->name);
4221 return -EOVERFLOW;
4224 if (dev->flags ^ old_flags) {
4225 dev_change_rx_flags(dev, IFF_ALLMULTI);
4226 dev_set_rx_mode(dev);
4228 return 0;
4230 EXPORT_SYMBOL(dev_set_allmulti);
4233 * Upload unicast and multicast address lists to device and
4234 * configure RX filtering. When the device doesn't support unicast
4235 * filtering it is put in promiscuous mode while unicast addresses
4236 * are present.
4238 void __dev_set_rx_mode(struct net_device *dev)
4240 const struct net_device_ops *ops = dev->netdev_ops;
4242 /* dev_open will call this function so the list will stay sane. */
4243 if (!(dev->flags&IFF_UP))
4244 return;
4246 if (!netif_device_present(dev))
4247 return;
4249 if (ops->ndo_set_rx_mode)
4250 ops->ndo_set_rx_mode(dev);
4251 else {
4252 /* Unicast addresses changes may only happen under the rtnl,
4253 * therefore calling __dev_set_promiscuity here is safe.
4255 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4256 __dev_set_promiscuity(dev, 1);
4257 dev->uc_promisc = 1;
4258 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4259 __dev_set_promiscuity(dev, -1);
4260 dev->uc_promisc = 0;
4263 if (ops->ndo_set_multicast_list)
4264 ops->ndo_set_multicast_list(dev);
4268 void dev_set_rx_mode(struct net_device *dev)
4270 netif_addr_lock_bh(dev);
4271 __dev_set_rx_mode(dev);
4272 netif_addr_unlock_bh(dev);
4276 * dev_get_flags - get flags reported to userspace
4277 * @dev: device
4279 * Get the combination of flag bits exported through APIs to userspace.
4281 unsigned dev_get_flags(const struct net_device *dev)
4283 unsigned flags;
4285 flags = (dev->flags & ~(IFF_PROMISC |
4286 IFF_ALLMULTI |
4287 IFF_RUNNING |
4288 IFF_LOWER_UP |
4289 IFF_DORMANT)) |
4290 (dev->gflags & (IFF_PROMISC |
4291 IFF_ALLMULTI));
4293 if (netif_running(dev)) {
4294 if (netif_oper_up(dev))
4295 flags |= IFF_RUNNING;
4296 if (netif_carrier_ok(dev))
4297 flags |= IFF_LOWER_UP;
4298 if (netif_dormant(dev))
4299 flags |= IFF_DORMANT;
4302 return flags;
4304 EXPORT_SYMBOL(dev_get_flags);
4306 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4308 int old_flags = dev->flags;
4309 int ret;
4311 ASSERT_RTNL();
4314 * Set the flags on our device.
4317 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4318 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4319 IFF_AUTOMEDIA)) |
4320 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4321 IFF_ALLMULTI));
4324 * Load in the correct multicast list now the flags have changed.
4327 if ((old_flags ^ flags) & IFF_MULTICAST)
4328 dev_change_rx_flags(dev, IFF_MULTICAST);
4330 dev_set_rx_mode(dev);
4333 * Have we downed the interface. We handle IFF_UP ourselves
4334 * according to user attempts to set it, rather than blindly
4335 * setting it.
4338 ret = 0;
4339 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4340 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4342 if (!ret)
4343 dev_set_rx_mode(dev);
4346 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4347 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4349 dev->gflags ^= IFF_PROMISC;
4350 dev_set_promiscuity(dev, inc);
4353 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4354 is important. Some (broken) drivers set IFF_PROMISC, when
4355 IFF_ALLMULTI is requested not asking us and not reporting.
4357 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4358 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4360 dev->gflags ^= IFF_ALLMULTI;
4361 dev_set_allmulti(dev, inc);
4364 return ret;
4367 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4369 unsigned int changes = dev->flags ^ old_flags;
4371 if (changes & IFF_UP) {
4372 if (dev->flags & IFF_UP)
4373 call_netdevice_notifiers(NETDEV_UP, dev);
4374 else
4375 call_netdevice_notifiers(NETDEV_DOWN, dev);
4378 if (dev->flags & IFF_UP &&
4379 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4380 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4384 * dev_change_flags - change device settings
4385 * @dev: device
4386 * @flags: device state flags
4388 * Change settings on device based state flags. The flags are
4389 * in the userspace exported format.
4391 int dev_change_flags(struct net_device *dev, unsigned flags)
4393 int ret, changes;
4394 int old_flags = dev->flags;
4396 ret = __dev_change_flags(dev, flags);
4397 if (ret < 0)
4398 return ret;
4400 changes = old_flags ^ dev->flags;
4401 if (changes)
4402 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4404 __dev_notify_flags(dev, old_flags);
4405 return ret;
4407 EXPORT_SYMBOL(dev_change_flags);
4410 * dev_set_mtu - Change maximum transfer unit
4411 * @dev: device
4412 * @new_mtu: new transfer unit
4414 * Change the maximum transfer size of the network device.
4416 int dev_set_mtu(struct net_device *dev, int new_mtu)
4418 const struct net_device_ops *ops = dev->netdev_ops;
4419 int err;
4421 if (new_mtu == dev->mtu)
4422 return 0;
4424 /* MTU must be positive. */
4425 if (new_mtu < 0)
4426 return -EINVAL;
4428 if (!netif_device_present(dev))
4429 return -ENODEV;
4431 err = 0;
4432 if (ops->ndo_change_mtu)
4433 err = ops->ndo_change_mtu(dev, new_mtu);
4434 else
4435 dev->mtu = new_mtu;
4437 if (!err && dev->flags & IFF_UP)
4438 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4439 return err;
4441 EXPORT_SYMBOL(dev_set_mtu);
4444 * dev_set_mac_address - Change Media Access Control Address
4445 * @dev: device
4446 * @sa: new address
4448 * Change the hardware (MAC) address of the device
4450 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4452 const struct net_device_ops *ops = dev->netdev_ops;
4453 int err;
4455 if (!ops->ndo_set_mac_address)
4456 return -EOPNOTSUPP;
4457 if (sa->sa_family != dev->type)
4458 return -EINVAL;
4459 if (!netif_device_present(dev))
4460 return -ENODEV;
4461 err = ops->ndo_set_mac_address(dev, sa);
4462 if (!err)
4463 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4464 return err;
4466 EXPORT_SYMBOL(dev_set_mac_address);
4469 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4471 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4473 int err;
4474 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4476 if (!dev)
4477 return -ENODEV;
4479 switch (cmd) {
4480 case SIOCGIFFLAGS: /* Get interface flags */
4481 ifr->ifr_flags = (short) dev_get_flags(dev);
4482 return 0;
4484 case SIOCGIFMETRIC: /* Get the metric on the interface
4485 (currently unused) */
4486 ifr->ifr_metric = 0;
4487 return 0;
4489 case SIOCGIFMTU: /* Get the MTU of a device */
4490 ifr->ifr_mtu = dev->mtu;
4491 return 0;
4493 case SIOCGIFHWADDR:
4494 if (!dev->addr_len)
4495 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4496 else
4497 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4499 ifr->ifr_hwaddr.sa_family = dev->type;
4500 return 0;
4502 case SIOCGIFSLAVE:
4503 err = -EINVAL;
4504 break;
4506 case SIOCGIFMAP:
4507 ifr->ifr_map.mem_start = dev->mem_start;
4508 ifr->ifr_map.mem_end = dev->mem_end;
4509 ifr->ifr_map.base_addr = dev->base_addr;
4510 ifr->ifr_map.irq = dev->irq;
4511 ifr->ifr_map.dma = dev->dma;
4512 ifr->ifr_map.port = dev->if_port;
4513 return 0;
4515 case SIOCGIFINDEX:
4516 ifr->ifr_ifindex = dev->ifindex;
4517 return 0;
4519 case SIOCGIFTXQLEN:
4520 ifr->ifr_qlen = dev->tx_queue_len;
4521 return 0;
4523 default:
4524 /* dev_ioctl() should ensure this case
4525 * is never reached
4527 WARN_ON(1);
4528 err = -EINVAL;
4529 break;
4532 return err;
4536 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4538 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4540 int err;
4541 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4542 const struct net_device_ops *ops;
4544 if (!dev)
4545 return -ENODEV;
4547 ops = dev->netdev_ops;
4549 switch (cmd) {
4550 case SIOCSIFFLAGS: /* Set interface flags */
4551 return dev_change_flags(dev, ifr->ifr_flags);
4553 case SIOCSIFMETRIC: /* Set the metric on the interface
4554 (currently unused) */
4555 return -EOPNOTSUPP;
4557 case SIOCSIFMTU: /* Set the MTU of a device */
4558 return dev_set_mtu(dev, ifr->ifr_mtu);
4560 case SIOCSIFHWADDR:
4561 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4563 case SIOCSIFHWBROADCAST:
4564 if (ifr->ifr_hwaddr.sa_family != dev->type)
4565 return -EINVAL;
4566 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4567 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4568 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4569 return 0;
4571 case SIOCSIFMAP:
4572 if (ops->ndo_set_config) {
4573 if (!netif_device_present(dev))
4574 return -ENODEV;
4575 return ops->ndo_set_config(dev, &ifr->ifr_map);
4577 return -EOPNOTSUPP;
4579 case SIOCADDMULTI:
4580 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4581 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4582 return -EINVAL;
4583 if (!netif_device_present(dev))
4584 return -ENODEV;
4585 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4587 case SIOCDELMULTI:
4588 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4589 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4590 return -EINVAL;
4591 if (!netif_device_present(dev))
4592 return -ENODEV;
4593 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4595 case SIOCSIFTXQLEN:
4596 if (ifr->ifr_qlen < 0)
4597 return -EINVAL;
4598 dev->tx_queue_len = ifr->ifr_qlen;
4599 return 0;
4601 case SIOCSIFNAME:
4602 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4603 return dev_change_name(dev, ifr->ifr_newname);
4606 * Unknown or private ioctl
4608 default:
4609 if ((cmd >= SIOCDEVPRIVATE &&
4610 cmd <= SIOCDEVPRIVATE + 15) ||
4611 cmd == SIOCBONDENSLAVE ||
4612 cmd == SIOCBONDRELEASE ||
4613 cmd == SIOCBONDSETHWADDR ||
4614 cmd == SIOCBONDSLAVEINFOQUERY ||
4615 cmd == SIOCBONDINFOQUERY ||
4616 cmd == SIOCBONDCHANGEACTIVE ||
4617 cmd == SIOCGMIIPHY ||
4618 cmd == SIOCGMIIREG ||
4619 cmd == SIOCSMIIREG ||
4620 cmd == SIOCBRADDIF ||
4621 cmd == SIOCBRDELIF ||
4622 cmd == SIOCSHWTSTAMP ||
4623 cmd == SIOCWANDEV) {
4624 err = -EOPNOTSUPP;
4625 if (ops->ndo_do_ioctl) {
4626 if (netif_device_present(dev))
4627 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4628 else
4629 err = -ENODEV;
4631 } else
4632 err = -EINVAL;
4635 return err;
4639 * This function handles all "interface"-type I/O control requests. The actual
4640 * 'doing' part of this is dev_ifsioc above.
4644 * dev_ioctl - network device ioctl
4645 * @net: the applicable net namespace
4646 * @cmd: command to issue
4647 * @arg: pointer to a struct ifreq in user space
4649 * Issue ioctl functions to devices. This is normally called by the
4650 * user space syscall interfaces but can sometimes be useful for
4651 * other purposes. The return value is the return from the syscall if
4652 * positive or a negative errno code on error.
4655 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4657 struct ifreq ifr;
4658 int ret;
4659 char *colon;
4661 /* One special case: SIOCGIFCONF takes ifconf argument
4662 and requires shared lock, because it sleeps writing
4663 to user space.
4666 if (cmd == SIOCGIFCONF) {
4667 rtnl_lock();
4668 ret = dev_ifconf(net, (char __user *) arg);
4669 rtnl_unlock();
4670 return ret;
4672 if (cmd == SIOCGIFNAME)
4673 return dev_ifname(net, (struct ifreq __user *)arg);
4675 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4676 return -EFAULT;
4678 ifr.ifr_name[IFNAMSIZ-1] = 0;
4680 colon = strchr(ifr.ifr_name, ':');
4681 if (colon)
4682 *colon = 0;
4685 * See which interface the caller is talking about.
4688 switch (cmd) {
4690 * These ioctl calls:
4691 * - can be done by all.
4692 * - atomic and do not require locking.
4693 * - return a value
4695 case SIOCGIFFLAGS:
4696 case SIOCGIFMETRIC:
4697 case SIOCGIFMTU:
4698 case SIOCGIFHWADDR:
4699 case SIOCGIFSLAVE:
4700 case SIOCGIFMAP:
4701 case SIOCGIFINDEX:
4702 case SIOCGIFTXQLEN:
4703 dev_load(net, ifr.ifr_name);
4704 rcu_read_lock();
4705 ret = dev_ifsioc_locked(net, &ifr, cmd);
4706 rcu_read_unlock();
4707 if (!ret) {
4708 if (colon)
4709 *colon = ':';
4710 if (copy_to_user(arg, &ifr,
4711 sizeof(struct ifreq)))
4712 ret = -EFAULT;
4714 return ret;
4716 case SIOCETHTOOL:
4717 dev_load(net, ifr.ifr_name);
4718 rtnl_lock();
4719 ret = dev_ethtool(net, &ifr);
4720 rtnl_unlock();
4721 if (!ret) {
4722 if (colon)
4723 *colon = ':';
4724 if (copy_to_user(arg, &ifr,
4725 sizeof(struct ifreq)))
4726 ret = -EFAULT;
4728 return ret;
4731 * These ioctl calls:
4732 * - require superuser power.
4733 * - require strict serialization.
4734 * - return a value
4736 case SIOCGMIIPHY:
4737 case SIOCGMIIREG:
4738 case SIOCSIFNAME:
4739 if (!capable(CAP_NET_ADMIN))
4740 return -EPERM;
4741 dev_load(net, ifr.ifr_name);
4742 rtnl_lock();
4743 ret = dev_ifsioc(net, &ifr, cmd);
4744 rtnl_unlock();
4745 if (!ret) {
4746 if (colon)
4747 *colon = ':';
4748 if (copy_to_user(arg, &ifr,
4749 sizeof(struct ifreq)))
4750 ret = -EFAULT;
4752 return ret;
4755 * These ioctl calls:
4756 * - require superuser power.
4757 * - require strict serialization.
4758 * - do not return a value
4760 case SIOCSIFFLAGS:
4761 case SIOCSIFMETRIC:
4762 case SIOCSIFMTU:
4763 case SIOCSIFMAP:
4764 case SIOCSIFHWADDR:
4765 case SIOCSIFSLAVE:
4766 case SIOCADDMULTI:
4767 case SIOCDELMULTI:
4768 case SIOCSIFHWBROADCAST:
4769 case SIOCSIFTXQLEN:
4770 case SIOCSMIIREG:
4771 case SIOCBONDENSLAVE:
4772 case SIOCBONDRELEASE:
4773 case SIOCBONDSETHWADDR:
4774 case SIOCBONDCHANGEACTIVE:
4775 case SIOCBRADDIF:
4776 case SIOCBRDELIF:
4777 case SIOCSHWTSTAMP:
4778 if (!capable(CAP_NET_ADMIN))
4779 return -EPERM;
4780 /* fall through */
4781 case SIOCBONDSLAVEINFOQUERY:
4782 case SIOCBONDINFOQUERY:
4783 dev_load(net, ifr.ifr_name);
4784 rtnl_lock();
4785 ret = dev_ifsioc(net, &ifr, cmd);
4786 rtnl_unlock();
4787 return ret;
4789 case SIOCGIFMEM:
4790 /* Get the per device memory space. We can add this but
4791 * currently do not support it */
4792 case SIOCSIFMEM:
4793 /* Set the per device memory buffer space.
4794 * Not applicable in our case */
4795 case SIOCSIFLINK:
4796 return -EINVAL;
4799 * Unknown or private ioctl.
4801 default:
4802 if (cmd == SIOCWANDEV ||
4803 (cmd >= SIOCDEVPRIVATE &&
4804 cmd <= SIOCDEVPRIVATE + 15)) {
4805 dev_load(net, ifr.ifr_name);
4806 rtnl_lock();
4807 ret = dev_ifsioc(net, &ifr, cmd);
4808 rtnl_unlock();
4809 if (!ret && copy_to_user(arg, &ifr,
4810 sizeof(struct ifreq)))
4811 ret = -EFAULT;
4812 return ret;
4814 /* Take care of Wireless Extensions */
4815 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4816 return wext_handle_ioctl(net, &ifr, cmd, arg);
4817 return -EINVAL;
4823 * dev_new_index - allocate an ifindex
4824 * @net: the applicable net namespace
4826 * Returns a suitable unique value for a new device interface
4827 * number. The caller must hold the rtnl semaphore or the
4828 * dev_base_lock to be sure it remains unique.
4830 static int dev_new_index(struct net *net)
4832 static int ifindex;
4833 for (;;) {
4834 if (++ifindex <= 0)
4835 ifindex = 1;
4836 if (!__dev_get_by_index(net, ifindex))
4837 return ifindex;
4841 /* Delayed registration/unregisteration */
4842 static LIST_HEAD(net_todo_list);
4844 static void net_set_todo(struct net_device *dev)
4846 list_add_tail(&dev->todo_list, &net_todo_list);
4849 static void rollback_registered_many(struct list_head *head)
4851 struct net_device *dev, *tmp;
4853 BUG_ON(dev_boot_phase);
4854 ASSERT_RTNL();
4856 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4857 /* Some devices call without registering
4858 * for initialization unwind. Remove those
4859 * devices and proceed with the remaining.
4861 if (dev->reg_state == NETREG_UNINITIALIZED) {
4862 pr_debug("unregister_netdevice: device %s/%p never "
4863 "was registered\n", dev->name, dev);
4865 WARN_ON(1);
4866 list_del(&dev->unreg_list);
4867 continue;
4870 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4872 /* If device is running, close it first. */
4873 dev_close(dev);
4875 /* And unlink it from device chain. */
4876 unlist_netdevice(dev);
4878 dev->reg_state = NETREG_UNREGISTERING;
4881 synchronize_net();
4883 list_for_each_entry(dev, head, unreg_list) {
4884 /* Shutdown queueing discipline. */
4885 dev_shutdown(dev);
4888 /* Notify protocols, that we are about to destroy
4889 this device. They should clean all the things.
4891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4893 if (!dev->rtnl_link_ops ||
4894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4895 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4898 * Flush the unicast and multicast chains
4900 dev_uc_flush(dev);
4901 dev_mc_flush(dev);
4903 if (dev->netdev_ops->ndo_uninit)
4904 dev->netdev_ops->ndo_uninit(dev);
4906 /* Notifier chain MUST detach us from master device. */
4907 WARN_ON(dev->master);
4909 /* Remove entries from kobject tree */
4910 netdev_unregister_kobject(dev);
4913 /* Process any work delayed until the end of the batch */
4914 dev = list_first_entry(head, struct net_device, unreg_list);
4915 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4917 rcu_barrier();
4919 list_for_each_entry(dev, head, unreg_list)
4920 dev_put(dev);
4923 static void rollback_registered(struct net_device *dev)
4925 LIST_HEAD(single);
4927 list_add(&dev->unreg_list, &single);
4928 rollback_registered_many(&single);
4931 static void __netdev_init_queue_locks_one(struct net_device *dev,
4932 struct netdev_queue *dev_queue,
4933 void *_unused)
4935 spin_lock_init(&dev_queue->_xmit_lock);
4936 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4937 dev_queue->xmit_lock_owner = -1;
4940 static void netdev_init_queue_locks(struct net_device *dev)
4942 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4945 unsigned long netdev_fix_features(unsigned long features, const char *name)
4947 /* Fix illegal SG+CSUM combinations. */
4948 if ((features & NETIF_F_SG) &&
4949 !(features & NETIF_F_ALL_CSUM)) {
4950 if (name)
4951 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4952 "checksum feature.\n", name);
4953 features &= ~NETIF_F_SG;
4956 /* TSO requires that SG is present as well. */
4957 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4958 if (name)
4959 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4960 "SG feature.\n", name);
4961 features &= ~NETIF_F_TSO;
4964 if (features & NETIF_F_UFO) {
4965 if (!(features & NETIF_F_GEN_CSUM)) {
4966 if (name)
4967 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4968 "since no NETIF_F_HW_CSUM feature.\n",
4969 name);
4970 features &= ~NETIF_F_UFO;
4973 if (!(features & NETIF_F_SG)) {
4974 if (name)
4975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4976 "since no NETIF_F_SG feature.\n", name);
4977 features &= ~NETIF_F_UFO;
4981 return features;
4983 EXPORT_SYMBOL(netdev_fix_features);
4986 * netif_stacked_transfer_operstate - transfer operstate
4987 * @rootdev: the root or lower level device to transfer state from
4988 * @dev: the device to transfer operstate to
4990 * Transfer operational state from root to device. This is normally
4991 * called when a stacking relationship exists between the root
4992 * device and the device(a leaf device).
4994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4995 struct net_device *dev)
4997 if (rootdev->operstate == IF_OPER_DORMANT)
4998 netif_dormant_on(dev);
4999 else
5000 netif_dormant_off(dev);
5002 if (netif_carrier_ok(rootdev)) {
5003 if (!netif_carrier_ok(dev))
5004 netif_carrier_on(dev);
5005 } else {
5006 if (netif_carrier_ok(dev))
5007 netif_carrier_off(dev);
5010 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5012 static int netif_alloc_rx_queues(struct net_device *dev)
5014 #ifdef CONFIG_RPS
5015 unsigned int i, count = dev->num_rx_queues;
5017 if (count) {
5018 struct netdev_rx_queue *rx;
5020 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5021 if (!rx) {
5022 pr_err("netdev: Unable to allocate %u rx queues.\n",
5023 count);
5024 return -ENOMEM;
5026 dev->_rx = rx;
5027 atomic_set(&rx->count, count);
5030 * Set a pointer to first element in the array which holds the
5031 * reference count.
5033 for (i = 0; i < count; i++)
5034 rx[i].first = rx;
5036 #endif
5037 return 0;
5041 * register_netdevice - register a network device
5042 * @dev: device to register
5044 * Take a completed network device structure and add it to the kernel
5045 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5046 * chain. 0 is returned on success. A negative errno code is returned
5047 * on a failure to set up the device, or if the name is a duplicate.
5049 * Callers must hold the rtnl semaphore. You may want
5050 * register_netdev() instead of this.
5052 * BUGS:
5053 * The locking appears insufficient to guarantee two parallel registers
5054 * will not get the same name.
5057 int register_netdevice(struct net_device *dev)
5059 int ret;
5060 struct net *net = dev_net(dev);
5062 BUG_ON(dev_boot_phase);
5063 ASSERT_RTNL();
5065 might_sleep();
5067 /* When net_device's are persistent, this will be fatal. */
5068 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5069 BUG_ON(!net);
5071 spin_lock_init(&dev->addr_list_lock);
5072 netdev_set_addr_lockdep_class(dev);
5073 netdev_init_queue_locks(dev);
5075 dev->iflink = -1;
5077 ret = netif_alloc_rx_queues(dev);
5078 if (ret)
5079 goto out;
5081 /* Init, if this function is available */
5082 if (dev->netdev_ops->ndo_init) {
5083 ret = dev->netdev_ops->ndo_init(dev);
5084 if (ret) {
5085 if (ret > 0)
5086 ret = -EIO;
5087 goto out;
5091 ret = dev_get_valid_name(dev, dev->name, 0);
5092 if (ret)
5093 goto err_uninit;
5095 dev->ifindex = dev_new_index(net);
5096 if (dev->iflink == -1)
5097 dev->iflink = dev->ifindex;
5099 /* Fix illegal checksum combinations */
5100 if ((dev->features & NETIF_F_HW_CSUM) &&
5101 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5102 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5103 dev->name);
5104 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5107 if ((dev->features & NETIF_F_NO_CSUM) &&
5108 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5109 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5110 dev->name);
5111 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5114 dev->features = netdev_fix_features(dev->features, dev->name);
5116 /* Enable software GSO if SG is supported. */
5117 if (dev->features & NETIF_F_SG)
5118 dev->features |= NETIF_F_GSO;
5120 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5121 * vlan_dev_init() will do the dev->features check, so these features
5122 * are enabled only if supported by underlying device.
5124 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5126 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5127 ret = notifier_to_errno(ret);
5128 if (ret)
5129 goto err_uninit;
5131 ret = netdev_register_kobject(dev);
5132 if (ret)
5133 goto err_uninit;
5134 dev->reg_state = NETREG_REGISTERED;
5137 * Default initial state at registry is that the
5138 * device is present.
5141 set_bit(__LINK_STATE_PRESENT, &dev->state);
5143 dev_init_scheduler(dev);
5144 dev_hold(dev);
5145 list_netdevice(dev);
5147 /* Notify protocols, that a new device appeared. */
5148 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5149 ret = notifier_to_errno(ret);
5150 if (ret) {
5151 rollback_registered(dev);
5152 dev->reg_state = NETREG_UNREGISTERED;
5155 * Prevent userspace races by waiting until the network
5156 * device is fully setup before sending notifications.
5158 if (!dev->rtnl_link_ops ||
5159 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5160 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5162 out:
5163 return ret;
5165 err_uninit:
5166 if (dev->netdev_ops->ndo_uninit)
5167 dev->netdev_ops->ndo_uninit(dev);
5168 goto out;
5170 EXPORT_SYMBOL(register_netdevice);
5173 * init_dummy_netdev - init a dummy network device for NAPI
5174 * @dev: device to init
5176 * This takes a network device structure and initialize the minimum
5177 * amount of fields so it can be used to schedule NAPI polls without
5178 * registering a full blown interface. This is to be used by drivers
5179 * that need to tie several hardware interfaces to a single NAPI
5180 * poll scheduler due to HW limitations.
5182 int init_dummy_netdev(struct net_device *dev)
5184 /* Clear everything. Note we don't initialize spinlocks
5185 * are they aren't supposed to be taken by any of the
5186 * NAPI code and this dummy netdev is supposed to be
5187 * only ever used for NAPI polls
5189 memset(dev, 0, sizeof(struct net_device));
5191 /* make sure we BUG if trying to hit standard
5192 * register/unregister code path
5194 dev->reg_state = NETREG_DUMMY;
5196 /* initialize the ref count */
5197 atomic_set(&dev->refcnt, 1);
5199 /* NAPI wants this */
5200 INIT_LIST_HEAD(&dev->napi_list);
5202 /* a dummy interface is started by default */
5203 set_bit(__LINK_STATE_PRESENT, &dev->state);
5204 set_bit(__LINK_STATE_START, &dev->state);
5206 return 0;
5208 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5212 * register_netdev - register a network device
5213 * @dev: device to register
5215 * Take a completed network device structure and add it to the kernel
5216 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5217 * chain. 0 is returned on success. A negative errno code is returned
5218 * on a failure to set up the device, or if the name is a duplicate.
5220 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5221 * and expands the device name if you passed a format string to
5222 * alloc_netdev.
5224 int register_netdev(struct net_device *dev)
5226 int err;
5228 rtnl_lock();
5231 * If the name is a format string the caller wants us to do a
5232 * name allocation.
5234 if (strchr(dev->name, '%')) {
5235 err = dev_alloc_name(dev, dev->name);
5236 if (err < 0)
5237 goto out;
5240 err = register_netdevice(dev);
5241 out:
5242 rtnl_unlock();
5243 return err;
5245 EXPORT_SYMBOL(register_netdev);
5248 * netdev_wait_allrefs - wait until all references are gone.
5250 * This is called when unregistering network devices.
5252 * Any protocol or device that holds a reference should register
5253 * for netdevice notification, and cleanup and put back the
5254 * reference if they receive an UNREGISTER event.
5255 * We can get stuck here if buggy protocols don't correctly
5256 * call dev_put.
5258 static void netdev_wait_allrefs(struct net_device *dev)
5260 unsigned long rebroadcast_time, warning_time;
5262 linkwatch_forget_dev(dev);
5264 rebroadcast_time = warning_time = jiffies;
5265 while (atomic_read(&dev->refcnt) != 0) {
5266 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5267 rtnl_lock();
5269 /* Rebroadcast unregister notification */
5270 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5271 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5272 * should have already handle it the first time */
5274 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5275 &dev->state)) {
5276 /* We must not have linkwatch events
5277 * pending on unregister. If this
5278 * happens, we simply run the queue
5279 * unscheduled, resulting in a noop
5280 * for this device.
5282 linkwatch_run_queue();
5285 __rtnl_unlock();
5287 rebroadcast_time = jiffies;
5290 msleep(250);
5292 if (time_after(jiffies, warning_time + 10 * HZ)) {
5293 printk(KERN_EMERG "unregister_netdevice: "
5294 "waiting for %s to become free. Usage "
5295 "count = %d\n",
5296 dev->name, atomic_read(&dev->refcnt));
5297 warning_time = jiffies;
5302 /* The sequence is:
5304 * rtnl_lock();
5305 * ...
5306 * register_netdevice(x1);
5307 * register_netdevice(x2);
5308 * ...
5309 * unregister_netdevice(y1);
5310 * unregister_netdevice(y2);
5311 * ...
5312 * rtnl_unlock();
5313 * free_netdev(y1);
5314 * free_netdev(y2);
5316 * We are invoked by rtnl_unlock().
5317 * This allows us to deal with problems:
5318 * 1) We can delete sysfs objects which invoke hotplug
5319 * without deadlocking with linkwatch via keventd.
5320 * 2) Since we run with the RTNL semaphore not held, we can sleep
5321 * safely in order to wait for the netdev refcnt to drop to zero.
5323 * We must not return until all unregister events added during
5324 * the interval the lock was held have been completed.
5326 void netdev_run_todo(void)
5328 struct list_head list;
5330 /* Snapshot list, allow later requests */
5331 list_replace_init(&net_todo_list, &list);
5333 __rtnl_unlock();
5335 while (!list_empty(&list)) {
5336 struct net_device *dev
5337 = list_first_entry(&list, struct net_device, todo_list);
5338 list_del(&dev->todo_list);
5340 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5341 printk(KERN_ERR "network todo '%s' but state %d\n",
5342 dev->name, dev->reg_state);
5343 dump_stack();
5344 continue;
5347 dev->reg_state = NETREG_UNREGISTERED;
5349 on_each_cpu(flush_backlog, dev, 1);
5351 netdev_wait_allrefs(dev);
5353 /* paranoia */
5354 BUG_ON(atomic_read(&dev->refcnt));
5355 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5356 WARN_ON(dev->ip6_ptr);
5357 WARN_ON(dev->dn_ptr);
5359 if (dev->destructor)
5360 dev->destructor(dev);
5362 /* Free network device */
5363 kobject_put(&dev->dev.kobj);
5368 * dev_txq_stats_fold - fold tx_queues stats
5369 * @dev: device to get statistics from
5370 * @stats: struct rtnl_link_stats64 to hold results
5372 void dev_txq_stats_fold(const struct net_device *dev,
5373 struct rtnl_link_stats64 *stats)
5375 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5376 unsigned int i;
5377 struct netdev_queue *txq;
5379 for (i = 0; i < dev->num_tx_queues; i++) {
5380 txq = netdev_get_tx_queue(dev, i);
5381 spin_lock_bh(&txq->_xmit_lock);
5382 tx_bytes += txq->tx_bytes;
5383 tx_packets += txq->tx_packets;
5384 tx_dropped += txq->tx_dropped;
5385 spin_unlock_bh(&txq->_xmit_lock);
5387 if (tx_bytes || tx_packets || tx_dropped) {
5388 stats->tx_bytes = tx_bytes;
5389 stats->tx_packets = tx_packets;
5390 stats->tx_dropped = tx_dropped;
5393 EXPORT_SYMBOL(dev_txq_stats_fold);
5395 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5396 * fields in the same order, with only the type differing.
5398 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5399 const struct net_device_stats *netdev_stats)
5401 #if BITS_PER_LONG == 64
5402 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5403 memcpy(stats64, netdev_stats, sizeof(*stats64));
5404 #else
5405 size_t i, n = sizeof(*stats64) / sizeof(u64);
5406 const unsigned long *src = (const unsigned long *)netdev_stats;
5407 u64 *dst = (u64 *)stats64;
5409 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5410 sizeof(*stats64) / sizeof(u64));
5411 for (i = 0; i < n; i++)
5412 dst[i] = src[i];
5413 #endif
5417 * dev_get_stats - get network device statistics
5418 * @dev: device to get statistics from
5419 * @storage: place to store stats
5421 * Get network statistics from device. Return @storage.
5422 * The device driver may provide its own method by setting
5423 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5424 * otherwise the internal statistics structure is used.
5426 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5427 struct rtnl_link_stats64 *storage)
5429 const struct net_device_ops *ops = dev->netdev_ops;
5431 if (ops->ndo_get_stats64) {
5432 memset(storage, 0, sizeof(*storage));
5433 ops->ndo_get_stats64(dev, storage);
5434 } else if (ops->ndo_get_stats) {
5435 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5436 } else {
5437 netdev_stats_to_stats64(storage, &dev->stats);
5438 dev_txq_stats_fold(dev, storage);
5440 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5441 return storage;
5443 EXPORT_SYMBOL(dev_get_stats);
5445 static void netdev_init_one_queue(struct net_device *dev,
5446 struct netdev_queue *queue,
5447 void *_unused)
5449 queue->dev = dev;
5452 static void netdev_init_queues(struct net_device *dev)
5454 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5455 spin_lock_init(&dev->tx_global_lock);
5458 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5460 struct netdev_queue *queue = dev_ingress_queue(dev);
5462 #ifdef CONFIG_NET_CLS_ACT
5463 if (queue)
5464 return queue;
5465 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5466 if (!queue)
5467 return NULL;
5468 netdev_init_one_queue(dev, queue, NULL);
5469 __netdev_init_queue_locks_one(dev, queue, NULL);
5470 queue->qdisc = &noop_qdisc;
5471 queue->qdisc_sleeping = &noop_qdisc;
5472 rcu_assign_pointer(dev->ingress_queue, queue);
5473 #endif
5474 return queue;
5478 * alloc_netdev_mq - allocate network device
5479 * @sizeof_priv: size of private data to allocate space for
5480 * @name: device name format string
5481 * @setup: callback to initialize device
5482 * @queue_count: the number of subqueues to allocate
5484 * Allocates a struct net_device with private data area for driver use
5485 * and performs basic initialization. Also allocates subquue structs
5486 * for each queue on the device at the end of the netdevice.
5488 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5489 void (*setup)(struct net_device *), unsigned int queue_count)
5491 struct netdev_queue *tx;
5492 struct net_device *dev;
5493 size_t alloc_size;
5494 struct net_device *p;
5496 BUG_ON(strlen(name) >= sizeof(dev->name));
5498 alloc_size = sizeof(struct net_device);
5499 if (sizeof_priv) {
5500 /* ensure 32-byte alignment of private area */
5501 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5502 alloc_size += sizeof_priv;
5504 /* ensure 32-byte alignment of whole construct */
5505 alloc_size += NETDEV_ALIGN - 1;
5507 p = kzalloc(alloc_size, GFP_KERNEL);
5508 if (!p) {
5509 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5510 return NULL;
5513 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5514 if (!tx) {
5515 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5516 "tx qdiscs.\n");
5517 goto free_p;
5521 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5522 dev->padded = (char *)dev - (char *)p;
5524 if (dev_addr_init(dev))
5525 goto free_tx;
5527 dev_mc_init(dev);
5528 dev_uc_init(dev);
5530 dev_net_set(dev, &init_net);
5532 dev->_tx = tx;
5533 dev->num_tx_queues = queue_count;
5534 dev->real_num_tx_queues = queue_count;
5536 #ifdef CONFIG_RPS
5537 dev->num_rx_queues = queue_count;
5538 dev->real_num_rx_queues = queue_count;
5539 #endif
5541 dev->gso_max_size = GSO_MAX_SIZE;
5543 netdev_init_queues(dev);
5545 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5546 dev->ethtool_ntuple_list.count = 0;
5547 INIT_LIST_HEAD(&dev->napi_list);
5548 INIT_LIST_HEAD(&dev->unreg_list);
5549 INIT_LIST_HEAD(&dev->link_watch_list);
5550 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5551 setup(dev);
5552 strcpy(dev->name, name);
5553 return dev;
5555 free_tx:
5556 kfree(tx);
5557 free_p:
5558 kfree(p);
5559 return NULL;
5561 EXPORT_SYMBOL(alloc_netdev_mq);
5564 * free_netdev - free network device
5565 * @dev: device
5567 * This function does the last stage of destroying an allocated device
5568 * interface. The reference to the device object is released.
5569 * If this is the last reference then it will be freed.
5571 void free_netdev(struct net_device *dev)
5573 struct napi_struct *p, *n;
5575 release_net(dev_net(dev));
5577 kfree(dev->_tx);
5579 kfree(rcu_dereference_raw(dev->ingress_queue));
5581 /* Flush device addresses */
5582 dev_addr_flush(dev);
5584 /* Clear ethtool n-tuple list */
5585 ethtool_ntuple_flush(dev);
5587 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5588 netif_napi_del(p);
5590 /* Compatibility with error handling in drivers */
5591 if (dev->reg_state == NETREG_UNINITIALIZED) {
5592 kfree((char *)dev - dev->padded);
5593 return;
5596 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5597 dev->reg_state = NETREG_RELEASED;
5599 /* will free via device release */
5600 put_device(&dev->dev);
5602 EXPORT_SYMBOL(free_netdev);
5605 * synchronize_net - Synchronize with packet receive processing
5607 * Wait for packets currently being received to be done.
5608 * Does not block later packets from starting.
5610 void synchronize_net(void)
5612 might_sleep();
5613 synchronize_rcu();
5615 EXPORT_SYMBOL(synchronize_net);
5618 * unregister_netdevice_queue - remove device from the kernel
5619 * @dev: device
5620 * @head: list
5622 * This function shuts down a device interface and removes it
5623 * from the kernel tables.
5624 * If head not NULL, device is queued to be unregistered later.
5626 * Callers must hold the rtnl semaphore. You may want
5627 * unregister_netdev() instead of this.
5630 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5632 ASSERT_RTNL();
5634 if (head) {
5635 list_move_tail(&dev->unreg_list, head);
5636 } else {
5637 rollback_registered(dev);
5638 /* Finish processing unregister after unlock */
5639 net_set_todo(dev);
5642 EXPORT_SYMBOL(unregister_netdevice_queue);
5645 * unregister_netdevice_many - unregister many devices
5646 * @head: list of devices
5648 void unregister_netdevice_many(struct list_head *head)
5650 struct net_device *dev;
5652 if (!list_empty(head)) {
5653 rollback_registered_many(head);
5654 list_for_each_entry(dev, head, unreg_list)
5655 net_set_todo(dev);
5658 EXPORT_SYMBOL(unregister_netdevice_many);
5661 * unregister_netdev - remove device from the kernel
5662 * @dev: device
5664 * This function shuts down a device interface and removes it
5665 * from the kernel tables.
5667 * This is just a wrapper for unregister_netdevice that takes
5668 * the rtnl semaphore. In general you want to use this and not
5669 * unregister_netdevice.
5671 void unregister_netdev(struct net_device *dev)
5673 rtnl_lock();
5674 unregister_netdevice(dev);
5675 rtnl_unlock();
5677 EXPORT_SYMBOL(unregister_netdev);
5680 * dev_change_net_namespace - move device to different nethost namespace
5681 * @dev: device
5682 * @net: network namespace
5683 * @pat: If not NULL name pattern to try if the current device name
5684 * is already taken in the destination network namespace.
5686 * This function shuts down a device interface and moves it
5687 * to a new network namespace. On success 0 is returned, on
5688 * a failure a netagive errno code is returned.
5690 * Callers must hold the rtnl semaphore.
5693 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5695 int err;
5697 ASSERT_RTNL();
5699 /* Don't allow namespace local devices to be moved. */
5700 err = -EINVAL;
5701 if (dev->features & NETIF_F_NETNS_LOCAL)
5702 goto out;
5704 /* Ensure the device has been registrered */
5705 err = -EINVAL;
5706 if (dev->reg_state != NETREG_REGISTERED)
5707 goto out;
5709 /* Get out if there is nothing todo */
5710 err = 0;
5711 if (net_eq(dev_net(dev), net))
5712 goto out;
5714 /* Pick the destination device name, and ensure
5715 * we can use it in the destination network namespace.
5717 err = -EEXIST;
5718 if (__dev_get_by_name(net, dev->name)) {
5719 /* We get here if we can't use the current device name */
5720 if (!pat)
5721 goto out;
5722 if (dev_get_valid_name(dev, pat, 1))
5723 goto out;
5727 * And now a mini version of register_netdevice unregister_netdevice.
5730 /* If device is running close it first. */
5731 dev_close(dev);
5733 /* And unlink it from device chain */
5734 err = -ENODEV;
5735 unlist_netdevice(dev);
5737 synchronize_net();
5739 /* Shutdown queueing discipline. */
5740 dev_shutdown(dev);
5742 /* Notify protocols, that we are about to destroy
5743 this device. They should clean all the things.
5745 Note that dev->reg_state stays at NETREG_REGISTERED.
5746 This is wanted because this way 8021q and macvlan know
5747 the device is just moving and can keep their slaves up.
5749 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5750 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5753 * Flush the unicast and multicast chains
5755 dev_uc_flush(dev);
5756 dev_mc_flush(dev);
5758 /* Actually switch the network namespace */
5759 dev_net_set(dev, net);
5761 /* If there is an ifindex conflict assign a new one */
5762 if (__dev_get_by_index(net, dev->ifindex)) {
5763 int iflink = (dev->iflink == dev->ifindex);
5764 dev->ifindex = dev_new_index(net);
5765 if (iflink)
5766 dev->iflink = dev->ifindex;
5769 /* Fixup kobjects */
5770 err = device_rename(&dev->dev, dev->name);
5771 WARN_ON(err);
5773 /* Add the device back in the hashes */
5774 list_netdevice(dev);
5776 /* Notify protocols, that a new device appeared. */
5777 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5780 * Prevent userspace races by waiting until the network
5781 * device is fully setup before sending notifications.
5783 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5785 synchronize_net();
5786 err = 0;
5787 out:
5788 return err;
5790 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5792 static int dev_cpu_callback(struct notifier_block *nfb,
5793 unsigned long action,
5794 void *ocpu)
5796 struct sk_buff **list_skb;
5797 struct sk_buff *skb;
5798 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5799 struct softnet_data *sd, *oldsd;
5801 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5802 return NOTIFY_OK;
5804 local_irq_disable();
5805 cpu = smp_processor_id();
5806 sd = &per_cpu(softnet_data, cpu);
5807 oldsd = &per_cpu(softnet_data, oldcpu);
5809 /* Find end of our completion_queue. */
5810 list_skb = &sd->completion_queue;
5811 while (*list_skb)
5812 list_skb = &(*list_skb)->next;
5813 /* Append completion queue from offline CPU. */
5814 *list_skb = oldsd->completion_queue;
5815 oldsd->completion_queue = NULL;
5817 /* Append output queue from offline CPU. */
5818 if (oldsd->output_queue) {
5819 *sd->output_queue_tailp = oldsd->output_queue;
5820 sd->output_queue_tailp = oldsd->output_queue_tailp;
5821 oldsd->output_queue = NULL;
5822 oldsd->output_queue_tailp = &oldsd->output_queue;
5825 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5826 local_irq_enable();
5828 /* Process offline CPU's input_pkt_queue */
5829 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5830 netif_rx(skb);
5831 input_queue_head_incr(oldsd);
5833 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5834 netif_rx(skb);
5835 input_queue_head_incr(oldsd);
5838 return NOTIFY_OK;
5843 * netdev_increment_features - increment feature set by one
5844 * @all: current feature set
5845 * @one: new feature set
5846 * @mask: mask feature set
5848 * Computes a new feature set after adding a device with feature set
5849 * @one to the master device with current feature set @all. Will not
5850 * enable anything that is off in @mask. Returns the new feature set.
5852 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5853 unsigned long mask)
5855 /* If device needs checksumming, downgrade to it. */
5856 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5857 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5858 else if (mask & NETIF_F_ALL_CSUM) {
5859 /* If one device supports v4/v6 checksumming, set for all. */
5860 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5861 !(all & NETIF_F_GEN_CSUM)) {
5862 all &= ~NETIF_F_ALL_CSUM;
5863 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5866 /* If one device supports hw checksumming, set for all. */
5867 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5868 all &= ~NETIF_F_ALL_CSUM;
5869 all |= NETIF_F_HW_CSUM;
5873 one |= NETIF_F_ALL_CSUM;
5875 one |= all & NETIF_F_ONE_FOR_ALL;
5876 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5877 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5879 return all;
5881 EXPORT_SYMBOL(netdev_increment_features);
5883 static struct hlist_head *netdev_create_hash(void)
5885 int i;
5886 struct hlist_head *hash;
5888 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5889 if (hash != NULL)
5890 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5891 INIT_HLIST_HEAD(&hash[i]);
5893 return hash;
5896 /* Initialize per network namespace state */
5897 static int __net_init netdev_init(struct net *net)
5899 INIT_LIST_HEAD(&net->dev_base_head);
5901 net->dev_name_head = netdev_create_hash();
5902 if (net->dev_name_head == NULL)
5903 goto err_name;
5905 net->dev_index_head = netdev_create_hash();
5906 if (net->dev_index_head == NULL)
5907 goto err_idx;
5909 return 0;
5911 err_idx:
5912 kfree(net->dev_name_head);
5913 err_name:
5914 return -ENOMEM;
5918 * netdev_drivername - network driver for the device
5919 * @dev: network device
5920 * @buffer: buffer for resulting name
5921 * @len: size of buffer
5923 * Determine network driver for device.
5925 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5927 const struct device_driver *driver;
5928 const struct device *parent;
5930 if (len <= 0 || !buffer)
5931 return buffer;
5932 buffer[0] = 0;
5934 parent = dev->dev.parent;
5936 if (!parent)
5937 return buffer;
5939 driver = parent->driver;
5940 if (driver && driver->name)
5941 strlcpy(buffer, driver->name, len);
5942 return buffer;
5945 static int __netdev_printk(const char *level, const struct net_device *dev,
5946 struct va_format *vaf)
5948 int r;
5950 if (dev && dev->dev.parent)
5951 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5952 netdev_name(dev), vaf);
5953 else if (dev)
5954 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5955 else
5956 r = printk("%s(NULL net_device): %pV", level, vaf);
5958 return r;
5961 int netdev_printk(const char *level, const struct net_device *dev,
5962 const char *format, ...)
5964 struct va_format vaf;
5965 va_list args;
5966 int r;
5968 va_start(args, format);
5970 vaf.fmt = format;
5971 vaf.va = &args;
5973 r = __netdev_printk(level, dev, &vaf);
5974 va_end(args);
5976 return r;
5978 EXPORT_SYMBOL(netdev_printk);
5980 #define define_netdev_printk_level(func, level) \
5981 int func(const struct net_device *dev, const char *fmt, ...) \
5983 int r; \
5984 struct va_format vaf; \
5985 va_list args; \
5987 va_start(args, fmt); \
5989 vaf.fmt = fmt; \
5990 vaf.va = &args; \
5992 r = __netdev_printk(level, dev, &vaf); \
5993 va_end(args); \
5995 return r; \
5997 EXPORT_SYMBOL(func);
5999 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6000 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6001 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6002 define_netdev_printk_level(netdev_err, KERN_ERR);
6003 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6004 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6005 define_netdev_printk_level(netdev_info, KERN_INFO);
6007 static void __net_exit netdev_exit(struct net *net)
6009 kfree(net->dev_name_head);
6010 kfree(net->dev_index_head);
6013 static struct pernet_operations __net_initdata netdev_net_ops = {
6014 .init = netdev_init,
6015 .exit = netdev_exit,
6018 static void __net_exit default_device_exit(struct net *net)
6020 struct net_device *dev, *aux;
6022 * Push all migratable network devices back to the
6023 * initial network namespace
6025 rtnl_lock();
6026 for_each_netdev_safe(net, dev, aux) {
6027 int err;
6028 char fb_name[IFNAMSIZ];
6030 /* Ignore unmoveable devices (i.e. loopback) */
6031 if (dev->features & NETIF_F_NETNS_LOCAL)
6032 continue;
6034 /* Leave virtual devices for the generic cleanup */
6035 if (dev->rtnl_link_ops)
6036 continue;
6038 /* Push remaing network devices to init_net */
6039 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6040 err = dev_change_net_namespace(dev, &init_net, fb_name);
6041 if (err) {
6042 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6043 __func__, dev->name, err);
6044 BUG();
6047 rtnl_unlock();
6050 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6052 /* At exit all network devices most be removed from a network
6053 * namespace. Do this in the reverse order of registeration.
6054 * Do this across as many network namespaces as possible to
6055 * improve batching efficiency.
6057 struct net_device *dev;
6058 struct net *net;
6059 LIST_HEAD(dev_kill_list);
6061 rtnl_lock();
6062 list_for_each_entry(net, net_list, exit_list) {
6063 for_each_netdev_reverse(net, dev) {
6064 if (dev->rtnl_link_ops)
6065 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6066 else
6067 unregister_netdevice_queue(dev, &dev_kill_list);
6070 unregister_netdevice_many(&dev_kill_list);
6071 rtnl_unlock();
6074 static struct pernet_operations __net_initdata default_device_ops = {
6075 .exit = default_device_exit,
6076 .exit_batch = default_device_exit_batch,
6080 * Initialize the DEV module. At boot time this walks the device list and
6081 * unhooks any devices that fail to initialise (normally hardware not
6082 * present) and leaves us with a valid list of present and active devices.
6087 * This is called single threaded during boot, so no need
6088 * to take the rtnl semaphore.
6090 static int __init net_dev_init(void)
6092 int i, rc = -ENOMEM;
6094 BUG_ON(!dev_boot_phase);
6096 if (dev_proc_init())
6097 goto out;
6099 if (netdev_kobject_init())
6100 goto out;
6102 INIT_LIST_HEAD(&ptype_all);
6103 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6104 INIT_LIST_HEAD(&ptype_base[i]);
6106 if (register_pernet_subsys(&netdev_net_ops))
6107 goto out;
6110 * Initialise the packet receive queues.
6113 for_each_possible_cpu(i) {
6114 struct softnet_data *sd = &per_cpu(softnet_data, i);
6116 memset(sd, 0, sizeof(*sd));
6117 skb_queue_head_init(&sd->input_pkt_queue);
6118 skb_queue_head_init(&sd->process_queue);
6119 sd->completion_queue = NULL;
6120 INIT_LIST_HEAD(&sd->poll_list);
6121 sd->output_queue = NULL;
6122 sd->output_queue_tailp = &sd->output_queue;
6123 #ifdef CONFIG_RPS
6124 sd->csd.func = rps_trigger_softirq;
6125 sd->csd.info = sd;
6126 sd->csd.flags = 0;
6127 sd->cpu = i;
6128 #endif
6130 sd->backlog.poll = process_backlog;
6131 sd->backlog.weight = weight_p;
6132 sd->backlog.gro_list = NULL;
6133 sd->backlog.gro_count = 0;
6136 dev_boot_phase = 0;
6138 /* The loopback device is special if any other network devices
6139 * is present in a network namespace the loopback device must
6140 * be present. Since we now dynamically allocate and free the
6141 * loopback device ensure this invariant is maintained by
6142 * keeping the loopback device as the first device on the
6143 * list of network devices. Ensuring the loopback devices
6144 * is the first device that appears and the last network device
6145 * that disappears.
6147 if (register_pernet_device(&loopback_net_ops))
6148 goto out;
6150 if (register_pernet_device(&default_device_ops))
6151 goto out;
6153 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6154 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6156 hotcpu_notifier(dev_cpu_callback, 0);
6157 dst_init();
6158 dev_mcast_init();
6159 rc = 0;
6160 out:
6161 return rc;
6164 subsys_initcall(net_dev_init);
6166 static int __init initialize_hashrnd(void)
6168 get_random_bytes(&hashrnd, sizeof(hashrnd));
6169 return 0;
6172 late_initcall_sync(initialize_hashrnd);