2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 #define SVC_MAX_WAKING 5
21 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
);
22 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
23 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
24 static void svc_age_temp_xprts(unsigned long closure
);
26 /* apparently the "standard" is that clients close
27 * idle connections after 5 minutes, servers after
29 * http://www.connectathon.org/talks96/nfstcp.pdf
31 static int svc_conn_age_period
= 6*60;
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock
);
35 static LIST_HEAD(svc_xprt_class_list
);
37 /* SMP locking strategy:
39 * svc_pool->sp_lock protects most of the fields of that pool.
40 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41 * when both need to be taken (rare), svc_serv->sv_lock is first.
42 * BKL protects svc_serv->sv_nrthread.
43 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
44 * and the ->sk_info_authunix cache.
46 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47 * enqueued multiply. During normal transport processing this bit
48 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49 * Providers should not manipulate this bit directly.
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
55 * - Can be set or cleared at any time.
56 * - After a set, svc_xprt_enqueue must be called to enqueue
57 * the transport for processing.
58 * - After a clear, the transport must be read/accepted.
59 * If this succeeds, it must be set again.
61 * - Can set at any time. It is never cleared.
63 * - Can only be set while XPT_BUSY is held which ensures
64 * that no other thread will be using the transport or will
65 * try to set XPT_DEAD.
68 int svc_reg_xprt_class(struct svc_xprt_class
*xcl
)
70 struct svc_xprt_class
*cl
;
73 dprintk("svc: Adding svc transport class '%s'\n", xcl
->xcl_name
);
75 INIT_LIST_HEAD(&xcl
->xcl_list
);
76 spin_lock(&svc_xprt_class_lock
);
77 /* Make sure there isn't already a class with the same name */
78 list_for_each_entry(cl
, &svc_xprt_class_list
, xcl_list
) {
79 if (strcmp(xcl
->xcl_name
, cl
->xcl_name
) == 0)
82 list_add_tail(&xcl
->xcl_list
, &svc_xprt_class_list
);
85 spin_unlock(&svc_xprt_class_lock
);
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class
);
90 void svc_unreg_xprt_class(struct svc_xprt_class
*xcl
)
92 dprintk("svc: Removing svc transport class '%s'\n", xcl
->xcl_name
);
93 spin_lock(&svc_xprt_class_lock
);
94 list_del_init(&xcl
->xcl_list
);
95 spin_unlock(&svc_xprt_class_lock
);
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class
);
100 * Format the transport list for printing
102 int svc_print_xprts(char *buf
, int maxlen
)
104 struct list_head
*le
;
109 spin_lock(&svc_xprt_class_lock
);
110 list_for_each(le
, &svc_xprt_class_list
) {
112 struct svc_xprt_class
*xcl
=
113 list_entry(le
, struct svc_xprt_class
, xcl_list
);
115 sprintf(tmpstr
, "%s %d\n", xcl
->xcl_name
, xcl
->xcl_max_payload
);
116 slen
= strlen(tmpstr
);
117 if (len
+ slen
> maxlen
)
122 spin_unlock(&svc_xprt_class_lock
);
127 static void svc_xprt_free(struct kref
*kref
)
129 struct svc_xprt
*xprt
=
130 container_of(kref
, struct svc_xprt
, xpt_ref
);
131 struct module
*owner
= xprt
->xpt_class
->xcl_owner
;
132 if (test_bit(XPT_CACHE_AUTH
, &xprt
->xpt_flags
)
133 && xprt
->xpt_auth_cache
!= NULL
)
134 svcauth_unix_info_release(xprt
->xpt_auth_cache
);
135 xprt
->xpt_ops
->xpo_free(xprt
);
139 void svc_xprt_put(struct svc_xprt
*xprt
)
141 kref_put(&xprt
->xpt_ref
, svc_xprt_free
);
143 EXPORT_SYMBOL_GPL(svc_xprt_put
);
146 * Called by transport drivers to initialize the transport independent
147 * portion of the transport instance.
149 void svc_xprt_init(struct svc_xprt_class
*xcl
, struct svc_xprt
*xprt
,
150 struct svc_serv
*serv
)
152 memset(xprt
, 0, sizeof(*xprt
));
153 xprt
->xpt_class
= xcl
;
154 xprt
->xpt_ops
= xcl
->xcl_ops
;
155 kref_init(&xprt
->xpt_ref
);
156 xprt
->xpt_server
= serv
;
157 INIT_LIST_HEAD(&xprt
->xpt_list
);
158 INIT_LIST_HEAD(&xprt
->xpt_ready
);
159 INIT_LIST_HEAD(&xprt
->xpt_deferred
);
160 mutex_init(&xprt
->xpt_mutex
);
161 spin_lock_init(&xprt
->xpt_lock
);
162 set_bit(XPT_BUSY
, &xprt
->xpt_flags
);
163 rpc_init_wait_queue(&xprt
->xpt_bc_pending
, "xpt_bc_pending");
165 EXPORT_SYMBOL_GPL(svc_xprt_init
);
167 static struct svc_xprt
*__svc_xpo_create(struct svc_xprt_class
*xcl
,
168 struct svc_serv
*serv
,
170 const unsigned short port
,
173 struct sockaddr_in sin
= {
174 .sin_family
= AF_INET
,
175 .sin_addr
.s_addr
= htonl(INADDR_ANY
),
176 .sin_port
= htons(port
),
178 struct sockaddr_in6 sin6
= {
179 .sin6_family
= AF_INET6
,
180 .sin6_addr
= IN6ADDR_ANY_INIT
,
181 .sin6_port
= htons(port
),
183 struct sockaddr
*sap
;
188 sap
= (struct sockaddr
*)&sin
;
192 sap
= (struct sockaddr
*)&sin6
;
196 return ERR_PTR(-EAFNOSUPPORT
);
199 return xcl
->xcl_ops
->xpo_create(serv
, sap
, len
, flags
);
202 int svc_create_xprt(struct svc_serv
*serv
, const char *xprt_name
,
203 const int family
, const unsigned short port
,
206 struct svc_xprt_class
*xcl
;
208 dprintk("svc: creating transport %s[%d]\n", xprt_name
, port
);
209 spin_lock(&svc_xprt_class_lock
);
210 list_for_each_entry(xcl
, &svc_xprt_class_list
, xcl_list
) {
211 struct svc_xprt
*newxprt
;
213 if (strcmp(xprt_name
, xcl
->xcl_name
))
216 if (!try_module_get(xcl
->xcl_owner
))
219 spin_unlock(&svc_xprt_class_lock
);
220 newxprt
= __svc_xpo_create(xcl
, serv
, family
, port
, flags
);
221 if (IS_ERR(newxprt
)) {
222 module_put(xcl
->xcl_owner
);
223 return PTR_ERR(newxprt
);
226 clear_bit(XPT_TEMP
, &newxprt
->xpt_flags
);
227 spin_lock_bh(&serv
->sv_lock
);
228 list_add(&newxprt
->xpt_list
, &serv
->sv_permsocks
);
229 spin_unlock_bh(&serv
->sv_lock
);
230 clear_bit(XPT_BUSY
, &newxprt
->xpt_flags
);
231 return svc_xprt_local_port(newxprt
);
234 spin_unlock(&svc_xprt_class_lock
);
235 dprintk("svc: transport %s not found\n", xprt_name
);
238 EXPORT_SYMBOL_GPL(svc_create_xprt
);
241 * Copy the local and remote xprt addresses to the rqstp structure
243 void svc_xprt_copy_addrs(struct svc_rqst
*rqstp
, struct svc_xprt
*xprt
)
245 struct sockaddr
*sin
;
247 memcpy(&rqstp
->rq_addr
, &xprt
->xpt_remote
, xprt
->xpt_remotelen
);
248 rqstp
->rq_addrlen
= xprt
->xpt_remotelen
;
251 * Destination address in request is needed for binding the
252 * source address in RPC replies/callbacks later.
254 sin
= (struct sockaddr
*)&xprt
->xpt_local
;
255 switch (sin
->sa_family
) {
257 rqstp
->rq_daddr
.addr
= ((struct sockaddr_in
*)sin
)->sin_addr
;
260 rqstp
->rq_daddr
.addr6
= ((struct sockaddr_in6
*)sin
)->sin6_addr
;
264 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs
);
267 * svc_print_addr - Format rq_addr field for printing
268 * @rqstp: svc_rqst struct containing address to print
269 * @buf: target buffer for formatted address
270 * @len: length of target buffer
273 char *svc_print_addr(struct svc_rqst
*rqstp
, char *buf
, size_t len
)
275 return __svc_print_addr(svc_addr(rqstp
), buf
, len
);
277 EXPORT_SYMBOL_GPL(svc_print_addr
);
280 * Queue up an idle server thread. Must have pool->sp_lock held.
281 * Note: this is really a stack rather than a queue, so that we only
282 * use as many different threads as we need, and the rest don't pollute
285 static void svc_thread_enqueue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
287 list_add(&rqstp
->rq_list
, &pool
->sp_threads
);
291 * Dequeue an nfsd thread. Must have pool->sp_lock held.
293 static void svc_thread_dequeue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
295 list_del(&rqstp
->rq_list
);
299 * Queue up a transport with data pending. If there are idle nfsd
300 * processes, wake 'em up.
303 void svc_xprt_enqueue(struct svc_xprt
*xprt
)
305 struct svc_serv
*serv
= xprt
->xpt_server
;
306 struct svc_pool
*pool
;
307 struct svc_rqst
*rqstp
;
311 if (!(xprt
->xpt_flags
&
312 ((1<<XPT_CONN
)|(1<<XPT_DATA
)|(1<<XPT_CLOSE
)|(1<<XPT_DEFERRED
))))
316 pool
= svc_pool_for_cpu(xprt
->xpt_server
, cpu
);
319 spin_lock_bh(&pool
->sp_lock
);
321 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
322 /* Don't enqueue dead transports */
323 dprintk("svc: transport %p is dead, not enqueued\n", xprt
);
327 pool
->sp_stats
.packets
++;
329 /* Mark transport as busy. It will remain in this state until
330 * the provider calls svc_xprt_received. We update XPT_BUSY
331 * atomically because it also guards against trying to enqueue
332 * the transport twice.
334 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
335 /* Don't enqueue transport while already enqueued */
336 dprintk("svc: transport %p busy, not enqueued\n", xprt
);
339 BUG_ON(xprt
->xpt_pool
!= NULL
);
340 xprt
->xpt_pool
= pool
;
342 /* Handle pending connection */
343 if (test_bit(XPT_CONN
, &xprt
->xpt_flags
))
346 /* Handle close in-progress */
347 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
))
350 /* Check if we have space to reply to a request */
351 if (!xprt
->xpt_ops
->xpo_has_wspace(xprt
)) {
352 /* Don't enqueue while not enough space for reply */
353 dprintk("svc: no write space, transport %p not enqueued\n",
355 xprt
->xpt_pool
= NULL
;
356 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
361 /* Work out whether threads are available */
362 thread_avail
= !list_empty(&pool
->sp_threads
); /* threads are asleep */
363 if (pool
->sp_nwaking
>= SVC_MAX_WAKING
) {
364 /* too many threads are runnable and trying to wake up */
366 pool
->sp_stats
.overloads_avoided
++;
370 rqstp
= list_entry(pool
->sp_threads
.next
,
373 dprintk("svc: transport %p served by daemon %p\n",
375 svc_thread_dequeue(pool
, rqstp
);
378 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
379 rqstp
, rqstp
->rq_xprt
);
380 rqstp
->rq_xprt
= xprt
;
382 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
383 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
384 rqstp
->rq_waking
= 1;
386 pool
->sp_stats
.threads_woken
++;
387 BUG_ON(xprt
->xpt_pool
!= pool
);
388 wake_up(&rqstp
->rq_wait
);
390 dprintk("svc: transport %p put into queue\n", xprt
);
391 list_add_tail(&xprt
->xpt_ready
, &pool
->sp_sockets
);
392 pool
->sp_stats
.sockets_queued
++;
393 BUG_ON(xprt
->xpt_pool
!= pool
);
397 spin_unlock_bh(&pool
->sp_lock
);
399 EXPORT_SYMBOL_GPL(svc_xprt_enqueue
);
402 * Dequeue the first transport. Must be called with the pool->sp_lock held.
404 static struct svc_xprt
*svc_xprt_dequeue(struct svc_pool
*pool
)
406 struct svc_xprt
*xprt
;
408 if (list_empty(&pool
->sp_sockets
))
411 xprt
= list_entry(pool
->sp_sockets
.next
,
412 struct svc_xprt
, xpt_ready
);
413 list_del_init(&xprt
->xpt_ready
);
415 dprintk("svc: transport %p dequeued, inuse=%d\n",
416 xprt
, atomic_read(&xprt
->xpt_ref
.refcount
));
422 * svc_xprt_received conditionally queues the transport for processing
423 * by another thread. The caller must hold the XPT_BUSY bit and must
424 * not thereafter touch transport data.
426 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
427 * insufficient) data.
429 void svc_xprt_received(struct svc_xprt
*xprt
)
431 BUG_ON(!test_bit(XPT_BUSY
, &xprt
->xpt_flags
));
432 xprt
->xpt_pool
= NULL
;
433 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
434 svc_xprt_enqueue(xprt
);
436 EXPORT_SYMBOL_GPL(svc_xprt_received
);
439 * svc_reserve - change the space reserved for the reply to a request.
440 * @rqstp: The request in question
441 * @space: new max space to reserve
443 * Each request reserves some space on the output queue of the transport
444 * to make sure the reply fits. This function reduces that reserved
445 * space to be the amount of space used already, plus @space.
448 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
450 space
+= rqstp
->rq_res
.head
[0].iov_len
;
452 if (space
< rqstp
->rq_reserved
) {
453 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
454 atomic_sub((rqstp
->rq_reserved
- space
), &xprt
->xpt_reserved
);
455 rqstp
->rq_reserved
= space
;
457 svc_xprt_enqueue(xprt
);
460 EXPORT_SYMBOL_GPL(svc_reserve
);
462 static void svc_xprt_release(struct svc_rqst
*rqstp
)
464 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
466 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
468 kfree(rqstp
->rq_deferred
);
469 rqstp
->rq_deferred
= NULL
;
471 svc_free_res_pages(rqstp
);
472 rqstp
->rq_res
.page_len
= 0;
473 rqstp
->rq_res
.page_base
= 0;
475 /* Reset response buffer and release
477 * But first, check that enough space was reserved
478 * for the reply, otherwise we have a bug!
480 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
481 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
485 rqstp
->rq_res
.head
[0].iov_len
= 0;
486 svc_reserve(rqstp
, 0);
487 rqstp
->rq_xprt
= NULL
;
493 * External function to wake up a server waiting for data
494 * This really only makes sense for services like lockd
495 * which have exactly one thread anyway.
497 void svc_wake_up(struct svc_serv
*serv
)
499 struct svc_rqst
*rqstp
;
501 struct svc_pool
*pool
;
503 for (i
= 0; i
< serv
->sv_nrpools
; i
++) {
504 pool
= &serv
->sv_pools
[i
];
506 spin_lock_bh(&pool
->sp_lock
);
507 if (!list_empty(&pool
->sp_threads
)) {
508 rqstp
= list_entry(pool
->sp_threads
.next
,
511 dprintk("svc: daemon %p woken up.\n", rqstp
);
513 svc_thread_dequeue(pool, rqstp);
514 rqstp->rq_xprt = NULL;
516 wake_up(&rqstp
->rq_wait
);
518 spin_unlock_bh(&pool
->sp_lock
);
521 EXPORT_SYMBOL_GPL(svc_wake_up
);
523 int svc_port_is_privileged(struct sockaddr
*sin
)
525 switch (sin
->sa_family
) {
527 return ntohs(((struct sockaddr_in
*)sin
)->sin_port
)
530 return ntohs(((struct sockaddr_in6
*)sin
)->sin6_port
)
538 * Make sure that we don't have too many active connections. If we have,
539 * something must be dropped. It's not clear what will happen if we allow
540 * "too many" connections, but when dealing with network-facing software,
541 * we have to code defensively. Here we do that by imposing hard limits.
543 * There's no point in trying to do random drop here for DoS
544 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
545 * attacker can easily beat that.
547 * The only somewhat efficient mechanism would be if drop old
548 * connections from the same IP first. But right now we don't even
549 * record the client IP in svc_sock.
551 * single-threaded services that expect a lot of clients will probably
552 * need to set sv_maxconn to override the default value which is based
553 * on the number of threads
555 static void svc_check_conn_limits(struct svc_serv
*serv
)
557 unsigned int limit
= serv
->sv_maxconn
? serv
->sv_maxconn
:
558 (serv
->sv_nrthreads
+3) * 20;
560 if (serv
->sv_tmpcnt
> limit
) {
561 struct svc_xprt
*xprt
= NULL
;
562 spin_lock_bh(&serv
->sv_lock
);
563 if (!list_empty(&serv
->sv_tempsocks
)) {
564 if (net_ratelimit()) {
565 /* Try to help the admin */
566 printk(KERN_NOTICE
"%s: too many open "
567 "connections, consider increasing %s\n",
568 serv
->sv_name
, serv
->sv_maxconn
?
569 "the max number of connections." :
570 "the number of threads.");
573 * Always select the oldest connection. It's not fair,
576 xprt
= list_entry(serv
->sv_tempsocks
.prev
,
579 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
582 spin_unlock_bh(&serv
->sv_lock
);
585 svc_xprt_enqueue(xprt
);
592 * Receive the next request on any transport. This code is carefully
593 * organised not to touch any cachelines in the shared svc_serv
594 * structure, only cachelines in the local svc_pool.
596 int svc_recv(struct svc_rqst
*rqstp
, long timeout
)
598 struct svc_xprt
*xprt
= NULL
;
599 struct svc_serv
*serv
= rqstp
->rq_server
;
600 struct svc_pool
*pool
= rqstp
->rq_pool
;
604 DECLARE_WAITQUEUE(wait
, current
);
607 dprintk("svc: server %p waiting for data (to = %ld)\n",
612 "svc_recv: service %p, transport not NULL!\n",
614 if (waitqueue_active(&rqstp
->rq_wait
))
616 "svc_recv: service %p, wait queue active!\n",
619 /* now allocate needed pages. If we get a failure, sleep briefly */
620 pages
= (serv
->sv_max_mesg
+ PAGE_SIZE
) / PAGE_SIZE
;
621 for (i
= 0; i
< pages
; i
++)
622 while (rqstp
->rq_pages
[i
] == NULL
) {
623 struct page
*p
= alloc_page(GFP_KERNEL
);
625 set_current_state(TASK_INTERRUPTIBLE
);
626 if (signalled() || kthread_should_stop()) {
627 set_current_state(TASK_RUNNING
);
630 schedule_timeout(msecs_to_jiffies(500));
632 rqstp
->rq_pages
[i
] = p
;
634 rqstp
->rq_pages
[i
++] = NULL
; /* this might be seen in nfs_read_actor */
635 BUG_ON(pages
>= RPCSVC_MAXPAGES
);
637 /* Make arg->head point to first page and arg->pages point to rest */
638 arg
= &rqstp
->rq_arg
;
639 arg
->head
[0].iov_base
= page_address(rqstp
->rq_pages
[0]);
640 arg
->head
[0].iov_len
= PAGE_SIZE
;
641 arg
->pages
= rqstp
->rq_pages
+ 1;
643 /* save at least one page for response */
644 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
645 arg
->len
= (pages
-1)*PAGE_SIZE
;
646 arg
->tail
[0].iov_len
= 0;
650 if (signalled() || kthread_should_stop())
653 spin_lock_bh(&pool
->sp_lock
);
654 if (rqstp
->rq_waking
) {
655 rqstp
->rq_waking
= 0;
657 BUG_ON(pool
->sp_nwaking
< 0);
659 xprt
= svc_xprt_dequeue(pool
);
661 rqstp
->rq_xprt
= xprt
;
663 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
664 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
666 /* No data pending. Go to sleep */
667 svc_thread_enqueue(pool
, rqstp
);
670 * We have to be able to interrupt this wait
671 * to bring down the daemons ...
673 set_current_state(TASK_INTERRUPTIBLE
);
676 * checking kthread_should_stop() here allows us to avoid
677 * locking and signalling when stopping kthreads that call
678 * svc_recv. If the thread has already been woken up, then
679 * we can exit here without sleeping. If not, then it
680 * it'll be woken up quickly during the schedule_timeout
682 if (kthread_should_stop()) {
683 set_current_state(TASK_RUNNING
);
684 spin_unlock_bh(&pool
->sp_lock
);
688 add_wait_queue(&rqstp
->rq_wait
, &wait
);
689 spin_unlock_bh(&pool
->sp_lock
);
691 time_left
= schedule_timeout(timeout
);
695 spin_lock_bh(&pool
->sp_lock
);
696 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
698 pool
->sp_stats
.threads_timedout
++;
700 xprt
= rqstp
->rq_xprt
;
702 svc_thread_dequeue(pool
, rqstp
);
703 spin_unlock_bh(&pool
->sp_lock
);
704 dprintk("svc: server %p, no data yet\n", rqstp
);
705 if (signalled() || kthread_should_stop())
711 spin_unlock_bh(&pool
->sp_lock
);
714 if (test_bit(XPT_LISTENER
, &xprt
->xpt_flags
)) {
715 struct svc_xprt
*newxpt
;
716 newxpt
= xprt
->xpt_ops
->xpo_accept(xprt
);
719 * We know this module_get will succeed because the
720 * listener holds a reference too
722 __module_get(newxpt
->xpt_class
->xcl_owner
);
723 svc_check_conn_limits(xprt
->xpt_server
);
724 spin_lock_bh(&serv
->sv_lock
);
725 set_bit(XPT_TEMP
, &newxpt
->xpt_flags
);
726 list_add(&newxpt
->xpt_list
, &serv
->sv_tempsocks
);
728 if (serv
->sv_temptimer
.function
== NULL
) {
729 /* setup timer to age temp transports */
730 setup_timer(&serv
->sv_temptimer
,
732 (unsigned long)serv
);
733 mod_timer(&serv
->sv_temptimer
,
734 jiffies
+ svc_conn_age_period
* HZ
);
736 spin_unlock_bh(&serv
->sv_lock
);
737 svc_xprt_received(newxpt
);
739 svc_xprt_received(xprt
);
740 } else if (!test_bit(XPT_CLOSE
, &xprt
->xpt_flags
)) {
741 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
742 rqstp
, pool
->sp_id
, xprt
,
743 atomic_read(&xprt
->xpt_ref
.refcount
));
744 rqstp
->rq_deferred
= svc_deferred_dequeue(xprt
);
745 if (rqstp
->rq_deferred
) {
746 svc_xprt_received(xprt
);
747 len
= svc_deferred_recv(rqstp
);
749 len
= xprt
->xpt_ops
->xpo_recvfrom(rqstp
);
750 dprintk("svc: got len=%d\n", len
);
753 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
)) {
754 dprintk("svc_recv: found XPT_CLOSE\n");
755 svc_delete_xprt(xprt
);
758 /* No data, incomplete (TCP) read, or accept() */
759 if (len
== 0 || len
== -EAGAIN
) {
760 rqstp
->rq_res
.len
= 0;
761 svc_xprt_release(rqstp
);
764 clear_bit(XPT_OLD
, &xprt
->xpt_flags
);
766 rqstp
->rq_secure
= svc_port_is_privileged(svc_addr(rqstp
));
767 rqstp
->rq_chandle
.defer
= svc_defer
;
770 serv
->sv_stats
->netcnt
++;
773 EXPORT_SYMBOL_GPL(svc_recv
);
778 void svc_drop(struct svc_rqst
*rqstp
)
780 dprintk("svc: xprt %p dropped request\n", rqstp
->rq_xprt
);
781 svc_xprt_release(rqstp
);
783 EXPORT_SYMBOL_GPL(svc_drop
);
786 * Return reply to client.
788 int svc_send(struct svc_rqst
*rqstp
)
790 struct svc_xprt
*xprt
;
794 xprt
= rqstp
->rq_xprt
;
798 /* release the receive skb before sending the reply */
799 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
801 /* calculate over-all length */
803 xb
->len
= xb
->head
[0].iov_len
+
807 /* Grab mutex to serialize outgoing data. */
808 mutex_lock(&xprt
->xpt_mutex
);
809 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
))
812 len
= xprt
->xpt_ops
->xpo_sendto(rqstp
);
813 mutex_unlock(&xprt
->xpt_mutex
);
814 rpc_wake_up(&xprt
->xpt_bc_pending
);
815 svc_xprt_release(rqstp
);
817 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
823 * Timer function to close old temporary transports, using
824 * a mark-and-sweep algorithm.
826 static void svc_age_temp_xprts(unsigned long closure
)
828 struct svc_serv
*serv
= (struct svc_serv
*)closure
;
829 struct svc_xprt
*xprt
;
830 struct list_head
*le
, *next
;
831 LIST_HEAD(to_be_aged
);
833 dprintk("svc_age_temp_xprts\n");
835 if (!spin_trylock_bh(&serv
->sv_lock
)) {
836 /* busy, try again 1 sec later */
837 dprintk("svc_age_temp_xprts: busy\n");
838 mod_timer(&serv
->sv_temptimer
, jiffies
+ HZ
);
842 list_for_each_safe(le
, next
, &serv
->sv_tempsocks
) {
843 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
845 /* First time through, just mark it OLD. Second time
846 * through, close it. */
847 if (!test_and_set_bit(XPT_OLD
, &xprt
->xpt_flags
))
849 if (atomic_read(&xprt
->xpt_ref
.refcount
) > 1
850 || test_bit(XPT_BUSY
, &xprt
->xpt_flags
))
853 list_move(le
, &to_be_aged
);
854 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
855 set_bit(XPT_DETACHED
, &xprt
->xpt_flags
);
857 spin_unlock_bh(&serv
->sv_lock
);
859 while (!list_empty(&to_be_aged
)) {
860 le
= to_be_aged
.next
;
861 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
863 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
865 dprintk("queuing xprt %p for closing\n", xprt
);
867 /* a thread will dequeue and close it soon */
868 svc_xprt_enqueue(xprt
);
872 mod_timer(&serv
->sv_temptimer
, jiffies
+ svc_conn_age_period
* HZ
);
876 * Remove a dead transport
878 void svc_delete_xprt(struct svc_xprt
*xprt
)
880 struct svc_serv
*serv
= xprt
->xpt_server
;
881 struct svc_deferred_req
*dr
;
883 /* Only do this once */
884 if (test_and_set_bit(XPT_DEAD
, &xprt
->xpt_flags
))
887 dprintk("svc: svc_delete_xprt(%p)\n", xprt
);
888 xprt
->xpt_ops
->xpo_detach(xprt
);
890 spin_lock_bh(&serv
->sv_lock
);
891 if (!test_and_set_bit(XPT_DETACHED
, &xprt
->xpt_flags
))
892 list_del_init(&xprt
->xpt_list
);
894 * We used to delete the transport from whichever list
895 * it's sk_xprt.xpt_ready node was on, but we don't actually
896 * need to. This is because the only time we're called
897 * while still attached to a queue, the queue itself
898 * is about to be destroyed (in svc_destroy).
900 if (test_bit(XPT_TEMP
, &xprt
->xpt_flags
))
903 for (dr
= svc_deferred_dequeue(xprt
); dr
;
904 dr
= svc_deferred_dequeue(xprt
)) {
910 spin_unlock_bh(&serv
->sv_lock
);
913 void svc_close_xprt(struct svc_xprt
*xprt
)
915 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
916 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
))
917 /* someone else will have to effect the close */
921 svc_delete_xprt(xprt
);
922 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
925 EXPORT_SYMBOL_GPL(svc_close_xprt
);
927 void svc_close_all(struct list_head
*xprt_list
)
929 struct svc_xprt
*xprt
;
930 struct svc_xprt
*tmp
;
932 list_for_each_entry_safe(xprt
, tmp
, xprt_list
, xpt_list
) {
933 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
934 if (test_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
935 /* Waiting to be processed, but no threads left,
936 * So just remove it from the waiting list
938 list_del_init(&xprt
->xpt_ready
);
939 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
941 svc_close_xprt(xprt
);
946 * Handle defer and revisit of requests
949 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
951 struct svc_deferred_req
*dr
=
952 container_of(dreq
, struct svc_deferred_req
, handle
);
953 struct svc_xprt
*xprt
= dr
->xprt
;
955 spin_lock(&xprt
->xpt_lock
);
956 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
957 if (too_many
|| test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
958 spin_unlock(&xprt
->xpt_lock
);
959 dprintk("revisit canceled\n");
964 dprintk("revisit queued\n");
966 list_add(&dr
->handle
.recent
, &xprt
->xpt_deferred
);
967 spin_unlock(&xprt
->xpt_lock
);
968 svc_xprt_enqueue(xprt
);
973 * Save the request off for later processing. The request buffer looks
976 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
978 * This code can only handle requests that consist of an xprt-header
981 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
)
983 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
984 struct svc_deferred_req
*dr
;
986 if (rqstp
->rq_arg
.page_len
|| !rqstp
->rq_usedeferral
)
987 return NULL
; /* if more than a page, give up FIXME */
988 if (rqstp
->rq_deferred
) {
989 dr
= rqstp
->rq_deferred
;
990 rqstp
->rq_deferred
= NULL
;
994 /* FIXME maybe discard if size too large */
995 size
= sizeof(struct svc_deferred_req
) + rqstp
->rq_arg
.len
;
996 dr
= kmalloc(size
, GFP_KERNEL
);
1000 dr
->handle
.owner
= rqstp
->rq_server
;
1001 dr
->prot
= rqstp
->rq_prot
;
1002 memcpy(&dr
->addr
, &rqstp
->rq_addr
, rqstp
->rq_addrlen
);
1003 dr
->addrlen
= rqstp
->rq_addrlen
;
1004 dr
->daddr
= rqstp
->rq_daddr
;
1005 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
1006 dr
->xprt_hlen
= rqstp
->rq_xprt_hlen
;
1008 /* back up head to the start of the buffer and copy */
1009 skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1010 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
- skip
,
1013 svc_xprt_get(rqstp
->rq_xprt
);
1014 dr
->xprt
= rqstp
->rq_xprt
;
1016 dr
->handle
.revisit
= svc_revisit
;
1021 * recv data from a deferred request into an active one
1023 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1025 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1027 /* setup iov_base past transport header */
1028 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
+ (dr
->xprt_hlen
>>2);
1029 /* The iov_len does not include the transport header bytes */
1030 rqstp
->rq_arg
.head
[0].iov_len
= (dr
->argslen
<<2) - dr
->xprt_hlen
;
1031 rqstp
->rq_arg
.page_len
= 0;
1032 /* The rq_arg.len includes the transport header bytes */
1033 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1034 rqstp
->rq_prot
= dr
->prot
;
1035 memcpy(&rqstp
->rq_addr
, &dr
->addr
, dr
->addrlen
);
1036 rqstp
->rq_addrlen
= dr
->addrlen
;
1037 /* Save off transport header len in case we get deferred again */
1038 rqstp
->rq_xprt_hlen
= dr
->xprt_hlen
;
1039 rqstp
->rq_daddr
= dr
->daddr
;
1040 rqstp
->rq_respages
= rqstp
->rq_pages
;
1041 return (dr
->argslen
<<2) - dr
->xprt_hlen
;
1045 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
)
1047 struct svc_deferred_req
*dr
= NULL
;
1049 if (!test_bit(XPT_DEFERRED
, &xprt
->xpt_flags
))
1051 spin_lock(&xprt
->xpt_lock
);
1052 clear_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1053 if (!list_empty(&xprt
->xpt_deferred
)) {
1054 dr
= list_entry(xprt
->xpt_deferred
.next
,
1055 struct svc_deferred_req
,
1057 list_del_init(&dr
->handle
.recent
);
1058 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1060 spin_unlock(&xprt
->xpt_lock
);
1065 * svc_find_xprt - find an RPC transport instance
1066 * @serv: pointer to svc_serv to search
1067 * @xcl_name: C string containing transport's class name
1068 * @af: Address family of transport's local address
1069 * @port: transport's IP port number
1071 * Return the transport instance pointer for the endpoint accepting
1072 * connections/peer traffic from the specified transport class,
1073 * address family and port.
1075 * Specifying 0 for the address family or port is effectively a
1076 * wild-card, and will result in matching the first transport in the
1077 * service's list that has a matching class name.
1079 struct svc_xprt
*svc_find_xprt(struct svc_serv
*serv
, const char *xcl_name
,
1080 const sa_family_t af
, const unsigned short port
)
1082 struct svc_xprt
*xprt
;
1083 struct svc_xprt
*found
= NULL
;
1085 /* Sanity check the args */
1086 if (serv
== NULL
|| xcl_name
== NULL
)
1089 spin_lock_bh(&serv
->sv_lock
);
1090 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1091 if (strcmp(xprt
->xpt_class
->xcl_name
, xcl_name
))
1093 if (af
!= AF_UNSPEC
&& af
!= xprt
->xpt_local
.ss_family
)
1095 if (port
!= 0 && port
!= svc_xprt_local_port(xprt
))
1101 spin_unlock_bh(&serv
->sv_lock
);
1104 EXPORT_SYMBOL_GPL(svc_find_xprt
);
1106 static int svc_one_xprt_name(const struct svc_xprt
*xprt
,
1107 char *pos
, int remaining
)
1111 len
= snprintf(pos
, remaining
, "%s %u\n",
1112 xprt
->xpt_class
->xcl_name
,
1113 svc_xprt_local_port(xprt
));
1114 if (len
>= remaining
)
1115 return -ENAMETOOLONG
;
1120 * svc_xprt_names - format a buffer with a list of transport names
1121 * @serv: pointer to an RPC service
1122 * @buf: pointer to a buffer to be filled in
1123 * @buflen: length of buffer to be filled in
1125 * Fills in @buf with a string containing a list of transport names,
1126 * each name terminated with '\n'.
1128 * Returns positive length of the filled-in string on success; otherwise
1129 * a negative errno value is returned if an error occurs.
1131 int svc_xprt_names(struct svc_serv
*serv
, char *buf
, const int buflen
)
1133 struct svc_xprt
*xprt
;
1137 /* Sanity check args */
1141 spin_lock_bh(&serv
->sv_lock
);
1145 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1146 len
= svc_one_xprt_name(xprt
, pos
, buflen
- totlen
);
1158 spin_unlock_bh(&serv
->sv_lock
);
1161 EXPORT_SYMBOL_GPL(svc_xprt_names
);
1164 /*----------------------------------------------------------------------------*/
1166 static void *svc_pool_stats_start(struct seq_file
*m
, loff_t
*pos
)
1168 unsigned int pidx
= (unsigned int)*pos
;
1169 struct svc_serv
*serv
= m
->private;
1171 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx
);
1174 return SEQ_START_TOKEN
;
1175 return (pidx
> serv
->sv_nrpools
? NULL
: &serv
->sv_pools
[pidx
-1]);
1178 static void *svc_pool_stats_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1180 struct svc_pool
*pool
= p
;
1181 struct svc_serv
*serv
= m
->private;
1183 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos
);
1185 if (p
== SEQ_START_TOKEN
) {
1186 pool
= &serv
->sv_pools
[0];
1188 unsigned int pidx
= (pool
- &serv
->sv_pools
[0]);
1189 if (pidx
< serv
->sv_nrpools
-1)
1190 pool
= &serv
->sv_pools
[pidx
+1];
1198 static void svc_pool_stats_stop(struct seq_file
*m
, void *p
)
1202 static int svc_pool_stats_show(struct seq_file
*m
, void *p
)
1204 struct svc_pool
*pool
= p
;
1206 if (p
== SEQ_START_TOKEN
) {
1207 seq_puts(m
, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1211 seq_printf(m
, "%u %lu %lu %lu %lu %lu\n",
1213 pool
->sp_stats
.packets
,
1214 pool
->sp_stats
.sockets_queued
,
1215 pool
->sp_stats
.threads_woken
,
1216 pool
->sp_stats
.overloads_avoided
,
1217 pool
->sp_stats
.threads_timedout
);
1222 static const struct seq_operations svc_pool_stats_seq_ops
= {
1223 .start
= svc_pool_stats_start
,
1224 .next
= svc_pool_stats_next
,
1225 .stop
= svc_pool_stats_stop
,
1226 .show
= svc_pool_stats_show
,
1229 int svc_pool_stats_open(struct svc_serv
*serv
, struct file
*file
)
1233 err
= seq_open(file
, &svc_pool_stats_seq_ops
);
1235 ((struct seq_file
*) file
->private_data
)->private = serv
;
1238 EXPORT_SYMBOL(svc_pool_stats_open
);
1240 /*----------------------------------------------------------------------------*/