Merge tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd
[linux-2.6/cjktty.git] / drivers / mtd / nand / nandsim.c
blob891c52a30e6a48468d593926261ea8eee23260d9
1 /*
2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
52 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE 50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH 8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS 0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG 0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG 0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS 32
88 #endif
90 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
91 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
92 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
93 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
94 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
95 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
96 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
97 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
98 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
99 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
100 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
101 static uint log = CONFIG_NANDSIM_LOG;
102 static uint dbg = CONFIG_NANDSIM_DBG;
103 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
104 static unsigned int parts_num;
105 static char *badblocks = NULL;
106 static char *weakblocks = NULL;
107 static char *weakpages = NULL;
108 static unsigned int bitflips = 0;
109 static char *gravepages = NULL;
110 static unsigned int overridesize = 0;
111 static char *cache_file = NULL;
112 static unsigned int bbt;
113 static unsigned int bch;
115 module_param(first_id_byte, uint, 0400);
116 module_param(second_id_byte, uint, 0400);
117 module_param(third_id_byte, uint, 0400);
118 module_param(fourth_id_byte, uint, 0400);
119 module_param(access_delay, uint, 0400);
120 module_param(programm_delay, uint, 0400);
121 module_param(erase_delay, uint, 0400);
122 module_param(output_cycle, uint, 0400);
123 module_param(input_cycle, uint, 0400);
124 module_param(bus_width, uint, 0400);
125 module_param(do_delays, uint, 0400);
126 module_param(log, uint, 0400);
127 module_param(dbg, uint, 0400);
128 module_param_array(parts, ulong, &parts_num, 0400);
129 module_param(badblocks, charp, 0400);
130 module_param(weakblocks, charp, 0400);
131 module_param(weakpages, charp, 0400);
132 module_param(bitflips, uint, 0400);
133 module_param(gravepages, charp, 0400);
134 module_param(overridesize, uint, 0400);
135 module_param(cache_file, charp, 0400);
136 module_param(bbt, uint, 0400);
137 module_param(bch, uint, 0400);
139 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log, "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
152 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 " separated by commas e.g. 113:2 means eb 113"
157 " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
159 " separated by commas e.g. 1401:2 means page 1401"
160 " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
163 " separated by commas e.g. 1401:2 means page 1401"
164 " can be read only twice before failing");
165 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
166 "The size is specified in erase blocks and as the exponent of a power of two"
167 " e.g. 5 means a size of 32 erase blocks");
168 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
169 MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
170 MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
171 "be correctable in 512-byte blocks");
173 /* The largest possible page size */
174 #define NS_LARGEST_PAGE_SIZE 4096
176 /* The prefix for simulator output */
177 #define NS_OUTPUT_PREFIX "[nandsim]"
179 /* Simulator's output macros (logging, debugging, warning, error) */
180 #define NS_LOG(args...) \
181 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
182 #define NS_DBG(args...) \
183 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
184 #define NS_WARN(args...) \
185 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
186 #define NS_ERR(args...) \
187 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
188 #define NS_INFO(args...) \
189 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191 /* Busy-wait delay macros (microseconds, milliseconds) */
192 #define NS_UDELAY(us) \
193 do { if (do_delays) udelay(us); } while(0)
194 #define NS_MDELAY(us) \
195 do { if (do_delays) mdelay(us); } while(0)
197 /* Is the nandsim structure initialized ? */
198 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200 /* Good operation completion status */
201 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203 /* Operation failed completion status */
204 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206 /* Calculate the page offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET(ns) \
208 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210 /* Calculate the OOB offset in flash RAM image by (row, column) address */
211 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213 /* After a command is input, the simulator goes to one of the following states */
214 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
215 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
216 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
217 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
218 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
219 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
220 #define STATE_CMD_STATUS 0x00000007 /* read status */
221 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
222 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
223 #define STATE_CMD_READID 0x0000000A /* read ID */
224 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
225 #define STATE_CMD_RESET 0x0000000C /* reset */
226 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
227 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
228 #define STATE_CMD_MASK 0x0000000F /* command states mask */
230 /* After an address is input, the simulator goes to one of these states */
231 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
232 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
233 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
234 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
235 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
237 /* During data input/output the simulator is in these states */
238 #define STATE_DATAIN 0x00000100 /* waiting for data input */
239 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
241 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
242 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
243 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
244 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
245 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
247 /* Previous operation is done, ready to accept new requests */
248 #define STATE_READY 0x00000000
250 /* This state is used to mark that the next state isn't known yet */
251 #define STATE_UNKNOWN 0x10000000
253 /* Simulator's actions bit masks */
254 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
255 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
256 #define ACTION_SECERASE 0x00300000 /* erase sector */
257 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
258 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
259 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
260 #define ACTION_MASK 0x00700000 /* action mask */
262 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
263 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
265 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
266 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
267 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
268 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
269 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
270 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
271 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
272 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
273 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
275 /* Remove action bits from state */
276 #define NS_STATE(x) ((x) & ~ACTION_MASK)
279 * Maximum previous states which need to be saved. Currently saving is
280 * only needed for page program operation with preceded read command
281 * (which is only valid for 512-byte pages).
283 #define NS_MAX_PREVSTATES 1
285 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
286 #define NS_MAX_HELD_PAGES 16
288 struct nandsim_debug_info {
289 struct dentry *dfs_root;
290 struct dentry *dfs_wear_report;
294 * A union to represent flash memory contents and flash buffer.
296 union ns_mem {
297 u_char *byte; /* for byte access */
298 uint16_t *word; /* for 16-bit word access */
302 * The structure which describes all the internal simulator data.
304 struct nandsim {
305 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
306 unsigned int nbparts;
308 uint busw; /* flash chip bus width (8 or 16) */
309 u_char ids[4]; /* chip's ID bytes */
310 uint32_t options; /* chip's characteristic bits */
311 uint32_t state; /* current chip state */
312 uint32_t nxstate; /* next expected state */
314 uint32_t *op; /* current operation, NULL operations isn't known yet */
315 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
316 uint16_t npstates; /* number of previous states saved */
317 uint16_t stateidx; /* current state index */
319 /* The simulated NAND flash pages array */
320 union ns_mem *pages;
322 /* Slab allocator for nand pages */
323 struct kmem_cache *nand_pages_slab;
325 /* Internal buffer of page + OOB size bytes */
326 union ns_mem buf;
328 /* NAND flash "geometry" */
329 struct {
330 uint64_t totsz; /* total flash size, bytes */
331 uint32_t secsz; /* flash sector (erase block) size, bytes */
332 uint pgsz; /* NAND flash page size, bytes */
333 uint oobsz; /* page OOB area size, bytes */
334 uint64_t totszoob; /* total flash size including OOB, bytes */
335 uint pgszoob; /* page size including OOB , bytes*/
336 uint secszoob; /* sector size including OOB, bytes */
337 uint pgnum; /* total number of pages */
338 uint pgsec; /* number of pages per sector */
339 uint secshift; /* bits number in sector size */
340 uint pgshift; /* bits number in page size */
341 uint oobshift; /* bits number in OOB size */
342 uint pgaddrbytes; /* bytes per page address */
343 uint secaddrbytes; /* bytes per sector address */
344 uint idbytes; /* the number ID bytes that this chip outputs */
345 } geom;
347 /* NAND flash internal registers */
348 struct {
349 unsigned command; /* the command register */
350 u_char status; /* the status register */
351 uint row; /* the page number */
352 uint column; /* the offset within page */
353 uint count; /* internal counter */
354 uint num; /* number of bytes which must be processed */
355 uint off; /* fixed page offset */
356 } regs;
358 /* NAND flash lines state */
359 struct {
360 int ce; /* chip Enable */
361 int cle; /* command Latch Enable */
362 int ale; /* address Latch Enable */
363 int wp; /* write Protect */
364 } lines;
366 /* Fields needed when using a cache file */
367 struct file *cfile; /* Open file */
368 unsigned char *pages_written; /* Which pages have been written */
369 void *file_buf;
370 struct page *held_pages[NS_MAX_HELD_PAGES];
371 int held_cnt;
373 struct nandsim_debug_info dbg;
377 * Operations array. To perform any operation the simulator must pass
378 * through the correspondent states chain.
380 static struct nandsim_operations {
381 uint32_t reqopts; /* options which are required to perform the operation */
382 uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384 /* Read page + OOB from the beginning */
385 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 STATE_DATAOUT, STATE_READY}},
387 /* Read page + OOB from the second half */
388 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389 STATE_DATAOUT, STATE_READY}},
390 /* Read OOB */
391 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392 STATE_DATAOUT, STATE_READY}},
393 /* Program page starting from the beginning */
394 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396 /* Program page starting from the beginning */
397 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399 /* Program page starting from the second half */
400 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402 /* Program OOB */
403 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405 /* Erase sector */
406 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407 /* Read status */
408 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409 /* Read multi-plane status */
410 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
411 /* Read ID */
412 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
413 /* Large page devices read page */
414 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
415 STATE_DATAOUT, STATE_READY}},
416 /* Large page devices random page read */
417 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
418 STATE_DATAOUT, STATE_READY}},
421 struct weak_block {
422 struct list_head list;
423 unsigned int erase_block_no;
424 unsigned int max_erases;
425 unsigned int erases_done;
428 static LIST_HEAD(weak_blocks);
430 struct weak_page {
431 struct list_head list;
432 unsigned int page_no;
433 unsigned int max_writes;
434 unsigned int writes_done;
437 static LIST_HEAD(weak_pages);
439 struct grave_page {
440 struct list_head list;
441 unsigned int page_no;
442 unsigned int max_reads;
443 unsigned int reads_done;
446 static LIST_HEAD(grave_pages);
448 static unsigned long *erase_block_wear = NULL;
449 static unsigned int wear_eb_count = 0;
450 static unsigned long total_wear = 0;
452 /* MTD structure for NAND controller */
453 static struct mtd_info *nsmtd;
455 static int nandsim_debugfs_show(struct seq_file *m, void *private)
457 unsigned long wmin = -1, wmax = 0, avg;
458 unsigned long deciles[10], decile_max[10], tot = 0;
459 unsigned int i;
461 /* Calc wear stats */
462 for (i = 0; i < wear_eb_count; ++i) {
463 unsigned long wear = erase_block_wear[i];
464 if (wear < wmin)
465 wmin = wear;
466 if (wear > wmax)
467 wmax = wear;
468 tot += wear;
471 for (i = 0; i < 9; ++i) {
472 deciles[i] = 0;
473 decile_max[i] = (wmax * (i + 1) + 5) / 10;
475 deciles[9] = 0;
476 decile_max[9] = wmax;
477 for (i = 0; i < wear_eb_count; ++i) {
478 int d;
479 unsigned long wear = erase_block_wear[i];
480 for (d = 0; d < 10; ++d)
481 if (wear <= decile_max[d]) {
482 deciles[d] += 1;
483 break;
486 avg = tot / wear_eb_count;
488 /* Output wear report */
489 seq_printf(m, "Total numbers of erases: %lu\n", tot);
490 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
491 seq_printf(m, "Average number of erases: %lu\n", avg);
492 seq_printf(m, "Maximum number of erases: %lu\n", wmax);
493 seq_printf(m, "Minimum number of erases: %lu\n", wmin);
494 for (i = 0; i < 10; ++i) {
495 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
496 if (from > decile_max[i])
497 continue;
498 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
499 from,
500 decile_max[i],
501 deciles[i]);
504 return 0;
507 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
509 return single_open(file, nandsim_debugfs_show, inode->i_private);
512 static const struct file_operations dfs_fops = {
513 .open = nandsim_debugfs_open,
514 .read = seq_read,
515 .llseek = seq_lseek,
516 .release = single_release,
520 * nandsim_debugfs_create - initialize debugfs
521 * @dev: nandsim device description object
523 * This function creates all debugfs files for UBI device @ubi. Returns zero in
524 * case of success and a negative error code in case of failure.
526 static int nandsim_debugfs_create(struct nandsim *dev)
528 struct nandsim_debug_info *dbg = &dev->dbg;
529 struct dentry *dent;
530 int err;
532 if (!IS_ENABLED(CONFIG_DEBUG_FS))
533 return 0;
535 dent = debugfs_create_dir("nandsim", NULL);
536 if (IS_ERR_OR_NULL(dent)) {
537 int err = dent ? -ENODEV : PTR_ERR(dent);
539 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
540 err);
541 return err;
543 dbg->dfs_root = dent;
545 dent = debugfs_create_file("wear_report", S_IRUSR,
546 dbg->dfs_root, dev, &dfs_fops);
547 if (IS_ERR_OR_NULL(dent))
548 goto out_remove;
549 dbg->dfs_wear_report = dent;
551 return 0;
553 out_remove:
554 debugfs_remove_recursive(dbg->dfs_root);
555 err = dent ? PTR_ERR(dent) : -ENODEV;
556 return err;
560 * nandsim_debugfs_remove - destroy all debugfs files
562 static void nandsim_debugfs_remove(struct nandsim *ns)
564 if (IS_ENABLED(CONFIG_DEBUG_FS))
565 debugfs_remove_recursive(ns->dbg.dfs_root);
569 * Allocate array of page pointers, create slab allocation for an array
570 * and initialize the array by NULL pointers.
572 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
574 static int alloc_device(struct nandsim *ns)
576 struct file *cfile;
577 int i, err;
579 if (cache_file) {
580 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
581 if (IS_ERR(cfile))
582 return PTR_ERR(cfile);
583 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
584 NS_ERR("alloc_device: cache file not readable\n");
585 err = -EINVAL;
586 goto err_close;
588 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
589 NS_ERR("alloc_device: cache file not writeable\n");
590 err = -EINVAL;
591 goto err_close;
593 ns->pages_written = vzalloc(ns->geom.pgnum);
594 if (!ns->pages_written) {
595 NS_ERR("alloc_device: unable to allocate pages written array\n");
596 err = -ENOMEM;
597 goto err_close;
599 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
600 if (!ns->file_buf) {
601 NS_ERR("alloc_device: unable to allocate file buf\n");
602 err = -ENOMEM;
603 goto err_free;
605 ns->cfile = cfile;
606 return 0;
609 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
610 if (!ns->pages) {
611 NS_ERR("alloc_device: unable to allocate page array\n");
612 return -ENOMEM;
614 for (i = 0; i < ns->geom.pgnum; i++) {
615 ns->pages[i].byte = NULL;
617 ns->nand_pages_slab = kmem_cache_create("nandsim",
618 ns->geom.pgszoob, 0, 0, NULL);
619 if (!ns->nand_pages_slab) {
620 NS_ERR("cache_create: unable to create kmem_cache\n");
621 return -ENOMEM;
624 return 0;
626 err_free:
627 vfree(ns->pages_written);
628 err_close:
629 filp_close(cfile, NULL);
630 return err;
634 * Free any allocated pages, and free the array of page pointers.
636 static void free_device(struct nandsim *ns)
638 int i;
640 if (ns->cfile) {
641 kfree(ns->file_buf);
642 vfree(ns->pages_written);
643 filp_close(ns->cfile, NULL);
644 return;
647 if (ns->pages) {
648 for (i = 0; i < ns->geom.pgnum; i++) {
649 if (ns->pages[i].byte)
650 kmem_cache_free(ns->nand_pages_slab,
651 ns->pages[i].byte);
653 kmem_cache_destroy(ns->nand_pages_slab);
654 vfree(ns->pages);
658 static char *get_partition_name(int i)
660 char buf[64];
661 sprintf(buf, "NAND simulator partition %d", i);
662 return kstrdup(buf, GFP_KERNEL);
666 * Initialize the nandsim structure.
668 * RETURNS: 0 if success, -ERRNO if failure.
670 static int init_nandsim(struct mtd_info *mtd)
672 struct nand_chip *chip = mtd->priv;
673 struct nandsim *ns = chip->priv;
674 int i, ret = 0;
675 uint64_t remains;
676 uint64_t next_offset;
678 if (NS_IS_INITIALIZED(ns)) {
679 NS_ERR("init_nandsim: nandsim is already initialized\n");
680 return -EIO;
683 /* Force mtd to not do delays */
684 chip->chip_delay = 0;
686 /* Initialize the NAND flash parameters */
687 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
688 ns->geom.totsz = mtd->size;
689 ns->geom.pgsz = mtd->writesize;
690 ns->geom.oobsz = mtd->oobsize;
691 ns->geom.secsz = mtd->erasesize;
692 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
693 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
694 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
695 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
696 ns->geom.pgshift = chip->page_shift;
697 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
698 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
699 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
700 ns->options = 0;
702 if (ns->geom.pgsz == 256) {
703 ns->options |= OPT_PAGE256;
705 else if (ns->geom.pgsz == 512) {
706 ns->options |= OPT_PAGE512;
707 if (ns->busw == 8)
708 ns->options |= OPT_PAGE512_8BIT;
709 } else if (ns->geom.pgsz == 2048) {
710 ns->options |= OPT_PAGE2048;
711 } else if (ns->geom.pgsz == 4096) {
712 ns->options |= OPT_PAGE4096;
713 } else {
714 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
715 return -EIO;
718 if (ns->options & OPT_SMALLPAGE) {
719 if (ns->geom.totsz <= (32 << 20)) {
720 ns->geom.pgaddrbytes = 3;
721 ns->geom.secaddrbytes = 2;
722 } else {
723 ns->geom.pgaddrbytes = 4;
724 ns->geom.secaddrbytes = 3;
726 } else {
727 if (ns->geom.totsz <= (128 << 20)) {
728 ns->geom.pgaddrbytes = 4;
729 ns->geom.secaddrbytes = 2;
730 } else {
731 ns->geom.pgaddrbytes = 5;
732 ns->geom.secaddrbytes = 3;
736 /* Fill the partition_info structure */
737 if (parts_num > ARRAY_SIZE(ns->partitions)) {
738 NS_ERR("too many partitions.\n");
739 ret = -EINVAL;
740 goto error;
742 remains = ns->geom.totsz;
743 next_offset = 0;
744 for (i = 0; i < parts_num; ++i) {
745 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
747 if (!part_sz || part_sz > remains) {
748 NS_ERR("bad partition size.\n");
749 ret = -EINVAL;
750 goto error;
752 ns->partitions[i].name = get_partition_name(i);
753 ns->partitions[i].offset = next_offset;
754 ns->partitions[i].size = part_sz;
755 next_offset += ns->partitions[i].size;
756 remains -= ns->partitions[i].size;
758 ns->nbparts = parts_num;
759 if (remains) {
760 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
761 NS_ERR("too many partitions.\n");
762 ret = -EINVAL;
763 goto error;
765 ns->partitions[i].name = get_partition_name(i);
766 ns->partitions[i].offset = next_offset;
767 ns->partitions[i].size = remains;
768 ns->nbparts += 1;
771 /* Detect how many ID bytes the NAND chip outputs */
772 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
773 if (second_id_byte != nand_flash_ids[i].id)
774 continue;
777 if (ns->busw == 16)
778 NS_WARN("16-bit flashes support wasn't tested\n");
780 printk("flash size: %llu MiB\n",
781 (unsigned long long)ns->geom.totsz >> 20);
782 printk("page size: %u bytes\n", ns->geom.pgsz);
783 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
784 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
785 printk("pages number: %u\n", ns->geom.pgnum);
786 printk("pages per sector: %u\n", ns->geom.pgsec);
787 printk("bus width: %u\n", ns->busw);
788 printk("bits in sector size: %u\n", ns->geom.secshift);
789 printk("bits in page size: %u\n", ns->geom.pgshift);
790 printk("bits in OOB size: %u\n", ns->geom.oobshift);
791 printk("flash size with OOB: %llu KiB\n",
792 (unsigned long long)ns->geom.totszoob >> 10);
793 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
794 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
795 printk("options: %#x\n", ns->options);
797 if ((ret = alloc_device(ns)) != 0)
798 goto error;
800 /* Allocate / initialize the internal buffer */
801 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
802 if (!ns->buf.byte) {
803 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
804 ns->geom.pgszoob);
805 ret = -ENOMEM;
806 goto error;
808 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
810 return 0;
812 error:
813 free_device(ns);
815 return ret;
819 * Free the nandsim structure.
821 static void free_nandsim(struct nandsim *ns)
823 kfree(ns->buf.byte);
824 free_device(ns);
826 return;
829 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
831 char *w;
832 int zero_ok;
833 unsigned int erase_block_no;
834 loff_t offset;
836 if (!badblocks)
837 return 0;
838 w = badblocks;
839 do {
840 zero_ok = (*w == '0' ? 1 : 0);
841 erase_block_no = simple_strtoul(w, &w, 0);
842 if (!zero_ok && !erase_block_no) {
843 NS_ERR("invalid badblocks.\n");
844 return -EINVAL;
846 offset = erase_block_no * ns->geom.secsz;
847 if (mtd_block_markbad(mtd, offset)) {
848 NS_ERR("invalid badblocks.\n");
849 return -EINVAL;
851 if (*w == ',')
852 w += 1;
853 } while (*w);
854 return 0;
857 static int parse_weakblocks(void)
859 char *w;
860 int zero_ok;
861 unsigned int erase_block_no;
862 unsigned int max_erases;
863 struct weak_block *wb;
865 if (!weakblocks)
866 return 0;
867 w = weakblocks;
868 do {
869 zero_ok = (*w == '0' ? 1 : 0);
870 erase_block_no = simple_strtoul(w, &w, 0);
871 if (!zero_ok && !erase_block_no) {
872 NS_ERR("invalid weakblocks.\n");
873 return -EINVAL;
875 max_erases = 3;
876 if (*w == ':') {
877 w += 1;
878 max_erases = simple_strtoul(w, &w, 0);
880 if (*w == ',')
881 w += 1;
882 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
883 if (!wb) {
884 NS_ERR("unable to allocate memory.\n");
885 return -ENOMEM;
887 wb->erase_block_no = erase_block_no;
888 wb->max_erases = max_erases;
889 list_add(&wb->list, &weak_blocks);
890 } while (*w);
891 return 0;
894 static int erase_error(unsigned int erase_block_no)
896 struct weak_block *wb;
898 list_for_each_entry(wb, &weak_blocks, list)
899 if (wb->erase_block_no == erase_block_no) {
900 if (wb->erases_done >= wb->max_erases)
901 return 1;
902 wb->erases_done += 1;
903 return 0;
905 return 0;
908 static int parse_weakpages(void)
910 char *w;
911 int zero_ok;
912 unsigned int page_no;
913 unsigned int max_writes;
914 struct weak_page *wp;
916 if (!weakpages)
917 return 0;
918 w = weakpages;
919 do {
920 zero_ok = (*w == '0' ? 1 : 0);
921 page_no = simple_strtoul(w, &w, 0);
922 if (!zero_ok && !page_no) {
923 NS_ERR("invalid weakpagess.\n");
924 return -EINVAL;
926 max_writes = 3;
927 if (*w == ':') {
928 w += 1;
929 max_writes = simple_strtoul(w, &w, 0);
931 if (*w == ',')
932 w += 1;
933 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
934 if (!wp) {
935 NS_ERR("unable to allocate memory.\n");
936 return -ENOMEM;
938 wp->page_no = page_no;
939 wp->max_writes = max_writes;
940 list_add(&wp->list, &weak_pages);
941 } while (*w);
942 return 0;
945 static int write_error(unsigned int page_no)
947 struct weak_page *wp;
949 list_for_each_entry(wp, &weak_pages, list)
950 if (wp->page_no == page_no) {
951 if (wp->writes_done >= wp->max_writes)
952 return 1;
953 wp->writes_done += 1;
954 return 0;
956 return 0;
959 static int parse_gravepages(void)
961 char *g;
962 int zero_ok;
963 unsigned int page_no;
964 unsigned int max_reads;
965 struct grave_page *gp;
967 if (!gravepages)
968 return 0;
969 g = gravepages;
970 do {
971 zero_ok = (*g == '0' ? 1 : 0);
972 page_no = simple_strtoul(g, &g, 0);
973 if (!zero_ok && !page_no) {
974 NS_ERR("invalid gravepagess.\n");
975 return -EINVAL;
977 max_reads = 3;
978 if (*g == ':') {
979 g += 1;
980 max_reads = simple_strtoul(g, &g, 0);
982 if (*g == ',')
983 g += 1;
984 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
985 if (!gp) {
986 NS_ERR("unable to allocate memory.\n");
987 return -ENOMEM;
989 gp->page_no = page_no;
990 gp->max_reads = max_reads;
991 list_add(&gp->list, &grave_pages);
992 } while (*g);
993 return 0;
996 static int read_error(unsigned int page_no)
998 struct grave_page *gp;
1000 list_for_each_entry(gp, &grave_pages, list)
1001 if (gp->page_no == page_no) {
1002 if (gp->reads_done >= gp->max_reads)
1003 return 1;
1004 gp->reads_done += 1;
1005 return 0;
1007 return 0;
1010 static void free_lists(void)
1012 struct list_head *pos, *n;
1013 list_for_each_safe(pos, n, &weak_blocks) {
1014 list_del(pos);
1015 kfree(list_entry(pos, struct weak_block, list));
1017 list_for_each_safe(pos, n, &weak_pages) {
1018 list_del(pos);
1019 kfree(list_entry(pos, struct weak_page, list));
1021 list_for_each_safe(pos, n, &grave_pages) {
1022 list_del(pos);
1023 kfree(list_entry(pos, struct grave_page, list));
1025 kfree(erase_block_wear);
1028 static int setup_wear_reporting(struct mtd_info *mtd)
1030 size_t mem;
1032 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1033 mem = wear_eb_count * sizeof(unsigned long);
1034 if (mem / sizeof(unsigned long) != wear_eb_count) {
1035 NS_ERR("Too many erase blocks for wear reporting\n");
1036 return -ENOMEM;
1038 erase_block_wear = kzalloc(mem, GFP_KERNEL);
1039 if (!erase_block_wear) {
1040 NS_ERR("Too many erase blocks for wear reporting\n");
1041 return -ENOMEM;
1043 return 0;
1046 static void update_wear(unsigned int erase_block_no)
1048 if (!erase_block_wear)
1049 return;
1050 total_wear += 1;
1052 * TODO: Notify this through a debugfs entry,
1053 * instead of showing an error message.
1055 if (total_wear == 0)
1056 NS_ERR("Erase counter total overflow\n");
1057 erase_block_wear[erase_block_no] += 1;
1058 if (erase_block_wear[erase_block_no] == 0)
1059 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1063 * Returns the string representation of 'state' state.
1065 static char *get_state_name(uint32_t state)
1067 switch (NS_STATE(state)) {
1068 case STATE_CMD_READ0:
1069 return "STATE_CMD_READ0";
1070 case STATE_CMD_READ1:
1071 return "STATE_CMD_READ1";
1072 case STATE_CMD_PAGEPROG:
1073 return "STATE_CMD_PAGEPROG";
1074 case STATE_CMD_READOOB:
1075 return "STATE_CMD_READOOB";
1076 case STATE_CMD_READSTART:
1077 return "STATE_CMD_READSTART";
1078 case STATE_CMD_ERASE1:
1079 return "STATE_CMD_ERASE1";
1080 case STATE_CMD_STATUS:
1081 return "STATE_CMD_STATUS";
1082 case STATE_CMD_STATUS_M:
1083 return "STATE_CMD_STATUS_M";
1084 case STATE_CMD_SEQIN:
1085 return "STATE_CMD_SEQIN";
1086 case STATE_CMD_READID:
1087 return "STATE_CMD_READID";
1088 case STATE_CMD_ERASE2:
1089 return "STATE_CMD_ERASE2";
1090 case STATE_CMD_RESET:
1091 return "STATE_CMD_RESET";
1092 case STATE_CMD_RNDOUT:
1093 return "STATE_CMD_RNDOUT";
1094 case STATE_CMD_RNDOUTSTART:
1095 return "STATE_CMD_RNDOUTSTART";
1096 case STATE_ADDR_PAGE:
1097 return "STATE_ADDR_PAGE";
1098 case STATE_ADDR_SEC:
1099 return "STATE_ADDR_SEC";
1100 case STATE_ADDR_ZERO:
1101 return "STATE_ADDR_ZERO";
1102 case STATE_ADDR_COLUMN:
1103 return "STATE_ADDR_COLUMN";
1104 case STATE_DATAIN:
1105 return "STATE_DATAIN";
1106 case STATE_DATAOUT:
1107 return "STATE_DATAOUT";
1108 case STATE_DATAOUT_ID:
1109 return "STATE_DATAOUT_ID";
1110 case STATE_DATAOUT_STATUS:
1111 return "STATE_DATAOUT_STATUS";
1112 case STATE_DATAOUT_STATUS_M:
1113 return "STATE_DATAOUT_STATUS_M";
1114 case STATE_READY:
1115 return "STATE_READY";
1116 case STATE_UNKNOWN:
1117 return "STATE_UNKNOWN";
1120 NS_ERR("get_state_name: unknown state, BUG\n");
1121 return NULL;
1125 * Check if command is valid.
1127 * RETURNS: 1 if wrong command, 0 if right.
1129 static int check_command(int cmd)
1131 switch (cmd) {
1133 case NAND_CMD_READ0:
1134 case NAND_CMD_READ1:
1135 case NAND_CMD_READSTART:
1136 case NAND_CMD_PAGEPROG:
1137 case NAND_CMD_READOOB:
1138 case NAND_CMD_ERASE1:
1139 case NAND_CMD_STATUS:
1140 case NAND_CMD_SEQIN:
1141 case NAND_CMD_READID:
1142 case NAND_CMD_ERASE2:
1143 case NAND_CMD_RESET:
1144 case NAND_CMD_RNDOUT:
1145 case NAND_CMD_RNDOUTSTART:
1146 return 0;
1148 case NAND_CMD_STATUS_MULTI:
1149 default:
1150 return 1;
1155 * Returns state after command is accepted by command number.
1157 static uint32_t get_state_by_command(unsigned command)
1159 switch (command) {
1160 case NAND_CMD_READ0:
1161 return STATE_CMD_READ0;
1162 case NAND_CMD_READ1:
1163 return STATE_CMD_READ1;
1164 case NAND_CMD_PAGEPROG:
1165 return STATE_CMD_PAGEPROG;
1166 case NAND_CMD_READSTART:
1167 return STATE_CMD_READSTART;
1168 case NAND_CMD_READOOB:
1169 return STATE_CMD_READOOB;
1170 case NAND_CMD_ERASE1:
1171 return STATE_CMD_ERASE1;
1172 case NAND_CMD_STATUS:
1173 return STATE_CMD_STATUS;
1174 case NAND_CMD_STATUS_MULTI:
1175 return STATE_CMD_STATUS_M;
1176 case NAND_CMD_SEQIN:
1177 return STATE_CMD_SEQIN;
1178 case NAND_CMD_READID:
1179 return STATE_CMD_READID;
1180 case NAND_CMD_ERASE2:
1181 return STATE_CMD_ERASE2;
1182 case NAND_CMD_RESET:
1183 return STATE_CMD_RESET;
1184 case NAND_CMD_RNDOUT:
1185 return STATE_CMD_RNDOUT;
1186 case NAND_CMD_RNDOUTSTART:
1187 return STATE_CMD_RNDOUTSTART;
1190 NS_ERR("get_state_by_command: unknown command, BUG\n");
1191 return 0;
1195 * Move an address byte to the correspondent internal register.
1197 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1199 uint byte = (uint)bt;
1201 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1202 ns->regs.column |= (byte << 8 * ns->regs.count);
1203 else {
1204 ns->regs.row |= (byte << 8 * (ns->regs.count -
1205 ns->geom.pgaddrbytes +
1206 ns->geom.secaddrbytes));
1209 return;
1213 * Switch to STATE_READY state.
1215 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1217 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1219 ns->state = STATE_READY;
1220 ns->nxstate = STATE_UNKNOWN;
1221 ns->op = NULL;
1222 ns->npstates = 0;
1223 ns->stateidx = 0;
1224 ns->regs.num = 0;
1225 ns->regs.count = 0;
1226 ns->regs.off = 0;
1227 ns->regs.row = 0;
1228 ns->regs.column = 0;
1229 ns->regs.status = status;
1233 * If the operation isn't known yet, try to find it in the global array
1234 * of supported operations.
1236 * Operation can be unknown because of the following.
1237 * 1. New command was accepted and this is the first call to find the
1238 * correspondent states chain. In this case ns->npstates = 0;
1239 * 2. There are several operations which begin with the same command(s)
1240 * (for example program from the second half and read from the
1241 * second half operations both begin with the READ1 command). In this
1242 * case the ns->pstates[] array contains previous states.
1244 * Thus, the function tries to find operation containing the following
1245 * states (if the 'flag' parameter is 0):
1246 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1248 * If (one and only one) matching operation is found, it is accepted (
1249 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1250 * zeroed).
1252 * If there are several matches, the current state is pushed to the
1253 * ns->pstates.
1255 * The operation can be unknown only while commands are input to the chip.
1256 * As soon as address command is accepted, the operation must be known.
1257 * In such situation the function is called with 'flag' != 0, and the
1258 * operation is searched using the following pattern:
1259 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1261 * It is supposed that this pattern must either match one operation or
1262 * none. There can't be ambiguity in that case.
1264 * If no matches found, the function does the following:
1265 * 1. if there are saved states present, try to ignore them and search
1266 * again only using the last command. If nothing was found, switch
1267 * to the STATE_READY state.
1268 * 2. if there are no saved states, switch to the STATE_READY state.
1270 * RETURNS: -2 - no matched operations found.
1271 * -1 - several matches.
1272 * 0 - operation is found.
1274 static int find_operation(struct nandsim *ns, uint32_t flag)
1276 int opsfound = 0;
1277 int i, j, idx = 0;
1279 for (i = 0; i < NS_OPER_NUM; i++) {
1281 int found = 1;
1283 if (!(ns->options & ops[i].reqopts))
1284 /* Ignore operations we can't perform */
1285 continue;
1287 if (flag) {
1288 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1289 continue;
1290 } else {
1291 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1292 continue;
1295 for (j = 0; j < ns->npstates; j++)
1296 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1297 && (ns->options & ops[idx].reqopts)) {
1298 found = 0;
1299 break;
1302 if (found) {
1303 idx = i;
1304 opsfound += 1;
1308 if (opsfound == 1) {
1309 /* Exact match */
1310 ns->op = &ops[idx].states[0];
1311 if (flag) {
1313 * In this case the find_operation function was
1314 * called when address has just began input. But it isn't
1315 * yet fully input and the current state must
1316 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1317 * state must be the next state (ns->nxstate).
1319 ns->stateidx = ns->npstates - 1;
1320 } else {
1321 ns->stateidx = ns->npstates;
1323 ns->npstates = 0;
1324 ns->state = ns->op[ns->stateidx];
1325 ns->nxstate = ns->op[ns->stateidx + 1];
1326 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1327 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1328 return 0;
1331 if (opsfound == 0) {
1332 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1333 if (ns->npstates != 0) {
1334 NS_DBG("find_operation: no operation found, try again with state %s\n",
1335 get_state_name(ns->state));
1336 ns->npstates = 0;
1337 return find_operation(ns, 0);
1340 NS_DBG("find_operation: no operations found\n");
1341 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1342 return -2;
1345 if (flag) {
1346 /* This shouldn't happen */
1347 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1348 return -2;
1351 NS_DBG("find_operation: there is still ambiguity\n");
1353 ns->pstates[ns->npstates++] = ns->state;
1355 return -1;
1358 static void put_pages(struct nandsim *ns)
1360 int i;
1362 for (i = 0; i < ns->held_cnt; i++)
1363 page_cache_release(ns->held_pages[i]);
1366 /* Get page cache pages in advance to provide NOFS memory allocation */
1367 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1369 pgoff_t index, start_index, end_index;
1370 struct page *page;
1371 struct address_space *mapping = file->f_mapping;
1373 start_index = pos >> PAGE_CACHE_SHIFT;
1374 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1375 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1376 return -EINVAL;
1377 ns->held_cnt = 0;
1378 for (index = start_index; index <= end_index; index++) {
1379 page = find_get_page(mapping, index);
1380 if (page == NULL) {
1381 page = find_or_create_page(mapping, index, GFP_NOFS);
1382 if (page == NULL) {
1383 write_inode_now(mapping->host, 1);
1384 page = find_or_create_page(mapping, index, GFP_NOFS);
1386 if (page == NULL) {
1387 put_pages(ns);
1388 return -ENOMEM;
1390 unlock_page(page);
1392 ns->held_pages[ns->held_cnt++] = page;
1394 return 0;
1397 static int set_memalloc(void)
1399 if (current->flags & PF_MEMALLOC)
1400 return 0;
1401 current->flags |= PF_MEMALLOC;
1402 return 1;
1405 static void clear_memalloc(int memalloc)
1407 if (memalloc)
1408 current->flags &= ~PF_MEMALLOC;
1411 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1413 ssize_t tx;
1414 int err, memalloc;
1416 err = get_pages(ns, file, count, pos);
1417 if (err)
1418 return err;
1419 memalloc = set_memalloc();
1420 tx = kernel_read(file, pos, buf, count);
1421 clear_memalloc(memalloc);
1422 put_pages(ns);
1423 return tx;
1426 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1428 ssize_t tx;
1429 int err, memalloc;
1431 err = get_pages(ns, file, count, pos);
1432 if (err)
1433 return err;
1434 memalloc = set_memalloc();
1435 tx = kernel_write(file, buf, count, pos);
1436 clear_memalloc(memalloc);
1437 put_pages(ns);
1438 return tx;
1442 * Returns a pointer to the current page.
1444 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1446 return &(ns->pages[ns->regs.row]);
1450 * Retuns a pointer to the current byte, within the current page.
1452 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1454 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1457 int do_read_error(struct nandsim *ns, int num)
1459 unsigned int page_no = ns->regs.row;
1461 if (read_error(page_no)) {
1462 prandom_bytes(ns->buf.byte, num);
1463 NS_WARN("simulating read error in page %u\n", page_no);
1464 return 1;
1466 return 0;
1469 void do_bit_flips(struct nandsim *ns, int num)
1471 if (bitflips && prandom_u32() < (1 << 22)) {
1472 int flips = 1;
1473 if (bitflips > 1)
1474 flips = (prandom_u32() % (int) bitflips) + 1;
1475 while (flips--) {
1476 int pos = prandom_u32() % (num * 8);
1477 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1478 NS_WARN("read_page: flipping bit %d in page %d "
1479 "reading from %d ecc: corrected=%u failed=%u\n",
1480 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1481 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1487 * Fill the NAND buffer with data read from the specified page.
1489 static void read_page(struct nandsim *ns, int num)
1491 union ns_mem *mypage;
1493 if (ns->cfile) {
1494 if (!ns->pages_written[ns->regs.row]) {
1495 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1496 memset(ns->buf.byte, 0xFF, num);
1497 } else {
1498 loff_t pos;
1499 ssize_t tx;
1501 NS_DBG("read_page: page %d written, reading from %d\n",
1502 ns->regs.row, ns->regs.column + ns->regs.off);
1503 if (do_read_error(ns, num))
1504 return;
1505 pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1506 tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1507 if (tx != num) {
1508 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1509 return;
1511 do_bit_flips(ns, num);
1513 return;
1516 mypage = NS_GET_PAGE(ns);
1517 if (mypage->byte == NULL) {
1518 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1519 memset(ns->buf.byte, 0xFF, num);
1520 } else {
1521 NS_DBG("read_page: page %d allocated, reading from %d\n",
1522 ns->regs.row, ns->regs.column + ns->regs.off);
1523 if (do_read_error(ns, num))
1524 return;
1525 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1526 do_bit_flips(ns, num);
1531 * Erase all pages in the specified sector.
1533 static void erase_sector(struct nandsim *ns)
1535 union ns_mem *mypage;
1536 int i;
1538 if (ns->cfile) {
1539 for (i = 0; i < ns->geom.pgsec; i++)
1540 if (ns->pages_written[ns->regs.row + i]) {
1541 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1542 ns->pages_written[ns->regs.row + i] = 0;
1544 return;
1547 mypage = NS_GET_PAGE(ns);
1548 for (i = 0; i < ns->geom.pgsec; i++) {
1549 if (mypage->byte != NULL) {
1550 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1551 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1552 mypage->byte = NULL;
1554 mypage++;
1559 * Program the specified page with the contents from the NAND buffer.
1561 static int prog_page(struct nandsim *ns, int num)
1563 int i;
1564 union ns_mem *mypage;
1565 u_char *pg_off;
1567 if (ns->cfile) {
1568 loff_t off;
1569 ssize_t tx;
1570 int all;
1572 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1573 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1574 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1575 if (!ns->pages_written[ns->regs.row]) {
1576 all = 1;
1577 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1578 } else {
1579 all = 0;
1580 tx = read_file(ns, ns->cfile, pg_off, num, off);
1581 if (tx != num) {
1582 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1583 return -1;
1586 for (i = 0; i < num; i++)
1587 pg_off[i] &= ns->buf.byte[i];
1588 if (all) {
1589 loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1590 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1591 if (tx != ns->geom.pgszoob) {
1592 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1593 return -1;
1595 ns->pages_written[ns->regs.row] = 1;
1596 } else {
1597 tx = write_file(ns, ns->cfile, pg_off, num, off);
1598 if (tx != num) {
1599 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1600 return -1;
1603 return 0;
1606 mypage = NS_GET_PAGE(ns);
1607 if (mypage->byte == NULL) {
1608 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1610 * We allocate memory with GFP_NOFS because a flash FS may
1611 * utilize this. If it is holding an FS lock, then gets here,
1612 * then kernel memory alloc runs writeback which goes to the FS
1613 * again and deadlocks. This was seen in practice.
1615 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1616 if (mypage->byte == NULL) {
1617 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1618 return -1;
1620 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1623 pg_off = NS_PAGE_BYTE_OFF(ns);
1624 for (i = 0; i < num; i++)
1625 pg_off[i] &= ns->buf.byte[i];
1627 return 0;
1631 * If state has any action bit, perform this action.
1633 * RETURNS: 0 if success, -1 if error.
1635 static int do_state_action(struct nandsim *ns, uint32_t action)
1637 int num;
1638 int busdiv = ns->busw == 8 ? 1 : 2;
1639 unsigned int erase_block_no, page_no;
1641 action &= ACTION_MASK;
1643 /* Check that page address input is correct */
1644 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1645 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1646 return -1;
1649 switch (action) {
1651 case ACTION_CPY:
1653 * Copy page data to the internal buffer.
1656 /* Column shouldn't be very large */
1657 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1658 NS_ERR("do_state_action: column number is too large\n");
1659 break;
1661 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1662 read_page(ns, num);
1664 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1665 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1667 if (ns->regs.off == 0)
1668 NS_LOG("read page %d\n", ns->regs.row);
1669 else if (ns->regs.off < ns->geom.pgsz)
1670 NS_LOG("read page %d (second half)\n", ns->regs.row);
1671 else
1672 NS_LOG("read OOB of page %d\n", ns->regs.row);
1674 NS_UDELAY(access_delay);
1675 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1677 break;
1679 case ACTION_SECERASE:
1681 * Erase sector.
1684 if (ns->lines.wp) {
1685 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1686 return -1;
1689 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1690 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1691 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1692 return -1;
1695 ns->regs.row = (ns->regs.row <<
1696 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1697 ns->regs.column = 0;
1699 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1701 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1702 ns->regs.row, NS_RAW_OFFSET(ns));
1703 NS_LOG("erase sector %u\n", erase_block_no);
1705 erase_sector(ns);
1707 NS_MDELAY(erase_delay);
1709 if (erase_block_wear)
1710 update_wear(erase_block_no);
1712 if (erase_error(erase_block_no)) {
1713 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1714 return -1;
1717 break;
1719 case ACTION_PRGPAGE:
1721 * Program page - move internal buffer data to the page.
1724 if (ns->lines.wp) {
1725 NS_WARN("do_state_action: device is write-protected, programm\n");
1726 return -1;
1729 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1730 if (num != ns->regs.count) {
1731 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1732 ns->regs.count, num);
1733 return -1;
1736 if (prog_page(ns, num) == -1)
1737 return -1;
1739 page_no = ns->regs.row;
1741 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1742 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1743 NS_LOG("programm page %d\n", ns->regs.row);
1745 NS_UDELAY(programm_delay);
1746 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1748 if (write_error(page_no)) {
1749 NS_WARN("simulating write failure in page %u\n", page_no);
1750 return -1;
1753 break;
1755 case ACTION_ZEROOFF:
1756 NS_DBG("do_state_action: set internal offset to 0\n");
1757 ns->regs.off = 0;
1758 break;
1760 case ACTION_HALFOFF:
1761 if (!(ns->options & OPT_PAGE512_8BIT)) {
1762 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1763 "byte page size 8x chips\n");
1764 return -1;
1766 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1767 ns->regs.off = ns->geom.pgsz/2;
1768 break;
1770 case ACTION_OOBOFF:
1771 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1772 ns->regs.off = ns->geom.pgsz;
1773 break;
1775 default:
1776 NS_DBG("do_state_action: BUG! unknown action\n");
1779 return 0;
1783 * Switch simulator's state.
1785 static void switch_state(struct nandsim *ns)
1787 if (ns->op) {
1789 * The current operation have already been identified.
1790 * Just follow the states chain.
1793 ns->stateidx += 1;
1794 ns->state = ns->nxstate;
1795 ns->nxstate = ns->op[ns->stateidx + 1];
1797 NS_DBG("switch_state: operation is known, switch to the next state, "
1798 "state: %s, nxstate: %s\n",
1799 get_state_name(ns->state), get_state_name(ns->nxstate));
1801 /* See, whether we need to do some action */
1802 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1803 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1804 return;
1807 } else {
1809 * We don't yet know which operation we perform.
1810 * Try to identify it.
1814 * The only event causing the switch_state function to
1815 * be called with yet unknown operation is new command.
1817 ns->state = get_state_by_command(ns->regs.command);
1819 NS_DBG("switch_state: operation is unknown, try to find it\n");
1821 if (find_operation(ns, 0) != 0)
1822 return;
1824 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1825 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1826 return;
1830 /* For 16x devices column means the page offset in words */
1831 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1832 NS_DBG("switch_state: double the column number for 16x device\n");
1833 ns->regs.column <<= 1;
1836 if (NS_STATE(ns->nxstate) == STATE_READY) {
1838 * The current state is the last. Return to STATE_READY
1841 u_char status = NS_STATUS_OK(ns);
1843 /* In case of data states, see if all bytes were input/output */
1844 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1845 && ns->regs.count != ns->regs.num) {
1846 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1847 ns->regs.num - ns->regs.count);
1848 status = NS_STATUS_FAILED(ns);
1851 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1853 switch_to_ready_state(ns, status);
1855 return;
1856 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1858 * If the next state is data input/output, switch to it now
1861 ns->state = ns->nxstate;
1862 ns->nxstate = ns->op[++ns->stateidx + 1];
1863 ns->regs.num = ns->regs.count = 0;
1865 NS_DBG("switch_state: the next state is data I/O, switch, "
1866 "state: %s, nxstate: %s\n",
1867 get_state_name(ns->state), get_state_name(ns->nxstate));
1870 * Set the internal register to the count of bytes which
1871 * are expected to be input or output
1873 switch (NS_STATE(ns->state)) {
1874 case STATE_DATAIN:
1875 case STATE_DATAOUT:
1876 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1877 break;
1879 case STATE_DATAOUT_ID:
1880 ns->regs.num = ns->geom.idbytes;
1881 break;
1883 case STATE_DATAOUT_STATUS:
1884 case STATE_DATAOUT_STATUS_M:
1885 ns->regs.count = ns->regs.num = 0;
1886 break;
1888 default:
1889 NS_ERR("switch_state: BUG! unknown data state\n");
1892 } else if (ns->nxstate & STATE_ADDR_MASK) {
1894 * If the next state is address input, set the internal
1895 * register to the number of expected address bytes
1898 ns->regs.count = 0;
1900 switch (NS_STATE(ns->nxstate)) {
1901 case STATE_ADDR_PAGE:
1902 ns->regs.num = ns->geom.pgaddrbytes;
1904 break;
1905 case STATE_ADDR_SEC:
1906 ns->regs.num = ns->geom.secaddrbytes;
1907 break;
1909 case STATE_ADDR_ZERO:
1910 ns->regs.num = 1;
1911 break;
1913 case STATE_ADDR_COLUMN:
1914 /* Column address is always 2 bytes */
1915 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1916 break;
1918 default:
1919 NS_ERR("switch_state: BUG! unknown address state\n");
1921 } else {
1923 * Just reset internal counters.
1926 ns->regs.num = 0;
1927 ns->regs.count = 0;
1931 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1933 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1934 u_char outb = 0x00;
1936 /* Sanity and correctness checks */
1937 if (!ns->lines.ce) {
1938 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1939 return outb;
1941 if (ns->lines.ale || ns->lines.cle) {
1942 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1943 return outb;
1945 if (!(ns->state & STATE_DATAOUT_MASK)) {
1946 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1947 "return %#x\n", get_state_name(ns->state), (uint)outb);
1948 return outb;
1951 /* Status register may be read as many times as it is wanted */
1952 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1953 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1954 return ns->regs.status;
1957 /* Check if there is any data in the internal buffer which may be read */
1958 if (ns->regs.count == ns->regs.num) {
1959 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1960 return outb;
1963 switch (NS_STATE(ns->state)) {
1964 case STATE_DATAOUT:
1965 if (ns->busw == 8) {
1966 outb = ns->buf.byte[ns->regs.count];
1967 ns->regs.count += 1;
1968 } else {
1969 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1970 ns->regs.count += 2;
1972 break;
1973 case STATE_DATAOUT_ID:
1974 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1975 outb = ns->ids[ns->regs.count];
1976 ns->regs.count += 1;
1977 break;
1978 default:
1979 BUG();
1982 if (ns->regs.count == ns->regs.num) {
1983 NS_DBG("read_byte: all bytes were read\n");
1985 if (NS_STATE(ns->nxstate) == STATE_READY)
1986 switch_state(ns);
1989 return outb;
1992 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1994 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1996 /* Sanity and correctness checks */
1997 if (!ns->lines.ce) {
1998 NS_ERR("write_byte: chip is disabled, ignore write\n");
1999 return;
2001 if (ns->lines.ale && ns->lines.cle) {
2002 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
2003 return;
2006 if (ns->lines.cle == 1) {
2008 * The byte written is a command.
2011 if (byte == NAND_CMD_RESET) {
2012 NS_LOG("reset chip\n");
2013 switch_to_ready_state(ns, NS_STATUS_OK(ns));
2014 return;
2017 /* Check that the command byte is correct */
2018 if (check_command(byte)) {
2019 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
2020 return;
2023 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2024 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
2025 || NS_STATE(ns->state) == STATE_DATAOUT) {
2026 int row = ns->regs.row;
2028 switch_state(ns);
2029 if (byte == NAND_CMD_RNDOUT)
2030 ns->regs.row = row;
2033 /* Check if chip is expecting command */
2034 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2035 /* Do not warn if only 2 id bytes are read */
2036 if (!(ns->regs.command == NAND_CMD_READID &&
2037 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2039 * We are in situation when something else (not command)
2040 * was expected but command was input. In this case ignore
2041 * previous command(s)/state(s) and accept the last one.
2043 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2044 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2046 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2049 NS_DBG("command byte corresponding to %s state accepted\n",
2050 get_state_name(get_state_by_command(byte)));
2051 ns->regs.command = byte;
2052 switch_state(ns);
2054 } else if (ns->lines.ale == 1) {
2056 * The byte written is an address.
2059 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2061 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2063 if (find_operation(ns, 1) < 0)
2064 return;
2066 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2067 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2068 return;
2071 ns->regs.count = 0;
2072 switch (NS_STATE(ns->nxstate)) {
2073 case STATE_ADDR_PAGE:
2074 ns->regs.num = ns->geom.pgaddrbytes;
2075 break;
2076 case STATE_ADDR_SEC:
2077 ns->regs.num = ns->geom.secaddrbytes;
2078 break;
2079 case STATE_ADDR_ZERO:
2080 ns->regs.num = 1;
2081 break;
2082 default:
2083 BUG();
2087 /* Check that chip is expecting address */
2088 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2089 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2090 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2091 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2092 return;
2095 /* Check if this is expected byte */
2096 if (ns->regs.count == ns->regs.num) {
2097 NS_ERR("write_byte: no more address bytes expected\n");
2098 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2099 return;
2102 accept_addr_byte(ns, byte);
2104 ns->regs.count += 1;
2106 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2107 (uint)byte, ns->regs.count, ns->regs.num);
2109 if (ns->regs.count == ns->regs.num) {
2110 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2111 switch_state(ns);
2114 } else {
2116 * The byte written is an input data.
2119 /* Check that chip is expecting data input */
2120 if (!(ns->state & STATE_DATAIN_MASK)) {
2121 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2122 "switch to %s\n", (uint)byte,
2123 get_state_name(ns->state), get_state_name(STATE_READY));
2124 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2125 return;
2128 /* Check if this is expected byte */
2129 if (ns->regs.count == ns->regs.num) {
2130 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2131 ns->regs.num);
2132 return;
2135 if (ns->busw == 8) {
2136 ns->buf.byte[ns->regs.count] = byte;
2137 ns->regs.count += 1;
2138 } else {
2139 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2140 ns->regs.count += 2;
2144 return;
2147 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2149 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2151 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2152 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2153 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2155 if (cmd != NAND_CMD_NONE)
2156 ns_nand_write_byte(mtd, cmd);
2159 static int ns_device_ready(struct mtd_info *mtd)
2161 NS_DBG("device_ready\n");
2162 return 1;
2165 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2167 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2169 NS_DBG("read_word\n");
2171 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2174 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2176 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2178 /* Check that chip is expecting data input */
2179 if (!(ns->state & STATE_DATAIN_MASK)) {
2180 NS_ERR("write_buf: data input isn't expected, state is %s, "
2181 "switch to STATE_READY\n", get_state_name(ns->state));
2182 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2183 return;
2186 /* Check if these are expected bytes */
2187 if (ns->regs.count + len > ns->regs.num) {
2188 NS_ERR("write_buf: too many input bytes\n");
2189 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2190 return;
2193 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2194 ns->regs.count += len;
2196 if (ns->regs.count == ns->regs.num) {
2197 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2201 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2203 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2205 /* Sanity and correctness checks */
2206 if (!ns->lines.ce) {
2207 NS_ERR("read_buf: chip is disabled\n");
2208 return;
2210 if (ns->lines.ale || ns->lines.cle) {
2211 NS_ERR("read_buf: ALE or CLE pin is high\n");
2212 return;
2214 if (!(ns->state & STATE_DATAOUT_MASK)) {
2215 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2216 get_state_name(ns->state));
2217 return;
2220 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2221 int i;
2223 for (i = 0; i < len; i++)
2224 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2226 return;
2229 /* Check if these are expected bytes */
2230 if (ns->regs.count + len > ns->regs.num) {
2231 NS_ERR("read_buf: too many bytes to read\n");
2232 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2233 return;
2236 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2237 ns->regs.count += len;
2239 if (ns->regs.count == ns->regs.num) {
2240 if (NS_STATE(ns->nxstate) == STATE_READY)
2241 switch_state(ns);
2244 return;
2248 * Module initialization function
2250 static int __init ns_init_module(void)
2252 struct nand_chip *chip;
2253 struct nandsim *nand;
2254 int retval = -ENOMEM, i;
2256 if (bus_width != 8 && bus_width != 16) {
2257 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2258 return -EINVAL;
2261 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2262 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2263 + sizeof(struct nandsim), GFP_KERNEL);
2264 if (!nsmtd) {
2265 NS_ERR("unable to allocate core structures.\n");
2266 return -ENOMEM;
2268 chip = (struct nand_chip *)(nsmtd + 1);
2269 nsmtd->priv = (void *)chip;
2270 nand = (struct nandsim *)(chip + 1);
2271 chip->priv = (void *)nand;
2274 * Register simulator's callbacks.
2276 chip->cmd_ctrl = ns_hwcontrol;
2277 chip->read_byte = ns_nand_read_byte;
2278 chip->dev_ready = ns_device_ready;
2279 chip->write_buf = ns_nand_write_buf;
2280 chip->read_buf = ns_nand_read_buf;
2281 chip->read_word = ns_nand_read_word;
2282 chip->ecc.mode = NAND_ECC_SOFT;
2283 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2284 /* and 'badblocks' parameters to work */
2285 chip->options |= NAND_SKIP_BBTSCAN;
2287 switch (bbt) {
2288 case 2:
2289 chip->bbt_options |= NAND_BBT_NO_OOB;
2290 case 1:
2291 chip->bbt_options |= NAND_BBT_USE_FLASH;
2292 case 0:
2293 break;
2294 default:
2295 NS_ERR("bbt has to be 0..2\n");
2296 retval = -EINVAL;
2297 goto error;
2300 * Perform minimum nandsim structure initialization to handle
2301 * the initial ID read command correctly
2303 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2304 nand->geom.idbytes = 4;
2305 else
2306 nand->geom.idbytes = 2;
2307 nand->regs.status = NS_STATUS_OK(nand);
2308 nand->nxstate = STATE_UNKNOWN;
2309 nand->options |= OPT_PAGE256; /* temporary value */
2310 nand->ids[0] = first_id_byte;
2311 nand->ids[1] = second_id_byte;
2312 nand->ids[2] = third_id_byte;
2313 nand->ids[3] = fourth_id_byte;
2314 if (bus_width == 16) {
2315 nand->busw = 16;
2316 chip->options |= NAND_BUSWIDTH_16;
2319 nsmtd->owner = THIS_MODULE;
2321 if ((retval = parse_weakblocks()) != 0)
2322 goto error;
2324 if ((retval = parse_weakpages()) != 0)
2325 goto error;
2327 if ((retval = parse_gravepages()) != 0)
2328 goto error;
2330 retval = nand_scan_ident(nsmtd, 1, NULL);
2331 if (retval) {
2332 NS_ERR("cannot scan NAND Simulator device\n");
2333 if (retval > 0)
2334 retval = -ENXIO;
2335 goto error;
2338 if (bch) {
2339 unsigned int eccsteps, eccbytes;
2340 if (!mtd_nand_has_bch()) {
2341 NS_ERR("BCH ECC support is disabled\n");
2342 retval = -EINVAL;
2343 goto error;
2345 /* use 512-byte ecc blocks */
2346 eccsteps = nsmtd->writesize/512;
2347 eccbytes = (bch*13+7)/8;
2348 /* do not bother supporting small page devices */
2349 if ((nsmtd->oobsize < 64) || !eccsteps) {
2350 NS_ERR("bch not available on small page devices\n");
2351 retval = -EINVAL;
2352 goto error;
2354 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2355 NS_ERR("invalid bch value %u\n", bch);
2356 retval = -EINVAL;
2357 goto error;
2359 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2360 chip->ecc.size = 512;
2361 chip->ecc.bytes = eccbytes;
2362 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2365 retval = nand_scan_tail(nsmtd);
2366 if (retval) {
2367 NS_ERR("can't register NAND Simulator\n");
2368 if (retval > 0)
2369 retval = -ENXIO;
2370 goto error;
2373 if (overridesize) {
2374 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2375 if (new_size >> overridesize != nsmtd->erasesize) {
2376 NS_ERR("overridesize is too big\n");
2377 retval = -EINVAL;
2378 goto err_exit;
2380 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2381 nsmtd->size = new_size;
2382 chip->chipsize = new_size;
2383 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2384 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2387 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2388 goto err_exit;
2390 if ((retval = nandsim_debugfs_create(nand)) != 0)
2391 goto err_exit;
2393 if ((retval = init_nandsim(nsmtd)) != 0)
2394 goto err_exit;
2396 if ((retval = nand_default_bbt(nsmtd)) != 0)
2397 goto err_exit;
2399 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2400 goto err_exit;
2402 /* Register NAND partitions */
2403 retval = mtd_device_register(nsmtd, &nand->partitions[0],
2404 nand->nbparts);
2405 if (retval != 0)
2406 goto err_exit;
2408 return 0;
2410 err_exit:
2411 free_nandsim(nand);
2412 nand_release(nsmtd);
2413 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2414 kfree(nand->partitions[i].name);
2415 error:
2416 kfree(nsmtd);
2417 free_lists();
2419 return retval;
2422 module_init(ns_init_module);
2425 * Module clean-up function
2427 static void __exit ns_cleanup_module(void)
2429 struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2430 int i;
2432 nandsim_debugfs_remove(ns);
2433 free_nandsim(ns); /* Free nandsim private resources */
2434 nand_release(nsmtd); /* Unregister driver */
2435 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2436 kfree(ns->partitions[i].name);
2437 kfree(nsmtd); /* Free other structures */
2438 free_lists();
2441 module_exit(ns_cleanup_module);
2443 MODULE_LICENSE ("GPL");
2444 MODULE_AUTHOR ("Artem B. Bityuckiy");
2445 MODULE_DESCRIPTION ("The NAND flash simulator");