2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex
);
28 static LIST_HEAD(relay_channels
);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct
*vma
)
35 struct rchan_buf
*buf
= vma
->vm_private_data
;
36 buf
->chan
->cb
->buf_unmapped(buf
, vma
->vm_file
);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
45 struct rchan_buf
*buf
= vma
->vm_private_data
;
46 pgoff_t pgoff
= vmf
->pgoff
;
51 page
= vmalloc_to_page(buf
->start
+ (pgoff
<< PAGE_SHIFT
));
53 return VM_FAULT_SIGBUS
;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops
= {
64 .fault
= relay_buf_fault
,
65 .close
= relay_file_mmap_close
,
69 * allocate an array of pointers of struct page
71 static struct page
**relay_alloc_page_array(unsigned int n_pages
)
73 const size_t pa_size
= n_pages
* sizeof(struct page
*);
74 if (pa_size
> PAGE_SIZE
)
75 return vzalloc(pa_size
);
76 return kzalloc(pa_size
, GFP_KERNEL
);
80 * free an array of pointers of struct page
82 static void relay_free_page_array(struct page
**array
)
84 if (is_vmalloc_addr(array
))
91 * relay_mmap_buf: - mmap channel buffer to process address space
92 * @buf: relay channel buffer
93 * @vma: vm_area_struct describing memory to be mapped
95 * Returns 0 if ok, negative on error
97 * Caller should already have grabbed mmap_sem.
99 static int relay_mmap_buf(struct rchan_buf
*buf
, struct vm_area_struct
*vma
)
101 unsigned long length
= vma
->vm_end
- vma
->vm_start
;
102 struct file
*filp
= vma
->vm_file
;
107 if (length
!= (unsigned long)buf
->chan
->alloc_size
)
110 vma
->vm_ops
= &relay_file_mmap_ops
;
111 vma
->vm_flags
|= VM_DONTEXPAND
;
112 vma
->vm_private_data
= buf
;
113 buf
->chan
->cb
->buf_mapped(buf
, filp
);
119 * relay_alloc_buf - allocate a channel buffer
120 * @buf: the buffer struct
121 * @size: total size of the buffer
123 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124 * passed in size will get page aligned, if it isn't already.
126 static void *relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
129 unsigned int i
, j
, n_pages
;
131 *size
= PAGE_ALIGN(*size
);
132 n_pages
= *size
>> PAGE_SHIFT
;
134 buf
->page_array
= relay_alloc_page_array(n_pages
);
135 if (!buf
->page_array
)
138 for (i
= 0; i
< n_pages
; i
++) {
139 buf
->page_array
[i
] = alloc_page(GFP_KERNEL
);
140 if (unlikely(!buf
->page_array
[i
]))
142 set_page_private(buf
->page_array
[i
], (unsigned long)buf
);
144 mem
= vmap(buf
->page_array
, n_pages
, VM_MAP
, PAGE_KERNEL
);
148 memset(mem
, 0, *size
);
149 buf
->page_count
= n_pages
;
153 for (j
= 0; j
< i
; j
++)
154 __free_page(buf
->page_array
[j
]);
155 relay_free_page_array(buf
->page_array
);
160 * relay_create_buf - allocate and initialize a channel buffer
161 * @chan: the relay channel
163 * Returns channel buffer if successful, %NULL otherwise.
165 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
167 struct rchan_buf
*buf
;
169 if (chan
->n_subbufs
> UINT_MAX
/ sizeof(size_t *))
172 buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
175 buf
->padding
= kmalloc(chan
->n_subbufs
* sizeof(size_t *), GFP_KERNEL
);
179 buf
->start
= relay_alloc_buf(buf
, &chan
->alloc_size
);
184 kref_get(&buf
->chan
->kref
);
194 * relay_destroy_channel - free the channel struct
195 * @kref: target kernel reference that contains the relay channel
197 * Should only be called from kref_put().
199 static void relay_destroy_channel(struct kref
*kref
)
201 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
206 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
207 * @buf: the buffer struct
209 static void relay_destroy_buf(struct rchan_buf
*buf
)
211 struct rchan
*chan
= buf
->chan
;
214 if (likely(buf
->start
)) {
216 for (i
= 0; i
< buf
->page_count
; i
++)
217 __free_page(buf
->page_array
[i
]);
218 relay_free_page_array(buf
->page_array
);
220 chan
->buf
[buf
->cpu
] = NULL
;
223 kref_put(&chan
->kref
, relay_destroy_channel
);
227 * relay_remove_buf - remove a channel buffer
228 * @kref: target kernel reference that contains the relay buffer
230 * Removes the file from the fileystem, which also frees the
231 * rchan_buf_struct and the channel buffer. Should only be called from
234 static void relay_remove_buf(struct kref
*kref
)
236 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
237 buf
->chan
->cb
->remove_buf_file(buf
->dentry
);
238 relay_destroy_buf(buf
);
242 * relay_buf_empty - boolean, is the channel buffer empty?
243 * @buf: channel buffer
245 * Returns 1 if the buffer is empty, 0 otherwise.
247 static int relay_buf_empty(struct rchan_buf
*buf
)
249 return (buf
->subbufs_produced
- buf
->subbufs_consumed
) ? 0 : 1;
253 * relay_buf_full - boolean, is the channel buffer full?
254 * @buf: channel buffer
256 * Returns 1 if the buffer is full, 0 otherwise.
258 int relay_buf_full(struct rchan_buf
*buf
)
260 size_t ready
= buf
->subbufs_produced
- buf
->subbufs_consumed
;
261 return (ready
>= buf
->chan
->n_subbufs
) ? 1 : 0;
263 EXPORT_SYMBOL_GPL(relay_buf_full
);
266 * High-level relay kernel API and associated functions.
270 * rchan_callback implementations defining default channel behavior. Used
271 * in place of corresponding NULL values in client callback struct.
275 * subbuf_start() default callback. Does nothing.
277 static int subbuf_start_default_callback (struct rchan_buf
*buf
,
282 if (relay_buf_full(buf
))
289 * buf_mapped() default callback. Does nothing.
291 static void buf_mapped_default_callback(struct rchan_buf
*buf
,
297 * buf_unmapped() default callback. Does nothing.
299 static void buf_unmapped_default_callback(struct rchan_buf
*buf
,
305 * create_buf_file_create() default callback. Does nothing.
307 static struct dentry
*create_buf_file_default_callback(const char *filename
,
308 struct dentry
*parent
,
310 struct rchan_buf
*buf
,
317 * remove_buf_file() default callback. Does nothing.
319 static int remove_buf_file_default_callback(struct dentry
*dentry
)
324 /* relay channel default callbacks */
325 static struct rchan_callbacks default_channel_callbacks
= {
326 .subbuf_start
= subbuf_start_default_callback
,
327 .buf_mapped
= buf_mapped_default_callback
,
328 .buf_unmapped
= buf_unmapped_default_callback
,
329 .create_buf_file
= create_buf_file_default_callback
,
330 .remove_buf_file
= remove_buf_file_default_callback
,
334 * wakeup_readers - wake up readers waiting on a channel
335 * @data: contains the channel buffer
337 * This is the timer function used to defer reader waking.
339 static void wakeup_readers(unsigned long data
)
341 struct rchan_buf
*buf
= (struct rchan_buf
*)data
;
342 wake_up_interruptible(&buf
->read_wait
);
346 * __relay_reset - reset a channel buffer
347 * @buf: the channel buffer
348 * @init: 1 if this is a first-time initialization
350 * See relay_reset() for description of effect.
352 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
357 init_waitqueue_head(&buf
->read_wait
);
358 kref_init(&buf
->kref
);
359 setup_timer(&buf
->timer
, wakeup_readers
, (unsigned long)buf
);
361 del_timer_sync(&buf
->timer
);
363 buf
->subbufs_produced
= 0;
364 buf
->subbufs_consumed
= 0;
365 buf
->bytes_consumed
= 0;
367 buf
->data
= buf
->start
;
370 for (i
= 0; i
< buf
->chan
->n_subbufs
; i
++)
373 buf
->chan
->cb
->subbuf_start(buf
, buf
->data
, NULL
, 0);
377 * relay_reset - reset the channel
380 * This has the effect of erasing all data from all channel buffers
381 * and restarting the channel in its initial state. The buffers
382 * are not freed, so any mappings are still in effect.
384 * NOTE. Care should be taken that the channel isn't actually
385 * being used by anything when this call is made.
387 void relay_reset(struct rchan
*chan
)
394 if (chan
->is_global
&& chan
->buf
[0]) {
395 __relay_reset(chan
->buf
[0], 0);
399 mutex_lock(&relay_channels_mutex
);
400 for_each_possible_cpu(i
)
402 __relay_reset(chan
->buf
[i
], 0);
403 mutex_unlock(&relay_channels_mutex
);
405 EXPORT_SYMBOL_GPL(relay_reset
);
407 static inline void relay_set_buf_dentry(struct rchan_buf
*buf
,
408 struct dentry
*dentry
)
410 buf
->dentry
= dentry
;
411 buf
->dentry
->d_inode
->i_size
= buf
->early_bytes
;
414 static struct dentry
*relay_create_buf_file(struct rchan
*chan
,
415 struct rchan_buf
*buf
,
418 struct dentry
*dentry
;
421 tmpname
= kzalloc(NAME_MAX
+ 1, GFP_KERNEL
);
424 snprintf(tmpname
, NAME_MAX
, "%s%d", chan
->base_filename
, cpu
);
426 /* Create file in fs */
427 dentry
= chan
->cb
->create_buf_file(tmpname
, chan
->parent
,
437 * relay_open_buf - create a new relay channel buffer
439 * used by relay_open() and CPU hotplug.
441 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
, unsigned int cpu
)
443 struct rchan_buf
*buf
= NULL
;
444 struct dentry
*dentry
;
449 buf
= relay_create_buf(chan
);
453 if (chan
->has_base_filename
) {
454 dentry
= relay_create_buf_file(chan
, buf
, cpu
);
457 relay_set_buf_dentry(buf
, dentry
);
461 __relay_reset(buf
, 1);
463 if(chan
->is_global
) {
471 relay_destroy_buf(buf
);
476 * relay_close_buf - close a channel buffer
477 * @buf: channel buffer
479 * Marks the buffer finalized and restores the default callbacks.
480 * The channel buffer and channel buffer data structure are then freed
481 * automatically when the last reference is given up.
483 static void relay_close_buf(struct rchan_buf
*buf
)
486 del_timer_sync(&buf
->timer
);
487 kref_put(&buf
->kref
, relay_remove_buf
);
490 static void setup_callbacks(struct rchan
*chan
,
491 struct rchan_callbacks
*cb
)
494 chan
->cb
= &default_channel_callbacks
;
498 if (!cb
->subbuf_start
)
499 cb
->subbuf_start
= subbuf_start_default_callback
;
501 cb
->buf_mapped
= buf_mapped_default_callback
;
502 if (!cb
->buf_unmapped
)
503 cb
->buf_unmapped
= buf_unmapped_default_callback
;
504 if (!cb
->create_buf_file
)
505 cb
->create_buf_file
= create_buf_file_default_callback
;
506 if (!cb
->remove_buf_file
)
507 cb
->remove_buf_file
= remove_buf_file_default_callback
;
512 * relay_hotcpu_callback - CPU hotplug callback
513 * @nb: notifier block
514 * @action: hotplug action to take
517 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
519 static int __cpuinit
relay_hotcpu_callback(struct notifier_block
*nb
,
520 unsigned long action
,
523 unsigned int hotcpu
= (unsigned long)hcpu
;
528 case CPU_UP_PREPARE_FROZEN
:
529 mutex_lock(&relay_channels_mutex
);
530 list_for_each_entry(chan
, &relay_channels
, list
) {
531 if (chan
->buf
[hotcpu
])
533 chan
->buf
[hotcpu
] = relay_open_buf(chan
, hotcpu
);
534 if(!chan
->buf
[hotcpu
]) {
536 "relay_hotcpu_callback: cpu %d buffer "
537 "creation failed\n", hotcpu
);
538 mutex_unlock(&relay_channels_mutex
);
539 return notifier_from_errno(-ENOMEM
);
542 mutex_unlock(&relay_channels_mutex
);
545 case CPU_DEAD_FROZEN
:
546 /* No need to flush the cpu : will be flushed upon
547 * final relay_flush() call. */
554 * relay_open - create a new relay channel
555 * @base_filename: base name of files to create, %NULL for buffering only
556 * @parent: dentry of parent directory, %NULL for root directory or buffer
557 * @subbuf_size: size of sub-buffers
558 * @n_subbufs: number of sub-buffers
559 * @cb: client callback functions
560 * @private_data: user-defined data
562 * Returns channel pointer if successful, %NULL otherwise.
564 * Creates a channel buffer for each cpu using the sizes and
565 * attributes specified. The created channel buffer files
566 * will be named base_filename0...base_filenameN-1. File
567 * permissions will be %S_IRUSR.
569 struct rchan
*relay_open(const char *base_filename
,
570 struct dentry
*parent
,
573 struct rchan_callbacks
*cb
,
579 if (!(subbuf_size
&& n_subbufs
))
581 if (subbuf_size
> UINT_MAX
/ n_subbufs
)
584 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
588 chan
->version
= RELAYFS_CHANNEL_VERSION
;
589 chan
->n_subbufs
= n_subbufs
;
590 chan
->subbuf_size
= subbuf_size
;
591 chan
->alloc_size
= FIX_SIZE(subbuf_size
* n_subbufs
);
592 chan
->parent
= parent
;
593 chan
->private_data
= private_data
;
595 chan
->has_base_filename
= 1;
596 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
598 setup_callbacks(chan
, cb
);
599 kref_init(&chan
->kref
);
601 mutex_lock(&relay_channels_mutex
);
602 for_each_online_cpu(i
) {
603 chan
->buf
[i
] = relay_open_buf(chan
, i
);
607 list_add(&chan
->list
, &relay_channels
);
608 mutex_unlock(&relay_channels_mutex
);
613 for_each_possible_cpu(i
) {
615 relay_close_buf(chan
->buf
[i
]);
618 kref_put(&chan
->kref
, relay_destroy_channel
);
619 mutex_unlock(&relay_channels_mutex
);
622 EXPORT_SYMBOL_GPL(relay_open
);
624 struct rchan_percpu_buf_dispatcher
{
625 struct rchan_buf
*buf
;
626 struct dentry
*dentry
;
629 /* Called in atomic context. */
630 static void __relay_set_buf_dentry(void *info
)
632 struct rchan_percpu_buf_dispatcher
*p
= info
;
634 relay_set_buf_dentry(p
->buf
, p
->dentry
);
638 * relay_late_setup_files - triggers file creation
639 * @chan: channel to operate on
640 * @base_filename: base name of files to create
641 * @parent: dentry of parent directory, %NULL for root directory
643 * Returns 0 if successful, non-zero otherwise.
645 * Use to setup files for a previously buffer-only channel.
646 * Useful to do early tracing in kernel, before VFS is up, for example.
648 int relay_late_setup_files(struct rchan
*chan
,
649 const char *base_filename
,
650 struct dentry
*parent
)
653 unsigned int i
, curr_cpu
;
655 struct dentry
*dentry
;
656 struct rchan_percpu_buf_dispatcher disp
;
658 if (!chan
|| !base_filename
)
661 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
663 mutex_lock(&relay_channels_mutex
);
664 /* Is chan already set up? */
665 if (unlikely(chan
->has_base_filename
)) {
666 mutex_unlock(&relay_channels_mutex
);
669 chan
->has_base_filename
= 1;
670 chan
->parent
= parent
;
671 curr_cpu
= get_cpu();
673 * The CPU hotplug notifier ran before us and created buffers with
674 * no files associated. So it's safe to call relay_setup_buf_file()
675 * on all currently online CPUs.
677 for_each_online_cpu(i
) {
678 if (unlikely(!chan
->buf
[i
])) {
679 WARN_ONCE(1, KERN_ERR
"CPU has no buffer!\n");
684 dentry
= relay_create_buf_file(chan
, chan
->buf
[i
], i
);
685 if (unlikely(!dentry
)) {
691 local_irq_save(flags
);
692 relay_set_buf_dentry(chan
->buf
[i
], dentry
);
693 local_irq_restore(flags
);
695 disp
.buf
= chan
->buf
[i
];
696 disp
.dentry
= dentry
;
698 /* relay_channels_mutex must be held, so wait. */
699 err
= smp_call_function_single(i
,
700 __relay_set_buf_dentry
,
707 mutex_unlock(&relay_channels_mutex
);
713 * relay_switch_subbuf - switch to a new sub-buffer
714 * @buf: channel buffer
715 * @length: size of current event
717 * Returns either the length passed in or 0 if full.
719 * Performs sub-buffer-switch tasks such as invoking callbacks,
720 * updating padding counts, waking up readers, etc.
722 size_t relay_switch_subbuf(struct rchan_buf
*buf
, size_t length
)
725 size_t old_subbuf
, new_subbuf
;
727 if (unlikely(length
> buf
->chan
->subbuf_size
))
730 if (buf
->offset
!= buf
->chan
->subbuf_size
+ 1) {
731 buf
->prev_padding
= buf
->chan
->subbuf_size
- buf
->offset
;
732 old_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
733 buf
->padding
[old_subbuf
] = buf
->prev_padding
;
734 buf
->subbufs_produced
++;
736 buf
->dentry
->d_inode
->i_size
+=
737 buf
->chan
->subbuf_size
-
738 buf
->padding
[old_subbuf
];
740 buf
->early_bytes
+= buf
->chan
->subbuf_size
-
741 buf
->padding
[old_subbuf
];
743 if (waitqueue_active(&buf
->read_wait
))
745 * Calling wake_up_interruptible() from here
746 * will deadlock if we happen to be logging
747 * from the scheduler (trying to re-grab
748 * rq->lock), so defer it.
750 mod_timer(&buf
->timer
, jiffies
+ 1);
754 new_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
755 new = buf
->start
+ new_subbuf
* buf
->chan
->subbuf_size
;
757 if (!buf
->chan
->cb
->subbuf_start(buf
, new, old
, buf
->prev_padding
)) {
758 buf
->offset
= buf
->chan
->subbuf_size
+ 1;
762 buf
->padding
[new_subbuf
] = 0;
764 if (unlikely(length
+ buf
->offset
> buf
->chan
->subbuf_size
))
770 buf
->chan
->last_toobig
= length
;
773 EXPORT_SYMBOL_GPL(relay_switch_subbuf
);
776 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
778 * @cpu: the cpu associated with the channel buffer to update
779 * @subbufs_consumed: number of sub-buffers to add to current buf's count
781 * Adds to the channel buffer's consumed sub-buffer count.
782 * subbufs_consumed should be the number of sub-buffers newly consumed,
783 * not the total consumed.
785 * NOTE. Kernel clients don't need to call this function if the channel
786 * mode is 'overwrite'.
788 void relay_subbufs_consumed(struct rchan
*chan
,
790 size_t subbufs_consumed
)
792 struct rchan_buf
*buf
;
797 if (cpu
>= NR_CPUS
|| !chan
->buf
[cpu
] ||
798 subbufs_consumed
> chan
->n_subbufs
)
801 buf
= chan
->buf
[cpu
];
802 if (subbufs_consumed
> buf
->subbufs_produced
- buf
->subbufs_consumed
)
803 buf
->subbufs_consumed
= buf
->subbufs_produced
;
805 buf
->subbufs_consumed
+= subbufs_consumed
;
807 EXPORT_SYMBOL_GPL(relay_subbufs_consumed
);
810 * relay_close - close the channel
813 * Closes all channel buffers and frees the channel.
815 void relay_close(struct rchan
*chan
)
822 mutex_lock(&relay_channels_mutex
);
823 if (chan
->is_global
&& chan
->buf
[0])
824 relay_close_buf(chan
->buf
[0]);
826 for_each_possible_cpu(i
)
828 relay_close_buf(chan
->buf
[i
]);
830 if (chan
->last_toobig
)
831 printk(KERN_WARNING
"relay: one or more items not logged "
832 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
833 chan
->last_toobig
, chan
->subbuf_size
);
835 list_del(&chan
->list
);
836 kref_put(&chan
->kref
, relay_destroy_channel
);
837 mutex_unlock(&relay_channels_mutex
);
839 EXPORT_SYMBOL_GPL(relay_close
);
842 * relay_flush - close the channel
845 * Flushes all channel buffers, i.e. forces buffer switch.
847 void relay_flush(struct rchan
*chan
)
854 if (chan
->is_global
&& chan
->buf
[0]) {
855 relay_switch_subbuf(chan
->buf
[0], 0);
859 mutex_lock(&relay_channels_mutex
);
860 for_each_possible_cpu(i
)
862 relay_switch_subbuf(chan
->buf
[i
], 0);
863 mutex_unlock(&relay_channels_mutex
);
865 EXPORT_SYMBOL_GPL(relay_flush
);
868 * relay_file_open - open file op for relay files
872 * Increments the channel buffer refcount.
874 static int relay_file_open(struct inode
*inode
, struct file
*filp
)
876 struct rchan_buf
*buf
= inode
->i_private
;
877 kref_get(&buf
->kref
);
878 filp
->private_data
= buf
;
880 return nonseekable_open(inode
, filp
);
884 * relay_file_mmap - mmap file op for relay files
886 * @vma: the vma describing what to map
888 * Calls upon relay_mmap_buf() to map the file into user space.
890 static int relay_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
892 struct rchan_buf
*buf
= filp
->private_data
;
893 return relay_mmap_buf(buf
, vma
);
897 * relay_file_poll - poll file op for relay files
903 static unsigned int relay_file_poll(struct file
*filp
, poll_table
*wait
)
905 unsigned int mask
= 0;
906 struct rchan_buf
*buf
= filp
->private_data
;
911 if (filp
->f_mode
& FMODE_READ
) {
912 poll_wait(filp
, &buf
->read_wait
, wait
);
913 if (!relay_buf_empty(buf
))
914 mask
|= POLLIN
| POLLRDNORM
;
921 * relay_file_release - release file op for relay files
925 * Decrements the channel refcount, as the filesystem is
926 * no longer using it.
928 static int relay_file_release(struct inode
*inode
, struct file
*filp
)
930 struct rchan_buf
*buf
= filp
->private_data
;
931 kref_put(&buf
->kref
, relay_remove_buf
);
937 * relay_file_read_consume - update the consumed count for the buffer
939 static void relay_file_read_consume(struct rchan_buf
*buf
,
941 size_t bytes_consumed
)
943 size_t subbuf_size
= buf
->chan
->subbuf_size
;
944 size_t n_subbufs
= buf
->chan
->n_subbufs
;
947 if (buf
->subbufs_produced
== buf
->subbufs_consumed
&&
948 buf
->offset
== buf
->bytes_consumed
)
951 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
952 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
953 buf
->bytes_consumed
= 0;
956 buf
->bytes_consumed
+= bytes_consumed
;
958 read_subbuf
= buf
->subbufs_consumed
% n_subbufs
;
960 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
961 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
962 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
963 (buf
->offset
== subbuf_size
))
965 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
966 buf
->bytes_consumed
= 0;
971 * relay_file_read_avail - boolean, are there unconsumed bytes available?
973 static int relay_file_read_avail(struct rchan_buf
*buf
, size_t read_pos
)
975 size_t subbuf_size
= buf
->chan
->subbuf_size
;
976 size_t n_subbufs
= buf
->chan
->n_subbufs
;
977 size_t produced
= buf
->subbufs_produced
;
978 size_t consumed
= buf
->subbufs_consumed
;
980 relay_file_read_consume(buf
, read_pos
, 0);
982 consumed
= buf
->subbufs_consumed
;
984 if (unlikely(buf
->offset
> subbuf_size
)) {
985 if (produced
== consumed
)
990 if (unlikely(produced
- consumed
>= n_subbufs
)) {
991 consumed
= produced
- n_subbufs
+ 1;
992 buf
->subbufs_consumed
= consumed
;
993 buf
->bytes_consumed
= 0;
996 produced
= (produced
% n_subbufs
) * subbuf_size
+ buf
->offset
;
997 consumed
= (consumed
% n_subbufs
) * subbuf_size
+ buf
->bytes_consumed
;
999 if (consumed
> produced
)
1000 produced
+= n_subbufs
* subbuf_size
;
1002 if (consumed
== produced
) {
1003 if (buf
->offset
== subbuf_size
&&
1004 buf
->subbufs_produced
> buf
->subbufs_consumed
)
1013 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1014 * @read_pos: file read position
1015 * @buf: relay channel buffer
1017 static size_t relay_file_read_subbuf_avail(size_t read_pos
,
1018 struct rchan_buf
*buf
)
1020 size_t padding
, avail
= 0;
1021 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
1022 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1024 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
1025 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
1026 read_subbuf
= read_pos
/ subbuf_size
;
1027 read_offset
= read_pos
% subbuf_size
;
1028 padding
= buf
->padding
[read_subbuf
];
1030 if (read_subbuf
== write_subbuf
) {
1031 if (read_offset
+ padding
< write_offset
)
1032 avail
= write_offset
- (read_offset
+ padding
);
1034 avail
= (subbuf_size
- padding
) - read_offset
;
1040 * relay_file_read_start_pos - find the first available byte to read
1041 * @read_pos: file read position
1042 * @buf: relay channel buffer
1044 * If the @read_pos is in the middle of padding, return the
1045 * position of the first actually available byte, otherwise
1046 * return the original value.
1048 static size_t relay_file_read_start_pos(size_t read_pos
,
1049 struct rchan_buf
*buf
)
1051 size_t read_subbuf
, padding
, padding_start
, padding_end
;
1052 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1053 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1054 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
1057 read_pos
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
1058 read_subbuf
= read_pos
/ subbuf_size
;
1059 padding
= buf
->padding
[read_subbuf
];
1060 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
1061 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
1062 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
1063 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
1064 read_pos
= read_subbuf
* subbuf_size
;
1071 * relay_file_read_end_pos - return the new read position
1072 * @read_pos: file read position
1073 * @buf: relay channel buffer
1074 * @count: number of bytes to be read
1076 static size_t relay_file_read_end_pos(struct rchan_buf
*buf
,
1080 size_t read_subbuf
, padding
, end_pos
;
1081 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1082 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1084 read_subbuf
= read_pos
/ subbuf_size
;
1085 padding
= buf
->padding
[read_subbuf
];
1086 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
1087 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
1089 end_pos
= read_pos
+ count
;
1090 if (end_pos
>= subbuf_size
* n_subbufs
)
1097 * subbuf_read_actor - read up to one subbuf's worth of data
1099 static int subbuf_read_actor(size_t read_start
,
1100 struct rchan_buf
*buf
,
1102 read_descriptor_t
*desc
,
1108 from
= buf
->start
+ read_start
;
1110 if (copy_to_user(desc
->arg
.buf
, from
, avail
)) {
1111 desc
->error
= -EFAULT
;
1114 desc
->arg
.data
+= ret
;
1115 desc
->written
+= ret
;
1121 typedef int (*subbuf_actor_t
) (size_t read_start
,
1122 struct rchan_buf
*buf
,
1124 read_descriptor_t
*desc
,
1125 read_actor_t actor
);
1128 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1130 static ssize_t
relay_file_read_subbufs(struct file
*filp
, loff_t
*ppos
,
1131 subbuf_actor_t subbuf_actor
,
1133 read_descriptor_t
*desc
)
1135 struct rchan_buf
*buf
= filp
->private_data
;
1136 size_t read_start
, avail
;
1142 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
1144 if (!relay_file_read_avail(buf
, *ppos
))
1147 read_start
= relay_file_read_start_pos(*ppos
, buf
);
1148 avail
= relay_file_read_subbuf_avail(read_start
, buf
);
1152 avail
= min(desc
->count
, avail
);
1153 ret
= subbuf_actor(read_start
, buf
, avail
, desc
, actor
);
1154 if (desc
->error
< 0)
1158 relay_file_read_consume(buf
, read_start
, ret
);
1159 *ppos
= relay_file_read_end_pos(buf
, read_start
, ret
);
1161 } while (desc
->count
&& ret
);
1162 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
1164 return desc
->written
;
1167 static ssize_t
relay_file_read(struct file
*filp
,
1168 char __user
*buffer
,
1172 read_descriptor_t desc
;
1175 desc
.arg
.buf
= buffer
;
1177 return relay_file_read_subbufs(filp
, ppos
, subbuf_read_actor
,
1181 static void relay_consume_bytes(struct rchan_buf
*rbuf
, int bytes_consumed
)
1183 rbuf
->bytes_consumed
+= bytes_consumed
;
1185 if (rbuf
->bytes_consumed
>= rbuf
->chan
->subbuf_size
) {
1186 relay_subbufs_consumed(rbuf
->chan
, rbuf
->cpu
, 1);
1187 rbuf
->bytes_consumed
%= rbuf
->chan
->subbuf_size
;
1191 static void relay_pipe_buf_release(struct pipe_inode_info
*pipe
,
1192 struct pipe_buffer
*buf
)
1194 struct rchan_buf
*rbuf
;
1196 rbuf
= (struct rchan_buf
*)page_private(buf
->page
);
1197 relay_consume_bytes(rbuf
, buf
->private);
1200 static const struct pipe_buf_operations relay_pipe_buf_ops
= {
1202 .map
= generic_pipe_buf_map
,
1203 .unmap
= generic_pipe_buf_unmap
,
1204 .confirm
= generic_pipe_buf_confirm
,
1205 .release
= relay_pipe_buf_release
,
1206 .steal
= generic_pipe_buf_steal
,
1207 .get
= generic_pipe_buf_get
,
1210 static void relay_page_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1215 * subbuf_splice_actor - splice up to one subbuf's worth of data
1217 static ssize_t
subbuf_splice_actor(struct file
*in
,
1219 struct pipe_inode_info
*pipe
,
1224 unsigned int pidx
, poff
, total_len
, subbuf_pages
, nr_pages
;
1225 struct rchan_buf
*rbuf
= in
->private_data
;
1226 unsigned int subbuf_size
= rbuf
->chan
->subbuf_size
;
1227 uint64_t pos
= (uint64_t) *ppos
;
1228 uint32_t alloc_size
= (uint32_t) rbuf
->chan
->alloc_size
;
1229 size_t read_start
= (size_t) do_div(pos
, alloc_size
);
1230 size_t read_subbuf
= read_start
/ subbuf_size
;
1231 size_t padding
= rbuf
->padding
[read_subbuf
];
1232 size_t nonpad_end
= read_subbuf
* subbuf_size
+ subbuf_size
- padding
;
1233 struct page
*pages
[PIPE_DEF_BUFFERS
];
1234 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1235 struct splice_pipe_desc spd
= {
1238 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1241 .ops
= &relay_pipe_buf_ops
,
1242 .spd_release
= relay_page_release
,
1246 if (rbuf
->subbufs_produced
== rbuf
->subbufs_consumed
)
1248 if (splice_grow_spd(pipe
, &spd
))
1252 * Adjust read len, if longer than what is available
1254 if (len
> (subbuf_size
- read_start
% subbuf_size
))
1255 len
= subbuf_size
- read_start
% subbuf_size
;
1257 subbuf_pages
= rbuf
->chan
->alloc_size
>> PAGE_SHIFT
;
1258 pidx
= (read_start
/ PAGE_SIZE
) % subbuf_pages
;
1259 poff
= read_start
& ~PAGE_MASK
;
1260 nr_pages
= min_t(unsigned int, subbuf_pages
, pipe
->buffers
);
1262 for (total_len
= 0; spd
.nr_pages
< nr_pages
; spd
.nr_pages
++) {
1263 unsigned int this_len
, this_end
, private;
1264 unsigned int cur_pos
= read_start
+ total_len
;
1269 this_len
= min_t(unsigned long, len
, PAGE_SIZE
- poff
);
1272 spd
.pages
[spd
.nr_pages
] = rbuf
->page_array
[pidx
];
1273 spd
.partial
[spd
.nr_pages
].offset
= poff
;
1275 this_end
= cur_pos
+ this_len
;
1276 if (this_end
>= nonpad_end
) {
1277 this_len
= nonpad_end
- cur_pos
;
1278 private = this_len
+ padding
;
1280 spd
.partial
[spd
.nr_pages
].len
= this_len
;
1281 spd
.partial
[spd
.nr_pages
].private = private;
1284 total_len
+= this_len
;
1286 pidx
= (pidx
+ 1) % subbuf_pages
;
1288 if (this_end
>= nonpad_end
) {
1298 ret
= *nonpad_ret
= splice_to_pipe(pipe
, &spd
);
1299 if (ret
< 0 || ret
< total_len
)
1302 if (read_start
+ ret
== nonpad_end
)
1306 splice_shrink_spd(&spd
);
1310 static ssize_t
relay_file_splice_read(struct file
*in
,
1312 struct pipe_inode_info
*pipe
,
1323 while (len
&& !spliced
) {
1324 ret
= subbuf_splice_actor(in
, ppos
, pipe
, len
, flags
, &nonpad_ret
);
1328 if (flags
& SPLICE_F_NONBLOCK
)
1338 spliced
+= nonpad_ret
;
1348 const struct file_operations relay_file_operations
= {
1349 .open
= relay_file_open
,
1350 .poll
= relay_file_poll
,
1351 .mmap
= relay_file_mmap
,
1352 .read
= relay_file_read
,
1353 .llseek
= no_llseek
,
1354 .release
= relay_file_release
,
1355 .splice_read
= relay_file_splice_read
,
1357 EXPORT_SYMBOL_GPL(relay_file_operations
);
1359 static __init
int relay_init(void)
1362 hotcpu_notifier(relay_hotcpu_callback
, 0);
1366 early_initcall(relay_init
);