4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
81 #include <trace/events/sched.h>
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
87 * Protected counters by write_lock_irq(&tasklist_lock)
89 unsigned long total_forks
; /* Handle normal Linux uptimes. */
90 int nr_threads
; /* The idle threads do not count.. */
92 int max_threads
; /* tunable limit on nr_threads */
94 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
96 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
101 return lockdep_is_held(&tasklist_lock
);
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
106 int nr_processes(void)
111 for_each_possible_cpu(cpu
)
112 total
+= per_cpu(process_counts
, cpu
);
117 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache
*task_struct_cachep
;
124 static inline struct task_struct
*alloc_task_struct_node(int node
)
126 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
129 static inline void free_task_struct(struct task_struct
*tsk
)
131 kmem_cache_free(task_struct_cachep
, tsk
);
135 void __weak
arch_release_thread_info(struct thread_info
*ti
)
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
149 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
152 return page
? page_address(page
) : NULL
;
155 static inline void free_thread_info(struct thread_info
*ti
)
157 free_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
160 static struct kmem_cache
*thread_info_cache
;
162 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
165 return kmem_cache_alloc_node(thread_info_cache
, THREADINFO_GFP
, node
);
168 static void free_thread_info(struct thread_info
*ti
)
170 kmem_cache_free(thread_info_cache
, ti
);
173 void thread_info_cache_init(void)
175 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
176 THREAD_SIZE
, 0, NULL
);
177 BUG_ON(thread_info_cache
== NULL
);
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache
*signal_cachep
;
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache
*sighand_cachep
;
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache
*files_cachep
;
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache
*fs_cachep
;
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache
*vm_area_cachep
;
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache
*mm_cachep
;
200 static void account_kernel_stack(struct thread_info
*ti
, int account
)
202 struct zone
*zone
= page_zone(virt_to_page(ti
));
204 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
207 void free_task(struct task_struct
*tsk
)
209 account_kernel_stack(tsk
->stack
, -1);
210 arch_release_thread_info(tsk
->stack
);
211 free_thread_info(tsk
->stack
);
212 rt_mutex_debug_task_free(tsk
);
213 ftrace_graph_exit_task(tsk
);
214 put_seccomp_filter(tsk
);
215 arch_release_task_struct(tsk
);
216 free_task_struct(tsk
);
218 EXPORT_SYMBOL(free_task
);
220 static inline void free_signal_struct(struct signal_struct
*sig
)
222 taskstats_tgid_free(sig
);
223 sched_autogroup_exit(sig
);
224 kmem_cache_free(signal_cachep
, sig
);
227 static inline void put_signal_struct(struct signal_struct
*sig
)
229 if (atomic_dec_and_test(&sig
->sigcnt
))
230 free_signal_struct(sig
);
233 void __put_task_struct(struct task_struct
*tsk
)
235 WARN_ON(!tsk
->exit_state
);
236 WARN_ON(atomic_read(&tsk
->usage
));
237 WARN_ON(tsk
== current
);
239 security_task_free(tsk
);
241 delayacct_tsk_free(tsk
);
242 put_signal_struct(tsk
->signal
);
244 if (!profile_handoff_task(tsk
))
247 EXPORT_SYMBOL_GPL(__put_task_struct
);
249 void __init __weak
arch_task_cache_init(void) { }
251 void __init
fork_init(unsigned long mempages
)
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 /* create a slab on which task_structs can be allocated */
259 kmem_cache_create("task_struct", sizeof(struct task_struct
),
260 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
271 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
274 * we need to allow at least 20 threads to boot a system
276 if (max_threads
< 20)
279 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
280 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
281 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
282 init_task
.signal
->rlim
[RLIMIT_NPROC
];
285 int __attribute__((weak
)) arch_dup_task_struct(struct task_struct
*dst
,
286 struct task_struct
*src
)
292 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
294 struct task_struct
*tsk
;
295 struct thread_info
*ti
;
296 unsigned long *stackend
;
297 int node
= tsk_fork_get_node(orig
);
300 tsk
= alloc_task_struct_node(node
);
304 ti
= alloc_thread_info_node(tsk
, node
);
308 err
= arch_dup_task_struct(tsk
, orig
);
314 setup_thread_stack(tsk
, orig
);
315 clear_user_return_notifier(tsk
);
316 clear_tsk_need_resched(tsk
);
317 stackend
= end_of_stack(tsk
);
318 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk
->stack_canary
= get_random_int();
325 * One for us, one for whoever does the "release_task()" (usually
328 atomic_set(&tsk
->usage
, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
332 tsk
->splice_pipe
= NULL
;
334 account_kernel_stack(ti
, 1);
339 free_thread_info(ti
);
341 free_task_struct(tsk
);
346 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
348 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
349 struct rb_node
**rb_link
, *rb_parent
;
351 unsigned long charge
;
352 struct mempolicy
*pol
;
354 down_write(&oldmm
->mmap_sem
);
355 flush_cache_dup_mm(oldmm
);
357 * Not linked in yet - no deadlock potential:
359 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
363 mm
->mmap_cache
= NULL
;
364 mm
->free_area_cache
= oldmm
->mmap_base
;
365 mm
->cached_hole_size
= ~0UL;
367 cpumask_clear(mm_cpumask(mm
));
369 rb_link
= &mm
->mm_rb
.rb_node
;
372 retval
= ksm_fork(mm
, oldmm
);
375 retval
= khugepaged_fork(mm
, oldmm
);
380 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
383 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
384 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
389 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
390 unsigned long len
= vma_pages(mpnt
);
392 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
396 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
400 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
401 pol
= mpol_dup(vma_policy(mpnt
));
402 retval
= PTR_ERR(pol
);
404 goto fail_nomem_policy
;
405 vma_set_policy(tmp
, pol
);
407 if (anon_vma_fork(tmp
, mpnt
))
408 goto fail_nomem_anon_vma_fork
;
409 tmp
->vm_flags
&= ~VM_LOCKED
;
410 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
413 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
414 struct address_space
*mapping
= file
->f_mapping
;
417 if (tmp
->vm_flags
& VM_DENYWRITE
)
418 atomic_dec(&inode
->i_writecount
);
419 mutex_lock(&mapping
->i_mmap_mutex
);
420 if (tmp
->vm_flags
& VM_SHARED
)
421 mapping
->i_mmap_writable
++;
422 flush_dcache_mmap_lock(mapping
);
423 /* insert tmp into the share list, just after mpnt */
424 vma_prio_tree_add(tmp
, mpnt
);
425 flush_dcache_mmap_unlock(mapping
);
426 mutex_unlock(&mapping
->i_mmap_mutex
);
430 * Clear hugetlb-related page reserves for children. This only
431 * affects MAP_PRIVATE mappings. Faults generated by the child
432 * are not guaranteed to succeed, even if read-only
434 if (is_vm_hugetlb_page(tmp
))
435 reset_vma_resv_huge_pages(tmp
);
438 * Link in the new vma and copy the page table entries.
441 pprev
= &tmp
->vm_next
;
445 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
446 rb_link
= &tmp
->vm_rb
.rb_right
;
447 rb_parent
= &tmp
->vm_rb
;
450 retval
= copy_page_range(mm
, oldmm
, mpnt
);
452 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
453 tmp
->vm_ops
->open(tmp
);
458 if (file
&& uprobe_mmap(tmp
))
461 /* a new mm has just been created */
462 arch_dup_mmap(oldmm
, mm
);
465 up_write(&mm
->mmap_sem
);
467 up_write(&oldmm
->mmap_sem
);
469 fail_nomem_anon_vma_fork
:
472 kmem_cache_free(vm_area_cachep
, tmp
);
475 vm_unacct_memory(charge
);
479 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
481 mm
->pgd
= pgd_alloc(mm
);
482 if (unlikely(!mm
->pgd
))
487 static inline void mm_free_pgd(struct mm_struct
*mm
)
489 pgd_free(mm
, mm
->pgd
);
492 #define dup_mmap(mm, oldmm) (0)
493 #define mm_alloc_pgd(mm) (0)
494 #define mm_free_pgd(mm)
495 #endif /* CONFIG_MMU */
497 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
499 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
500 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
502 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
504 static int __init
coredump_filter_setup(char *s
)
506 default_dump_filter
=
507 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
508 MMF_DUMP_FILTER_MASK
;
512 __setup("coredump_filter=", coredump_filter_setup
);
514 #include <linux/init_task.h>
516 static void mm_init_aio(struct mm_struct
*mm
)
519 spin_lock_init(&mm
->ioctx_lock
);
520 INIT_HLIST_HEAD(&mm
->ioctx_list
);
524 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
)
526 atomic_set(&mm
->mm_users
, 1);
527 atomic_set(&mm
->mm_count
, 1);
528 init_rwsem(&mm
->mmap_sem
);
529 INIT_LIST_HEAD(&mm
->mmlist
);
530 mm
->flags
= (current
->mm
) ?
531 (current
->mm
->flags
& MMF_INIT_MASK
) : default_dump_filter
;
532 mm
->core_state
= NULL
;
534 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
535 spin_lock_init(&mm
->page_table_lock
);
536 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
537 mm
->cached_hole_size
= ~0UL;
539 mm_init_owner(mm
, p
);
541 if (likely(!mm_alloc_pgd(mm
))) {
543 mmu_notifier_mm_init(mm
);
551 static void check_mm(struct mm_struct
*mm
)
555 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
556 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
559 printk(KERN_ALERT
"BUG: Bad rss-counter state "
560 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 VM_BUG_ON(mm
->pmd_huge_pte
);
569 * Allocate and initialize an mm_struct.
571 struct mm_struct
*mm_alloc(void)
573 struct mm_struct
*mm
;
579 memset(mm
, 0, sizeof(*mm
));
581 return mm_init(mm
, current
);
585 * Called when the last reference to the mm
586 * is dropped: either by a lazy thread or by
587 * mmput. Free the page directory and the mm.
589 void __mmdrop(struct mm_struct
*mm
)
591 BUG_ON(mm
== &init_mm
);
594 mmu_notifier_mm_destroy(mm
);
598 EXPORT_SYMBOL_GPL(__mmdrop
);
601 * Decrement the use count and release all resources for an mm.
603 void mmput(struct mm_struct
*mm
)
607 if (atomic_dec_and_test(&mm
->mm_users
)) {
608 uprobe_clear_state(mm
);
611 khugepaged_exit(mm
); /* must run before exit_mmap */
613 set_mm_exe_file(mm
, NULL
);
614 if (!list_empty(&mm
->mmlist
)) {
615 spin_lock(&mmlist_lock
);
616 list_del(&mm
->mmlist
);
617 spin_unlock(&mmlist_lock
);
620 module_put(mm
->binfmt
->module
);
624 EXPORT_SYMBOL_GPL(mmput
);
627 * We added or removed a vma mapping the executable. The vmas are only mapped
628 * during exec and are not mapped with the mmap system call.
629 * Callers must hold down_write() on the mm's mmap_sem for these
631 void added_exe_file_vma(struct mm_struct
*mm
)
633 mm
->num_exe_file_vmas
++;
636 void removed_exe_file_vma(struct mm_struct
*mm
)
638 mm
->num_exe_file_vmas
--;
639 if ((mm
->num_exe_file_vmas
== 0) && mm
->exe_file
) {
646 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
649 get_file(new_exe_file
);
652 mm
->exe_file
= new_exe_file
;
653 mm
->num_exe_file_vmas
= 0;
656 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
658 struct file
*exe_file
;
660 /* We need mmap_sem to protect against races with removal of
661 * VM_EXECUTABLE vmas */
662 down_read(&mm
->mmap_sem
);
663 exe_file
= mm
->exe_file
;
666 up_read(&mm
->mmap_sem
);
670 static void dup_mm_exe_file(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
672 /* It's safe to write the exe_file pointer without exe_file_lock because
673 * this is called during fork when the task is not yet in /proc */
674 newmm
->exe_file
= get_mm_exe_file(oldmm
);
678 * get_task_mm - acquire a reference to the task's mm
680 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
681 * this kernel workthread has transiently adopted a user mm with use_mm,
682 * to do its AIO) is not set and if so returns a reference to it, after
683 * bumping up the use count. User must release the mm via mmput()
684 * after use. Typically used by /proc and ptrace.
686 struct mm_struct
*get_task_mm(struct task_struct
*task
)
688 struct mm_struct
*mm
;
693 if (task
->flags
& PF_KTHREAD
)
696 atomic_inc(&mm
->mm_users
);
701 EXPORT_SYMBOL_GPL(get_task_mm
);
703 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
705 struct mm_struct
*mm
;
708 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
712 mm
= get_task_mm(task
);
713 if (mm
&& mm
!= current
->mm
&&
714 !ptrace_may_access(task
, mode
)) {
716 mm
= ERR_PTR(-EACCES
);
718 mutex_unlock(&task
->signal
->cred_guard_mutex
);
723 static void complete_vfork_done(struct task_struct
*tsk
)
725 struct completion
*vfork
;
728 vfork
= tsk
->vfork_done
;
730 tsk
->vfork_done
= NULL
;
736 static int wait_for_vfork_done(struct task_struct
*child
,
737 struct completion
*vfork
)
741 freezer_do_not_count();
742 killed
= wait_for_completion_killable(vfork
);
747 child
->vfork_done
= NULL
;
751 put_task_struct(child
);
755 /* Please note the differences between mmput and mm_release.
756 * mmput is called whenever we stop holding onto a mm_struct,
757 * error success whatever.
759 * mm_release is called after a mm_struct has been removed
760 * from the current process.
762 * This difference is important for error handling, when we
763 * only half set up a mm_struct for a new process and need to restore
764 * the old one. Because we mmput the new mm_struct before
765 * restoring the old one. . .
766 * Eric Biederman 10 January 1998
768 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
770 /* Get rid of any futexes when releasing the mm */
772 if (unlikely(tsk
->robust_list
)) {
773 exit_robust_list(tsk
);
774 tsk
->robust_list
= NULL
;
777 if (unlikely(tsk
->compat_robust_list
)) {
778 compat_exit_robust_list(tsk
);
779 tsk
->compat_robust_list
= NULL
;
782 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
783 exit_pi_state_list(tsk
);
786 uprobe_free_utask(tsk
);
788 /* Get rid of any cached register state */
789 deactivate_mm(tsk
, mm
);
792 * If we're exiting normally, clear a user-space tid field if
793 * requested. We leave this alone when dying by signal, to leave
794 * the value intact in a core dump, and to save the unnecessary
795 * trouble, say, a killed vfork parent shouldn't touch this mm.
796 * Userland only wants this done for a sys_exit.
798 if (tsk
->clear_child_tid
) {
799 if (!(tsk
->flags
& PF_SIGNALED
) &&
800 atomic_read(&mm
->mm_users
) > 1) {
802 * We don't check the error code - if userspace has
803 * not set up a proper pointer then tough luck.
805 put_user(0, tsk
->clear_child_tid
);
806 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
809 tsk
->clear_child_tid
= NULL
;
813 * All done, finally we can wake up parent and return this mm to him.
814 * Also kthread_stop() uses this completion for synchronization.
817 complete_vfork_done(tsk
);
821 * Allocate a new mm structure and copy contents from the
822 * mm structure of the passed in task structure.
824 struct mm_struct
*dup_mm(struct task_struct
*tsk
)
826 struct mm_struct
*mm
, *oldmm
= current
->mm
;
836 memcpy(mm
, oldmm
, sizeof(*mm
));
839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
840 mm
->pmd_huge_pte
= NULL
;
842 uprobe_reset_state(mm
);
844 if (!mm_init(mm
, tsk
))
847 if (init_new_context(tsk
, mm
))
850 dup_mm_exe_file(oldmm
, mm
);
852 err
= dup_mmap(mm
, oldmm
);
856 mm
->hiwater_rss
= get_mm_rss(mm
);
857 mm
->hiwater_vm
= mm
->total_vm
;
859 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
865 /* don't put binfmt in mmput, we haven't got module yet */
874 * If init_new_context() failed, we cannot use mmput() to free the mm
875 * because it calls destroy_context()
882 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
884 struct mm_struct
*mm
, *oldmm
;
887 tsk
->min_flt
= tsk
->maj_flt
= 0;
888 tsk
->nvcsw
= tsk
->nivcsw
= 0;
889 #ifdef CONFIG_DETECT_HUNG_TASK
890 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
894 tsk
->active_mm
= NULL
;
897 * Are we cloning a kernel thread?
899 * We need to steal a active VM for that..
905 if (clone_flags
& CLONE_VM
) {
906 atomic_inc(&oldmm
->mm_users
);
925 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
927 struct fs_struct
*fs
= current
->fs
;
928 if (clone_flags
& CLONE_FS
) {
929 /* tsk->fs is already what we want */
930 spin_lock(&fs
->lock
);
932 spin_unlock(&fs
->lock
);
936 spin_unlock(&fs
->lock
);
939 tsk
->fs
= copy_fs_struct(fs
);
945 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
947 struct files_struct
*oldf
, *newf
;
951 * A background process may not have any files ...
953 oldf
= current
->files
;
957 if (clone_flags
& CLONE_FILES
) {
958 atomic_inc(&oldf
->count
);
962 newf
= dup_fd(oldf
, &error
);
972 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
975 struct io_context
*ioc
= current
->io_context
;
976 struct io_context
*new_ioc
;
981 * Share io context with parent, if CLONE_IO is set
983 if (clone_flags
& CLONE_IO
) {
985 tsk
->io_context
= ioc
;
986 } else if (ioprio_valid(ioc
->ioprio
)) {
987 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
988 if (unlikely(!new_ioc
))
991 new_ioc
->ioprio
= ioc
->ioprio
;
992 put_io_context(new_ioc
);
998 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1000 struct sighand_struct
*sig
;
1002 if (clone_flags
& CLONE_SIGHAND
) {
1003 atomic_inc(¤t
->sighand
->count
);
1006 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1007 rcu_assign_pointer(tsk
->sighand
, sig
);
1010 atomic_set(&sig
->count
, 1);
1011 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1015 void __cleanup_sighand(struct sighand_struct
*sighand
)
1017 if (atomic_dec_and_test(&sighand
->count
)) {
1018 signalfd_cleanup(sighand
);
1019 kmem_cache_free(sighand_cachep
, sighand
);
1025 * Initialize POSIX timer handling for a thread group.
1027 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1029 unsigned long cpu_limit
;
1031 /* Thread group counters. */
1032 thread_group_cputime_init(sig
);
1034 cpu_limit
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1035 if (cpu_limit
!= RLIM_INFINITY
) {
1036 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1037 sig
->cputimer
.running
= 1;
1040 /* The timer lists. */
1041 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1042 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1043 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1046 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1048 struct signal_struct
*sig
;
1050 if (clone_flags
& CLONE_THREAD
)
1053 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1058 sig
->nr_threads
= 1;
1059 atomic_set(&sig
->live
, 1);
1060 atomic_set(&sig
->sigcnt
, 1);
1061 init_waitqueue_head(&sig
->wait_chldexit
);
1062 if (clone_flags
& CLONE_NEWPID
)
1063 sig
->flags
|= SIGNAL_UNKILLABLE
;
1064 sig
->curr_target
= tsk
;
1065 init_sigpending(&sig
->shared_pending
);
1066 INIT_LIST_HEAD(&sig
->posix_timers
);
1068 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1069 sig
->real_timer
.function
= it_real_fn
;
1071 task_lock(current
->group_leader
);
1072 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1073 task_unlock(current
->group_leader
);
1075 posix_cpu_timers_init_group(sig
);
1077 tty_audit_fork(sig
);
1078 sched_autogroup_fork(sig
);
1080 #ifdef CONFIG_CGROUPS
1081 init_rwsem(&sig
->group_rwsem
);
1084 sig
->oom_adj
= current
->signal
->oom_adj
;
1085 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1086 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1088 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1089 current
->signal
->is_child_subreaper
;
1091 mutex_init(&sig
->cred_guard_mutex
);
1096 static void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
1098 unsigned long new_flags
= p
->flags
;
1100 new_flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1101 new_flags
|= PF_FORKNOEXEC
;
1102 p
->flags
= new_flags
;
1105 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1107 current
->clear_child_tid
= tidptr
;
1109 return task_pid_vnr(current
);
1112 static void rt_mutex_init_task(struct task_struct
*p
)
1114 raw_spin_lock_init(&p
->pi_lock
);
1115 #ifdef CONFIG_RT_MUTEXES
1116 plist_head_init(&p
->pi_waiters
);
1117 p
->pi_blocked_on
= NULL
;
1121 #ifdef CONFIG_MM_OWNER
1122 void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
1126 #endif /* CONFIG_MM_OWNER */
1129 * Initialize POSIX timer handling for a single task.
1131 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1133 tsk
->cputime_expires
.prof_exp
= 0;
1134 tsk
->cputime_expires
.virt_exp
= 0;
1135 tsk
->cputime_expires
.sched_exp
= 0;
1136 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1137 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1138 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1142 * This creates a new process as a copy of the old one,
1143 * but does not actually start it yet.
1145 * It copies the registers, and all the appropriate
1146 * parts of the process environment (as per the clone
1147 * flags). The actual kick-off is left to the caller.
1149 static struct task_struct
*copy_process(unsigned long clone_flags
,
1150 unsigned long stack_start
,
1151 struct pt_regs
*regs
,
1152 unsigned long stack_size
,
1153 int __user
*child_tidptr
,
1158 struct task_struct
*p
;
1159 int cgroup_callbacks_done
= 0;
1161 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1162 return ERR_PTR(-EINVAL
);
1165 * Thread groups must share signals as well, and detached threads
1166 * can only be started up within the thread group.
1168 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1169 return ERR_PTR(-EINVAL
);
1172 * Shared signal handlers imply shared VM. By way of the above,
1173 * thread groups also imply shared VM. Blocking this case allows
1174 * for various simplifications in other code.
1176 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1177 return ERR_PTR(-EINVAL
);
1180 * Siblings of global init remain as zombies on exit since they are
1181 * not reaped by their parent (swapper). To solve this and to avoid
1182 * multi-rooted process trees, prevent global and container-inits
1183 * from creating siblings.
1185 if ((clone_flags
& CLONE_PARENT
) &&
1186 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1187 return ERR_PTR(-EINVAL
);
1189 retval
= security_task_create(clone_flags
);
1194 p
= dup_task_struct(current
);
1198 ftrace_graph_init_task(p
);
1199 get_seccomp_filter(p
);
1201 rt_mutex_init_task(p
);
1203 #ifdef CONFIG_PROVE_LOCKING
1204 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1205 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1208 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1209 task_rlimit(p
, RLIMIT_NPROC
)) {
1210 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
1211 p
->real_cred
->user
!= INIT_USER
)
1214 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1216 retval
= copy_creds(p
, clone_flags
);
1221 * If multiple threads are within copy_process(), then this check
1222 * triggers too late. This doesn't hurt, the check is only there
1223 * to stop root fork bombs.
1226 if (nr_threads
>= max_threads
)
1227 goto bad_fork_cleanup_count
;
1229 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1230 goto bad_fork_cleanup_count
;
1233 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1234 copy_flags(clone_flags
, p
);
1235 INIT_LIST_HEAD(&p
->children
);
1236 INIT_LIST_HEAD(&p
->sibling
);
1237 rcu_copy_process(p
);
1238 p
->vfork_done
= NULL
;
1239 spin_lock_init(&p
->alloc_lock
);
1241 init_sigpending(&p
->pending
);
1243 p
->utime
= p
->stime
= p
->gtime
= 0;
1244 p
->utimescaled
= p
->stimescaled
= 0;
1245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1246 p
->prev_utime
= p
->prev_stime
= 0;
1248 #if defined(SPLIT_RSS_COUNTING)
1249 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1252 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1254 task_io_accounting_init(&p
->ioac
);
1255 acct_clear_integrals(p
);
1257 posix_cpu_timers_init(p
);
1259 do_posix_clock_monotonic_gettime(&p
->start_time
);
1260 p
->real_start_time
= p
->start_time
;
1261 monotonic_to_bootbased(&p
->real_start_time
);
1262 p
->io_context
= NULL
;
1263 p
->audit_context
= NULL
;
1264 if (clone_flags
& CLONE_THREAD
)
1265 threadgroup_change_begin(current
);
1268 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1269 if (IS_ERR(p
->mempolicy
)) {
1270 retval
= PTR_ERR(p
->mempolicy
);
1271 p
->mempolicy
= NULL
;
1272 goto bad_fork_cleanup_cgroup
;
1274 mpol_fix_fork_child_flag(p
);
1276 #ifdef CONFIG_CPUSETS
1277 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1278 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1279 seqcount_init(&p
->mems_allowed_seq
);
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1283 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1284 p
->hardirqs_enabled
= 1;
1286 p
->hardirqs_enabled
= 0;
1288 p
->hardirq_enable_ip
= 0;
1289 p
->hardirq_enable_event
= 0;
1290 p
->hardirq_disable_ip
= _THIS_IP_
;
1291 p
->hardirq_disable_event
= 0;
1292 p
->softirqs_enabled
= 1;
1293 p
->softirq_enable_ip
= _THIS_IP_
;
1294 p
->softirq_enable_event
= 0;
1295 p
->softirq_disable_ip
= 0;
1296 p
->softirq_disable_event
= 0;
1297 p
->hardirq_context
= 0;
1298 p
->softirq_context
= 0;
1300 #ifdef CONFIG_LOCKDEP
1301 p
->lockdep_depth
= 0; /* no locks held yet */
1302 p
->curr_chain_key
= 0;
1303 p
->lockdep_recursion
= 0;
1306 #ifdef CONFIG_DEBUG_MUTEXES
1307 p
->blocked_on
= NULL
; /* not blocked yet */
1310 p
->memcg_batch
.do_batch
= 0;
1311 p
->memcg_batch
.memcg
= NULL
;
1314 /* Perform scheduler related setup. Assign this task to a CPU. */
1317 retval
= perf_event_init_task(p
);
1319 goto bad_fork_cleanup_policy
;
1320 retval
= audit_alloc(p
);
1322 goto bad_fork_cleanup_policy
;
1323 /* copy all the process information */
1324 retval
= copy_semundo(clone_flags
, p
);
1326 goto bad_fork_cleanup_audit
;
1327 retval
= copy_files(clone_flags
, p
);
1329 goto bad_fork_cleanup_semundo
;
1330 retval
= copy_fs(clone_flags
, p
);
1332 goto bad_fork_cleanup_files
;
1333 retval
= copy_sighand(clone_flags
, p
);
1335 goto bad_fork_cleanup_fs
;
1336 retval
= copy_signal(clone_flags
, p
);
1338 goto bad_fork_cleanup_sighand
;
1339 retval
= copy_mm(clone_flags
, p
);
1341 goto bad_fork_cleanup_signal
;
1342 retval
= copy_namespaces(clone_flags
, p
);
1344 goto bad_fork_cleanup_mm
;
1345 retval
= copy_io(clone_flags
, p
);
1347 goto bad_fork_cleanup_namespaces
;
1348 retval
= copy_thread(clone_flags
, stack_start
, stack_size
, p
, regs
);
1350 goto bad_fork_cleanup_io
;
1352 if (pid
!= &init_struct_pid
) {
1354 pid
= alloc_pid(p
->nsproxy
->pid_ns
);
1356 goto bad_fork_cleanup_io
;
1359 p
->pid
= pid_nr(pid
);
1361 if (clone_flags
& CLONE_THREAD
)
1362 p
->tgid
= current
->tgid
;
1364 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1366 * Clear TID on mm_release()?
1368 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1373 p
->robust_list
= NULL
;
1374 #ifdef CONFIG_COMPAT
1375 p
->compat_robust_list
= NULL
;
1377 INIT_LIST_HEAD(&p
->pi_state_list
);
1378 p
->pi_state_cache
= NULL
;
1380 uprobe_copy_process(p
);
1382 * sigaltstack should be cleared when sharing the same VM
1384 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1385 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1388 * Syscall tracing and stepping should be turned off in the
1389 * child regardless of CLONE_PTRACE.
1391 user_disable_single_step(p
);
1392 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1393 #ifdef TIF_SYSCALL_EMU
1394 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1396 clear_all_latency_tracing(p
);
1398 /* ok, now we should be set up.. */
1399 if (clone_flags
& CLONE_THREAD
)
1400 p
->exit_signal
= -1;
1401 else if (clone_flags
& CLONE_PARENT
)
1402 p
->exit_signal
= current
->group_leader
->exit_signal
;
1404 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1406 p
->pdeath_signal
= 0;
1410 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1411 p
->dirty_paused_when
= 0;
1414 * Ok, make it visible to the rest of the system.
1415 * We dont wake it up yet.
1417 p
->group_leader
= p
;
1418 INIT_LIST_HEAD(&p
->thread_group
);
1419 p
->task_works
= NULL
;
1421 /* Now that the task is set up, run cgroup callbacks if
1422 * necessary. We need to run them before the task is visible
1423 * on the tasklist. */
1424 cgroup_fork_callbacks(p
);
1425 cgroup_callbacks_done
= 1;
1427 /* Need tasklist lock for parent etc handling! */
1428 write_lock_irq(&tasklist_lock
);
1430 /* CLONE_PARENT re-uses the old parent */
1431 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1432 p
->real_parent
= current
->real_parent
;
1433 p
->parent_exec_id
= current
->parent_exec_id
;
1435 p
->real_parent
= current
;
1436 p
->parent_exec_id
= current
->self_exec_id
;
1439 spin_lock(¤t
->sighand
->siglock
);
1442 * Process group and session signals need to be delivered to just the
1443 * parent before the fork or both the parent and the child after the
1444 * fork. Restart if a signal comes in before we add the new process to
1445 * it's process group.
1446 * A fatal signal pending means that current will exit, so the new
1447 * thread can't slip out of an OOM kill (or normal SIGKILL).
1449 recalc_sigpending();
1450 if (signal_pending(current
)) {
1451 spin_unlock(¤t
->sighand
->siglock
);
1452 write_unlock_irq(&tasklist_lock
);
1453 retval
= -ERESTARTNOINTR
;
1454 goto bad_fork_free_pid
;
1457 if (clone_flags
& CLONE_THREAD
) {
1458 current
->signal
->nr_threads
++;
1459 atomic_inc(¤t
->signal
->live
);
1460 atomic_inc(¤t
->signal
->sigcnt
);
1461 p
->group_leader
= current
->group_leader
;
1462 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1465 if (likely(p
->pid
)) {
1466 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1468 if (thread_group_leader(p
)) {
1469 if (is_child_reaper(pid
))
1470 p
->nsproxy
->pid_ns
->child_reaper
= p
;
1472 p
->signal
->leader_pid
= pid
;
1473 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1474 attach_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1475 attach_pid(p
, PIDTYPE_SID
, task_session(current
));
1476 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1477 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1478 __this_cpu_inc(process_counts
);
1480 attach_pid(p
, PIDTYPE_PID
, pid
);
1485 spin_unlock(¤t
->sighand
->siglock
);
1486 write_unlock_irq(&tasklist_lock
);
1487 proc_fork_connector(p
);
1488 cgroup_post_fork(p
);
1489 if (clone_flags
& CLONE_THREAD
)
1490 threadgroup_change_end(current
);
1493 trace_task_newtask(p
, clone_flags
);
1498 if (pid
!= &init_struct_pid
)
1500 bad_fork_cleanup_io
:
1503 bad_fork_cleanup_namespaces
:
1504 if (unlikely(clone_flags
& CLONE_NEWPID
))
1505 pid_ns_release_proc(p
->nsproxy
->pid_ns
);
1506 exit_task_namespaces(p
);
1507 bad_fork_cleanup_mm
:
1510 bad_fork_cleanup_signal
:
1511 if (!(clone_flags
& CLONE_THREAD
))
1512 free_signal_struct(p
->signal
);
1513 bad_fork_cleanup_sighand
:
1514 __cleanup_sighand(p
->sighand
);
1515 bad_fork_cleanup_fs
:
1516 exit_fs(p
); /* blocking */
1517 bad_fork_cleanup_files
:
1518 exit_files(p
); /* blocking */
1519 bad_fork_cleanup_semundo
:
1521 bad_fork_cleanup_audit
:
1523 bad_fork_cleanup_policy
:
1524 perf_event_free_task(p
);
1526 mpol_put(p
->mempolicy
);
1527 bad_fork_cleanup_cgroup
:
1529 if (clone_flags
& CLONE_THREAD
)
1530 threadgroup_change_end(current
);
1531 cgroup_exit(p
, cgroup_callbacks_done
);
1532 delayacct_tsk_free(p
);
1533 module_put(task_thread_info(p
)->exec_domain
->module
);
1534 bad_fork_cleanup_count
:
1535 atomic_dec(&p
->cred
->user
->processes
);
1540 return ERR_PTR(retval
);
1543 noinline
struct pt_regs
* __cpuinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1545 memset(regs
, 0, sizeof(struct pt_regs
));
1549 static inline void init_idle_pids(struct pid_link
*links
)
1553 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1554 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1555 links
[type
].pid
= &init_struct_pid
;
1559 struct task_struct
* __cpuinit
fork_idle(int cpu
)
1561 struct task_struct
*task
;
1562 struct pt_regs regs
;
1564 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
,
1565 &init_struct_pid
, 0);
1566 if (!IS_ERR(task
)) {
1567 init_idle_pids(task
->pids
);
1568 init_idle(task
, cpu
);
1575 * Ok, this is the main fork-routine.
1577 * It copies the process, and if successful kick-starts
1578 * it and waits for it to finish using the VM if required.
1580 long do_fork(unsigned long clone_flags
,
1581 unsigned long stack_start
,
1582 struct pt_regs
*regs
,
1583 unsigned long stack_size
,
1584 int __user
*parent_tidptr
,
1585 int __user
*child_tidptr
)
1587 struct task_struct
*p
;
1592 * Do some preliminary argument and permissions checking before we
1593 * actually start allocating stuff
1595 if (clone_flags
& CLONE_NEWUSER
) {
1596 if (clone_flags
& CLONE_THREAD
)
1598 /* hopefully this check will go away when userns support is
1601 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SETUID
) ||
1602 !capable(CAP_SETGID
))
1607 * Determine whether and which event to report to ptracer. When
1608 * called from kernel_thread or CLONE_UNTRACED is explicitly
1609 * requested, no event is reported; otherwise, report if the event
1610 * for the type of forking is enabled.
1612 if (likely(user_mode(regs
)) && !(clone_flags
& CLONE_UNTRACED
)) {
1613 if (clone_flags
& CLONE_VFORK
)
1614 trace
= PTRACE_EVENT_VFORK
;
1615 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1616 trace
= PTRACE_EVENT_CLONE
;
1618 trace
= PTRACE_EVENT_FORK
;
1620 if (likely(!ptrace_event_enabled(current
, trace
)))
1624 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
,
1625 child_tidptr
, NULL
, trace
);
1627 * Do this prior waking up the new thread - the thread pointer
1628 * might get invalid after that point, if the thread exits quickly.
1631 struct completion vfork
;
1633 trace_sched_process_fork(current
, p
);
1635 nr
= task_pid_vnr(p
);
1637 if (clone_flags
& CLONE_PARENT_SETTID
)
1638 put_user(nr
, parent_tidptr
);
1640 if (clone_flags
& CLONE_VFORK
) {
1641 p
->vfork_done
= &vfork
;
1642 init_completion(&vfork
);
1646 wake_up_new_task(p
);
1648 /* forking complete and child started to run, tell ptracer */
1649 if (unlikely(trace
))
1650 ptrace_event(trace
, nr
);
1652 if (clone_flags
& CLONE_VFORK
) {
1653 if (!wait_for_vfork_done(p
, &vfork
))
1654 ptrace_event(PTRACE_EVENT_VFORK_DONE
, nr
);
1662 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1663 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1666 static void sighand_ctor(void *data
)
1668 struct sighand_struct
*sighand
= data
;
1670 spin_lock_init(&sighand
->siglock
);
1671 init_waitqueue_head(&sighand
->signalfd_wqh
);
1674 void __init
proc_caches_init(void)
1676 sighand_cachep
= kmem_cache_create("sighand_cache",
1677 sizeof(struct sighand_struct
), 0,
1678 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1679 SLAB_NOTRACK
, sighand_ctor
);
1680 signal_cachep
= kmem_cache_create("signal_cache",
1681 sizeof(struct signal_struct
), 0,
1682 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1683 files_cachep
= kmem_cache_create("files_cache",
1684 sizeof(struct files_struct
), 0,
1685 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1686 fs_cachep
= kmem_cache_create("fs_cache",
1687 sizeof(struct fs_struct
), 0,
1688 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1690 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1691 * whole struct cpumask for the OFFSTACK case. We could change
1692 * this to *only* allocate as much of it as required by the
1693 * maximum number of CPU's we can ever have. The cpumask_allocation
1694 * is at the end of the structure, exactly for that reason.
1696 mm_cachep
= kmem_cache_create("mm_struct",
1697 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1698 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1699 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1701 nsproxy_cache_init();
1705 * Check constraints on flags passed to the unshare system call.
1707 static int check_unshare_flags(unsigned long unshare_flags
)
1709 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1710 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1711 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
))
1714 * Not implemented, but pretend it works if there is nothing to
1715 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1716 * needs to unshare vm.
1718 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1719 /* FIXME: get_task_mm() increments ->mm_users */
1720 if (atomic_read(¤t
->mm
->mm_users
) > 1)
1728 * Unshare the filesystem structure if it is being shared
1730 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1732 struct fs_struct
*fs
= current
->fs
;
1734 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1737 /* don't need lock here; in the worst case we'll do useless copy */
1741 *new_fsp
= copy_fs_struct(fs
);
1749 * Unshare file descriptor table if it is being shared
1751 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1753 struct files_struct
*fd
= current
->files
;
1756 if ((unshare_flags
& CLONE_FILES
) &&
1757 (fd
&& atomic_read(&fd
->count
) > 1)) {
1758 *new_fdp
= dup_fd(fd
, &error
);
1767 * unshare allows a process to 'unshare' part of the process
1768 * context which was originally shared using clone. copy_*
1769 * functions used by do_fork() cannot be used here directly
1770 * because they modify an inactive task_struct that is being
1771 * constructed. Here we are modifying the current, active,
1774 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1776 struct fs_struct
*fs
, *new_fs
= NULL
;
1777 struct files_struct
*fd
, *new_fd
= NULL
;
1778 struct nsproxy
*new_nsproxy
= NULL
;
1782 err
= check_unshare_flags(unshare_flags
);
1784 goto bad_unshare_out
;
1787 * If unsharing namespace, must also unshare filesystem information.
1789 if (unshare_flags
& CLONE_NEWNS
)
1790 unshare_flags
|= CLONE_FS
;
1792 * CLONE_NEWIPC must also detach from the undolist: after switching
1793 * to a new ipc namespace, the semaphore arrays from the old
1794 * namespace are unreachable.
1796 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
1798 err
= unshare_fs(unshare_flags
, &new_fs
);
1800 goto bad_unshare_out
;
1801 err
= unshare_fd(unshare_flags
, &new_fd
);
1803 goto bad_unshare_cleanup_fs
;
1804 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
, new_fs
);
1806 goto bad_unshare_cleanup_fd
;
1808 if (new_fs
|| new_fd
|| do_sysvsem
|| new_nsproxy
) {
1811 * CLONE_SYSVSEM is equivalent to sys_exit().
1817 switch_task_namespaces(current
, new_nsproxy
);
1825 spin_lock(&fs
->lock
);
1826 current
->fs
= new_fs
;
1831 spin_unlock(&fs
->lock
);
1835 fd
= current
->files
;
1836 current
->files
= new_fd
;
1840 task_unlock(current
);
1844 put_nsproxy(new_nsproxy
);
1846 bad_unshare_cleanup_fd
:
1848 put_files_struct(new_fd
);
1850 bad_unshare_cleanup_fs
:
1852 free_fs_struct(new_fs
);
1859 * Helper to unshare the files of the current task.
1860 * We don't want to expose copy_files internals to
1861 * the exec layer of the kernel.
1864 int unshare_files(struct files_struct
**displaced
)
1866 struct task_struct
*task
= current
;
1867 struct files_struct
*copy
= NULL
;
1870 error
= unshare_fd(CLONE_FILES
, ©
);
1871 if (error
|| !copy
) {
1875 *displaced
= task
->files
;