Be more agressive about stealing when MIGRATE_RECLAIMABLE allocations fallback
[linux-2.6/cjktty.git] / mm / page_alloc.c
blobb864584c92b467d384b21ab93685052328542cab
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * Array of node states.
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55 #ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57 #ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59 #endif
60 [N_CPU] = { { [0] = 1UL } },
61 #endif /* NUMA */
63 EXPORT_SYMBOL(node_states);
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
67 long nr_swap_pages;
68 int percpu_pagelist_fraction;
70 static void __free_pages_ok(struct page *page, unsigned int order);
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
85 256,
86 #endif
87 #ifdef CONFIG_ZONE_DMA32
88 256,
89 #endif
90 #ifdef CONFIG_HIGHMEM
91 32,
92 #endif
93 32,
96 EXPORT_SYMBOL(totalram_pages);
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
100 "DMA",
101 #endif
102 #ifdef CONFIG_ZONE_DMA32
103 "DMA32",
104 #endif
105 "Normal",
106 #ifdef CONFIG_HIGHMEM
107 "HighMem",
108 #endif
109 "Movable",
112 int min_free_kbytes = 1024;
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
156 #if MAX_NUMNODES > 1
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
159 #endif
161 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
162 int page_group_by_mobility_disabled __read_mostly;
164 static inline int get_pageblock_migratetype(struct page *page)
166 if (unlikely(page_group_by_mobility_disabled))
167 return MIGRATE_UNMOVABLE;
169 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order)
180 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
182 if (unlikely(page_group_by_mobility_disabled))
183 return MIGRATE_UNMOVABLE;
185 /* Cluster high-order atomic allocations together */
186 if (unlikely(order > 0) &&
187 (!(gfp_flags & __GFP_WAIT) || in_interrupt()))
188 return MIGRATE_HIGHATOMIC;
190 /* Cluster based on mobility */
191 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
192 ((gfp_flags & __GFP_RECLAIMABLE) != 0);
195 #else
196 static inline int get_pageblock_migratetype(struct page *page)
198 return MIGRATE_UNMOVABLE;
201 static void set_pageblock_migratetype(struct page *page, int migratetype)
205 static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order)
207 return MIGRATE_UNMOVABLE;
209 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
211 #ifdef CONFIG_DEBUG_VM
212 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
214 int ret = 0;
215 unsigned seq;
216 unsigned long pfn = page_to_pfn(page);
218 do {
219 seq = zone_span_seqbegin(zone);
220 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
221 ret = 1;
222 else if (pfn < zone->zone_start_pfn)
223 ret = 1;
224 } while (zone_span_seqretry(zone, seq));
226 return ret;
229 static int page_is_consistent(struct zone *zone, struct page *page)
231 if (!pfn_valid_within(page_to_pfn(page)))
232 return 0;
233 if (zone != page_zone(page))
234 return 0;
236 return 1;
239 * Temporary debugging check for pages not lying within a given zone.
241 static int bad_range(struct zone *zone, struct page *page)
243 if (page_outside_zone_boundaries(zone, page))
244 return 1;
245 if (!page_is_consistent(zone, page))
246 return 1;
248 return 0;
250 #else
251 static inline int bad_range(struct zone *zone, struct page *page)
253 return 0;
255 #endif
257 static void bad_page(struct page *page)
259 printk(KERN_EMERG "Bad page state in process '%s'\n"
260 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
261 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
262 KERN_EMERG "Backtrace:\n",
263 current->comm, page, (int)(2*sizeof(unsigned long)),
264 (unsigned long)page->flags, page->mapping,
265 page_mapcount(page), page_count(page));
266 dump_stack();
267 page->flags &= ~(1 << PG_lru |
268 1 << PG_private |
269 1 << PG_locked |
270 1 << PG_active |
271 1 << PG_dirty |
272 1 << PG_reclaim |
273 1 << PG_slab |
274 1 << PG_swapcache |
275 1 << PG_writeback |
276 1 << PG_buddy );
277 set_page_count(page, 0);
278 reset_page_mapcount(page);
279 page->mapping = NULL;
280 add_taint(TAINT_BAD_PAGE);
284 * Higher-order pages are called "compound pages". They are structured thusly:
286 * The first PAGE_SIZE page is called the "head page".
288 * The remaining PAGE_SIZE pages are called "tail pages".
290 * All pages have PG_compound set. All pages have their ->private pointing at
291 * the head page (even the head page has this).
293 * The first tail page's ->lru.next holds the address of the compound page's
294 * put_page() function. Its ->lru.prev holds the order of allocation.
295 * This usage means that zero-order pages may not be compound.
298 static void free_compound_page(struct page *page)
300 __free_pages_ok(page, compound_order(page));
303 static void prep_compound_page(struct page *page, unsigned long order)
305 int i;
306 int nr_pages = 1 << order;
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++) {
312 struct page *p = page + i;
314 __SetPageTail(p);
315 p->first_page = page;
319 static void destroy_compound_page(struct page *page, unsigned long order)
321 int i;
322 int nr_pages = 1 << order;
324 if (unlikely(compound_order(page) != order))
325 bad_page(page);
327 if (unlikely(!PageHead(page)))
328 bad_page(page);
329 __ClearPageHead(page);
330 for (i = 1; i < nr_pages; i++) {
331 struct page *p = page + i;
333 if (unlikely(!PageTail(p) |
334 (p->first_page != page)))
335 bad_page(page);
336 __ClearPageTail(p);
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 int i;
344 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
355 * function for dealing with page's order in buddy system.
356 * zone->lock is already acquired when we use these.
357 * So, we don't need atomic page->flags operations here.
359 static inline unsigned long page_order(struct page *page)
361 return page_private(page);
364 static inline void set_page_order(struct page *page, int order)
366 set_page_private(page, order);
367 __SetPageBuddy(page);
370 static inline void rmv_page_order(struct page *page)
372 __ClearPageBuddy(page);
373 set_page_private(page, 0);
377 * Locate the struct page for both the matching buddy in our
378 * pair (buddy1) and the combined O(n+1) page they form (page).
380 * 1) Any buddy B1 will have an order O twin B2 which satisfies
381 * the following equation:
382 * B2 = B1 ^ (1 << O)
383 * For example, if the starting buddy (buddy2) is #8 its order
384 * 1 buddy is #10:
385 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
387 * 2) Any buddy B will have an order O+1 parent P which
388 * satisfies the following equation:
389 * P = B & ~(1 << O)
391 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
393 static inline struct page *
394 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
396 unsigned long buddy_idx = page_idx ^ (1 << order);
398 return page + (buddy_idx - page_idx);
401 static inline unsigned long
402 __find_combined_index(unsigned long page_idx, unsigned int order)
404 return (page_idx & ~(1 << order));
408 * This function checks whether a page is free && is the buddy
409 * we can do coalesce a page and its buddy if
410 * (a) the buddy is not in a hole &&
411 * (b) the buddy is in the buddy system &&
412 * (c) a page and its buddy have the same order &&
413 * (d) a page and its buddy are in the same zone.
415 * For recording whether a page is in the buddy system, we use PG_buddy.
416 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
418 * For recording page's order, we use page_private(page).
420 static inline int page_is_buddy(struct page *page, struct page *buddy,
421 int order)
423 if (!pfn_valid_within(page_to_pfn(buddy)))
424 return 0;
426 if (page_zone_id(page) != page_zone_id(buddy))
427 return 0;
429 if (PageBuddy(buddy) && page_order(buddy) == order) {
430 BUG_ON(page_count(buddy) != 0);
431 return 1;
433 return 0;
437 * Freeing function for a buddy system allocator.
439 * The concept of a buddy system is to maintain direct-mapped table
440 * (containing bit values) for memory blocks of various "orders".
441 * The bottom level table contains the map for the smallest allocatable
442 * units of memory (here, pages), and each level above it describes
443 * pairs of units from the levels below, hence, "buddies".
444 * At a high level, all that happens here is marking the table entry
445 * at the bottom level available, and propagating the changes upward
446 * as necessary, plus some accounting needed to play nicely with other
447 * parts of the VM system.
448 * At each level, we keep a list of pages, which are heads of continuous
449 * free pages of length of (1 << order) and marked with PG_buddy. Page's
450 * order is recorded in page_private(page) field.
451 * So when we are allocating or freeing one, we can derive the state of the
452 * other. That is, if we allocate a small block, and both were
453 * free, the remainder of the region must be split into blocks.
454 * If a block is freed, and its buddy is also free, then this
455 * triggers coalescing into a block of larger size.
457 * -- wli
460 static inline void __free_one_page(struct page *page,
461 struct zone *zone, unsigned int order)
463 unsigned long page_idx;
464 int order_size = 1 << order;
465 int migratetype = get_pageblock_migratetype(page);
467 if (unlikely(PageCompound(page)))
468 destroy_compound_page(page, order);
470 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
472 VM_BUG_ON(page_idx & (order_size - 1));
473 VM_BUG_ON(bad_range(zone, page));
475 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
476 while (order < MAX_ORDER-1) {
477 unsigned long combined_idx;
478 struct page *buddy;
480 buddy = __page_find_buddy(page, page_idx, order);
481 if (!page_is_buddy(page, buddy, order))
482 break; /* Move the buddy up one level. */
484 list_del(&buddy->lru);
485 zone->free_area[order].nr_free--;
486 rmv_page_order(buddy);
487 combined_idx = __find_combined_index(page_idx, order);
488 page = page + (combined_idx - page_idx);
489 page_idx = combined_idx;
490 order++;
492 set_page_order(page, order);
493 list_add(&page->lru,
494 &zone->free_area[order].free_list[migratetype]);
495 zone->free_area[order].nr_free++;
498 static inline int free_pages_check(struct page *page)
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (page_count(page) != 0) |
503 (page->flags & (
504 1 << PG_lru |
505 1 << PG_private |
506 1 << PG_locked |
507 1 << PG_active |
508 1 << PG_slab |
509 1 << PG_swapcache |
510 1 << PG_writeback |
511 1 << PG_reserved |
512 1 << PG_buddy ))))
513 bad_page(page);
514 if (PageDirty(page))
515 __ClearPageDirty(page);
517 * For now, we report if PG_reserved was found set, but do not
518 * clear it, and do not free the page. But we shall soon need
519 * to do more, for when the ZERO_PAGE count wraps negative.
521 return PageReserved(page);
525 * Frees a list of pages.
526 * Assumes all pages on list are in same zone, and of same order.
527 * count is the number of pages to free.
529 * If the zone was previously in an "all pages pinned" state then look to
530 * see if this freeing clears that state.
532 * And clear the zone's pages_scanned counter, to hold off the "all pages are
533 * pinned" detection logic.
535 static void free_pages_bulk(struct zone *zone, int count,
536 struct list_head *list, int order)
538 spin_lock(&zone->lock);
539 zone->all_unreclaimable = 0;
540 zone->pages_scanned = 0;
541 while (count--) {
542 struct page *page;
544 VM_BUG_ON(list_empty(list));
545 page = list_entry(list->prev, struct page, lru);
546 /* have to delete it as __free_one_page list manipulates */
547 list_del(&page->lru);
548 __free_one_page(page, zone, order);
550 spin_unlock(&zone->lock);
553 static void free_one_page(struct zone *zone, struct page *page, int order)
555 spin_lock(&zone->lock);
556 zone->all_unreclaimable = 0;
557 zone->pages_scanned = 0;
558 __free_one_page(page, zone, order);
559 spin_unlock(&zone->lock);
562 static void __free_pages_ok(struct page *page, unsigned int order)
564 unsigned long flags;
565 int i;
566 int reserved = 0;
568 for (i = 0 ; i < (1 << order) ; ++i)
569 reserved += free_pages_check(page + i);
570 if (reserved)
571 return;
573 if (!PageHighMem(page))
574 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
575 arch_free_page(page, order);
576 kernel_map_pages(page, 1 << order, 0);
578 local_irq_save(flags);
579 __count_vm_events(PGFREE, 1 << order);
580 free_one_page(page_zone(page), page, order);
581 local_irq_restore(flags);
585 * permit the bootmem allocator to evade page validation on high-order frees
587 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
589 if (order == 0) {
590 __ClearPageReserved(page);
591 set_page_count(page, 0);
592 set_page_refcounted(page);
593 __free_page(page);
594 } else {
595 int loop;
597 prefetchw(page);
598 for (loop = 0; loop < BITS_PER_LONG; loop++) {
599 struct page *p = &page[loop];
601 if (loop + 1 < BITS_PER_LONG)
602 prefetchw(p + 1);
603 __ClearPageReserved(p);
604 set_page_count(p, 0);
607 set_page_refcounted(page);
608 __free_pages(page, order);
614 * The order of subdivision here is critical for the IO subsystem.
615 * Please do not alter this order without good reasons and regression
616 * testing. Specifically, as large blocks of memory are subdivided,
617 * the order in which smaller blocks are delivered depends on the order
618 * they're subdivided in this function. This is the primary factor
619 * influencing the order in which pages are delivered to the IO
620 * subsystem according to empirical testing, and this is also justified
621 * by considering the behavior of a buddy system containing a single
622 * large block of memory acted on by a series of small allocations.
623 * This behavior is a critical factor in sglist merging's success.
625 * -- wli
627 static inline void expand(struct zone *zone, struct page *page,
628 int low, int high, struct free_area *area,
629 int migratetype)
631 unsigned long size = 1 << high;
633 while (high > low) {
634 area--;
635 high--;
636 size >>= 1;
637 VM_BUG_ON(bad_range(zone, &page[size]));
638 list_add(&page[size].lru, &area->free_list[migratetype]);
639 area->nr_free++;
640 set_page_order(&page[size], high);
645 * This page is about to be returned from the page allocator
647 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
649 if (unlikely(page_mapcount(page) |
650 (page->mapping != NULL) |
651 (page_count(page) != 0) |
652 (page->flags & (
653 1 << PG_lru |
654 1 << PG_private |
655 1 << PG_locked |
656 1 << PG_active |
657 1 << PG_dirty |
658 1 << PG_slab |
659 1 << PG_swapcache |
660 1 << PG_writeback |
661 1 << PG_reserved |
662 1 << PG_buddy ))))
663 bad_page(page);
666 * For now, we report if PG_reserved was found set, but do not
667 * clear it, and do not allocate the page: as a safety net.
669 if (PageReserved(page))
670 return 1;
672 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
673 1 << PG_referenced | 1 << PG_arch_1 |
674 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
675 set_page_private(page, 0);
676 set_page_refcounted(page);
678 arch_alloc_page(page, order);
679 kernel_map_pages(page, 1 << order, 1);
681 if (gfp_flags & __GFP_ZERO)
682 prep_zero_page(page, order, gfp_flags);
684 if (order && (gfp_flags & __GFP_COMP))
685 prep_compound_page(page, order);
687 return 0;
690 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
695 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,MIGRATE_HIGHATOMIC },
699 [MIGRATE_HIGHATOMIC] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,MIGRATE_MOVABLE},
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
705 * boundary. If alignment is required, use move_freepages_block()
707 int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
711 struct page *page;
712 unsigned long order;
713 int blocks_moved = 0;
715 #ifndef CONFIG_HOLES_IN_ZONE
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
721 * CONFIG_PAGE_GROUP_BY_MOBILITY
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724 #endif
726 for (page = start_page; page <= end_page;) {
727 if (!pfn_valid_within(page_to_pfn(page))) {
728 page++;
729 continue;
732 if (!PageBuddy(page)) {
733 page++;
734 continue;
737 order = page_order(page);
738 list_del(&page->lru);
739 list_add(&page->lru,
740 &zone->free_area[order].free_list[migratetype]);
741 page += 1 << order;
742 blocks_moved++;
745 return blocks_moved;
748 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
750 unsigned long start_pfn, end_pfn;
751 struct page *start_page, *end_page;
753 start_pfn = page_to_pfn(page);
754 start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
755 start_page = pfn_to_page(start_pfn);
756 end_page = start_page + MAX_ORDER_NR_PAGES - 1;
757 end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
759 /* Do not cross zone boundaries */
760 if (start_pfn < zone->zone_start_pfn)
761 start_page = page;
762 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
763 return 0;
765 return move_freepages(zone, start_page, end_page, migratetype);
768 /* Return the page with the lowest PFN in the list */
769 static struct page *min_page(struct list_head *list)
771 unsigned long min_pfn = -1UL;
772 struct page *min_page = NULL, *page;;
774 list_for_each_entry(page, list, lru) {
775 unsigned long pfn = page_to_pfn(page);
776 if (pfn < min_pfn) {
777 min_pfn = pfn;
778 min_page = page;
782 return min_page;
785 /* Remove an element from the buddy allocator from the fallback list */
786 static struct page *__rmqueue_fallback(struct zone *zone, int order,
787 int start_migratetype)
789 struct free_area * area;
790 int current_order;
791 struct page *page;
792 int migratetype, i;
793 int nonatomic_fallback_atomic = 0;
795 retry:
796 /* Find the largest possible block of pages in the other list */
797 for (current_order = MAX_ORDER-1; current_order >= order;
798 --current_order) {
799 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
800 migratetype = fallbacks[start_migratetype][i];
803 * Make it hard to fallback to blocks used for
804 * high-order atomic allocations
806 if (migratetype == MIGRATE_HIGHATOMIC &&
807 start_migratetype != MIGRATE_UNMOVABLE &&
808 !nonatomic_fallback_atomic)
809 continue;
811 area = &(zone->free_area[current_order]);
812 if (list_empty(&area->free_list[migratetype]))
813 continue;
815 /* Bias kernel allocations towards low pfns */
816 page = list_entry(area->free_list[migratetype].next,
817 struct page, lru);
818 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
819 page = min_page(&area->free_list[migratetype]);
820 area->nr_free--;
823 * If breaking a large block of pages, move all free
824 * pages to the preferred allocation list. If falling
825 * back for a reclaimable kernel allocation, be more
826 * agressive about taking ownership of free pages
828 if (unlikely(current_order >= MAX_ORDER / 2) ||
829 start_migratetype == MIGRATE_RECLAIMABLE) {
830 unsigned long pages;
831 pages = move_freepages_block(zone, page,
832 start_migratetype);
834 /* Claim the whole block if over half of it is free */
835 if ((pages << current_order) >= (1 << (MAX_ORDER-2)) &&
836 migratetype != MIGRATE_HIGHATOMIC)
837 set_pageblock_migratetype(page,
838 start_migratetype);
840 migratetype = start_migratetype;
843 /* Remove the page from the freelists */
844 list_del(&page->lru);
845 rmv_page_order(page);
846 __mod_zone_page_state(zone, NR_FREE_PAGES,
847 -(1UL << order));
849 if (current_order == MAX_ORDER - 1)
850 set_pageblock_migratetype(page,
851 start_migratetype);
853 expand(zone, page, order, current_order, area, migratetype);
854 return page;
858 /* Allow fallback to high-order atomic blocks if memory is that low */
859 if (!nonatomic_fallback_atomic) {
860 nonatomic_fallback_atomic = 1;
861 goto retry;
864 return NULL;
866 #else
867 static struct page *__rmqueue_fallback(struct zone *zone, int order,
868 int start_migratetype)
870 return NULL;
872 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
875 * Do the hard work of removing an element from the buddy allocator.
876 * Call me with the zone->lock already held.
878 static struct page *__rmqueue(struct zone *zone, unsigned int order,
879 int migratetype)
881 struct free_area * area;
882 unsigned int current_order;
883 struct page *page;
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
889 continue;
891 page = list_entry(area->free_list[migratetype].next,
892 struct page, lru);
893 list_del(&page->lru);
894 rmv_page_order(page);
895 area->nr_free--;
896 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
897 expand(zone, page, order, current_order, area, migratetype);
898 goto got_page;
901 page = __rmqueue_fallback(zone, order, migratetype);
903 got_page:
905 return page;
909 * Obtain a specified number of elements from the buddy allocator, all under
910 * a single hold of the lock, for efficiency. Add them to the supplied list.
911 * Returns the number of new pages which were placed at *list.
913 static int rmqueue_bulk(struct zone *zone, unsigned int order,
914 unsigned long count, struct list_head *list,
915 int migratetype)
917 int i;
919 spin_lock(&zone->lock);
920 for (i = 0; i < count; ++i) {
921 struct page *page = __rmqueue(zone, order, migratetype);
922 if (unlikely(page == NULL))
923 break;
924 list_add(&page->lru, list);
925 set_page_private(page, migratetype);
927 spin_unlock(&zone->lock);
928 return i;
931 #ifdef CONFIG_NUMA
933 * Called from the vmstat counter updater to drain pagesets of this
934 * currently executing processor on remote nodes after they have
935 * expired.
937 * Note that this function must be called with the thread pinned to
938 * a single processor.
940 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
942 unsigned long flags;
943 int to_drain;
945 local_irq_save(flags);
946 if (pcp->count >= pcp->batch)
947 to_drain = pcp->batch;
948 else
949 to_drain = pcp->count;
950 free_pages_bulk(zone, to_drain, &pcp->list, 0);
951 pcp->count -= to_drain;
952 local_irq_restore(flags);
954 #endif
956 static void __drain_pages(unsigned int cpu)
958 unsigned long flags;
959 struct zone *zone;
960 int i;
962 for_each_zone(zone) {
963 struct per_cpu_pageset *pset;
965 if (!populated_zone(zone))
966 continue;
968 pset = zone_pcp(zone, cpu);
969 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
970 struct per_cpu_pages *pcp;
972 pcp = &pset->pcp[i];
973 local_irq_save(flags);
974 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
975 pcp->count = 0;
976 local_irq_restore(flags);
981 #ifdef CONFIG_HIBERNATION
983 void mark_free_pages(struct zone *zone)
985 unsigned long pfn, max_zone_pfn;
986 unsigned long flags;
987 int order, t;
988 struct list_head *curr;
990 if (!zone->spanned_pages)
991 return;
993 spin_lock_irqsave(&zone->lock, flags);
995 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
996 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
997 if (pfn_valid(pfn)) {
998 struct page *page = pfn_to_page(pfn);
1000 if (!swsusp_page_is_forbidden(page))
1001 swsusp_unset_page_free(page);
1004 for_each_migratetype_order(order, t) {
1005 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1006 unsigned long i;
1008 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1009 for (i = 0; i < (1UL << order); i++)
1010 swsusp_set_page_free(pfn_to_page(pfn + i));
1013 spin_unlock_irqrestore(&zone->lock, flags);
1015 #endif /* CONFIG_PM */
1017 #if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
1019 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1021 void drain_local_pages(void)
1023 unsigned long flags;
1025 local_irq_save(flags);
1026 __drain_pages(smp_processor_id());
1027 local_irq_restore(flags);
1030 void smp_drain_local_pages(void *arg)
1032 drain_local_pages();
1036 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1038 void drain_all_local_pages(void)
1040 unsigned long flags;
1042 local_irq_save(flags);
1043 __drain_pages(smp_processor_id());
1044 local_irq_restore(flags);
1046 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
1048 #else
1049 void drain_all_local_pages(void) {}
1050 #endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
1053 * Free a 0-order page
1055 static void fastcall free_hot_cold_page(struct page *page, int cold)
1057 struct zone *zone = page_zone(page);
1058 struct per_cpu_pages *pcp;
1059 unsigned long flags;
1061 if (PageAnon(page))
1062 page->mapping = NULL;
1063 if (free_pages_check(page))
1064 return;
1066 if (!PageHighMem(page))
1067 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1068 arch_free_page(page, 0);
1069 kernel_map_pages(page, 1, 0);
1071 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1072 local_irq_save(flags);
1073 __count_vm_event(PGFREE);
1074 list_add(&page->lru, &pcp->list);
1075 set_page_private(page, get_pageblock_migratetype(page));
1076 pcp->count++;
1077 if (pcp->count >= pcp->high) {
1078 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1079 pcp->count -= pcp->batch;
1081 local_irq_restore(flags);
1082 put_cpu();
1085 void fastcall free_hot_page(struct page *page)
1087 free_hot_cold_page(page, 0);
1090 void fastcall free_cold_page(struct page *page)
1092 free_hot_cold_page(page, 1);
1096 * split_page takes a non-compound higher-order page, and splits it into
1097 * n (1<<order) sub-pages: page[0..n]
1098 * Each sub-page must be freed individually.
1100 * Note: this is probably too low level an operation for use in drivers.
1101 * Please consult with lkml before using this in your driver.
1103 void split_page(struct page *page, unsigned int order)
1105 int i;
1107 VM_BUG_ON(PageCompound(page));
1108 VM_BUG_ON(!page_count(page));
1109 for (i = 1; i < (1 << order); i++)
1110 set_page_refcounted(page + i);
1114 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1115 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1116 * or two.
1118 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1119 struct zone *zone, int order, gfp_t gfp_flags)
1121 unsigned long flags;
1122 struct page *page;
1123 int cold = !!(gfp_flags & __GFP_COLD);
1124 int cpu;
1125 int migratetype = allocflags_to_migratetype(gfp_flags, order);
1127 again:
1128 cpu = get_cpu();
1129 if (likely(order == 0)) {
1130 struct per_cpu_pages *pcp;
1132 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1133 local_irq_save(flags);
1134 if (!pcp->count) {
1135 pcp->count = rmqueue_bulk(zone, 0,
1136 pcp->batch, &pcp->list, migratetype);
1137 if (unlikely(!pcp->count))
1138 goto failed;
1141 #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
1142 /* Find a page of the appropriate migrate type */
1143 list_for_each_entry(page, &pcp->list, lru)
1144 if (page_private(page) == migratetype)
1145 break;
1147 /* Allocate more to the pcp list if necessary */
1148 if (unlikely(&page->lru == &pcp->list)) {
1149 pcp->count += rmqueue_bulk(zone, 0,
1150 pcp->batch, &pcp->list, migratetype);
1151 page = list_entry(pcp->list.next, struct page, lru);
1153 #else
1154 page = list_entry(pcp->list.next, struct page, lru);
1155 #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
1157 list_del(&page->lru);
1158 pcp->count--;
1159 } else {
1160 spin_lock_irqsave(&zone->lock, flags);
1161 page = __rmqueue(zone, order, migratetype);
1162 spin_unlock(&zone->lock);
1163 if (!page)
1164 goto failed;
1167 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1168 zone_statistics(zonelist, zone);
1169 local_irq_restore(flags);
1170 put_cpu();
1172 VM_BUG_ON(bad_range(zone, page));
1173 if (prep_new_page(page, order, gfp_flags))
1174 goto again;
1175 return page;
1177 failed:
1178 local_irq_restore(flags);
1179 put_cpu();
1180 return NULL;
1183 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1184 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1185 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1186 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1187 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1188 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1189 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1191 #ifdef CONFIG_FAIL_PAGE_ALLOC
1193 static struct fail_page_alloc_attr {
1194 struct fault_attr attr;
1196 u32 ignore_gfp_highmem;
1197 u32 ignore_gfp_wait;
1198 u32 min_order;
1200 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1202 struct dentry *ignore_gfp_highmem_file;
1203 struct dentry *ignore_gfp_wait_file;
1204 struct dentry *min_order_file;
1206 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1208 } fail_page_alloc = {
1209 .attr = FAULT_ATTR_INITIALIZER,
1210 .ignore_gfp_wait = 1,
1211 .ignore_gfp_highmem = 1,
1212 .min_order = 1,
1215 static int __init setup_fail_page_alloc(char *str)
1217 return setup_fault_attr(&fail_page_alloc.attr, str);
1219 __setup("fail_page_alloc=", setup_fail_page_alloc);
1221 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1223 if (order < fail_page_alloc.min_order)
1224 return 0;
1225 if (gfp_mask & __GFP_NOFAIL)
1226 return 0;
1227 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1228 return 0;
1229 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1230 return 0;
1232 return should_fail(&fail_page_alloc.attr, 1 << order);
1235 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1237 static int __init fail_page_alloc_debugfs(void)
1239 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1240 struct dentry *dir;
1241 int err;
1243 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1244 "fail_page_alloc");
1245 if (err)
1246 return err;
1247 dir = fail_page_alloc.attr.dentries.dir;
1249 fail_page_alloc.ignore_gfp_wait_file =
1250 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1251 &fail_page_alloc.ignore_gfp_wait);
1253 fail_page_alloc.ignore_gfp_highmem_file =
1254 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1255 &fail_page_alloc.ignore_gfp_highmem);
1256 fail_page_alloc.min_order_file =
1257 debugfs_create_u32("min-order", mode, dir,
1258 &fail_page_alloc.min_order);
1260 if (!fail_page_alloc.ignore_gfp_wait_file ||
1261 !fail_page_alloc.ignore_gfp_highmem_file ||
1262 !fail_page_alloc.min_order_file) {
1263 err = -ENOMEM;
1264 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1265 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1266 debugfs_remove(fail_page_alloc.min_order_file);
1267 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1270 return err;
1273 late_initcall(fail_page_alloc_debugfs);
1275 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1277 #else /* CONFIG_FAIL_PAGE_ALLOC */
1279 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1281 return 0;
1284 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1287 * Return 1 if free pages are above 'mark'. This takes into account the order
1288 * of the allocation.
1290 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1291 int classzone_idx, int alloc_flags)
1293 /* free_pages my go negative - that's OK */
1294 long min = mark;
1295 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1296 int o;
1298 if (alloc_flags & ALLOC_HIGH)
1299 min -= min / 2;
1300 if (alloc_flags & ALLOC_HARDER)
1301 min -= min / 4;
1303 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1304 return 0;
1305 for (o = 0; o < order; o++) {
1306 /* At the next order, this order's pages become unavailable */
1307 free_pages -= z->free_area[o].nr_free << o;
1309 /* Require fewer higher order pages to be free */
1310 min >>= 1;
1312 if (free_pages <= min)
1313 return 0;
1315 return 1;
1318 #ifdef CONFIG_NUMA
1320 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1321 * skip over zones that are not allowed by the cpuset, or that have
1322 * been recently (in last second) found to be nearly full. See further
1323 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1324 * that have to skip over alot of full or unallowed zones.
1326 * If the zonelist cache is present in the passed in zonelist, then
1327 * returns a pointer to the allowed node mask (either the current
1328 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1330 * If the zonelist cache is not available for this zonelist, does
1331 * nothing and returns NULL.
1333 * If the fullzones BITMAP in the zonelist cache is stale (more than
1334 * a second since last zap'd) then we zap it out (clear its bits.)
1336 * We hold off even calling zlc_setup, until after we've checked the
1337 * first zone in the zonelist, on the theory that most allocations will
1338 * be satisfied from that first zone, so best to examine that zone as
1339 * quickly as we can.
1341 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1343 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1344 nodemask_t *allowednodes; /* zonelist_cache approximation */
1346 zlc = zonelist->zlcache_ptr;
1347 if (!zlc)
1348 return NULL;
1350 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1351 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1352 zlc->last_full_zap = jiffies;
1355 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1356 &cpuset_current_mems_allowed :
1357 &node_states[N_HIGH_MEMORY];
1358 return allowednodes;
1362 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1363 * if it is worth looking at further for free memory:
1364 * 1) Check that the zone isn't thought to be full (doesn't have its
1365 * bit set in the zonelist_cache fullzones BITMAP).
1366 * 2) Check that the zones node (obtained from the zonelist_cache
1367 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1368 * Return true (non-zero) if zone is worth looking at further, or
1369 * else return false (zero) if it is not.
1371 * This check -ignores- the distinction between various watermarks,
1372 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1373 * found to be full for any variation of these watermarks, it will
1374 * be considered full for up to one second by all requests, unless
1375 * we are so low on memory on all allowed nodes that we are forced
1376 * into the second scan of the zonelist.
1378 * In the second scan we ignore this zonelist cache and exactly
1379 * apply the watermarks to all zones, even it is slower to do so.
1380 * We are low on memory in the second scan, and should leave no stone
1381 * unturned looking for a free page.
1383 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1384 nodemask_t *allowednodes)
1386 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1387 int i; /* index of *z in zonelist zones */
1388 int n; /* node that zone *z is on */
1390 zlc = zonelist->zlcache_ptr;
1391 if (!zlc)
1392 return 1;
1394 i = z - zonelist->zones;
1395 n = zlc->z_to_n[i];
1397 /* This zone is worth trying if it is allowed but not full */
1398 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1402 * Given 'z' scanning a zonelist, set the corresponding bit in
1403 * zlc->fullzones, so that subsequent attempts to allocate a page
1404 * from that zone don't waste time re-examining it.
1406 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1408 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1409 int i; /* index of *z in zonelist zones */
1411 zlc = zonelist->zlcache_ptr;
1412 if (!zlc)
1413 return;
1415 i = z - zonelist->zones;
1417 set_bit(i, zlc->fullzones);
1420 #else /* CONFIG_NUMA */
1422 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1424 return NULL;
1427 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1428 nodemask_t *allowednodes)
1430 return 1;
1433 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1436 #endif /* CONFIG_NUMA */
1439 * get_page_from_freelist goes through the zonelist trying to allocate
1440 * a page.
1442 static struct page *
1443 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1444 struct zonelist *zonelist, int alloc_flags)
1446 struct zone **z;
1447 struct page *page = NULL;
1448 int classzone_idx = zone_idx(zonelist->zones[0]);
1449 struct zone *zone;
1450 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1451 int zlc_active = 0; /* set if using zonelist_cache */
1452 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1453 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1455 zonelist_scan:
1457 * Scan zonelist, looking for a zone with enough free.
1458 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1460 z = zonelist->zones;
1462 do {
1464 * In NUMA, this could be a policy zonelist which contains
1465 * zones that may not be allowed by the current gfp_mask.
1466 * Check the zone is allowed by the current flags
1468 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1469 if (highest_zoneidx == -1)
1470 highest_zoneidx = gfp_zone(gfp_mask);
1471 if (zone_idx(*z) > highest_zoneidx)
1472 continue;
1475 if (NUMA_BUILD && zlc_active &&
1476 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1477 continue;
1478 zone = *z;
1479 if ((alloc_flags & ALLOC_CPUSET) &&
1480 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1481 goto try_next_zone;
1483 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1484 unsigned long mark;
1485 if (alloc_flags & ALLOC_WMARK_MIN)
1486 mark = zone->pages_min;
1487 else if (alloc_flags & ALLOC_WMARK_LOW)
1488 mark = zone->pages_low;
1489 else
1490 mark = zone->pages_high;
1491 if (!zone_watermark_ok(zone, order, mark,
1492 classzone_idx, alloc_flags)) {
1493 if (!zone_reclaim_mode ||
1494 !zone_reclaim(zone, gfp_mask, order))
1495 goto this_zone_full;
1499 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1500 if (page)
1501 break;
1502 this_zone_full:
1503 if (NUMA_BUILD)
1504 zlc_mark_zone_full(zonelist, z);
1505 try_next_zone:
1506 if (NUMA_BUILD && !did_zlc_setup) {
1507 /* we do zlc_setup after the first zone is tried */
1508 allowednodes = zlc_setup(zonelist, alloc_flags);
1509 zlc_active = 1;
1510 did_zlc_setup = 1;
1512 } while (*(++z) != NULL);
1514 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1515 /* Disable zlc cache for second zonelist scan */
1516 zlc_active = 0;
1517 goto zonelist_scan;
1519 return page;
1523 * This is the 'heart' of the zoned buddy allocator.
1525 struct page * fastcall
1526 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1527 struct zonelist *zonelist)
1529 const gfp_t wait = gfp_mask & __GFP_WAIT;
1530 struct zone **z;
1531 struct page *page;
1532 struct reclaim_state reclaim_state;
1533 struct task_struct *p = current;
1534 int do_retry;
1535 int alloc_flags;
1536 int did_some_progress;
1538 might_sleep_if(wait);
1540 if (should_fail_alloc_page(gfp_mask, order))
1541 return NULL;
1543 restart:
1544 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1546 if (unlikely(*z == NULL)) {
1548 * Happens if we have an empty zonelist as a result of
1549 * GFP_THISNODE being used on a memoryless node
1551 return NULL;
1554 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1555 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1556 if (page)
1557 goto got_pg;
1560 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1561 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1562 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1563 * using a larger set of nodes after it has established that the
1564 * allowed per node queues are empty and that nodes are
1565 * over allocated.
1567 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1568 goto nopage;
1570 for (z = zonelist->zones; *z; z++)
1571 wakeup_kswapd(*z, order);
1574 * OK, we're below the kswapd watermark and have kicked background
1575 * reclaim. Now things get more complex, so set up alloc_flags according
1576 * to how we want to proceed.
1578 * The caller may dip into page reserves a bit more if the caller
1579 * cannot run direct reclaim, or if the caller has realtime scheduling
1580 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1581 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1583 alloc_flags = ALLOC_WMARK_MIN;
1584 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1585 alloc_flags |= ALLOC_HARDER;
1586 if (gfp_mask & __GFP_HIGH)
1587 alloc_flags |= ALLOC_HIGH;
1588 if (wait)
1589 alloc_flags |= ALLOC_CPUSET;
1592 * Go through the zonelist again. Let __GFP_HIGH and allocations
1593 * coming from realtime tasks go deeper into reserves.
1595 * This is the last chance, in general, before the goto nopage.
1596 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1597 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1599 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1600 if (page)
1601 goto got_pg;
1603 /* This allocation should allow future memory freeing. */
1605 rebalance:
1606 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1607 && !in_interrupt()) {
1608 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1609 nofail_alloc:
1610 /* go through the zonelist yet again, ignoring mins */
1611 page = get_page_from_freelist(gfp_mask, order,
1612 zonelist, ALLOC_NO_WATERMARKS);
1613 if (page)
1614 goto got_pg;
1615 if (gfp_mask & __GFP_NOFAIL) {
1616 congestion_wait(WRITE, HZ/50);
1617 goto nofail_alloc;
1620 goto nopage;
1623 /* Atomic allocations - we can't balance anything */
1624 if (!wait)
1625 goto nopage;
1627 cond_resched();
1629 /* We now go into synchronous reclaim */
1630 cpuset_memory_pressure_bump();
1631 p->flags |= PF_MEMALLOC;
1632 reclaim_state.reclaimed_slab = 0;
1633 p->reclaim_state = &reclaim_state;
1635 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1637 p->reclaim_state = NULL;
1638 p->flags &= ~PF_MEMALLOC;
1640 cond_resched();
1642 if (order != 0)
1643 drain_all_local_pages();
1645 if (likely(did_some_progress)) {
1646 page = get_page_from_freelist(gfp_mask, order,
1647 zonelist, alloc_flags);
1648 if (page)
1649 goto got_pg;
1650 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1652 * Go through the zonelist yet one more time, keep
1653 * very high watermark here, this is only to catch
1654 * a parallel oom killing, we must fail if we're still
1655 * under heavy pressure.
1657 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1658 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1659 if (page)
1660 goto got_pg;
1662 /* The OOM killer will not help higher order allocs so fail */
1663 if (order > PAGE_ALLOC_COSTLY_ORDER)
1664 goto nopage;
1666 out_of_memory(zonelist, gfp_mask, order);
1667 goto restart;
1671 * Don't let big-order allocations loop unless the caller explicitly
1672 * requests that. Wait for some write requests to complete then retry.
1674 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1675 * <= 3, but that may not be true in other implementations.
1677 do_retry = 0;
1678 if (!(gfp_mask & __GFP_NORETRY)) {
1679 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1680 (gfp_mask & __GFP_REPEAT))
1681 do_retry = 1;
1682 if (gfp_mask & __GFP_NOFAIL)
1683 do_retry = 1;
1685 if (do_retry) {
1686 congestion_wait(WRITE, HZ/50);
1687 goto rebalance;
1690 nopage:
1691 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1692 printk(KERN_WARNING "%s: page allocation failure."
1693 " order:%d, mode:0x%x\n",
1694 p->comm, order, gfp_mask);
1695 dump_stack();
1696 show_mem();
1698 got_pg:
1699 return page;
1702 EXPORT_SYMBOL(__alloc_pages);
1705 * Common helper functions.
1707 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1709 struct page * page;
1710 page = alloc_pages(gfp_mask, order);
1711 if (!page)
1712 return 0;
1713 return (unsigned long) page_address(page);
1716 EXPORT_SYMBOL(__get_free_pages);
1718 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1720 struct page * page;
1723 * get_zeroed_page() returns a 32-bit address, which cannot represent
1724 * a highmem page
1726 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1728 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1729 if (page)
1730 return (unsigned long) page_address(page);
1731 return 0;
1734 EXPORT_SYMBOL(get_zeroed_page);
1736 void __pagevec_free(struct pagevec *pvec)
1738 int i = pagevec_count(pvec);
1740 while (--i >= 0)
1741 free_hot_cold_page(pvec->pages[i], pvec->cold);
1744 fastcall void __free_pages(struct page *page, unsigned int order)
1746 if (put_page_testzero(page)) {
1747 if (order == 0)
1748 free_hot_page(page);
1749 else
1750 __free_pages_ok(page, order);
1754 EXPORT_SYMBOL(__free_pages);
1756 fastcall void free_pages(unsigned long addr, unsigned int order)
1758 if (addr != 0) {
1759 VM_BUG_ON(!virt_addr_valid((void *)addr));
1760 __free_pages(virt_to_page((void *)addr), order);
1764 EXPORT_SYMBOL(free_pages);
1766 static unsigned int nr_free_zone_pages(int offset)
1768 /* Just pick one node, since fallback list is circular */
1769 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1770 unsigned int sum = 0;
1772 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1773 struct zone **zonep = zonelist->zones;
1774 struct zone *zone;
1776 for (zone = *zonep++; zone; zone = *zonep++) {
1777 unsigned long size = zone->present_pages;
1778 unsigned long high = zone->pages_high;
1779 if (size > high)
1780 sum += size - high;
1783 return sum;
1787 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1789 unsigned int nr_free_buffer_pages(void)
1791 return nr_free_zone_pages(gfp_zone(GFP_USER));
1793 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1796 * Amount of free RAM allocatable within all zones
1798 unsigned int nr_free_pagecache_pages(void)
1800 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1803 static inline void show_node(struct zone *zone)
1805 if (NUMA_BUILD)
1806 printk("Node %d ", zone_to_nid(zone));
1809 void si_meminfo(struct sysinfo *val)
1811 val->totalram = totalram_pages;
1812 val->sharedram = 0;
1813 val->freeram = global_page_state(NR_FREE_PAGES);
1814 val->bufferram = nr_blockdev_pages();
1815 val->totalhigh = totalhigh_pages;
1816 val->freehigh = nr_free_highpages();
1817 val->mem_unit = PAGE_SIZE;
1820 EXPORT_SYMBOL(si_meminfo);
1822 #ifdef CONFIG_NUMA
1823 void si_meminfo_node(struct sysinfo *val, int nid)
1825 pg_data_t *pgdat = NODE_DATA(nid);
1827 val->totalram = pgdat->node_present_pages;
1828 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1829 #ifdef CONFIG_HIGHMEM
1830 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1831 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1832 NR_FREE_PAGES);
1833 #else
1834 val->totalhigh = 0;
1835 val->freehigh = 0;
1836 #endif
1837 val->mem_unit = PAGE_SIZE;
1839 #endif
1841 #define K(x) ((x) << (PAGE_SHIFT-10))
1844 * Show free area list (used inside shift_scroll-lock stuff)
1845 * We also calculate the percentage fragmentation. We do this by counting the
1846 * memory on each free list with the exception of the first item on the list.
1848 void show_free_areas(void)
1850 int cpu;
1851 struct zone *zone;
1853 for_each_zone(zone) {
1854 if (!populated_zone(zone))
1855 continue;
1857 show_node(zone);
1858 printk("%s per-cpu:\n", zone->name);
1860 for_each_online_cpu(cpu) {
1861 struct per_cpu_pageset *pageset;
1863 pageset = zone_pcp(zone, cpu);
1865 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1866 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1867 cpu, pageset->pcp[0].high,
1868 pageset->pcp[0].batch, pageset->pcp[0].count,
1869 pageset->pcp[1].high, pageset->pcp[1].batch,
1870 pageset->pcp[1].count);
1874 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1875 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1876 global_page_state(NR_ACTIVE),
1877 global_page_state(NR_INACTIVE),
1878 global_page_state(NR_FILE_DIRTY),
1879 global_page_state(NR_WRITEBACK),
1880 global_page_state(NR_UNSTABLE_NFS),
1881 global_page_state(NR_FREE_PAGES),
1882 global_page_state(NR_SLAB_RECLAIMABLE) +
1883 global_page_state(NR_SLAB_UNRECLAIMABLE),
1884 global_page_state(NR_FILE_MAPPED),
1885 global_page_state(NR_PAGETABLE),
1886 global_page_state(NR_BOUNCE));
1888 for_each_zone(zone) {
1889 int i;
1891 if (!populated_zone(zone))
1892 continue;
1894 show_node(zone);
1895 printk("%s"
1896 " free:%lukB"
1897 " min:%lukB"
1898 " low:%lukB"
1899 " high:%lukB"
1900 " active:%lukB"
1901 " inactive:%lukB"
1902 " present:%lukB"
1903 " pages_scanned:%lu"
1904 " all_unreclaimable? %s"
1905 "\n",
1906 zone->name,
1907 K(zone_page_state(zone, NR_FREE_PAGES)),
1908 K(zone->pages_min),
1909 K(zone->pages_low),
1910 K(zone->pages_high),
1911 K(zone_page_state(zone, NR_ACTIVE)),
1912 K(zone_page_state(zone, NR_INACTIVE)),
1913 K(zone->present_pages),
1914 zone->pages_scanned,
1915 (zone->all_unreclaimable ? "yes" : "no")
1917 printk("lowmem_reserve[]:");
1918 for (i = 0; i < MAX_NR_ZONES; i++)
1919 printk(" %lu", zone->lowmem_reserve[i]);
1920 printk("\n");
1923 for_each_zone(zone) {
1924 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1926 if (!populated_zone(zone))
1927 continue;
1929 show_node(zone);
1930 printk("%s: ", zone->name);
1932 spin_lock_irqsave(&zone->lock, flags);
1933 for (order = 0; order < MAX_ORDER; order++) {
1934 nr[order] = zone->free_area[order].nr_free;
1935 total += nr[order] << order;
1937 spin_unlock_irqrestore(&zone->lock, flags);
1938 for (order = 0; order < MAX_ORDER; order++)
1939 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1940 printk("= %lukB\n", K(total));
1943 show_swap_cache_info();
1947 * Builds allocation fallback zone lists.
1949 * Add all populated zones of a node to the zonelist.
1951 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1952 int nr_zones, enum zone_type zone_type)
1954 struct zone *zone;
1956 BUG_ON(zone_type >= MAX_NR_ZONES);
1957 zone_type++;
1959 do {
1960 zone_type--;
1961 zone = pgdat->node_zones + zone_type;
1962 if (populated_zone(zone)) {
1963 zonelist->zones[nr_zones++] = zone;
1964 check_highest_zone(zone_type);
1967 } while (zone_type);
1968 return nr_zones;
1973 * zonelist_order:
1974 * 0 = automatic detection of better ordering.
1975 * 1 = order by ([node] distance, -zonetype)
1976 * 2 = order by (-zonetype, [node] distance)
1978 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1979 * the same zonelist. So only NUMA can configure this param.
1981 #define ZONELIST_ORDER_DEFAULT 0
1982 #define ZONELIST_ORDER_NODE 1
1983 #define ZONELIST_ORDER_ZONE 2
1985 /* zonelist order in the kernel.
1986 * set_zonelist_order() will set this to NODE or ZONE.
1988 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1989 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1992 #ifdef CONFIG_NUMA
1993 /* The value user specified ....changed by config */
1994 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1995 /* string for sysctl */
1996 #define NUMA_ZONELIST_ORDER_LEN 16
1997 char numa_zonelist_order[16] = "default";
2000 * interface for configure zonelist ordering.
2001 * command line option "numa_zonelist_order"
2002 * = "[dD]efault - default, automatic configuration.
2003 * = "[nN]ode - order by node locality, then by zone within node
2004 * = "[zZ]one - order by zone, then by locality within zone
2007 static int __parse_numa_zonelist_order(char *s)
2009 if (*s == 'd' || *s == 'D') {
2010 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2011 } else if (*s == 'n' || *s == 'N') {
2012 user_zonelist_order = ZONELIST_ORDER_NODE;
2013 } else if (*s == 'z' || *s == 'Z') {
2014 user_zonelist_order = ZONELIST_ORDER_ZONE;
2015 } else {
2016 printk(KERN_WARNING
2017 "Ignoring invalid numa_zonelist_order value: "
2018 "%s\n", s);
2019 return -EINVAL;
2021 return 0;
2024 static __init int setup_numa_zonelist_order(char *s)
2026 if (s)
2027 return __parse_numa_zonelist_order(s);
2028 return 0;
2030 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2033 * sysctl handler for numa_zonelist_order
2035 int numa_zonelist_order_handler(ctl_table *table, int write,
2036 struct file *file, void __user *buffer, size_t *length,
2037 loff_t *ppos)
2039 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2040 int ret;
2042 if (write)
2043 strncpy(saved_string, (char*)table->data,
2044 NUMA_ZONELIST_ORDER_LEN);
2045 ret = proc_dostring(table, write, file, buffer, length, ppos);
2046 if (ret)
2047 return ret;
2048 if (write) {
2049 int oldval = user_zonelist_order;
2050 if (__parse_numa_zonelist_order((char*)table->data)) {
2052 * bogus value. restore saved string
2054 strncpy((char*)table->data, saved_string,
2055 NUMA_ZONELIST_ORDER_LEN);
2056 user_zonelist_order = oldval;
2057 } else if (oldval != user_zonelist_order)
2058 build_all_zonelists();
2060 return 0;
2064 #define MAX_NODE_LOAD (num_online_nodes())
2065 static int node_load[MAX_NUMNODES];
2068 * find_next_best_node - find the next node that should appear in a given node's fallback list
2069 * @node: node whose fallback list we're appending
2070 * @used_node_mask: nodemask_t of already used nodes
2072 * We use a number of factors to determine which is the next node that should
2073 * appear on a given node's fallback list. The node should not have appeared
2074 * already in @node's fallback list, and it should be the next closest node
2075 * according to the distance array (which contains arbitrary distance values
2076 * from each node to each node in the system), and should also prefer nodes
2077 * with no CPUs, since presumably they'll have very little allocation pressure
2078 * on them otherwise.
2079 * It returns -1 if no node is found.
2081 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2083 int n, val;
2084 int min_val = INT_MAX;
2085 int best_node = -1;
2087 /* Use the local node if we haven't already */
2088 if (!node_isset(node, *used_node_mask)) {
2089 node_set(node, *used_node_mask);
2090 return node;
2093 for_each_node_state(n, N_HIGH_MEMORY) {
2094 cpumask_t tmp;
2096 /* Don't want a node to appear more than once */
2097 if (node_isset(n, *used_node_mask))
2098 continue;
2100 /* Use the distance array to find the distance */
2101 val = node_distance(node, n);
2103 /* Penalize nodes under us ("prefer the next node") */
2104 val += (n < node);
2106 /* Give preference to headless and unused nodes */
2107 tmp = node_to_cpumask(n);
2108 if (!cpus_empty(tmp))
2109 val += PENALTY_FOR_NODE_WITH_CPUS;
2111 /* Slight preference for less loaded node */
2112 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2113 val += node_load[n];
2115 if (val < min_val) {
2116 min_val = val;
2117 best_node = n;
2121 if (best_node >= 0)
2122 node_set(best_node, *used_node_mask);
2124 return best_node;
2129 * Build zonelists ordered by node and zones within node.
2130 * This results in maximum locality--normal zone overflows into local
2131 * DMA zone, if any--but risks exhausting DMA zone.
2133 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2135 enum zone_type i;
2136 int j;
2137 struct zonelist *zonelist;
2139 for (i = 0; i < MAX_NR_ZONES; i++) {
2140 zonelist = pgdat->node_zonelists + i;
2141 for (j = 0; zonelist->zones[j] != NULL; j++)
2143 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2144 zonelist->zones[j] = NULL;
2149 * Build gfp_thisnode zonelists
2151 static void build_thisnode_zonelists(pg_data_t *pgdat)
2153 enum zone_type i;
2154 int j;
2155 struct zonelist *zonelist;
2157 for (i = 0; i < MAX_NR_ZONES; i++) {
2158 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2159 j = build_zonelists_node(pgdat, zonelist, 0, i);
2160 zonelist->zones[j] = NULL;
2165 * Build zonelists ordered by zone and nodes within zones.
2166 * This results in conserving DMA zone[s] until all Normal memory is
2167 * exhausted, but results in overflowing to remote node while memory
2168 * may still exist in local DMA zone.
2170 static int node_order[MAX_NUMNODES];
2172 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2174 enum zone_type i;
2175 int pos, j, node;
2176 int zone_type; /* needs to be signed */
2177 struct zone *z;
2178 struct zonelist *zonelist;
2180 for (i = 0; i < MAX_NR_ZONES; i++) {
2181 zonelist = pgdat->node_zonelists + i;
2182 pos = 0;
2183 for (zone_type = i; zone_type >= 0; zone_type--) {
2184 for (j = 0; j < nr_nodes; j++) {
2185 node = node_order[j];
2186 z = &NODE_DATA(node)->node_zones[zone_type];
2187 if (populated_zone(z)) {
2188 zonelist->zones[pos++] = z;
2189 check_highest_zone(zone_type);
2193 zonelist->zones[pos] = NULL;
2197 static int default_zonelist_order(void)
2199 int nid, zone_type;
2200 unsigned long low_kmem_size,total_size;
2201 struct zone *z;
2202 int average_size;
2204 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2205 * If they are really small and used heavily, the system can fall
2206 * into OOM very easily.
2207 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2209 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2210 low_kmem_size = 0;
2211 total_size = 0;
2212 for_each_online_node(nid) {
2213 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2214 z = &NODE_DATA(nid)->node_zones[zone_type];
2215 if (populated_zone(z)) {
2216 if (zone_type < ZONE_NORMAL)
2217 low_kmem_size += z->present_pages;
2218 total_size += z->present_pages;
2222 if (!low_kmem_size || /* there are no DMA area. */
2223 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2224 return ZONELIST_ORDER_NODE;
2226 * look into each node's config.
2227 * If there is a node whose DMA/DMA32 memory is very big area on
2228 * local memory, NODE_ORDER may be suitable.
2230 average_size = total_size /
2231 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2232 for_each_online_node(nid) {
2233 low_kmem_size = 0;
2234 total_size = 0;
2235 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2236 z = &NODE_DATA(nid)->node_zones[zone_type];
2237 if (populated_zone(z)) {
2238 if (zone_type < ZONE_NORMAL)
2239 low_kmem_size += z->present_pages;
2240 total_size += z->present_pages;
2243 if (low_kmem_size &&
2244 total_size > average_size && /* ignore small node */
2245 low_kmem_size > total_size * 70/100)
2246 return ZONELIST_ORDER_NODE;
2248 return ZONELIST_ORDER_ZONE;
2251 static void set_zonelist_order(void)
2253 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2254 current_zonelist_order = default_zonelist_order();
2255 else
2256 current_zonelist_order = user_zonelist_order;
2259 static void build_zonelists(pg_data_t *pgdat)
2261 int j, node, load;
2262 enum zone_type i;
2263 nodemask_t used_mask;
2264 int local_node, prev_node;
2265 struct zonelist *zonelist;
2266 int order = current_zonelist_order;
2268 /* initialize zonelists */
2269 for (i = 0; i < MAX_ZONELISTS; i++) {
2270 zonelist = pgdat->node_zonelists + i;
2271 zonelist->zones[0] = NULL;
2274 /* NUMA-aware ordering of nodes */
2275 local_node = pgdat->node_id;
2276 load = num_online_nodes();
2277 prev_node = local_node;
2278 nodes_clear(used_mask);
2280 memset(node_load, 0, sizeof(node_load));
2281 memset(node_order, 0, sizeof(node_order));
2282 j = 0;
2284 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2285 int distance = node_distance(local_node, node);
2288 * If another node is sufficiently far away then it is better
2289 * to reclaim pages in a zone before going off node.
2291 if (distance > RECLAIM_DISTANCE)
2292 zone_reclaim_mode = 1;
2295 * We don't want to pressure a particular node.
2296 * So adding penalty to the first node in same
2297 * distance group to make it round-robin.
2299 if (distance != node_distance(local_node, prev_node))
2300 node_load[node] = load;
2302 prev_node = node;
2303 load--;
2304 if (order == ZONELIST_ORDER_NODE)
2305 build_zonelists_in_node_order(pgdat, node);
2306 else
2307 node_order[j++] = node; /* remember order */
2310 if (order == ZONELIST_ORDER_ZONE) {
2311 /* calculate node order -- i.e., DMA last! */
2312 build_zonelists_in_zone_order(pgdat, j);
2315 build_thisnode_zonelists(pgdat);
2318 /* Construct the zonelist performance cache - see further mmzone.h */
2319 static void build_zonelist_cache(pg_data_t *pgdat)
2321 int i;
2323 for (i = 0; i < MAX_NR_ZONES; i++) {
2324 struct zonelist *zonelist;
2325 struct zonelist_cache *zlc;
2326 struct zone **z;
2328 zonelist = pgdat->node_zonelists + i;
2329 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2330 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2331 for (z = zonelist->zones; *z; z++)
2332 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2337 #else /* CONFIG_NUMA */
2339 static void set_zonelist_order(void)
2341 current_zonelist_order = ZONELIST_ORDER_ZONE;
2344 static void build_zonelists(pg_data_t *pgdat)
2346 int node, local_node;
2347 enum zone_type i,j;
2349 local_node = pgdat->node_id;
2350 for (i = 0; i < MAX_NR_ZONES; i++) {
2351 struct zonelist *zonelist;
2353 zonelist = pgdat->node_zonelists + i;
2355 j = build_zonelists_node(pgdat, zonelist, 0, i);
2357 * Now we build the zonelist so that it contains the zones
2358 * of all the other nodes.
2359 * We don't want to pressure a particular node, so when
2360 * building the zones for node N, we make sure that the
2361 * zones coming right after the local ones are those from
2362 * node N+1 (modulo N)
2364 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2365 if (!node_online(node))
2366 continue;
2367 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2369 for (node = 0; node < local_node; node++) {
2370 if (!node_online(node))
2371 continue;
2372 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2375 zonelist->zones[j] = NULL;
2379 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2380 static void build_zonelist_cache(pg_data_t *pgdat)
2382 int i;
2384 for (i = 0; i < MAX_NR_ZONES; i++)
2385 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2388 #endif /* CONFIG_NUMA */
2390 /* return values int ....just for stop_machine_run() */
2391 static int __build_all_zonelists(void *dummy)
2393 int nid;
2395 for_each_online_node(nid) {
2396 pg_data_t *pgdat = NODE_DATA(nid);
2398 build_zonelists(pgdat);
2399 build_zonelist_cache(pgdat);
2401 return 0;
2404 void build_all_zonelists(void)
2406 set_zonelist_order();
2408 if (system_state == SYSTEM_BOOTING) {
2409 __build_all_zonelists(NULL);
2410 cpuset_init_current_mems_allowed();
2411 } else {
2412 /* we have to stop all cpus to guaranntee there is no user
2413 of zonelist */
2414 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2415 /* cpuset refresh routine should be here */
2417 vm_total_pages = nr_free_pagecache_pages();
2419 * Disable grouping by mobility if the number of pages in the
2420 * system is too low to allow the mechanism to work. It would be
2421 * more accurate, but expensive to check per-zone. This check is
2422 * made on memory-hotadd so a system can start with mobility
2423 * disabled and enable it later
2425 if (vm_total_pages < (MAX_ORDER_NR_PAGES * MIGRATE_TYPES))
2426 page_group_by_mobility_disabled = 1;
2427 else
2428 page_group_by_mobility_disabled = 0;
2430 printk("Built %i zonelists in %s order, mobility grouping %s. "
2431 "Total pages: %ld\n",
2432 num_online_nodes(),
2433 zonelist_order_name[current_zonelist_order],
2434 page_group_by_mobility_disabled ? "off" : "on",
2435 vm_total_pages);
2436 #ifdef CONFIG_NUMA
2437 printk("Policy zone: %s\n", zone_names[policy_zone]);
2438 #endif
2442 * Helper functions to size the waitqueue hash table.
2443 * Essentially these want to choose hash table sizes sufficiently
2444 * large so that collisions trying to wait on pages are rare.
2445 * But in fact, the number of active page waitqueues on typical
2446 * systems is ridiculously low, less than 200. So this is even
2447 * conservative, even though it seems large.
2449 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2450 * waitqueues, i.e. the size of the waitq table given the number of pages.
2452 #define PAGES_PER_WAITQUEUE 256
2454 #ifndef CONFIG_MEMORY_HOTPLUG
2455 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2457 unsigned long size = 1;
2459 pages /= PAGES_PER_WAITQUEUE;
2461 while (size < pages)
2462 size <<= 1;
2465 * Once we have dozens or even hundreds of threads sleeping
2466 * on IO we've got bigger problems than wait queue collision.
2467 * Limit the size of the wait table to a reasonable size.
2469 size = min(size, 4096UL);
2471 return max(size, 4UL);
2473 #else
2475 * A zone's size might be changed by hot-add, so it is not possible to determine
2476 * a suitable size for its wait_table. So we use the maximum size now.
2478 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2480 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2481 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2482 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2484 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2485 * or more by the traditional way. (See above). It equals:
2487 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2488 * ia64(16K page size) : = ( 8G + 4M)byte.
2489 * powerpc (64K page size) : = (32G +16M)byte.
2491 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2493 return 4096UL;
2495 #endif
2498 * This is an integer logarithm so that shifts can be used later
2499 * to extract the more random high bits from the multiplicative
2500 * hash function before the remainder is taken.
2502 static inline unsigned long wait_table_bits(unsigned long size)
2504 return ffz(~size);
2507 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2510 * Initially all pages are reserved - free ones are freed
2511 * up by free_all_bootmem() once the early boot process is
2512 * done. Non-atomic initialization, single-pass.
2514 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2515 unsigned long start_pfn, enum memmap_context context)
2517 struct page *page;
2518 unsigned long end_pfn = start_pfn + size;
2519 unsigned long pfn;
2521 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2523 * There can be holes in boot-time mem_map[]s
2524 * handed to this function. They do not
2525 * exist on hotplugged memory.
2527 if (context == MEMMAP_EARLY) {
2528 if (!early_pfn_valid(pfn))
2529 continue;
2530 if (!early_pfn_in_nid(pfn, nid))
2531 continue;
2533 page = pfn_to_page(pfn);
2534 set_page_links(page, zone, nid, pfn);
2535 init_page_count(page);
2536 reset_page_mapcount(page);
2537 SetPageReserved(page);
2540 * Mark the block movable so that blocks are reserved for
2541 * movable at startup. This will force kernel allocations
2542 * to reserve their blocks rather than leaking throughout
2543 * the address space during boot when many long-lived
2544 * kernel allocations are made
2546 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2548 INIT_LIST_HEAD(&page->lru);
2549 #ifdef WANT_PAGE_VIRTUAL
2550 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2551 if (!is_highmem_idx(zone))
2552 set_page_address(page, __va(pfn << PAGE_SHIFT));
2553 #endif
2557 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2558 struct zone *zone, unsigned long size)
2560 int order, t;
2561 for_each_migratetype_order(order, t) {
2562 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2563 zone->free_area[order].nr_free = 0;
2567 #ifndef __HAVE_ARCH_MEMMAP_INIT
2568 #define memmap_init(size, nid, zone, start_pfn) \
2569 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2570 #endif
2572 static int __devinit zone_batchsize(struct zone *zone)
2574 int batch;
2577 * The per-cpu-pages pools are set to around 1000th of the
2578 * size of the zone. But no more than 1/2 of a meg.
2580 * OK, so we don't know how big the cache is. So guess.
2582 batch = zone->present_pages / 1024;
2583 if (batch * PAGE_SIZE > 512 * 1024)
2584 batch = (512 * 1024) / PAGE_SIZE;
2585 batch /= 4; /* We effectively *= 4 below */
2586 if (batch < 1)
2587 batch = 1;
2590 * Clamp the batch to a 2^n - 1 value. Having a power
2591 * of 2 value was found to be more likely to have
2592 * suboptimal cache aliasing properties in some cases.
2594 * For example if 2 tasks are alternately allocating
2595 * batches of pages, one task can end up with a lot
2596 * of pages of one half of the possible page colors
2597 * and the other with pages of the other colors.
2599 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2601 return batch;
2604 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2606 struct per_cpu_pages *pcp;
2608 memset(p, 0, sizeof(*p));
2610 pcp = &p->pcp[0]; /* hot */
2611 pcp->count = 0;
2612 pcp->high = 6 * batch;
2613 pcp->batch = max(1UL, 1 * batch);
2614 INIT_LIST_HEAD(&pcp->list);
2616 pcp = &p->pcp[1]; /* cold*/
2617 pcp->count = 0;
2618 pcp->high = 2 * batch;
2619 pcp->batch = max(1UL, batch/2);
2620 INIT_LIST_HEAD(&pcp->list);
2624 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2625 * to the value high for the pageset p.
2628 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2629 unsigned long high)
2631 struct per_cpu_pages *pcp;
2633 pcp = &p->pcp[0]; /* hot list */
2634 pcp->high = high;
2635 pcp->batch = max(1UL, high/4);
2636 if ((high/4) > (PAGE_SHIFT * 8))
2637 pcp->batch = PAGE_SHIFT * 8;
2641 #ifdef CONFIG_NUMA
2643 * Boot pageset table. One per cpu which is going to be used for all
2644 * zones and all nodes. The parameters will be set in such a way
2645 * that an item put on a list will immediately be handed over to
2646 * the buddy list. This is safe since pageset manipulation is done
2647 * with interrupts disabled.
2649 * Some NUMA counter updates may also be caught by the boot pagesets.
2651 * The boot_pagesets must be kept even after bootup is complete for
2652 * unused processors and/or zones. They do play a role for bootstrapping
2653 * hotplugged processors.
2655 * zoneinfo_show() and maybe other functions do
2656 * not check if the processor is online before following the pageset pointer.
2657 * Other parts of the kernel may not check if the zone is available.
2659 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2662 * Dynamically allocate memory for the
2663 * per cpu pageset array in struct zone.
2665 static int __cpuinit process_zones(int cpu)
2667 struct zone *zone, *dzone;
2668 int node = cpu_to_node(cpu);
2670 node_set_state(node, N_CPU); /* this node has a cpu */
2672 for_each_zone(zone) {
2674 if (!populated_zone(zone))
2675 continue;
2677 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2678 GFP_KERNEL, node);
2679 if (!zone_pcp(zone, cpu))
2680 goto bad;
2682 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2684 if (percpu_pagelist_fraction)
2685 setup_pagelist_highmark(zone_pcp(zone, cpu),
2686 (zone->present_pages / percpu_pagelist_fraction));
2689 return 0;
2690 bad:
2691 for_each_zone(dzone) {
2692 if (!populated_zone(dzone))
2693 continue;
2694 if (dzone == zone)
2695 break;
2696 kfree(zone_pcp(dzone, cpu));
2697 zone_pcp(dzone, cpu) = NULL;
2699 return -ENOMEM;
2702 static inline void free_zone_pagesets(int cpu)
2704 struct zone *zone;
2706 for_each_zone(zone) {
2707 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2709 /* Free per_cpu_pageset if it is slab allocated */
2710 if (pset != &boot_pageset[cpu])
2711 kfree(pset);
2712 zone_pcp(zone, cpu) = NULL;
2716 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2717 unsigned long action,
2718 void *hcpu)
2720 int cpu = (long)hcpu;
2721 int ret = NOTIFY_OK;
2723 switch (action) {
2724 case CPU_UP_PREPARE:
2725 case CPU_UP_PREPARE_FROZEN:
2726 if (process_zones(cpu))
2727 ret = NOTIFY_BAD;
2728 break;
2729 case CPU_UP_CANCELED:
2730 case CPU_UP_CANCELED_FROZEN:
2731 case CPU_DEAD:
2732 case CPU_DEAD_FROZEN:
2733 free_zone_pagesets(cpu);
2734 break;
2735 default:
2736 break;
2738 return ret;
2741 static struct notifier_block __cpuinitdata pageset_notifier =
2742 { &pageset_cpuup_callback, NULL, 0 };
2744 void __init setup_per_cpu_pageset(void)
2746 int err;
2748 /* Initialize per_cpu_pageset for cpu 0.
2749 * A cpuup callback will do this for every cpu
2750 * as it comes online
2752 err = process_zones(smp_processor_id());
2753 BUG_ON(err);
2754 register_cpu_notifier(&pageset_notifier);
2757 #endif
2759 static noinline __init_refok
2760 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2762 int i;
2763 struct pglist_data *pgdat = zone->zone_pgdat;
2764 size_t alloc_size;
2767 * The per-page waitqueue mechanism uses hashed waitqueues
2768 * per zone.
2770 zone->wait_table_hash_nr_entries =
2771 wait_table_hash_nr_entries(zone_size_pages);
2772 zone->wait_table_bits =
2773 wait_table_bits(zone->wait_table_hash_nr_entries);
2774 alloc_size = zone->wait_table_hash_nr_entries
2775 * sizeof(wait_queue_head_t);
2777 if (system_state == SYSTEM_BOOTING) {
2778 zone->wait_table = (wait_queue_head_t *)
2779 alloc_bootmem_node(pgdat, alloc_size);
2780 } else {
2782 * This case means that a zone whose size was 0 gets new memory
2783 * via memory hot-add.
2784 * But it may be the case that a new node was hot-added. In
2785 * this case vmalloc() will not be able to use this new node's
2786 * memory - this wait_table must be initialized to use this new
2787 * node itself as well.
2788 * To use this new node's memory, further consideration will be
2789 * necessary.
2791 zone->wait_table = vmalloc(alloc_size);
2793 if (!zone->wait_table)
2794 return -ENOMEM;
2796 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2797 init_waitqueue_head(zone->wait_table + i);
2799 return 0;
2802 static __meminit void zone_pcp_init(struct zone *zone)
2804 int cpu;
2805 unsigned long batch = zone_batchsize(zone);
2807 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2808 #ifdef CONFIG_NUMA
2809 /* Early boot. Slab allocator not functional yet */
2810 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2811 setup_pageset(&boot_pageset[cpu],0);
2812 #else
2813 setup_pageset(zone_pcp(zone,cpu), batch);
2814 #endif
2816 if (zone->present_pages)
2817 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2818 zone->name, zone->present_pages, batch);
2821 __meminit int init_currently_empty_zone(struct zone *zone,
2822 unsigned long zone_start_pfn,
2823 unsigned long size,
2824 enum memmap_context context)
2826 struct pglist_data *pgdat = zone->zone_pgdat;
2827 int ret;
2828 ret = zone_wait_table_init(zone, size);
2829 if (ret)
2830 return ret;
2831 pgdat->nr_zones = zone_idx(zone) + 1;
2833 zone->zone_start_pfn = zone_start_pfn;
2835 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2837 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2839 return 0;
2842 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2844 * Basic iterator support. Return the first range of PFNs for a node
2845 * Note: nid == MAX_NUMNODES returns first region regardless of node
2847 static int __meminit first_active_region_index_in_nid(int nid)
2849 int i;
2851 for (i = 0; i < nr_nodemap_entries; i++)
2852 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2853 return i;
2855 return -1;
2859 * Basic iterator support. Return the next active range of PFNs for a node
2860 * Note: nid == MAX_NUMNODES returns next region regardles of node
2862 static int __meminit next_active_region_index_in_nid(int index, int nid)
2864 for (index = index + 1; index < nr_nodemap_entries; index++)
2865 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2866 return index;
2868 return -1;
2871 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2873 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2874 * Architectures may implement their own version but if add_active_range()
2875 * was used and there are no special requirements, this is a convenient
2876 * alternative
2878 int __meminit early_pfn_to_nid(unsigned long pfn)
2880 int i;
2882 for (i = 0; i < nr_nodemap_entries; i++) {
2883 unsigned long start_pfn = early_node_map[i].start_pfn;
2884 unsigned long end_pfn = early_node_map[i].end_pfn;
2886 if (start_pfn <= pfn && pfn < end_pfn)
2887 return early_node_map[i].nid;
2890 return 0;
2892 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2894 /* Basic iterator support to walk early_node_map[] */
2895 #define for_each_active_range_index_in_nid(i, nid) \
2896 for (i = first_active_region_index_in_nid(nid); i != -1; \
2897 i = next_active_region_index_in_nid(i, nid))
2900 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2901 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2902 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2904 * If an architecture guarantees that all ranges registered with
2905 * add_active_ranges() contain no holes and may be freed, this
2906 * this function may be used instead of calling free_bootmem() manually.
2908 void __init free_bootmem_with_active_regions(int nid,
2909 unsigned long max_low_pfn)
2911 int i;
2913 for_each_active_range_index_in_nid(i, nid) {
2914 unsigned long size_pages = 0;
2915 unsigned long end_pfn = early_node_map[i].end_pfn;
2917 if (early_node_map[i].start_pfn >= max_low_pfn)
2918 continue;
2920 if (end_pfn > max_low_pfn)
2921 end_pfn = max_low_pfn;
2923 size_pages = end_pfn - early_node_map[i].start_pfn;
2924 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2925 PFN_PHYS(early_node_map[i].start_pfn),
2926 size_pages << PAGE_SHIFT);
2931 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2932 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2934 * If an architecture guarantees that all ranges registered with
2935 * add_active_ranges() contain no holes and may be freed, this
2936 * function may be used instead of calling memory_present() manually.
2938 void __init sparse_memory_present_with_active_regions(int nid)
2940 int i;
2942 for_each_active_range_index_in_nid(i, nid)
2943 memory_present(early_node_map[i].nid,
2944 early_node_map[i].start_pfn,
2945 early_node_map[i].end_pfn);
2949 * push_node_boundaries - Push node boundaries to at least the requested boundary
2950 * @nid: The nid of the node to push the boundary for
2951 * @start_pfn: The start pfn of the node
2952 * @end_pfn: The end pfn of the node
2954 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2955 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2956 * be hotplugged even though no physical memory exists. This function allows
2957 * an arch to push out the node boundaries so mem_map is allocated that can
2958 * be used later.
2960 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2961 void __init push_node_boundaries(unsigned int nid,
2962 unsigned long start_pfn, unsigned long end_pfn)
2964 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2965 nid, start_pfn, end_pfn);
2967 /* Initialise the boundary for this node if necessary */
2968 if (node_boundary_end_pfn[nid] == 0)
2969 node_boundary_start_pfn[nid] = -1UL;
2971 /* Update the boundaries */
2972 if (node_boundary_start_pfn[nid] > start_pfn)
2973 node_boundary_start_pfn[nid] = start_pfn;
2974 if (node_boundary_end_pfn[nid] < end_pfn)
2975 node_boundary_end_pfn[nid] = end_pfn;
2978 /* If necessary, push the node boundary out for reserve hotadd */
2979 static void __meminit account_node_boundary(unsigned int nid,
2980 unsigned long *start_pfn, unsigned long *end_pfn)
2982 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2983 nid, *start_pfn, *end_pfn);
2985 /* Return if boundary information has not been provided */
2986 if (node_boundary_end_pfn[nid] == 0)
2987 return;
2989 /* Check the boundaries and update if necessary */
2990 if (node_boundary_start_pfn[nid] < *start_pfn)
2991 *start_pfn = node_boundary_start_pfn[nid];
2992 if (node_boundary_end_pfn[nid] > *end_pfn)
2993 *end_pfn = node_boundary_end_pfn[nid];
2995 #else
2996 void __init push_node_boundaries(unsigned int nid,
2997 unsigned long start_pfn, unsigned long end_pfn) {}
2999 static void __meminit account_node_boundary(unsigned int nid,
3000 unsigned long *start_pfn, unsigned long *end_pfn) {}
3001 #endif
3005 * get_pfn_range_for_nid - Return the start and end page frames for a node
3006 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3007 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3008 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3010 * It returns the start and end page frame of a node based on information
3011 * provided by an arch calling add_active_range(). If called for a node
3012 * with no available memory, a warning is printed and the start and end
3013 * PFNs will be 0.
3015 void __meminit get_pfn_range_for_nid(unsigned int nid,
3016 unsigned long *start_pfn, unsigned long *end_pfn)
3018 int i;
3019 *start_pfn = -1UL;
3020 *end_pfn = 0;
3022 for_each_active_range_index_in_nid(i, nid) {
3023 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3024 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3027 if (*start_pfn == -1UL)
3028 *start_pfn = 0;
3030 /* Push the node boundaries out if requested */
3031 account_node_boundary(nid, start_pfn, end_pfn);
3035 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3036 * assumption is made that zones within a node are ordered in monotonic
3037 * increasing memory addresses so that the "highest" populated zone is used
3039 void __init find_usable_zone_for_movable(void)
3041 int zone_index;
3042 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3043 if (zone_index == ZONE_MOVABLE)
3044 continue;
3046 if (arch_zone_highest_possible_pfn[zone_index] >
3047 arch_zone_lowest_possible_pfn[zone_index])
3048 break;
3051 VM_BUG_ON(zone_index == -1);
3052 movable_zone = zone_index;
3056 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3057 * because it is sized independant of architecture. Unlike the other zones,
3058 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3059 * in each node depending on the size of each node and how evenly kernelcore
3060 * is distributed. This helper function adjusts the zone ranges
3061 * provided by the architecture for a given node by using the end of the
3062 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3063 * zones within a node are in order of monotonic increases memory addresses
3065 void __meminit adjust_zone_range_for_zone_movable(int nid,
3066 unsigned long zone_type,
3067 unsigned long node_start_pfn,
3068 unsigned long node_end_pfn,
3069 unsigned long *zone_start_pfn,
3070 unsigned long *zone_end_pfn)
3072 /* Only adjust if ZONE_MOVABLE is on this node */
3073 if (zone_movable_pfn[nid]) {
3074 /* Size ZONE_MOVABLE */
3075 if (zone_type == ZONE_MOVABLE) {
3076 *zone_start_pfn = zone_movable_pfn[nid];
3077 *zone_end_pfn = min(node_end_pfn,
3078 arch_zone_highest_possible_pfn[movable_zone]);
3080 /* Adjust for ZONE_MOVABLE starting within this range */
3081 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3082 *zone_end_pfn > zone_movable_pfn[nid]) {
3083 *zone_end_pfn = zone_movable_pfn[nid];
3085 /* Check if this whole range is within ZONE_MOVABLE */
3086 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3087 *zone_start_pfn = *zone_end_pfn;
3092 * Return the number of pages a zone spans in a node, including holes
3093 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3095 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3096 unsigned long zone_type,
3097 unsigned long *ignored)
3099 unsigned long node_start_pfn, node_end_pfn;
3100 unsigned long zone_start_pfn, zone_end_pfn;
3102 /* Get the start and end of the node and zone */
3103 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3104 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3105 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3106 adjust_zone_range_for_zone_movable(nid, zone_type,
3107 node_start_pfn, node_end_pfn,
3108 &zone_start_pfn, &zone_end_pfn);
3110 /* Check that this node has pages within the zone's required range */
3111 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3112 return 0;
3114 /* Move the zone boundaries inside the node if necessary */
3115 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3116 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3118 /* Return the spanned pages */
3119 return zone_end_pfn - zone_start_pfn;
3123 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3124 * then all holes in the requested range will be accounted for.
3126 unsigned long __meminit __absent_pages_in_range(int nid,
3127 unsigned long range_start_pfn,
3128 unsigned long range_end_pfn)
3130 int i = 0;
3131 unsigned long prev_end_pfn = 0, hole_pages = 0;
3132 unsigned long start_pfn;
3134 /* Find the end_pfn of the first active range of pfns in the node */
3135 i = first_active_region_index_in_nid(nid);
3136 if (i == -1)
3137 return 0;
3139 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3141 /* Account for ranges before physical memory on this node */
3142 if (early_node_map[i].start_pfn > range_start_pfn)
3143 hole_pages = prev_end_pfn - range_start_pfn;
3145 /* Find all holes for the zone within the node */
3146 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3148 /* No need to continue if prev_end_pfn is outside the zone */
3149 if (prev_end_pfn >= range_end_pfn)
3150 break;
3152 /* Make sure the end of the zone is not within the hole */
3153 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3154 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3156 /* Update the hole size cound and move on */
3157 if (start_pfn > range_start_pfn) {
3158 BUG_ON(prev_end_pfn > start_pfn);
3159 hole_pages += start_pfn - prev_end_pfn;
3161 prev_end_pfn = early_node_map[i].end_pfn;
3164 /* Account for ranges past physical memory on this node */
3165 if (range_end_pfn > prev_end_pfn)
3166 hole_pages += range_end_pfn -
3167 max(range_start_pfn, prev_end_pfn);
3169 return hole_pages;
3173 * absent_pages_in_range - Return number of page frames in holes within a range
3174 * @start_pfn: The start PFN to start searching for holes
3175 * @end_pfn: The end PFN to stop searching for holes
3177 * It returns the number of pages frames in memory holes within a range.
3179 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3180 unsigned long end_pfn)
3182 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3185 /* Return the number of page frames in holes in a zone on a node */
3186 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3187 unsigned long zone_type,
3188 unsigned long *ignored)
3190 unsigned long node_start_pfn, node_end_pfn;
3191 unsigned long zone_start_pfn, zone_end_pfn;
3193 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3194 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3195 node_start_pfn);
3196 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3197 node_end_pfn);
3199 adjust_zone_range_for_zone_movable(nid, zone_type,
3200 node_start_pfn, node_end_pfn,
3201 &zone_start_pfn, &zone_end_pfn);
3202 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3205 #else
3206 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3207 unsigned long zone_type,
3208 unsigned long *zones_size)
3210 return zones_size[zone_type];
3213 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3214 unsigned long zone_type,
3215 unsigned long *zholes_size)
3217 if (!zholes_size)
3218 return 0;
3220 return zholes_size[zone_type];
3223 #endif
3225 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3226 unsigned long *zones_size, unsigned long *zholes_size)
3228 unsigned long realtotalpages, totalpages = 0;
3229 enum zone_type i;
3231 for (i = 0; i < MAX_NR_ZONES; i++)
3232 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3233 zones_size);
3234 pgdat->node_spanned_pages = totalpages;
3236 realtotalpages = totalpages;
3237 for (i = 0; i < MAX_NR_ZONES; i++)
3238 realtotalpages -=
3239 zone_absent_pages_in_node(pgdat->node_id, i,
3240 zholes_size);
3241 pgdat->node_present_pages = realtotalpages;
3242 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3243 realtotalpages);
3246 #ifndef CONFIG_SPARSEMEM
3248 * Calculate the size of the zone->blockflags rounded to an unsigned long
3249 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3250 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3251 * round what is now in bits to nearest long in bits, then return it in
3252 * bytes.
3254 static unsigned long __init usemap_size(unsigned long zonesize)
3256 unsigned long usemapsize;
3258 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3259 usemapsize = usemapsize >> (MAX_ORDER-1);
3260 usemapsize *= NR_PAGEBLOCK_BITS;
3261 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3263 return usemapsize / 8;
3266 static void __init setup_usemap(struct pglist_data *pgdat,
3267 struct zone *zone, unsigned long zonesize)
3269 unsigned long usemapsize = usemap_size(zonesize);
3270 zone->pageblock_flags = NULL;
3271 if (usemapsize) {
3272 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3273 memset(zone->pageblock_flags, 0, usemapsize);
3276 #else
3277 static void inline setup_usemap(struct pglist_data *pgdat,
3278 struct zone *zone, unsigned long zonesize) {}
3279 #endif /* CONFIG_SPARSEMEM */
3282 * Set up the zone data structures:
3283 * - mark all pages reserved
3284 * - mark all memory queues empty
3285 * - clear the memory bitmaps
3287 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3288 unsigned long *zones_size, unsigned long *zholes_size)
3290 enum zone_type j;
3291 int nid = pgdat->node_id;
3292 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3293 int ret;
3295 pgdat_resize_init(pgdat);
3296 pgdat->nr_zones = 0;
3297 init_waitqueue_head(&pgdat->kswapd_wait);
3298 pgdat->kswapd_max_order = 0;
3300 for (j = 0; j < MAX_NR_ZONES; j++) {
3301 struct zone *zone = pgdat->node_zones + j;
3302 unsigned long size, realsize, memmap_pages;
3304 size = zone_spanned_pages_in_node(nid, j, zones_size);
3305 realsize = size - zone_absent_pages_in_node(nid, j,
3306 zholes_size);
3309 * Adjust realsize so that it accounts for how much memory
3310 * is used by this zone for memmap. This affects the watermark
3311 * and per-cpu initialisations
3313 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3314 if (realsize >= memmap_pages) {
3315 realsize -= memmap_pages;
3316 printk(KERN_DEBUG
3317 " %s zone: %lu pages used for memmap\n",
3318 zone_names[j], memmap_pages);
3319 } else
3320 printk(KERN_WARNING
3321 " %s zone: %lu pages exceeds realsize %lu\n",
3322 zone_names[j], memmap_pages, realsize);
3324 /* Account for reserved pages */
3325 if (j == 0 && realsize > dma_reserve) {
3326 realsize -= dma_reserve;
3327 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3328 zone_names[0], dma_reserve);
3331 if (!is_highmem_idx(j))
3332 nr_kernel_pages += realsize;
3333 nr_all_pages += realsize;
3335 zone->spanned_pages = size;
3336 zone->present_pages = realsize;
3337 #ifdef CONFIG_NUMA
3338 zone->node = nid;
3339 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3340 / 100;
3341 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3342 #endif
3343 zone->name = zone_names[j];
3344 spin_lock_init(&zone->lock);
3345 spin_lock_init(&zone->lru_lock);
3346 zone_seqlock_init(zone);
3347 zone->zone_pgdat = pgdat;
3349 zone->prev_priority = DEF_PRIORITY;
3351 zone_pcp_init(zone);
3352 INIT_LIST_HEAD(&zone->active_list);
3353 INIT_LIST_HEAD(&zone->inactive_list);
3354 zone->nr_scan_active = 0;
3355 zone->nr_scan_inactive = 0;
3356 zap_zone_vm_stats(zone);
3357 atomic_set(&zone->reclaim_in_progress, 0);
3358 if (!size)
3359 continue;
3361 setup_usemap(pgdat, zone, size);
3362 ret = init_currently_empty_zone(zone, zone_start_pfn,
3363 size, MEMMAP_EARLY);
3364 BUG_ON(ret);
3365 zone_start_pfn += size;
3369 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3371 /* Skip empty nodes */
3372 if (!pgdat->node_spanned_pages)
3373 return;
3375 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3376 /* ia64 gets its own node_mem_map, before this, without bootmem */
3377 if (!pgdat->node_mem_map) {
3378 unsigned long size, start, end;
3379 struct page *map;
3382 * The zone's endpoints aren't required to be MAX_ORDER
3383 * aligned but the node_mem_map endpoints must be in order
3384 * for the buddy allocator to function correctly.
3386 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3387 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3388 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3389 size = (end - start) * sizeof(struct page);
3390 map = alloc_remap(pgdat->node_id, size);
3391 if (!map)
3392 map = alloc_bootmem_node(pgdat, size);
3393 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3395 #ifndef CONFIG_NEED_MULTIPLE_NODES
3397 * With no DISCONTIG, the global mem_map is just set as node 0's
3399 if (pgdat == NODE_DATA(0)) {
3400 mem_map = NODE_DATA(0)->node_mem_map;
3401 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3402 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3403 mem_map -= pgdat->node_start_pfn;
3404 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3406 #endif
3407 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3410 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3411 unsigned long *zones_size, unsigned long node_start_pfn,
3412 unsigned long *zholes_size)
3414 pgdat->node_id = nid;
3415 pgdat->node_start_pfn = node_start_pfn;
3416 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3418 alloc_node_mem_map(pgdat);
3420 free_area_init_core(pgdat, zones_size, zholes_size);
3423 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3425 #if MAX_NUMNODES > 1
3427 * Figure out the number of possible node ids.
3429 static void __init setup_nr_node_ids(void)
3431 unsigned int node;
3432 unsigned int highest = 0;
3434 for_each_node_mask(node, node_possible_map)
3435 highest = node;
3436 nr_node_ids = highest + 1;
3438 #else
3439 static inline void setup_nr_node_ids(void)
3442 #endif
3445 * add_active_range - Register a range of PFNs backed by physical memory
3446 * @nid: The node ID the range resides on
3447 * @start_pfn: The start PFN of the available physical memory
3448 * @end_pfn: The end PFN of the available physical memory
3450 * These ranges are stored in an early_node_map[] and later used by
3451 * free_area_init_nodes() to calculate zone sizes and holes. If the
3452 * range spans a memory hole, it is up to the architecture to ensure
3453 * the memory is not freed by the bootmem allocator. If possible
3454 * the range being registered will be merged with existing ranges.
3456 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3457 unsigned long end_pfn)
3459 int i;
3461 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3462 "%d entries of %d used\n",
3463 nid, start_pfn, end_pfn,
3464 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3466 /* Merge with existing active regions if possible */
3467 for (i = 0; i < nr_nodemap_entries; i++) {
3468 if (early_node_map[i].nid != nid)
3469 continue;
3471 /* Skip if an existing region covers this new one */
3472 if (start_pfn >= early_node_map[i].start_pfn &&
3473 end_pfn <= early_node_map[i].end_pfn)
3474 return;
3476 /* Merge forward if suitable */
3477 if (start_pfn <= early_node_map[i].end_pfn &&
3478 end_pfn > early_node_map[i].end_pfn) {
3479 early_node_map[i].end_pfn = end_pfn;
3480 return;
3483 /* Merge backward if suitable */
3484 if (start_pfn < early_node_map[i].end_pfn &&
3485 end_pfn >= early_node_map[i].start_pfn) {
3486 early_node_map[i].start_pfn = start_pfn;
3487 return;
3491 /* Check that early_node_map is large enough */
3492 if (i >= MAX_ACTIVE_REGIONS) {
3493 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3494 MAX_ACTIVE_REGIONS);
3495 return;
3498 early_node_map[i].nid = nid;
3499 early_node_map[i].start_pfn = start_pfn;
3500 early_node_map[i].end_pfn = end_pfn;
3501 nr_nodemap_entries = i + 1;
3505 * shrink_active_range - Shrink an existing registered range of PFNs
3506 * @nid: The node id the range is on that should be shrunk
3507 * @old_end_pfn: The old end PFN of the range
3508 * @new_end_pfn: The new PFN of the range
3510 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3511 * The map is kept at the end physical page range that has already been
3512 * registered with add_active_range(). This function allows an arch to shrink
3513 * an existing registered range.
3515 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3516 unsigned long new_end_pfn)
3518 int i;
3520 /* Find the old active region end and shrink */
3521 for_each_active_range_index_in_nid(i, nid)
3522 if (early_node_map[i].end_pfn == old_end_pfn) {
3523 early_node_map[i].end_pfn = new_end_pfn;
3524 break;
3529 * remove_all_active_ranges - Remove all currently registered regions
3531 * During discovery, it may be found that a table like SRAT is invalid
3532 * and an alternative discovery method must be used. This function removes
3533 * all currently registered regions.
3535 void __init remove_all_active_ranges(void)
3537 memset(early_node_map, 0, sizeof(early_node_map));
3538 nr_nodemap_entries = 0;
3539 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3540 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3541 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3542 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3545 /* Compare two active node_active_regions */
3546 static int __init cmp_node_active_region(const void *a, const void *b)
3548 struct node_active_region *arange = (struct node_active_region *)a;
3549 struct node_active_region *brange = (struct node_active_region *)b;
3551 /* Done this way to avoid overflows */
3552 if (arange->start_pfn > brange->start_pfn)
3553 return 1;
3554 if (arange->start_pfn < brange->start_pfn)
3555 return -1;
3557 return 0;
3560 /* sort the node_map by start_pfn */
3561 static void __init sort_node_map(void)
3563 sort(early_node_map, (size_t)nr_nodemap_entries,
3564 sizeof(struct node_active_region),
3565 cmp_node_active_region, NULL);
3568 /* Find the lowest pfn for a node */
3569 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3571 int i;
3572 unsigned long min_pfn = ULONG_MAX;
3574 /* Assuming a sorted map, the first range found has the starting pfn */
3575 for_each_active_range_index_in_nid(i, nid)
3576 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3578 if (min_pfn == ULONG_MAX) {
3579 printk(KERN_WARNING
3580 "Could not find start_pfn for node %lu\n", nid);
3581 return 0;
3584 return min_pfn;
3588 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3590 * It returns the minimum PFN based on information provided via
3591 * add_active_range().
3593 unsigned long __init find_min_pfn_with_active_regions(void)
3595 return find_min_pfn_for_node(MAX_NUMNODES);
3599 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3601 * It returns the maximum PFN based on information provided via
3602 * add_active_range().
3604 unsigned long __init find_max_pfn_with_active_regions(void)
3606 int i;
3607 unsigned long max_pfn = 0;
3609 for (i = 0; i < nr_nodemap_entries; i++)
3610 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3612 return max_pfn;
3616 * early_calculate_totalpages()
3617 * Sum pages in active regions for movable zone.
3618 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3620 unsigned long __init early_calculate_totalpages(void)
3622 int i;
3623 unsigned long totalpages = 0;
3625 for (i = 0; i < nr_nodemap_entries; i++) {
3626 unsigned long pages = early_node_map[i].end_pfn -
3627 early_node_map[i].start_pfn;
3628 totalpages += pages;
3629 if (pages)
3630 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3632 return totalpages;
3636 * Find the PFN the Movable zone begins in each node. Kernel memory
3637 * is spread evenly between nodes as long as the nodes have enough
3638 * memory. When they don't, some nodes will have more kernelcore than
3639 * others
3641 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3643 int i, nid;
3644 unsigned long usable_startpfn;
3645 unsigned long kernelcore_node, kernelcore_remaining;
3646 unsigned long totalpages = early_calculate_totalpages();
3647 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3650 * If movablecore was specified, calculate what size of
3651 * kernelcore that corresponds so that memory usable for
3652 * any allocation type is evenly spread. If both kernelcore
3653 * and movablecore are specified, then the value of kernelcore
3654 * will be used for required_kernelcore if it's greater than
3655 * what movablecore would have allowed.
3657 if (required_movablecore) {
3658 unsigned long corepages;
3661 * Round-up so that ZONE_MOVABLE is at least as large as what
3662 * was requested by the user
3664 required_movablecore =
3665 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3666 corepages = totalpages - required_movablecore;
3668 required_kernelcore = max(required_kernelcore, corepages);
3671 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3672 if (!required_kernelcore)
3673 return;
3675 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3676 find_usable_zone_for_movable();
3677 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3679 restart:
3680 /* Spread kernelcore memory as evenly as possible throughout nodes */
3681 kernelcore_node = required_kernelcore / usable_nodes;
3682 for_each_node_state(nid, N_HIGH_MEMORY) {
3684 * Recalculate kernelcore_node if the division per node
3685 * now exceeds what is necessary to satisfy the requested
3686 * amount of memory for the kernel
3688 if (required_kernelcore < kernelcore_node)
3689 kernelcore_node = required_kernelcore / usable_nodes;
3692 * As the map is walked, we track how much memory is usable
3693 * by the kernel using kernelcore_remaining. When it is
3694 * 0, the rest of the node is usable by ZONE_MOVABLE
3696 kernelcore_remaining = kernelcore_node;
3698 /* Go through each range of PFNs within this node */
3699 for_each_active_range_index_in_nid(i, nid) {
3700 unsigned long start_pfn, end_pfn;
3701 unsigned long size_pages;
3703 start_pfn = max(early_node_map[i].start_pfn,
3704 zone_movable_pfn[nid]);
3705 end_pfn = early_node_map[i].end_pfn;
3706 if (start_pfn >= end_pfn)
3707 continue;
3709 /* Account for what is only usable for kernelcore */
3710 if (start_pfn < usable_startpfn) {
3711 unsigned long kernel_pages;
3712 kernel_pages = min(end_pfn, usable_startpfn)
3713 - start_pfn;
3715 kernelcore_remaining -= min(kernel_pages,
3716 kernelcore_remaining);
3717 required_kernelcore -= min(kernel_pages,
3718 required_kernelcore);
3720 /* Continue if range is now fully accounted */
3721 if (end_pfn <= usable_startpfn) {
3724 * Push zone_movable_pfn to the end so
3725 * that if we have to rebalance
3726 * kernelcore across nodes, we will
3727 * not double account here
3729 zone_movable_pfn[nid] = end_pfn;
3730 continue;
3732 start_pfn = usable_startpfn;
3736 * The usable PFN range for ZONE_MOVABLE is from
3737 * start_pfn->end_pfn. Calculate size_pages as the
3738 * number of pages used as kernelcore
3740 size_pages = end_pfn - start_pfn;
3741 if (size_pages > kernelcore_remaining)
3742 size_pages = kernelcore_remaining;
3743 zone_movable_pfn[nid] = start_pfn + size_pages;
3746 * Some kernelcore has been met, update counts and
3747 * break if the kernelcore for this node has been
3748 * satisified
3750 required_kernelcore -= min(required_kernelcore,
3751 size_pages);
3752 kernelcore_remaining -= size_pages;
3753 if (!kernelcore_remaining)
3754 break;
3759 * If there is still required_kernelcore, we do another pass with one
3760 * less node in the count. This will push zone_movable_pfn[nid] further
3761 * along on the nodes that still have memory until kernelcore is
3762 * satisified
3764 usable_nodes--;
3765 if (usable_nodes && required_kernelcore > usable_nodes)
3766 goto restart;
3768 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3769 for (nid = 0; nid < MAX_NUMNODES; nid++)
3770 zone_movable_pfn[nid] =
3771 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3774 /* Any regular memory on that node ? */
3775 static void check_for_regular_memory(pg_data_t *pgdat)
3777 #ifdef CONFIG_HIGHMEM
3778 enum zone_type zone_type;
3780 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3781 struct zone *zone = &pgdat->node_zones[zone_type];
3782 if (zone->present_pages)
3783 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3785 #endif
3789 * free_area_init_nodes - Initialise all pg_data_t and zone data
3790 * @max_zone_pfn: an array of max PFNs for each zone
3792 * This will call free_area_init_node() for each active node in the system.
3793 * Using the page ranges provided by add_active_range(), the size of each
3794 * zone in each node and their holes is calculated. If the maximum PFN
3795 * between two adjacent zones match, it is assumed that the zone is empty.
3796 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3797 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3798 * starts where the previous one ended. For example, ZONE_DMA32 starts
3799 * at arch_max_dma_pfn.
3801 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3803 unsigned long nid;
3804 enum zone_type i;
3806 /* Sort early_node_map as initialisation assumes it is sorted */
3807 sort_node_map();
3809 /* Record where the zone boundaries are */
3810 memset(arch_zone_lowest_possible_pfn, 0,
3811 sizeof(arch_zone_lowest_possible_pfn));
3812 memset(arch_zone_highest_possible_pfn, 0,
3813 sizeof(arch_zone_highest_possible_pfn));
3814 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3815 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3816 for (i = 1; i < MAX_NR_ZONES; i++) {
3817 if (i == ZONE_MOVABLE)
3818 continue;
3819 arch_zone_lowest_possible_pfn[i] =
3820 arch_zone_highest_possible_pfn[i-1];
3821 arch_zone_highest_possible_pfn[i] =
3822 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3824 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3825 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3827 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3828 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3829 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3831 /* Print out the zone ranges */
3832 printk("Zone PFN ranges:\n");
3833 for (i = 0; i < MAX_NR_ZONES; i++) {
3834 if (i == ZONE_MOVABLE)
3835 continue;
3836 printk(" %-8s %8lu -> %8lu\n",
3837 zone_names[i],
3838 arch_zone_lowest_possible_pfn[i],
3839 arch_zone_highest_possible_pfn[i]);
3842 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3843 printk("Movable zone start PFN for each node\n");
3844 for (i = 0; i < MAX_NUMNODES; i++) {
3845 if (zone_movable_pfn[i])
3846 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3849 /* Print out the early_node_map[] */
3850 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3851 for (i = 0; i < nr_nodemap_entries; i++)
3852 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3853 early_node_map[i].start_pfn,
3854 early_node_map[i].end_pfn);
3856 /* Initialise every node */
3857 setup_nr_node_ids();
3858 for_each_online_node(nid) {
3859 pg_data_t *pgdat = NODE_DATA(nid);
3860 free_area_init_node(nid, pgdat, NULL,
3861 find_min_pfn_for_node(nid), NULL);
3863 /* Any memory on that node */
3864 if (pgdat->node_present_pages)
3865 node_set_state(nid, N_HIGH_MEMORY);
3866 check_for_regular_memory(pgdat);
3870 static int __init cmdline_parse_core(char *p, unsigned long *core)
3872 unsigned long long coremem;
3873 if (!p)
3874 return -EINVAL;
3876 coremem = memparse(p, &p);
3877 *core = coremem >> PAGE_SHIFT;
3879 /* Paranoid check that UL is enough for the coremem value */
3880 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3882 return 0;
3886 * kernelcore=size sets the amount of memory for use for allocations that
3887 * cannot be reclaimed or migrated.
3889 static int __init cmdline_parse_kernelcore(char *p)
3891 return cmdline_parse_core(p, &required_kernelcore);
3895 * movablecore=size sets the amount of memory for use for allocations that
3896 * can be reclaimed or migrated.
3898 static int __init cmdline_parse_movablecore(char *p)
3900 return cmdline_parse_core(p, &required_movablecore);
3903 early_param("kernelcore", cmdline_parse_kernelcore);
3904 early_param("movablecore", cmdline_parse_movablecore);
3906 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3909 * set_dma_reserve - set the specified number of pages reserved in the first zone
3910 * @new_dma_reserve: The number of pages to mark reserved
3912 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3913 * In the DMA zone, a significant percentage may be consumed by kernel image
3914 * and other unfreeable allocations which can skew the watermarks badly. This
3915 * function may optionally be used to account for unfreeable pages in the
3916 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3917 * smaller per-cpu batchsize.
3919 void __init set_dma_reserve(unsigned long new_dma_reserve)
3921 dma_reserve = new_dma_reserve;
3924 #ifndef CONFIG_NEED_MULTIPLE_NODES
3925 static bootmem_data_t contig_bootmem_data;
3926 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3928 EXPORT_SYMBOL(contig_page_data);
3929 #endif
3931 void __init free_area_init(unsigned long *zones_size)
3933 free_area_init_node(0, NODE_DATA(0), zones_size,
3934 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3937 static int page_alloc_cpu_notify(struct notifier_block *self,
3938 unsigned long action, void *hcpu)
3940 int cpu = (unsigned long)hcpu;
3942 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3943 local_irq_disable();
3944 __drain_pages(cpu);
3945 vm_events_fold_cpu(cpu);
3946 local_irq_enable();
3947 refresh_cpu_vm_stats(cpu);
3949 return NOTIFY_OK;
3952 void __init page_alloc_init(void)
3954 hotcpu_notifier(page_alloc_cpu_notify, 0);
3958 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3959 * or min_free_kbytes changes.
3961 static void calculate_totalreserve_pages(void)
3963 struct pglist_data *pgdat;
3964 unsigned long reserve_pages = 0;
3965 enum zone_type i, j;
3967 for_each_online_pgdat(pgdat) {
3968 for (i = 0; i < MAX_NR_ZONES; i++) {
3969 struct zone *zone = pgdat->node_zones + i;
3970 unsigned long max = 0;
3972 /* Find valid and maximum lowmem_reserve in the zone */
3973 for (j = i; j < MAX_NR_ZONES; j++) {
3974 if (zone->lowmem_reserve[j] > max)
3975 max = zone->lowmem_reserve[j];
3978 /* we treat pages_high as reserved pages. */
3979 max += zone->pages_high;
3981 if (max > zone->present_pages)
3982 max = zone->present_pages;
3983 reserve_pages += max;
3986 totalreserve_pages = reserve_pages;
3990 * setup_per_zone_lowmem_reserve - called whenever
3991 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3992 * has a correct pages reserved value, so an adequate number of
3993 * pages are left in the zone after a successful __alloc_pages().
3995 static void setup_per_zone_lowmem_reserve(void)
3997 struct pglist_data *pgdat;
3998 enum zone_type j, idx;
4000 for_each_online_pgdat(pgdat) {
4001 for (j = 0; j < MAX_NR_ZONES; j++) {
4002 struct zone *zone = pgdat->node_zones + j;
4003 unsigned long present_pages = zone->present_pages;
4005 zone->lowmem_reserve[j] = 0;
4007 idx = j;
4008 while (idx) {
4009 struct zone *lower_zone;
4011 idx--;
4013 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4014 sysctl_lowmem_reserve_ratio[idx] = 1;
4016 lower_zone = pgdat->node_zones + idx;
4017 lower_zone->lowmem_reserve[j] = present_pages /
4018 sysctl_lowmem_reserve_ratio[idx];
4019 present_pages += lower_zone->present_pages;
4024 /* update totalreserve_pages */
4025 calculate_totalreserve_pages();
4029 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4031 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4032 * with respect to min_free_kbytes.
4034 void setup_per_zone_pages_min(void)
4036 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4037 unsigned long lowmem_pages = 0;
4038 struct zone *zone;
4039 unsigned long flags;
4041 /* Calculate total number of !ZONE_HIGHMEM pages */
4042 for_each_zone(zone) {
4043 if (!is_highmem(zone))
4044 lowmem_pages += zone->present_pages;
4047 for_each_zone(zone) {
4048 u64 tmp;
4050 spin_lock_irqsave(&zone->lru_lock, flags);
4051 tmp = (u64)pages_min * zone->present_pages;
4052 do_div(tmp, lowmem_pages);
4053 if (is_highmem(zone)) {
4055 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4056 * need highmem pages, so cap pages_min to a small
4057 * value here.
4059 * The (pages_high-pages_low) and (pages_low-pages_min)
4060 * deltas controls asynch page reclaim, and so should
4061 * not be capped for highmem.
4063 int min_pages;
4065 min_pages = zone->present_pages / 1024;
4066 if (min_pages < SWAP_CLUSTER_MAX)
4067 min_pages = SWAP_CLUSTER_MAX;
4068 if (min_pages > 128)
4069 min_pages = 128;
4070 zone->pages_min = min_pages;
4071 } else {
4073 * If it's a lowmem zone, reserve a number of pages
4074 * proportionate to the zone's size.
4076 zone->pages_min = tmp;
4079 zone->pages_low = zone->pages_min + (tmp >> 2);
4080 zone->pages_high = zone->pages_min + (tmp >> 1);
4081 spin_unlock_irqrestore(&zone->lru_lock, flags);
4084 /* update totalreserve_pages */
4085 calculate_totalreserve_pages();
4089 * Initialise min_free_kbytes.
4091 * For small machines we want it small (128k min). For large machines
4092 * we want it large (64MB max). But it is not linear, because network
4093 * bandwidth does not increase linearly with machine size. We use
4095 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4096 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4098 * which yields
4100 * 16MB: 512k
4101 * 32MB: 724k
4102 * 64MB: 1024k
4103 * 128MB: 1448k
4104 * 256MB: 2048k
4105 * 512MB: 2896k
4106 * 1024MB: 4096k
4107 * 2048MB: 5792k
4108 * 4096MB: 8192k
4109 * 8192MB: 11584k
4110 * 16384MB: 16384k
4112 static int __init init_per_zone_pages_min(void)
4114 unsigned long lowmem_kbytes;
4116 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4118 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4119 if (min_free_kbytes < 128)
4120 min_free_kbytes = 128;
4121 if (min_free_kbytes > 65536)
4122 min_free_kbytes = 65536;
4123 setup_per_zone_pages_min();
4124 setup_per_zone_lowmem_reserve();
4125 return 0;
4127 module_init(init_per_zone_pages_min)
4130 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4131 * that we can call two helper functions whenever min_free_kbytes
4132 * changes.
4134 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4135 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4137 proc_dointvec(table, write, file, buffer, length, ppos);
4138 if (write)
4139 setup_per_zone_pages_min();
4140 return 0;
4143 #ifdef CONFIG_NUMA
4144 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4145 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4147 struct zone *zone;
4148 int rc;
4150 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4151 if (rc)
4152 return rc;
4154 for_each_zone(zone)
4155 zone->min_unmapped_pages = (zone->present_pages *
4156 sysctl_min_unmapped_ratio) / 100;
4157 return 0;
4160 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4161 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4163 struct zone *zone;
4164 int rc;
4166 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4167 if (rc)
4168 return rc;
4170 for_each_zone(zone)
4171 zone->min_slab_pages = (zone->present_pages *
4172 sysctl_min_slab_ratio) / 100;
4173 return 0;
4175 #endif
4178 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4179 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4180 * whenever sysctl_lowmem_reserve_ratio changes.
4182 * The reserve ratio obviously has absolutely no relation with the
4183 * pages_min watermarks. The lowmem reserve ratio can only make sense
4184 * if in function of the boot time zone sizes.
4186 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4187 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4189 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4190 setup_per_zone_lowmem_reserve();
4191 return 0;
4195 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4196 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4197 * can have before it gets flushed back to buddy allocator.
4200 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4201 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4203 struct zone *zone;
4204 unsigned int cpu;
4205 int ret;
4207 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4208 if (!write || (ret == -EINVAL))
4209 return ret;
4210 for_each_zone(zone) {
4211 for_each_online_cpu(cpu) {
4212 unsigned long high;
4213 high = zone->present_pages / percpu_pagelist_fraction;
4214 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4217 return 0;
4220 int hashdist = HASHDIST_DEFAULT;
4222 #ifdef CONFIG_NUMA
4223 static int __init set_hashdist(char *str)
4225 if (!str)
4226 return 0;
4227 hashdist = simple_strtoul(str, &str, 0);
4228 return 1;
4230 __setup("hashdist=", set_hashdist);
4231 #endif
4234 * allocate a large system hash table from bootmem
4235 * - it is assumed that the hash table must contain an exact power-of-2
4236 * quantity of entries
4237 * - limit is the number of hash buckets, not the total allocation size
4239 void *__init alloc_large_system_hash(const char *tablename,
4240 unsigned long bucketsize,
4241 unsigned long numentries,
4242 int scale,
4243 int flags,
4244 unsigned int *_hash_shift,
4245 unsigned int *_hash_mask,
4246 unsigned long limit)
4248 unsigned long long max = limit;
4249 unsigned long log2qty, size;
4250 void *table = NULL;
4252 /* allow the kernel cmdline to have a say */
4253 if (!numentries) {
4254 /* round applicable memory size up to nearest megabyte */
4255 numentries = nr_kernel_pages;
4256 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4257 numentries >>= 20 - PAGE_SHIFT;
4258 numentries <<= 20 - PAGE_SHIFT;
4260 /* limit to 1 bucket per 2^scale bytes of low memory */
4261 if (scale > PAGE_SHIFT)
4262 numentries >>= (scale - PAGE_SHIFT);
4263 else
4264 numentries <<= (PAGE_SHIFT - scale);
4266 /* Make sure we've got at least a 0-order allocation.. */
4267 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4268 numentries = PAGE_SIZE / bucketsize;
4270 numentries = roundup_pow_of_two(numentries);
4272 /* limit allocation size to 1/16 total memory by default */
4273 if (max == 0) {
4274 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4275 do_div(max, bucketsize);
4278 if (numentries > max)
4279 numentries = max;
4281 log2qty = ilog2(numentries);
4283 do {
4284 size = bucketsize << log2qty;
4285 if (flags & HASH_EARLY)
4286 table = alloc_bootmem(size);
4287 else if (hashdist)
4288 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4289 else {
4290 unsigned long order;
4291 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4293 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4295 * If bucketsize is not a power-of-two, we may free
4296 * some pages at the end of hash table.
4298 if (table) {
4299 unsigned long alloc_end = (unsigned long)table +
4300 (PAGE_SIZE << order);
4301 unsigned long used = (unsigned long)table +
4302 PAGE_ALIGN(size);
4303 split_page(virt_to_page(table), order);
4304 while (used < alloc_end) {
4305 free_page(used);
4306 used += PAGE_SIZE;
4310 } while (!table && size > PAGE_SIZE && --log2qty);
4312 if (!table)
4313 panic("Failed to allocate %s hash table\n", tablename);
4315 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4316 tablename,
4317 (1U << log2qty),
4318 ilog2(size) - PAGE_SHIFT,
4319 size);
4321 if (_hash_shift)
4322 *_hash_shift = log2qty;
4323 if (_hash_mask)
4324 *_hash_mask = (1 << log2qty) - 1;
4326 return table;
4329 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4330 struct page *pfn_to_page(unsigned long pfn)
4332 return __pfn_to_page(pfn);
4334 unsigned long page_to_pfn(struct page *page)
4336 return __page_to_pfn(page);
4338 EXPORT_SYMBOL(pfn_to_page);
4339 EXPORT_SYMBOL(page_to_pfn);
4340 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4343 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4344 unsigned long pfn)
4346 #ifdef CONFIG_SPARSEMEM
4347 return __pfn_to_section(pfn)->pageblock_flags;
4348 #else
4349 return zone->pageblock_flags;
4350 #endif /* CONFIG_SPARSEMEM */
4353 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4355 #ifdef CONFIG_SPARSEMEM
4356 pfn &= (PAGES_PER_SECTION-1);
4357 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4358 #else
4359 pfn = pfn - zone->zone_start_pfn;
4360 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4361 #endif /* CONFIG_SPARSEMEM */
4365 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4366 * @page: The page within the block of interest
4367 * @start_bitidx: The first bit of interest to retrieve
4368 * @end_bitidx: The last bit of interest
4369 * returns pageblock_bits flags
4371 unsigned long get_pageblock_flags_group(struct page *page,
4372 int start_bitidx, int end_bitidx)
4374 struct zone *zone;
4375 unsigned long *bitmap;
4376 unsigned long pfn, bitidx;
4377 unsigned long flags = 0;
4378 unsigned long value = 1;
4380 zone = page_zone(page);
4381 pfn = page_to_pfn(page);
4382 bitmap = get_pageblock_bitmap(zone, pfn);
4383 bitidx = pfn_to_bitidx(zone, pfn);
4385 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4386 if (test_bit(bitidx + start_bitidx, bitmap))
4387 flags |= value;
4389 return flags;
4393 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4394 * @page: The page within the block of interest
4395 * @start_bitidx: The first bit of interest
4396 * @end_bitidx: The last bit of interest
4397 * @flags: The flags to set
4399 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4400 int start_bitidx, int end_bitidx)
4402 struct zone *zone;
4403 unsigned long *bitmap;
4404 unsigned long pfn, bitidx;
4405 unsigned long value = 1;
4407 zone = page_zone(page);
4408 pfn = page_to_pfn(page);
4409 bitmap = get_pageblock_bitmap(zone, pfn);
4410 bitidx = pfn_to_bitidx(zone, pfn);
4412 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4413 if (flags & value)
4414 __set_bit(bitidx + start_bitidx, bitmap);
4415 else
4416 __clear_bit(bitidx + start_bitidx, bitmap);