2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
85 #include <linux/net_tstamp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
98 #include <linux/of_net.h>
101 #include "fsl_pq_mdio.h"
103 #define TX_TIMEOUT (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
107 const char gfar_driver_name
[] = "Gianfar Ethernet";
108 const char gfar_driver_version
[] = "1.3";
110 static int gfar_enet_open(struct net_device
*dev
);
111 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
112 static void gfar_reset_task(struct work_struct
*work
);
113 static void gfar_timeout(struct net_device
*dev
);
114 static int gfar_close(struct net_device
*dev
);
115 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
117 struct sk_buff
*skb
);
118 static int gfar_set_mac_address(struct net_device
*dev
);
119 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
120 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
121 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
122 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
123 static void adjust_link(struct net_device
*dev
);
124 static void init_registers(struct net_device
*dev
);
125 static int init_phy(struct net_device
*dev
);
126 static int gfar_probe(struct platform_device
*ofdev
);
127 static int gfar_remove(struct platform_device
*ofdev
);
128 static void free_skb_resources(struct gfar_private
*priv
);
129 static void gfar_set_multi(struct net_device
*dev
);
130 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
131 static void gfar_configure_serdes(struct net_device
*dev
);
132 static int gfar_poll(struct napi_struct
*napi
, int budget
);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device
*dev
);
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
138 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
140 static void gfar_vlan_rx_register(struct net_device
*netdev
,
141 struct vlan_group
*grp
);
142 void gfar_halt(struct net_device
*dev
);
143 static void gfar_halt_nodisable(struct net_device
*dev
);
144 void gfar_start(struct net_device
*dev
);
145 static void gfar_clear_exact_match(struct net_device
*dev
);
146 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
148 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
161 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
162 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
163 lstatus
|= BD_LFLAG(RXBD_WRAP
);
167 bdp
->lstatus
= lstatus
;
170 static int gfar_init_bds(struct net_device
*ndev
)
172 struct gfar_private
*priv
= netdev_priv(ndev
);
173 struct gfar_priv_tx_q
*tx_queue
= NULL
;
174 struct gfar_priv_rx_q
*rx_queue
= NULL
;
179 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
180 tx_queue
= priv
->tx_queue
[i
];
181 /* Initialize some variables in our dev structure */
182 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
183 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
184 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
185 tx_queue
->skb_curtx
= 0;
186 tx_queue
->skb_dirtytx
= 0;
188 /* Initialize Transmit Descriptor Ring */
189 txbdp
= tx_queue
->tx_bd_base
;
190 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
196 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp
->status
|= TXBD_WRAP
;
201 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
202 rx_queue
= priv
->rx_queue
[i
];
203 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
204 rx_queue
->skb_currx
= 0;
205 rxbdp
= rx_queue
->rx_bd_base
;
207 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
208 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
211 gfar_init_rxbdp(rx_queue
, rxbdp
,
214 skb
= gfar_new_skb(ndev
);
216 pr_err("%s: Can't allocate RX buffers\n",
218 goto err_rxalloc_fail
;
220 rx_queue
->rx_skbuff
[j
] = skb
;
222 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
233 free_skb_resources(priv
);
237 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
242 struct gfar_private
*priv
= netdev_priv(ndev
);
243 struct device
*dev
= &priv
->ofdev
->dev
;
244 struct gfar_priv_tx_q
*tx_queue
= NULL
;
245 struct gfar_priv_rx_q
*rx_queue
= NULL
;
247 priv
->total_tx_ring_size
= 0;
248 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
249 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
251 priv
->total_rx_ring_size
= 0;
252 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
253 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
255 /* Allocate memory for the buffer descriptors */
256 vaddr
= dma_alloc_coherent(dev
,
257 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
258 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
261 if (netif_msg_ifup(priv
))
262 pr_err("%s: Could not allocate buffer descriptors!\n",
267 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
268 tx_queue
= priv
->tx_queue
[i
];
269 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
270 tx_queue
->tx_bd_dma_base
= addr
;
271 tx_queue
->dev
= ndev
;
272 /* enet DMA only understands physical addresses */
273 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
274 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
277 /* Start the rx descriptor ring where the tx ring leaves off */
278 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
279 rx_queue
= priv
->rx_queue
[i
];
280 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
281 rx_queue
->rx_bd_dma_base
= addr
;
282 rx_queue
->dev
= ndev
;
283 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
284 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
287 /* Setup the skbuff rings */
288 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
289 tx_queue
= priv
->tx_queue
[i
];
290 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
291 tx_queue
->tx_ring_size
, GFP_KERNEL
);
292 if (!tx_queue
->tx_skbuff
) {
293 if (netif_msg_ifup(priv
))
294 pr_err("%s: Could not allocate tx_skbuff\n",
299 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
300 tx_queue
->tx_skbuff
[k
] = NULL
;
303 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
304 rx_queue
= priv
->rx_queue
[i
];
305 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
306 rx_queue
->rx_ring_size
, GFP_KERNEL
);
308 if (!rx_queue
->rx_skbuff
) {
309 if (netif_msg_ifup(priv
))
310 pr_err("%s: Could not allocate rx_skbuff\n",
315 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
316 rx_queue
->rx_skbuff
[j
] = NULL
;
319 if (gfar_init_bds(ndev
))
325 free_skb_resources(priv
);
329 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
331 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
335 baddr
= ®s
->tbase0
;
336 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
337 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
341 baddr
= ®s
->rbase0
;
342 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
343 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
348 static void gfar_init_mac(struct net_device
*ndev
)
350 struct gfar_private
*priv
= netdev_priv(ndev
);
351 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
356 /* write the tx/rx base registers */
357 gfar_init_tx_rx_base(priv
);
359 /* Configure the coalescing support */
360 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
362 if (priv
->rx_filer_enable
) {
363 rctrl
|= RCTRL_FILREN
;
364 /* Program the RIR0 reg with the required distribution */
365 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
368 if (priv
->rx_csum_enable
)
369 rctrl
|= RCTRL_CHECKSUMMING
;
371 if (priv
->extended_hash
) {
372 rctrl
|= RCTRL_EXTHASH
;
374 gfar_clear_exact_match(ndev
);
379 rctrl
&= ~RCTRL_PAL_MASK
;
380 rctrl
|= RCTRL_PADDING(priv
->padding
);
383 /* Insert receive time stamps into padding alignment bytes */
384 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
) {
385 rctrl
&= ~RCTRL_PAL_MASK
;
386 rctrl
|= RCTRL_PADDING(8);
390 /* Enable HW time stamping if requested from user space */
391 if (priv
->hwts_rx_en
)
392 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
394 /* keep vlan related bits if it's enabled */
396 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
397 tctrl
|= TCTRL_VLINS
;
400 /* Init rctrl based on our settings */
401 gfar_write(®s
->rctrl
, rctrl
);
403 if (ndev
->features
& NETIF_F_IP_CSUM
)
404 tctrl
|= TCTRL_INIT_CSUM
;
406 tctrl
|= TCTRL_TXSCHED_PRIO
;
408 gfar_write(®s
->tctrl
, tctrl
);
410 /* Set the extraction length and index */
411 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
412 ATTRELI_EI(priv
->rx_stash_index
);
414 gfar_write(®s
->attreli
, attrs
);
416 /* Start with defaults, and add stashing or locking
417 * depending on the approprate variables */
418 attrs
= ATTR_INIT_SETTINGS
;
420 if (priv
->bd_stash_en
)
421 attrs
|= ATTR_BDSTASH
;
423 if (priv
->rx_stash_size
!= 0)
424 attrs
|= ATTR_BUFSTASH
;
426 gfar_write(®s
->attr
, attrs
);
428 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
429 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
430 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
433 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
435 struct gfar_private
*priv
= netdev_priv(dev
);
436 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
437 unsigned long tx_packets
= 0, tx_bytes
= 0;
440 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
441 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
442 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
443 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
446 dev
->stats
.rx_packets
= rx_packets
;
447 dev
->stats
.rx_bytes
= rx_bytes
;
448 dev
->stats
.rx_dropped
= rx_dropped
;
450 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
451 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
452 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
455 dev
->stats
.tx_bytes
= tx_bytes
;
456 dev
->stats
.tx_packets
= tx_packets
;
461 static const struct net_device_ops gfar_netdev_ops
= {
462 .ndo_open
= gfar_enet_open
,
463 .ndo_start_xmit
= gfar_start_xmit
,
464 .ndo_stop
= gfar_close
,
465 .ndo_change_mtu
= gfar_change_mtu
,
466 .ndo_set_multicast_list
= gfar_set_multi
,
467 .ndo_tx_timeout
= gfar_timeout
,
468 .ndo_do_ioctl
= gfar_ioctl
,
469 .ndo_get_stats
= gfar_get_stats
,
470 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
471 .ndo_set_mac_address
= eth_mac_addr
,
472 .ndo_validate_addr
= eth_validate_addr
,
473 #ifdef CONFIG_NET_POLL_CONTROLLER
474 .ndo_poll_controller
= gfar_netpoll
,
478 unsigned int ftp_rqfpr
[MAX_FILER_IDX
+ 1];
479 unsigned int ftp_rqfcr
[MAX_FILER_IDX
+ 1];
481 void lock_rx_qs(struct gfar_private
*priv
)
485 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
486 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
489 void lock_tx_qs(struct gfar_private
*priv
)
493 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
494 spin_lock(&priv
->tx_queue
[i
]->txlock
);
497 void unlock_rx_qs(struct gfar_private
*priv
)
501 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
502 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
505 void unlock_tx_qs(struct gfar_private
*priv
)
509 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
510 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
513 /* Returns 1 if incoming frames use an FCB */
514 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
516 return priv
->vlgrp
|| priv
->rx_csum_enable
||
517 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
);
520 static void free_tx_pointers(struct gfar_private
*priv
)
524 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
525 kfree(priv
->tx_queue
[i
]);
528 static void free_rx_pointers(struct gfar_private
*priv
)
532 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
533 kfree(priv
->rx_queue
[i
]);
536 static void unmap_group_regs(struct gfar_private
*priv
)
540 for (i
= 0; i
< MAXGROUPS
; i
++)
541 if (priv
->gfargrp
[i
].regs
)
542 iounmap(priv
->gfargrp
[i
].regs
);
545 static void disable_napi(struct gfar_private
*priv
)
549 for (i
= 0; i
< priv
->num_grps
; i
++)
550 napi_disable(&priv
->gfargrp
[i
].napi
);
553 static void enable_napi(struct gfar_private
*priv
)
557 for (i
= 0; i
< priv
->num_grps
; i
++)
558 napi_enable(&priv
->gfargrp
[i
].napi
);
561 static int gfar_parse_group(struct device_node
*np
,
562 struct gfar_private
*priv
, const char *model
)
566 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
567 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
570 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
571 irq_of_parse_and_map(np
, 0);
573 /* If we aren't the FEC we have multiple interrupts */
574 if (model
&& strcasecmp(model
, "FEC")) {
575 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
576 irq_of_parse_and_map(np
, 1);
577 priv
->gfargrp
[priv
->num_grps
].interruptError
=
578 irq_of_parse_and_map(np
,2);
579 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
== NO_IRQ
||
580 priv
->gfargrp
[priv
->num_grps
].interruptReceive
== NO_IRQ
||
581 priv
->gfargrp
[priv
->num_grps
].interruptError
== NO_IRQ
)
585 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
586 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
587 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
588 if(priv
->mode
== MQ_MG_MODE
) {
589 queue_mask
= (u32
*)of_get_property(np
,
590 "fsl,rx-bit-map", NULL
);
591 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
592 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
593 queue_mask
= (u32
*)of_get_property(np
,
594 "fsl,tx-bit-map", NULL
);
595 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
596 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
598 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
599 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
606 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
610 const void *mac_addr
;
612 struct net_device
*dev
= NULL
;
613 struct gfar_private
*priv
= NULL
;
614 struct device_node
*np
= ofdev
->dev
.of_node
;
615 struct device_node
*child
= NULL
;
617 const u32
*stash_len
;
618 const u32
*stash_idx
;
619 unsigned int num_tx_qs
, num_rx_qs
;
620 u32
*tx_queues
, *rx_queues
;
622 if (!np
|| !of_device_is_available(np
))
625 /* parse the num of tx and rx queues */
626 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
627 num_tx_qs
= tx_queues
? *tx_queues
: 1;
629 if (num_tx_qs
> MAX_TX_QS
) {
630 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
631 num_tx_qs
, MAX_TX_QS
);
632 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
636 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
637 num_rx_qs
= rx_queues
? *rx_queues
: 1;
639 if (num_rx_qs
> MAX_RX_QS
) {
640 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
641 num_tx_qs
, MAX_TX_QS
);
642 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
646 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
651 priv
= netdev_priv(dev
);
652 priv
->node
= ofdev
->dev
.of_node
;
655 priv
->num_tx_queues
= num_tx_qs
;
656 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
657 priv
->num_rx_queues
= num_rx_qs
;
658 priv
->num_grps
= 0x0;
660 model
= of_get_property(np
, "model", NULL
);
662 for (i
= 0; i
< MAXGROUPS
; i
++)
663 priv
->gfargrp
[i
].regs
= NULL
;
665 /* Parse and initialize group specific information */
666 if (of_device_is_compatible(np
, "fsl,etsec2")) {
667 priv
->mode
= MQ_MG_MODE
;
668 for_each_child_of_node(np
, child
) {
669 err
= gfar_parse_group(child
, priv
, model
);
674 priv
->mode
= SQ_SG_MODE
;
675 err
= gfar_parse_group(np
, priv
, model
);
680 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
681 priv
->tx_queue
[i
] = NULL
;
682 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
683 priv
->rx_queue
[i
] = NULL
;
685 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
686 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
688 if (!priv
->tx_queue
[i
]) {
690 goto tx_alloc_failed
;
692 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
693 priv
->tx_queue
[i
]->qindex
= i
;
694 priv
->tx_queue
[i
]->dev
= dev
;
695 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
698 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
699 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
701 if (!priv
->rx_queue
[i
]) {
703 goto rx_alloc_failed
;
705 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
706 priv
->rx_queue
[i
]->qindex
= i
;
707 priv
->rx_queue
[i
]->dev
= dev
;
708 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
712 stash
= of_get_property(np
, "bd-stash", NULL
);
715 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
716 priv
->bd_stash_en
= 1;
719 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
722 priv
->rx_stash_size
= *stash_len
;
724 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
727 priv
->rx_stash_index
= *stash_idx
;
729 if (stash_len
|| stash_idx
)
730 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
732 mac_addr
= of_get_mac_address(np
);
734 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
736 if (model
&& !strcasecmp(model
, "TSEC"))
738 FSL_GIANFAR_DEV_HAS_GIGABIT
|
739 FSL_GIANFAR_DEV_HAS_COALESCE
|
740 FSL_GIANFAR_DEV_HAS_RMON
|
741 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
742 if (model
&& !strcasecmp(model
, "eTSEC"))
744 FSL_GIANFAR_DEV_HAS_GIGABIT
|
745 FSL_GIANFAR_DEV_HAS_COALESCE
|
746 FSL_GIANFAR_DEV_HAS_RMON
|
747 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
748 FSL_GIANFAR_DEV_HAS_PADDING
|
749 FSL_GIANFAR_DEV_HAS_CSUM
|
750 FSL_GIANFAR_DEV_HAS_VLAN
|
751 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
752 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
753 FSL_GIANFAR_DEV_HAS_TIMER
;
755 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
757 /* We only care about rgmii-id. The rest are autodetected */
758 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
759 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
761 priv
->interface
= PHY_INTERFACE_MODE_MII
;
763 if (of_get_property(np
, "fsl,magic-packet", NULL
))
764 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
766 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
768 /* Find the TBI PHY. If it's not there, we don't support SGMII */
769 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
774 free_rx_pointers(priv
);
776 free_tx_pointers(priv
);
778 unmap_group_regs(priv
);
783 static int gfar_hwtstamp_ioctl(struct net_device
*netdev
,
784 struct ifreq
*ifr
, int cmd
)
786 struct hwtstamp_config config
;
787 struct gfar_private
*priv
= netdev_priv(netdev
);
789 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
792 /* reserved for future extensions */
796 switch (config
.tx_type
) {
797 case HWTSTAMP_TX_OFF
:
798 priv
->hwts_tx_en
= 0;
801 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
803 priv
->hwts_tx_en
= 1;
809 switch (config
.rx_filter
) {
810 case HWTSTAMP_FILTER_NONE
:
811 if (priv
->hwts_rx_en
) {
813 priv
->hwts_rx_en
= 0;
814 startup_gfar(netdev
);
818 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
820 if (!priv
->hwts_rx_en
) {
822 priv
->hwts_rx_en
= 1;
823 startup_gfar(netdev
);
825 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
829 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
836 struct gfar_private
*priv
= netdev_priv(dev
);
838 if (!netif_running(dev
))
841 if (cmd
== SIOCSHWTSTAMP
)
842 return gfar_hwtstamp_ioctl(dev
, rq
, cmd
);
847 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
850 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
852 unsigned int new_bit_map
= 0x0;
853 int mask
= 0x1 << (max_qs
- 1), i
;
854 for (i
= 0; i
< max_qs
; i
++) {
856 new_bit_map
= new_bit_map
+ (1 << i
);
862 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
865 u32 rqfpr
= FPR_FILER_MASK
;
869 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
870 ftp_rqfpr
[rqfar
] = rqfpr
;
871 ftp_rqfcr
[rqfar
] = rqfcr
;
872 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
875 rqfcr
= RQFCR_CMP_NOMATCH
;
876 ftp_rqfpr
[rqfar
] = rqfpr
;
877 ftp_rqfcr
[rqfar
] = rqfcr
;
878 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
881 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
883 ftp_rqfcr
[rqfar
] = rqfcr
;
884 ftp_rqfpr
[rqfar
] = rqfpr
;
885 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
888 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
890 ftp_rqfcr
[rqfar
] = rqfcr
;
891 ftp_rqfpr
[rqfar
] = rqfpr
;
892 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
897 static void gfar_init_filer_table(struct gfar_private
*priv
)
900 u32 rqfar
= MAX_FILER_IDX
;
902 u32 rqfpr
= FPR_FILER_MASK
;
905 rqfcr
= RQFCR_CMP_MATCH
;
906 ftp_rqfcr
[rqfar
] = rqfcr
;
907 ftp_rqfpr
[rqfar
] = rqfpr
;
908 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
910 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
911 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
912 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
913 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
914 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
915 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
917 /* cur_filer_idx indicated the first non-masked rule */
918 priv
->cur_filer_idx
= rqfar
;
920 /* Rest are masked rules */
921 rqfcr
= RQFCR_CMP_NOMATCH
;
922 for (i
= 0; i
< rqfar
; i
++) {
923 ftp_rqfcr
[i
] = rqfcr
;
924 ftp_rqfpr
[i
] = rqfpr
;
925 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
929 static void gfar_detect_errata(struct gfar_private
*priv
)
931 struct device
*dev
= &priv
->ofdev
->dev
;
932 unsigned int pvr
= mfspr(SPRN_PVR
);
933 unsigned int svr
= mfspr(SPRN_SVR
);
934 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
935 unsigned int rev
= svr
& 0xffff;
937 /* MPC8313 Rev 2.0 and higher; All MPC837x */
938 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
939 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
940 priv
->errata
|= GFAR_ERRATA_74
;
942 /* MPC8313 and MPC837x all rev */
943 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
944 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
945 priv
->errata
|= GFAR_ERRATA_76
;
947 /* MPC8313 and MPC837x all rev */
948 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
949 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
950 priv
->errata
|= GFAR_ERRATA_A002
;
952 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
953 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020) ||
954 (pvr
== 0x80210020 && mod
== 0x8030 && rev
== 0x0020))
955 priv
->errata
|= GFAR_ERRATA_12
;
958 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
962 /* Set up the ethernet device structure, private data,
963 * and anything else we need before we start */
964 static int gfar_probe(struct platform_device
*ofdev
)
967 struct net_device
*dev
= NULL
;
968 struct gfar_private
*priv
= NULL
;
969 struct gfar __iomem
*regs
= NULL
;
970 int err
= 0, i
, grp_idx
= 0;
972 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
976 err
= gfar_of_init(ofdev
, &dev
);
981 priv
= netdev_priv(dev
);
984 priv
->node
= ofdev
->dev
.of_node
;
985 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
987 spin_lock_init(&priv
->bflock
);
988 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
990 dev_set_drvdata(&ofdev
->dev
, priv
);
991 regs
= priv
->gfargrp
[0].regs
;
993 gfar_detect_errata(priv
);
995 /* Stop the DMA engine now, in case it was running before */
996 /* (The firmware could have used it, and left it running). */
999 /* Reset MAC layer */
1000 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1002 /* We need to delay at least 3 TX clocks */
1005 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
1006 gfar_write(®s
->maccfg1
, tempval
);
1008 /* Initialize MACCFG2. */
1009 tempval
= MACCFG2_INIT_SETTINGS
;
1010 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1011 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1012 gfar_write(®s
->maccfg2
, tempval
);
1014 /* Initialize ECNTRL */
1015 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1017 /* Set the dev->base_addr to the gfar reg region */
1018 dev
->base_addr
= (unsigned long) regs
;
1020 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1022 /* Fill in the dev structure */
1023 dev
->watchdog_timeo
= TX_TIMEOUT
;
1025 dev
->netdev_ops
= &gfar_netdev_ops
;
1026 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1028 /* Register for napi ...We are registering NAPI for each grp */
1029 for (i
= 0; i
< priv
->num_grps
; i
++)
1030 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
1032 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1033 priv
->rx_csum_enable
= 1;
1034 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
1036 priv
->rx_csum_enable
= 0;
1040 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
1041 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1043 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1044 priv
->extended_hash
= 1;
1045 priv
->hash_width
= 9;
1047 priv
->hash_regs
[0] = ®s
->igaddr0
;
1048 priv
->hash_regs
[1] = ®s
->igaddr1
;
1049 priv
->hash_regs
[2] = ®s
->igaddr2
;
1050 priv
->hash_regs
[3] = ®s
->igaddr3
;
1051 priv
->hash_regs
[4] = ®s
->igaddr4
;
1052 priv
->hash_regs
[5] = ®s
->igaddr5
;
1053 priv
->hash_regs
[6] = ®s
->igaddr6
;
1054 priv
->hash_regs
[7] = ®s
->igaddr7
;
1055 priv
->hash_regs
[8] = ®s
->gaddr0
;
1056 priv
->hash_regs
[9] = ®s
->gaddr1
;
1057 priv
->hash_regs
[10] = ®s
->gaddr2
;
1058 priv
->hash_regs
[11] = ®s
->gaddr3
;
1059 priv
->hash_regs
[12] = ®s
->gaddr4
;
1060 priv
->hash_regs
[13] = ®s
->gaddr5
;
1061 priv
->hash_regs
[14] = ®s
->gaddr6
;
1062 priv
->hash_regs
[15] = ®s
->gaddr7
;
1065 priv
->extended_hash
= 0;
1066 priv
->hash_width
= 8;
1068 priv
->hash_regs
[0] = ®s
->gaddr0
;
1069 priv
->hash_regs
[1] = ®s
->gaddr1
;
1070 priv
->hash_regs
[2] = ®s
->gaddr2
;
1071 priv
->hash_regs
[3] = ®s
->gaddr3
;
1072 priv
->hash_regs
[4] = ®s
->gaddr4
;
1073 priv
->hash_regs
[5] = ®s
->gaddr5
;
1074 priv
->hash_regs
[6] = ®s
->gaddr6
;
1075 priv
->hash_regs
[7] = ®s
->gaddr7
;
1078 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
1079 priv
->padding
= DEFAULT_PADDING
;
1083 if (dev
->features
& NETIF_F_IP_CSUM
||
1084 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1085 dev
->hard_header_len
+= GMAC_FCB_LEN
;
1087 /* Program the isrg regs only if number of grps > 1 */
1088 if (priv
->num_grps
> 1) {
1089 baddr
= ®s
->isrg0
;
1090 for (i
= 0; i
< priv
->num_grps
; i
++) {
1091 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
1092 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
1093 gfar_write(baddr
, isrg
);
1099 /* Need to reverse the bit maps as bit_map's MSB is q0
1100 * but, for_each_set_bit parses from right to left, which
1101 * basically reverses the queue numbers */
1102 for (i
= 0; i
< priv
->num_grps
; i
++) {
1103 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1104 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1105 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1106 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1109 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1110 * also assign queues to groups */
1111 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1112 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1113 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1114 priv
->num_rx_queues
) {
1115 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1116 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1117 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1118 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1120 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1121 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1122 priv
->num_tx_queues
) {
1123 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1124 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1125 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1126 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1128 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1129 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1133 gfar_write(®s
->rqueue
, rqueue
);
1134 gfar_write(®s
->tqueue
, tqueue
);
1136 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1138 /* Initializing some of the rx/tx queue level parameters */
1139 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1140 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1141 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1142 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1143 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1146 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1147 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1148 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1149 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1152 /* enable filer if using multiple RX queues*/
1153 if(priv
->num_rx_queues
> 1)
1154 priv
->rx_filer_enable
= 1;
1155 /* Enable most messages by default */
1156 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1158 /* Carrier starts down, phylib will bring it up */
1159 netif_carrier_off(dev
);
1161 err
= register_netdev(dev
);
1164 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1169 device_init_wakeup(&dev
->dev
,
1170 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1172 /* fill out IRQ number and name fields */
1173 len_devname
= strlen(dev
->name
);
1174 for (i
= 0; i
< priv
->num_grps
; i
++) {
1175 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1177 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1178 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1179 "_g", sizeof("_g"));
1180 priv
->gfargrp
[i
].int_name_tx
[
1181 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1182 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1183 priv
->gfargrp
[i
].int_name_tx
)],
1184 "_tx", sizeof("_tx") + 1);
1186 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1188 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1189 "_g", sizeof("_g"));
1190 priv
->gfargrp
[i
].int_name_rx
[
1191 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1192 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1193 priv
->gfargrp
[i
].int_name_rx
)],
1194 "_rx", sizeof("_rx") + 1);
1196 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1198 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1199 "_g", sizeof("_g"));
1200 priv
->gfargrp
[i
].int_name_er
[strlen(
1201 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1202 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1203 priv
->gfargrp
[i
].int_name_er
)],
1204 "_er", sizeof("_er") + 1);
1206 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1209 /* Initialize the filer table */
1210 gfar_init_filer_table(priv
);
1212 /* Create all the sysfs files */
1213 gfar_init_sysfs(dev
);
1215 /* Print out the device info */
1216 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1218 /* Even more device info helps when determining which kernel */
1219 /* provided which set of benchmarks. */
1220 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1221 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1222 printk(KERN_INFO
"%s: RX BD ring size for Q[%d]: %d\n",
1223 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1224 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1225 printk(KERN_INFO
"%s: TX BD ring size for Q[%d]: %d\n",
1226 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1231 unmap_group_regs(priv
);
1232 free_tx_pointers(priv
);
1233 free_rx_pointers(priv
);
1235 of_node_put(priv
->phy_node
);
1237 of_node_put(priv
->tbi_node
);
1242 static int gfar_remove(struct platform_device
*ofdev
)
1244 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1247 of_node_put(priv
->phy_node
);
1249 of_node_put(priv
->tbi_node
);
1251 dev_set_drvdata(&ofdev
->dev
, NULL
);
1253 unregister_netdev(priv
->ndev
);
1254 unmap_group_regs(priv
);
1255 free_netdev(priv
->ndev
);
1262 static int gfar_suspend(struct device
*dev
)
1264 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1265 struct net_device
*ndev
= priv
->ndev
;
1266 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1267 unsigned long flags
;
1270 int magic_packet
= priv
->wol_en
&&
1271 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1273 netif_device_detach(ndev
);
1275 if (netif_running(ndev
)) {
1277 local_irq_save(flags
);
1281 gfar_halt_nodisable(ndev
);
1283 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1284 tempval
= gfar_read(®s
->maccfg1
);
1286 tempval
&= ~MACCFG1_TX_EN
;
1289 tempval
&= ~MACCFG1_RX_EN
;
1291 gfar_write(®s
->maccfg1
, tempval
);
1295 local_irq_restore(flags
);
1300 /* Enable interrupt on Magic Packet */
1301 gfar_write(®s
->imask
, IMASK_MAG
);
1303 /* Enable Magic Packet mode */
1304 tempval
= gfar_read(®s
->maccfg2
);
1305 tempval
|= MACCFG2_MPEN
;
1306 gfar_write(®s
->maccfg2
, tempval
);
1308 phy_stop(priv
->phydev
);
1315 static int gfar_resume(struct device
*dev
)
1317 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1318 struct net_device
*ndev
= priv
->ndev
;
1319 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1320 unsigned long flags
;
1322 int magic_packet
= priv
->wol_en
&&
1323 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1325 if (!netif_running(ndev
)) {
1326 netif_device_attach(ndev
);
1330 if (!magic_packet
&& priv
->phydev
)
1331 phy_start(priv
->phydev
);
1333 /* Disable Magic Packet mode, in case something
1336 local_irq_save(flags
);
1340 tempval
= gfar_read(®s
->maccfg2
);
1341 tempval
&= ~MACCFG2_MPEN
;
1342 gfar_write(®s
->maccfg2
, tempval
);
1348 local_irq_restore(flags
);
1350 netif_device_attach(ndev
);
1357 static int gfar_restore(struct device
*dev
)
1359 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1360 struct net_device
*ndev
= priv
->ndev
;
1362 if (!netif_running(ndev
))
1365 gfar_init_bds(ndev
);
1366 init_registers(ndev
);
1367 gfar_set_mac_address(ndev
);
1368 gfar_init_mac(ndev
);
1373 priv
->oldduplex
= -1;
1376 phy_start(priv
->phydev
);
1378 netif_device_attach(ndev
);
1384 static struct dev_pm_ops gfar_pm_ops
= {
1385 .suspend
= gfar_suspend
,
1386 .resume
= gfar_resume
,
1387 .freeze
= gfar_suspend
,
1388 .thaw
= gfar_resume
,
1389 .restore
= gfar_restore
,
1392 #define GFAR_PM_OPS (&gfar_pm_ops)
1396 #define GFAR_PM_OPS NULL
1400 /* Reads the controller's registers to determine what interface
1401 * connects it to the PHY.
1403 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1405 struct gfar_private
*priv
= netdev_priv(dev
);
1406 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1409 ecntrl
= gfar_read(®s
->ecntrl
);
1411 if (ecntrl
& ECNTRL_SGMII_MODE
)
1412 return PHY_INTERFACE_MODE_SGMII
;
1414 if (ecntrl
& ECNTRL_TBI_MODE
) {
1415 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1416 return PHY_INTERFACE_MODE_RTBI
;
1418 return PHY_INTERFACE_MODE_TBI
;
1421 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1422 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1423 return PHY_INTERFACE_MODE_RMII
;
1425 phy_interface_t interface
= priv
->interface
;
1428 * This isn't autodetected right now, so it must
1429 * be set by the device tree or platform code.
1431 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1432 return PHY_INTERFACE_MODE_RGMII_ID
;
1434 return PHY_INTERFACE_MODE_RGMII
;
1438 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1439 return PHY_INTERFACE_MODE_GMII
;
1441 return PHY_INTERFACE_MODE_MII
;
1445 /* Initializes driver's PHY state, and attaches to the PHY.
1446 * Returns 0 on success.
1448 static int init_phy(struct net_device
*dev
)
1450 struct gfar_private
*priv
= netdev_priv(dev
);
1451 uint gigabit_support
=
1452 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1453 SUPPORTED_1000baseT_Full
: 0;
1454 phy_interface_t interface
;
1458 priv
->oldduplex
= -1;
1460 interface
= gfar_get_interface(dev
);
1462 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1465 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1467 if (!priv
->phydev
) {
1468 dev_err(&dev
->dev
, "could not attach to PHY\n");
1472 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1473 gfar_configure_serdes(dev
);
1475 /* Remove any features not supported by the controller */
1476 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1477 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1483 * Initialize TBI PHY interface for communicating with the
1484 * SERDES lynx PHY on the chip. We communicate with this PHY
1485 * through the MDIO bus on each controller, treating it as a
1486 * "normal" PHY at the address found in the TBIPA register. We assume
1487 * that the TBIPA register is valid. Either the MDIO bus code will set
1488 * it to a value that doesn't conflict with other PHYs on the bus, or the
1489 * value doesn't matter, as there are no other PHYs on the bus.
1491 static void gfar_configure_serdes(struct net_device
*dev
)
1493 struct gfar_private
*priv
= netdev_priv(dev
);
1494 struct phy_device
*tbiphy
;
1496 if (!priv
->tbi_node
) {
1497 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1498 "device tree specify a tbi-handle\n");
1502 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1504 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1509 * If the link is already up, we must already be ok, and don't need to
1510 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1511 * everything for us? Resetting it takes the link down and requires
1512 * several seconds for it to come back.
1514 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1517 /* Single clk mode, mii mode off(for serdes communication) */
1518 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1520 phy_write(tbiphy
, MII_ADVERTISE
,
1521 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1522 ADVERTISE_1000XPSE_ASYM
);
1524 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1525 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1528 static void init_registers(struct net_device
*dev
)
1530 struct gfar_private
*priv
= netdev_priv(dev
);
1531 struct gfar __iomem
*regs
= NULL
;
1534 for (i
= 0; i
< priv
->num_grps
; i
++) {
1535 regs
= priv
->gfargrp
[i
].regs
;
1537 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1539 /* Initialize IMASK */
1540 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1543 regs
= priv
->gfargrp
[0].regs
;
1544 /* Init hash registers to zero */
1545 gfar_write(®s
->igaddr0
, 0);
1546 gfar_write(®s
->igaddr1
, 0);
1547 gfar_write(®s
->igaddr2
, 0);
1548 gfar_write(®s
->igaddr3
, 0);
1549 gfar_write(®s
->igaddr4
, 0);
1550 gfar_write(®s
->igaddr5
, 0);
1551 gfar_write(®s
->igaddr6
, 0);
1552 gfar_write(®s
->igaddr7
, 0);
1554 gfar_write(®s
->gaddr0
, 0);
1555 gfar_write(®s
->gaddr1
, 0);
1556 gfar_write(®s
->gaddr2
, 0);
1557 gfar_write(®s
->gaddr3
, 0);
1558 gfar_write(®s
->gaddr4
, 0);
1559 gfar_write(®s
->gaddr5
, 0);
1560 gfar_write(®s
->gaddr6
, 0);
1561 gfar_write(®s
->gaddr7
, 0);
1563 /* Zero out the rmon mib registers if it has them */
1564 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1565 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1567 /* Mask off the CAM interrupts */
1568 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1569 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1572 /* Initialize the max receive buffer length */
1573 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1575 /* Initialize the Minimum Frame Length Register */
1576 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1579 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1584 * Normaly TSEC should not hang on GRS commands, so we should
1585 * actually wait for IEVENT_GRSC flag.
1587 if (likely(!gfar_has_errata(priv
, GFAR_ERRATA_A002
)))
1591 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1592 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1593 * and the Rx can be safely reset.
1595 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1597 if ((res
& 0xffff) == (res
>> 16))
1603 /* Halt the receive and transmit queues */
1604 static void gfar_halt_nodisable(struct net_device
*dev
)
1606 struct gfar_private
*priv
= netdev_priv(dev
);
1607 struct gfar __iomem
*regs
= NULL
;
1611 for (i
= 0; i
< priv
->num_grps
; i
++) {
1612 regs
= priv
->gfargrp
[i
].regs
;
1613 /* Mask all interrupts */
1614 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1616 /* Clear all interrupts */
1617 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1620 regs
= priv
->gfargrp
[0].regs
;
1621 /* Stop the DMA, and wait for it to stop */
1622 tempval
= gfar_read(®s
->dmactrl
);
1623 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1624 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1627 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1628 gfar_write(®s
->dmactrl
, tempval
);
1631 ret
= spin_event_timeout(((gfar_read(®s
->ievent
) &
1632 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1633 (IEVENT_GRSC
| IEVENT_GTSC
)), 1000000, 0);
1634 if (!ret
&& !(gfar_read(®s
->ievent
) & IEVENT_GRSC
))
1635 ret
= __gfar_is_rx_idle(priv
);
1640 /* Halt the receive and transmit queues */
1641 void gfar_halt(struct net_device
*dev
)
1643 struct gfar_private
*priv
= netdev_priv(dev
);
1644 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1647 gfar_halt_nodisable(dev
);
1649 /* Disable Rx and Tx */
1650 tempval
= gfar_read(®s
->maccfg1
);
1651 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1652 gfar_write(®s
->maccfg1
, tempval
);
1655 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1657 free_irq(grp
->interruptError
, grp
);
1658 free_irq(grp
->interruptTransmit
, grp
);
1659 free_irq(grp
->interruptReceive
, grp
);
1662 void stop_gfar(struct net_device
*dev
)
1664 struct gfar_private
*priv
= netdev_priv(dev
);
1665 unsigned long flags
;
1668 phy_stop(priv
->phydev
);
1672 local_irq_save(flags
);
1680 local_irq_restore(flags
);
1683 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1684 for (i
= 0; i
< priv
->num_grps
; i
++)
1685 free_grp_irqs(&priv
->gfargrp
[i
]);
1687 for (i
= 0; i
< priv
->num_grps
; i
++)
1688 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1692 free_skb_resources(priv
);
1695 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1697 struct txbd8
*txbdp
;
1698 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1701 txbdp
= tx_queue
->tx_bd_base
;
1703 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1704 if (!tx_queue
->tx_skbuff
[i
])
1707 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1708 txbdp
->length
, DMA_TO_DEVICE
);
1710 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1713 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1714 txbdp
->length
, DMA_TO_DEVICE
);
1717 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1718 tx_queue
->tx_skbuff
[i
] = NULL
;
1720 kfree(tx_queue
->tx_skbuff
);
1723 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1725 struct rxbd8
*rxbdp
;
1726 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1729 rxbdp
= rx_queue
->rx_bd_base
;
1731 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1732 if (rx_queue
->rx_skbuff
[i
]) {
1733 dma_unmap_single(&priv
->ofdev
->dev
,
1734 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1736 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1737 rx_queue
->rx_skbuff
[i
] = NULL
;
1743 kfree(rx_queue
->rx_skbuff
);
1746 /* If there are any tx skbs or rx skbs still around, free them.
1747 * Then free tx_skbuff and rx_skbuff */
1748 static void free_skb_resources(struct gfar_private
*priv
)
1750 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1751 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1754 /* Go through all the buffer descriptors and free their data buffers */
1755 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1756 tx_queue
= priv
->tx_queue
[i
];
1757 if(tx_queue
->tx_skbuff
)
1758 free_skb_tx_queue(tx_queue
);
1761 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1762 rx_queue
= priv
->rx_queue
[i
];
1763 if(rx_queue
->rx_skbuff
)
1764 free_skb_rx_queue(rx_queue
);
1767 dma_free_coherent(&priv
->ofdev
->dev
,
1768 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1769 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1770 priv
->tx_queue
[0]->tx_bd_base
,
1771 priv
->tx_queue
[0]->tx_bd_dma_base
);
1772 skb_queue_purge(&priv
->rx_recycle
);
1775 void gfar_start(struct net_device
*dev
)
1777 struct gfar_private
*priv
= netdev_priv(dev
);
1778 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1782 /* Enable Rx and Tx in MACCFG1 */
1783 tempval
= gfar_read(®s
->maccfg1
);
1784 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1785 gfar_write(®s
->maccfg1
, tempval
);
1787 /* Initialize DMACTRL to have WWR and WOP */
1788 tempval
= gfar_read(®s
->dmactrl
);
1789 tempval
|= DMACTRL_INIT_SETTINGS
;
1790 gfar_write(®s
->dmactrl
, tempval
);
1792 /* Make sure we aren't stopped */
1793 tempval
= gfar_read(®s
->dmactrl
);
1794 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1795 gfar_write(®s
->dmactrl
, tempval
);
1797 for (i
= 0; i
< priv
->num_grps
; i
++) {
1798 regs
= priv
->gfargrp
[i
].regs
;
1799 /* Clear THLT/RHLT, so that the DMA starts polling now */
1800 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1801 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1802 /* Unmask the interrupts we look for */
1803 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1806 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1809 void gfar_configure_coalescing(struct gfar_private
*priv
,
1810 unsigned long tx_mask
, unsigned long rx_mask
)
1812 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1816 /* Backward compatible case ---- even if we enable
1817 * multiple queues, there's only single reg to program
1819 gfar_write(®s
->txic
, 0);
1820 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1821 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1823 gfar_write(®s
->rxic
, 0);
1824 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1825 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1827 if (priv
->mode
== MQ_MG_MODE
) {
1828 baddr
= ®s
->txic0
;
1829 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1830 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1831 gfar_write(baddr
+ i
, 0);
1832 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1836 baddr
= ®s
->rxic0
;
1837 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1838 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1839 gfar_write(baddr
+ i
, 0);
1840 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1846 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1848 struct gfar_private
*priv
= grp
->priv
;
1849 struct net_device
*dev
= priv
->ndev
;
1852 /* If the device has multiple interrupts, register for
1853 * them. Otherwise, only register for the one */
1854 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1855 /* Install our interrupt handlers for Error,
1856 * Transmit, and Receive */
1857 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1858 grp
->int_name_er
,grp
)) < 0) {
1859 if (netif_msg_intr(priv
))
1860 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1861 dev
->name
, grp
->interruptError
);
1866 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1867 0, grp
->int_name_tx
, grp
)) < 0) {
1868 if (netif_msg_intr(priv
))
1869 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1870 dev
->name
, grp
->interruptTransmit
);
1874 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1875 grp
->int_name_rx
, grp
)) < 0) {
1876 if (netif_msg_intr(priv
))
1877 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1878 dev
->name
, grp
->interruptReceive
);
1882 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1883 grp
->int_name_tx
, grp
)) < 0) {
1884 if (netif_msg_intr(priv
))
1885 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1886 dev
->name
, grp
->interruptTransmit
);
1894 free_irq(grp
->interruptTransmit
, grp
);
1896 free_irq(grp
->interruptError
, grp
);
1902 /* Bring the controller up and running */
1903 int startup_gfar(struct net_device
*ndev
)
1905 struct gfar_private
*priv
= netdev_priv(ndev
);
1906 struct gfar __iomem
*regs
= NULL
;
1909 for (i
= 0; i
< priv
->num_grps
; i
++) {
1910 regs
= priv
->gfargrp
[i
].regs
;
1911 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1914 regs
= priv
->gfargrp
[0].regs
;
1915 err
= gfar_alloc_skb_resources(ndev
);
1919 gfar_init_mac(ndev
);
1921 for (i
= 0; i
< priv
->num_grps
; i
++) {
1922 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1924 for (j
= 0; j
< i
; j
++)
1925 free_grp_irqs(&priv
->gfargrp
[j
]);
1930 /* Start the controller */
1933 phy_start(priv
->phydev
);
1935 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1940 free_skb_resources(priv
);
1944 /* Called when something needs to use the ethernet device */
1945 /* Returns 0 for success. */
1946 static int gfar_enet_open(struct net_device
*dev
)
1948 struct gfar_private
*priv
= netdev_priv(dev
);
1953 skb_queue_head_init(&priv
->rx_recycle
);
1955 /* Initialize a bunch of registers */
1956 init_registers(dev
);
1958 gfar_set_mac_address(dev
);
1960 err
= init_phy(dev
);
1967 err
= startup_gfar(dev
);
1973 netif_tx_start_all_queues(dev
);
1975 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1980 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1982 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1984 memset(fcb
, 0, GMAC_FCB_LEN
);
1989 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1993 /* If we're here, it's a IP packet with a TCP or UDP
1994 * payload. We set it to checksum, using a pseudo-header
1997 flags
= TXFCB_DEFAULT
;
1999 /* Tell the controller what the protocol is */
2000 /* And provide the already calculated phcs */
2001 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2003 fcb
->phcs
= udp_hdr(skb
)->check
;
2005 fcb
->phcs
= tcp_hdr(skb
)->check
;
2007 /* l3os is the distance between the start of the
2008 * frame (skb->data) and the start of the IP hdr.
2009 * l4os is the distance between the start of the
2010 * l3 hdr and the l4 hdr */
2011 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
2012 fcb
->l4os
= skb_network_header_len(skb
);
2017 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2019 fcb
->flags
|= TXFCB_VLN
;
2020 fcb
->vlctl
= vlan_tx_tag_get(skb
);
2023 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2024 struct txbd8
*base
, int ring_size
)
2026 struct txbd8
*new_bd
= bdp
+ stride
;
2028 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2031 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2034 return skip_txbd(bdp
, 1, base
, ring_size
);
2037 /* This is called by the kernel when a frame is ready for transmission. */
2038 /* It is pointed to by the dev->hard_start_xmit function pointer */
2039 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2041 struct gfar_private
*priv
= netdev_priv(dev
);
2042 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2043 struct netdev_queue
*txq
;
2044 struct gfar __iomem
*regs
= NULL
;
2045 struct txfcb
*fcb
= NULL
;
2046 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2048 int i
, rq
= 0, do_tstamp
= 0;
2050 unsigned long flags
;
2051 unsigned int nr_frags
, nr_txbds
, length
;
2054 * TOE=1 frames larger than 2500 bytes may see excess delays
2055 * before start of transmission.
2057 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2058 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
2062 ret
= skb_checksum_help(skb
);
2067 rq
= skb
->queue_mapping
;
2068 tx_queue
= priv
->tx_queue
[rq
];
2069 txq
= netdev_get_tx_queue(dev
, rq
);
2070 base
= tx_queue
->tx_bd_base
;
2071 regs
= tx_queue
->grp
->regs
;
2073 /* check if time stamp should be generated */
2074 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
2078 /* make space for additional header when fcb is needed */
2079 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2080 vlan_tx_tag_present(skb
) ||
2081 unlikely(do_tstamp
)) &&
2082 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
2083 struct sk_buff
*skb_new
;
2085 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
2087 dev
->stats
.tx_errors
++;
2089 return NETDEV_TX_OK
;
2095 /* total number of fragments in the SKB */
2096 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2098 /* calculate the required number of TxBDs for this skb */
2099 if (unlikely(do_tstamp
))
2100 nr_txbds
= nr_frags
+ 2;
2102 nr_txbds
= nr_frags
+ 1;
2104 /* check if there is space to queue this packet */
2105 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2106 /* no space, stop the queue */
2107 netif_tx_stop_queue(txq
);
2108 dev
->stats
.tx_fifo_errors
++;
2109 return NETDEV_TX_BUSY
;
2112 /* Update transmit stats */
2113 tx_queue
->stats
.tx_bytes
+= skb
->len
;
2114 tx_queue
->stats
.tx_packets
++;
2116 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2117 lstatus
= txbdp
->lstatus
;
2119 /* Time stamp insertion requires one additional TxBD */
2120 if (unlikely(do_tstamp
))
2121 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2122 tx_queue
->tx_ring_size
);
2124 if (nr_frags
== 0) {
2125 if (unlikely(do_tstamp
))
2126 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2129 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2131 /* Place the fragment addresses and lengths into the TxBDs */
2132 for (i
= 0; i
< nr_frags
; i
++) {
2133 /* Point at the next BD, wrapping as needed */
2134 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2136 length
= skb_shinfo(skb
)->frags
[i
].size
;
2138 lstatus
= txbdp
->lstatus
| length
|
2139 BD_LFLAG(TXBD_READY
);
2141 /* Handle the last BD specially */
2142 if (i
== nr_frags
- 1)
2143 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2145 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
2146 skb_shinfo(skb
)->frags
[i
].page
,
2147 skb_shinfo(skb
)->frags
[i
].page_offset
,
2151 /* set the TxBD length and buffer pointer */
2152 txbdp
->bufPtr
= bufaddr
;
2153 txbdp
->lstatus
= lstatus
;
2156 lstatus
= txbdp_start
->lstatus
;
2159 /* Set up checksumming */
2160 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2161 fcb
= gfar_add_fcb(skb
);
2162 /* as specified by errata */
2163 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_12
)
2164 && ((unsigned long)fcb
% 0x20) > 0x18)) {
2165 __skb_pull(skb
, GMAC_FCB_LEN
);
2166 skb_checksum_help(skb
);
2168 lstatus
|= BD_LFLAG(TXBD_TOE
);
2169 gfar_tx_checksum(skb
, fcb
);
2173 if (vlan_tx_tag_present(skb
)) {
2174 if (unlikely(NULL
== fcb
)) {
2175 fcb
= gfar_add_fcb(skb
);
2176 lstatus
|= BD_LFLAG(TXBD_TOE
);
2179 gfar_tx_vlan(skb
, fcb
);
2182 /* Setup tx hardware time stamping if requested */
2183 if (unlikely(do_tstamp
)) {
2184 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2186 fcb
= gfar_add_fcb(skb
);
2188 lstatus
|= BD_LFLAG(TXBD_TOE
);
2191 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2192 skb_headlen(skb
), DMA_TO_DEVICE
);
2195 * If time stamping is requested one additional TxBD must be set up. The
2196 * first TxBD points to the FCB and must have a data length of
2197 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2198 * the full frame length.
2200 if (unlikely(do_tstamp
)) {
2201 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ GMAC_FCB_LEN
;
2202 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2203 (skb_headlen(skb
) - GMAC_FCB_LEN
);
2204 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2206 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2210 * We can work in parallel with gfar_clean_tx_ring(), except
2211 * when modifying num_txbdfree. Note that we didn't grab the lock
2212 * when we were reading the num_txbdfree and checking for available
2213 * space, that's because outside of this function it can only grow,
2214 * and once we've got needed space, it cannot suddenly disappear.
2216 * The lock also protects us from gfar_error(), which can modify
2217 * regs->tstat and thus retrigger the transfers, which is why we
2218 * also must grab the lock before setting ready bit for the first
2219 * to be transmitted BD.
2221 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2224 * The powerpc-specific eieio() is used, as wmb() has too strong
2225 * semantics (it requires synchronization between cacheable and
2226 * uncacheable mappings, which eieio doesn't provide and which we
2227 * don't need), thus requiring a more expensive sync instruction. At
2228 * some point, the set of architecture-independent barrier functions
2229 * should be expanded to include weaker barriers.
2233 txbdp_start
->lstatus
= lstatus
;
2235 eieio(); /* force lstatus write before tx_skbuff */
2237 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2239 /* Update the current skb pointer to the next entry we will use
2240 * (wrapping if necessary) */
2241 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2242 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2244 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2246 /* reduce TxBD free count */
2247 tx_queue
->num_txbdfree
-= (nr_txbds
);
2249 /* If the next BD still needs to be cleaned up, then the bds
2250 are full. We need to tell the kernel to stop sending us stuff. */
2251 if (!tx_queue
->num_txbdfree
) {
2252 netif_tx_stop_queue(txq
);
2254 dev
->stats
.tx_fifo_errors
++;
2257 /* Tell the DMA to go go go */
2258 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2261 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2263 return NETDEV_TX_OK
;
2266 /* Stops the kernel queue, and halts the controller */
2267 static int gfar_close(struct net_device
*dev
)
2269 struct gfar_private
*priv
= netdev_priv(dev
);
2273 cancel_work_sync(&priv
->reset_task
);
2276 /* Disconnect from the PHY */
2277 phy_disconnect(priv
->phydev
);
2278 priv
->phydev
= NULL
;
2280 netif_tx_stop_all_queues(dev
);
2285 /* Changes the mac address if the controller is not running. */
2286 static int gfar_set_mac_address(struct net_device
*dev
)
2288 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2294 /* Enables and disables VLAN insertion/extraction */
2295 static void gfar_vlan_rx_register(struct net_device
*dev
,
2296 struct vlan_group
*grp
)
2298 struct gfar_private
*priv
= netdev_priv(dev
);
2299 struct gfar __iomem
*regs
= NULL
;
2300 unsigned long flags
;
2303 regs
= priv
->gfargrp
[0].regs
;
2304 local_irq_save(flags
);
2310 /* Enable VLAN tag insertion */
2311 tempval
= gfar_read(®s
->tctrl
);
2312 tempval
|= TCTRL_VLINS
;
2314 gfar_write(®s
->tctrl
, tempval
);
2316 /* Enable VLAN tag extraction */
2317 tempval
= gfar_read(®s
->rctrl
);
2318 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2319 gfar_write(®s
->rctrl
, tempval
);
2321 /* Disable VLAN tag insertion */
2322 tempval
= gfar_read(®s
->tctrl
);
2323 tempval
&= ~TCTRL_VLINS
;
2324 gfar_write(®s
->tctrl
, tempval
);
2326 /* Disable VLAN tag extraction */
2327 tempval
= gfar_read(®s
->rctrl
);
2328 tempval
&= ~RCTRL_VLEX
;
2329 /* If parse is no longer required, then disable parser */
2330 if (tempval
& RCTRL_REQ_PARSER
)
2331 tempval
|= RCTRL_PRSDEP_INIT
;
2333 tempval
&= ~RCTRL_PRSDEP_INIT
;
2334 gfar_write(®s
->rctrl
, tempval
);
2337 gfar_change_mtu(dev
, dev
->mtu
);
2340 local_irq_restore(flags
);
2343 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2345 int tempsize
, tempval
;
2346 struct gfar_private
*priv
= netdev_priv(dev
);
2347 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2348 int oldsize
= priv
->rx_buffer_size
;
2349 int frame_size
= new_mtu
+ ETH_HLEN
;
2352 frame_size
+= VLAN_HLEN
;
2354 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2355 if (netif_msg_drv(priv
))
2356 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2361 if (gfar_uses_fcb(priv
))
2362 frame_size
+= GMAC_FCB_LEN
;
2364 frame_size
+= priv
->padding
;
2367 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2368 INCREMENTAL_BUFFER_SIZE
;
2370 /* Only stop and start the controller if it isn't already
2371 * stopped, and we changed something */
2372 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2375 priv
->rx_buffer_size
= tempsize
;
2379 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2380 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2382 /* If the mtu is larger than the max size for standard
2383 * ethernet frames (ie, a jumbo frame), then set maccfg2
2384 * to allow huge frames, and to check the length */
2385 tempval
= gfar_read(®s
->maccfg2
);
2387 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
||
2388 gfar_has_errata(priv
, GFAR_ERRATA_74
))
2389 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2391 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2393 gfar_write(®s
->maccfg2
, tempval
);
2395 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2401 /* gfar_reset_task gets scheduled when a packet has not been
2402 * transmitted after a set amount of time.
2403 * For now, assume that clearing out all the structures, and
2404 * starting over will fix the problem.
2406 static void gfar_reset_task(struct work_struct
*work
)
2408 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2410 struct net_device
*dev
= priv
->ndev
;
2412 if (dev
->flags
& IFF_UP
) {
2413 netif_tx_stop_all_queues(dev
);
2416 netif_tx_start_all_queues(dev
);
2419 netif_tx_schedule_all(dev
);
2422 static void gfar_timeout(struct net_device
*dev
)
2424 struct gfar_private
*priv
= netdev_priv(dev
);
2426 dev
->stats
.tx_errors
++;
2427 schedule_work(&priv
->reset_task
);
2430 static void gfar_align_skb(struct sk_buff
*skb
)
2432 /* We need the data buffer to be aligned properly. We will reserve
2433 * as many bytes as needed to align the data properly
2435 skb_reserve(skb
, RXBUF_ALIGNMENT
-
2436 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
2439 /* Interrupt Handler for Transmit complete */
2440 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2442 struct net_device
*dev
= tx_queue
->dev
;
2443 struct gfar_private
*priv
= netdev_priv(dev
);
2444 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2445 struct txbd8
*bdp
, *next
= NULL
;
2446 struct txbd8
*lbdp
= NULL
;
2447 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2448 struct sk_buff
*skb
;
2450 int tx_ring_size
= tx_queue
->tx_ring_size
;
2451 int frags
= 0, nr_txbds
= 0;
2457 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2458 bdp
= tx_queue
->dirty_tx
;
2459 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2461 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2462 unsigned long flags
;
2464 frags
= skb_shinfo(skb
)->nr_frags
;
2467 * When time stamping, one additional TxBD must be freed.
2468 * Also, we need to dma_unmap_single() the TxPAL.
2470 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2471 nr_txbds
= frags
+ 2;
2473 nr_txbds
= frags
+ 1;
2475 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2477 lstatus
= lbdp
->lstatus
;
2479 /* Only clean completed frames */
2480 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2481 (lstatus
& BD_LENGTH_MASK
))
2484 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2485 next
= next_txbd(bdp
, base
, tx_ring_size
);
2486 buflen
= next
->length
+ GMAC_FCB_LEN
;
2488 buflen
= bdp
->length
;
2490 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2491 buflen
, DMA_TO_DEVICE
);
2493 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2494 struct skb_shared_hwtstamps shhwtstamps
;
2495 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2496 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2497 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2498 skb_tstamp_tx(skb
, &shhwtstamps
);
2499 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2503 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2504 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2506 for (i
= 0; i
< frags
; i
++) {
2507 dma_unmap_page(&priv
->ofdev
->dev
,
2511 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2512 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2516 * If there's room in the queue (limit it to rx_buffer_size)
2517 * we add this skb back into the pool, if it's the right size
2519 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2520 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2522 gfar_align_skb(skb
);
2523 skb_queue_head(&priv
->rx_recycle
, skb
);
2525 dev_kfree_skb_any(skb
);
2527 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2529 skb_dirtytx
= (skb_dirtytx
+ 1) &
2530 TX_RING_MOD_MASK(tx_ring_size
);
2533 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2534 tx_queue
->num_txbdfree
+= nr_txbds
;
2535 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2538 /* If we freed a buffer, we can restart transmission, if necessary */
2539 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2540 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2542 /* Update dirty indicators */
2543 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2544 tx_queue
->dirty_tx
= bdp
;
2549 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2551 unsigned long flags
;
2553 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2554 if (napi_schedule_prep(&gfargrp
->napi
)) {
2555 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2556 __napi_schedule(&gfargrp
->napi
);
2559 * Clear IEVENT, so interrupts aren't called again
2560 * because of the packets that have already arrived.
2562 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2564 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2568 /* Interrupt Handler for Transmit complete */
2569 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2571 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2575 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2576 struct sk_buff
*skb
)
2578 struct net_device
*dev
= rx_queue
->dev
;
2579 struct gfar_private
*priv
= netdev_priv(dev
);
2582 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2583 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2584 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2587 static struct sk_buff
* gfar_alloc_skb(struct net_device
*dev
)
2589 struct gfar_private
*priv
= netdev_priv(dev
);
2590 struct sk_buff
*skb
= NULL
;
2592 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2596 gfar_align_skb(skb
);
2601 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2603 struct gfar_private
*priv
= netdev_priv(dev
);
2604 struct sk_buff
*skb
= NULL
;
2606 skb
= skb_dequeue(&priv
->rx_recycle
);
2608 skb
= gfar_alloc_skb(dev
);
2613 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2615 struct gfar_private
*priv
= netdev_priv(dev
);
2616 struct net_device_stats
*stats
= &dev
->stats
;
2617 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2619 /* If the packet was truncated, none of the other errors
2621 if (status
& RXBD_TRUNCATED
) {
2622 stats
->rx_length_errors
++;
2628 /* Count the errors, if there were any */
2629 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2630 stats
->rx_length_errors
++;
2632 if (status
& RXBD_LARGE
)
2637 if (status
& RXBD_NONOCTET
) {
2638 stats
->rx_frame_errors
++;
2639 estats
->rx_nonoctet
++;
2641 if (status
& RXBD_CRCERR
) {
2642 estats
->rx_crcerr
++;
2643 stats
->rx_crc_errors
++;
2645 if (status
& RXBD_OVERRUN
) {
2646 estats
->rx_overrun
++;
2647 stats
->rx_crc_errors
++;
2651 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2653 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2657 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2659 /* If valid headers were found, and valid sums
2660 * were verified, then we tell the kernel that no
2661 * checksumming is necessary. Otherwise, it is */
2662 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2663 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2665 skb_checksum_none_assert(skb
);
2669 /* gfar_process_frame() -- handle one incoming packet if skb
2671 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2674 struct gfar_private
*priv
= netdev_priv(dev
);
2675 struct rxfcb
*fcb
= NULL
;
2679 /* fcb is at the beginning if exists */
2680 fcb
= (struct rxfcb
*)skb
->data
;
2682 /* Remove the FCB from the skb */
2683 /* Remove the padded bytes, if there are any */
2685 skb_record_rx_queue(skb
, fcb
->rq
);
2686 skb_pull(skb
, amount_pull
);
2689 /* Get receive timestamp from the skb */
2690 if (priv
->hwts_rx_en
) {
2691 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2692 u64
*ns
= (u64
*) skb
->data
;
2693 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2694 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2698 skb_pull(skb
, priv
->padding
);
2700 if (priv
->rx_csum_enable
)
2701 gfar_rx_checksum(skb
, fcb
);
2703 /* Tell the skb what kind of packet this is */
2704 skb
->protocol
= eth_type_trans(skb
, dev
);
2706 /* Send the packet up the stack */
2707 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2708 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2710 ret
= netif_receive_skb(skb
);
2712 if (NET_RX_DROP
== ret
)
2713 priv
->extra_stats
.kernel_dropped
++;
2718 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2719 * until the budget/quota has been reached. Returns the number
2722 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2724 struct net_device
*dev
= rx_queue
->dev
;
2725 struct rxbd8
*bdp
, *base
;
2726 struct sk_buff
*skb
;
2730 struct gfar_private
*priv
= netdev_priv(dev
);
2732 /* Get the first full descriptor */
2733 bdp
= rx_queue
->cur_rx
;
2734 base
= rx_queue
->rx_bd_base
;
2736 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0);
2738 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2739 struct sk_buff
*newskb
;
2742 /* Add another skb for the future */
2743 newskb
= gfar_new_skb(dev
);
2745 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2747 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2748 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2750 if (unlikely(!(bdp
->status
& RXBD_ERR
) &&
2751 bdp
->length
> priv
->rx_buffer_size
))
2752 bdp
->status
= RXBD_LARGE
;
2754 /* We drop the frame if we failed to allocate a new buffer */
2755 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2756 bdp
->status
& RXBD_ERR
)) {
2757 count_errors(bdp
->status
, dev
);
2759 if (unlikely(!newskb
))
2762 skb_queue_head(&priv
->rx_recycle
, skb
);
2764 /* Increment the number of packets */
2765 rx_queue
->stats
.rx_packets
++;
2769 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2770 /* Remove the FCS from the packet length */
2771 skb_put(skb
, pkt_len
);
2772 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2773 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2774 gfar_process_frame(dev
, skb
, amount_pull
);
2777 if (netif_msg_rx_err(priv
))
2779 "%s: Missing skb!\n", dev
->name
);
2780 rx_queue
->stats
.rx_dropped
++;
2781 priv
->extra_stats
.rx_skbmissing
++;
2786 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2788 /* Setup the new bdp */
2789 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2791 /* Update to the next pointer */
2792 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2794 /* update to point at the next skb */
2795 rx_queue
->skb_currx
=
2796 (rx_queue
->skb_currx
+ 1) &
2797 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2800 /* Update the current rxbd pointer to be the next one */
2801 rx_queue
->cur_rx
= bdp
;
2806 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2808 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2809 struct gfar_priv_grp
, napi
);
2810 struct gfar_private
*priv
= gfargrp
->priv
;
2811 struct gfar __iomem
*regs
= gfargrp
->regs
;
2812 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2813 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2814 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2815 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2816 unsigned long serviced_queues
= 0;
2819 num_queues
= gfargrp
->num_rx_queues
;
2820 budget_per_queue
= budget
/num_queues
;
2822 /* Clear IEVENT, so interrupts aren't called again
2823 * because of the packets that have already arrived */
2824 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2826 while (num_queues
&& left_over_budget
) {
2828 budget_per_queue
= left_over_budget
/num_queues
;
2829 left_over_budget
= 0;
2831 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2832 if (test_bit(i
, &serviced_queues
))
2834 rx_queue
= priv
->rx_queue
[i
];
2835 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2837 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2838 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2840 rx_cleaned
+= rx_cleaned_per_queue
;
2841 if(rx_cleaned_per_queue
< budget_per_queue
) {
2842 left_over_budget
= left_over_budget
+
2843 (budget_per_queue
- rx_cleaned_per_queue
);
2844 set_bit(i
, &serviced_queues
);
2853 if (rx_cleaned
< budget
) {
2854 napi_complete(napi
);
2856 /* Clear the halt bit in RSTAT */
2857 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2859 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2861 /* If we are coalescing interrupts, update the timer */
2862 /* Otherwise, clear it */
2863 gfar_configure_coalescing(priv
,
2864 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2870 #ifdef CONFIG_NET_POLL_CONTROLLER
2872 * Polling 'interrupt' - used by things like netconsole to send skbs
2873 * without having to re-enable interrupts. It's not called while
2874 * the interrupt routine is executing.
2876 static void gfar_netpoll(struct net_device
*dev
)
2878 struct gfar_private
*priv
= netdev_priv(dev
);
2881 /* If the device has multiple interrupts, run tx/rx */
2882 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2883 for (i
= 0; i
< priv
->num_grps
; i
++) {
2884 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2885 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2886 disable_irq(priv
->gfargrp
[i
].interruptError
);
2887 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2889 enable_irq(priv
->gfargrp
[i
].interruptError
);
2890 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2891 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2894 for (i
= 0; i
< priv
->num_grps
; i
++) {
2895 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2896 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2898 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2904 /* The interrupt handler for devices with one interrupt */
2905 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2907 struct gfar_priv_grp
*gfargrp
= grp_id
;
2909 /* Save ievent for future reference */
2910 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2912 /* Check for reception */
2913 if (events
& IEVENT_RX_MASK
)
2914 gfar_receive(irq
, grp_id
);
2916 /* Check for transmit completion */
2917 if (events
& IEVENT_TX_MASK
)
2918 gfar_transmit(irq
, grp_id
);
2920 /* Check for errors */
2921 if (events
& IEVENT_ERR_MASK
)
2922 gfar_error(irq
, grp_id
);
2927 /* Called every time the controller might need to be made
2928 * aware of new link state. The PHY code conveys this
2929 * information through variables in the phydev structure, and this
2930 * function converts those variables into the appropriate
2931 * register values, and can bring down the device if needed.
2933 static void adjust_link(struct net_device
*dev
)
2935 struct gfar_private
*priv
= netdev_priv(dev
);
2936 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2937 unsigned long flags
;
2938 struct phy_device
*phydev
= priv
->phydev
;
2941 local_irq_save(flags
);
2945 u32 tempval
= gfar_read(®s
->maccfg2
);
2946 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2948 /* Now we make sure that we can be in full duplex mode.
2949 * If not, we operate in half-duplex mode. */
2950 if (phydev
->duplex
!= priv
->oldduplex
) {
2952 if (!(phydev
->duplex
))
2953 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2955 tempval
|= MACCFG2_FULL_DUPLEX
;
2957 priv
->oldduplex
= phydev
->duplex
;
2960 if (phydev
->speed
!= priv
->oldspeed
) {
2962 switch (phydev
->speed
) {
2965 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2967 ecntrl
&= ~(ECNTRL_R100
);
2972 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2974 /* Reduced mode distinguishes
2975 * between 10 and 100 */
2976 if (phydev
->speed
== SPEED_100
)
2977 ecntrl
|= ECNTRL_R100
;
2979 ecntrl
&= ~(ECNTRL_R100
);
2982 if (netif_msg_link(priv
))
2984 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2985 dev
->name
, phydev
->speed
);
2989 priv
->oldspeed
= phydev
->speed
;
2992 gfar_write(®s
->maccfg2
, tempval
);
2993 gfar_write(®s
->ecntrl
, ecntrl
);
2995 if (!priv
->oldlink
) {
2999 } else if (priv
->oldlink
) {
3003 priv
->oldduplex
= -1;
3006 if (new_state
&& netif_msg_link(priv
))
3007 phy_print_status(phydev
);
3009 local_irq_restore(flags
);
3012 /* Update the hash table based on the current list of multicast
3013 * addresses we subscribe to. Also, change the promiscuity of
3014 * the device based on the flags (this function is called
3015 * whenever dev->flags is changed */
3016 static void gfar_set_multi(struct net_device
*dev
)
3018 struct netdev_hw_addr
*ha
;
3019 struct gfar_private
*priv
= netdev_priv(dev
);
3020 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3023 if (dev
->flags
& IFF_PROMISC
) {
3024 /* Set RCTRL to PROM */
3025 tempval
= gfar_read(®s
->rctrl
);
3026 tempval
|= RCTRL_PROM
;
3027 gfar_write(®s
->rctrl
, tempval
);
3029 /* Set RCTRL to not PROM */
3030 tempval
= gfar_read(®s
->rctrl
);
3031 tempval
&= ~(RCTRL_PROM
);
3032 gfar_write(®s
->rctrl
, tempval
);
3035 if (dev
->flags
& IFF_ALLMULTI
) {
3036 /* Set the hash to rx all multicast frames */
3037 gfar_write(®s
->igaddr0
, 0xffffffff);
3038 gfar_write(®s
->igaddr1
, 0xffffffff);
3039 gfar_write(®s
->igaddr2
, 0xffffffff);
3040 gfar_write(®s
->igaddr3
, 0xffffffff);
3041 gfar_write(®s
->igaddr4
, 0xffffffff);
3042 gfar_write(®s
->igaddr5
, 0xffffffff);
3043 gfar_write(®s
->igaddr6
, 0xffffffff);
3044 gfar_write(®s
->igaddr7
, 0xffffffff);
3045 gfar_write(®s
->gaddr0
, 0xffffffff);
3046 gfar_write(®s
->gaddr1
, 0xffffffff);
3047 gfar_write(®s
->gaddr2
, 0xffffffff);
3048 gfar_write(®s
->gaddr3
, 0xffffffff);
3049 gfar_write(®s
->gaddr4
, 0xffffffff);
3050 gfar_write(®s
->gaddr5
, 0xffffffff);
3051 gfar_write(®s
->gaddr6
, 0xffffffff);
3052 gfar_write(®s
->gaddr7
, 0xffffffff);
3057 /* zero out the hash */
3058 gfar_write(®s
->igaddr0
, 0x0);
3059 gfar_write(®s
->igaddr1
, 0x0);
3060 gfar_write(®s
->igaddr2
, 0x0);
3061 gfar_write(®s
->igaddr3
, 0x0);
3062 gfar_write(®s
->igaddr4
, 0x0);
3063 gfar_write(®s
->igaddr5
, 0x0);
3064 gfar_write(®s
->igaddr6
, 0x0);
3065 gfar_write(®s
->igaddr7
, 0x0);
3066 gfar_write(®s
->gaddr0
, 0x0);
3067 gfar_write(®s
->gaddr1
, 0x0);
3068 gfar_write(®s
->gaddr2
, 0x0);
3069 gfar_write(®s
->gaddr3
, 0x0);
3070 gfar_write(®s
->gaddr4
, 0x0);
3071 gfar_write(®s
->gaddr5
, 0x0);
3072 gfar_write(®s
->gaddr6
, 0x0);
3073 gfar_write(®s
->gaddr7
, 0x0);
3075 /* If we have extended hash tables, we need to
3076 * clear the exact match registers to prepare for
3078 if (priv
->extended_hash
) {
3079 em_num
= GFAR_EM_NUM
+ 1;
3080 gfar_clear_exact_match(dev
);
3087 if (netdev_mc_empty(dev
))
3090 /* Parse the list, and set the appropriate bits */
3091 netdev_for_each_mc_addr(ha
, dev
) {
3093 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3096 gfar_set_hash_for_addr(dev
, ha
->addr
);
3102 /* Clears each of the exact match registers to zero, so they
3103 * don't interfere with normal reception */
3104 static void gfar_clear_exact_match(struct net_device
*dev
)
3107 static const u8 zero_arr
[MAC_ADDR_LEN
] = {0, 0, 0, 0, 0, 0};
3109 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
3110 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3113 /* Set the appropriate hash bit for the given addr */
3114 /* The algorithm works like so:
3115 * 1) Take the Destination Address (ie the multicast address), and
3116 * do a CRC on it (little endian), and reverse the bits of the
3118 * 2) Use the 8 most significant bits as a hash into a 256-entry
3119 * table. The table is controlled through 8 32-bit registers:
3120 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3121 * gaddr7. This means that the 3 most significant bits in the
3122 * hash index which gaddr register to use, and the 5 other bits
3123 * indicate which bit (assuming an IBM numbering scheme, which
3124 * for PowerPC (tm) is usually the case) in the register holds
3126 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3129 struct gfar_private
*priv
= netdev_priv(dev
);
3130 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
3131 int width
= priv
->hash_width
;
3132 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3133 u8 whichreg
= result
>> (32 - width
+ 5);
3134 u32 value
= (1 << (31-whichbit
));
3136 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3138 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3142 /* There are multiple MAC Address register pairs on some controllers
3143 * This function sets the numth pair to a given address
3145 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3148 struct gfar_private
*priv
= netdev_priv(dev
);
3149 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3151 char tmpbuf
[MAC_ADDR_LEN
];
3153 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3157 /* Now copy it into the mac registers backwards, cuz */
3158 /* little endian is silly */
3159 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
3160 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
3162 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
3164 tempval
= *((u32
*) (tmpbuf
+ 4));
3166 gfar_write(macptr
+1, tempval
);
3169 /* GFAR error interrupt handler */
3170 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3172 struct gfar_priv_grp
*gfargrp
= grp_id
;
3173 struct gfar __iomem
*regs
= gfargrp
->regs
;
3174 struct gfar_private
*priv
= gfargrp
->priv
;
3175 struct net_device
*dev
= priv
->ndev
;
3177 /* Save ievent for future reference */
3178 u32 events
= gfar_read(®s
->ievent
);
3181 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3183 /* Magic Packet is not an error. */
3184 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3185 (events
& IEVENT_MAG
))
3186 events
&= ~IEVENT_MAG
;
3189 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3190 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3191 dev
->name
, events
, gfar_read(®s
->imask
));
3193 /* Update the error counters */
3194 if (events
& IEVENT_TXE
) {
3195 dev
->stats
.tx_errors
++;
3197 if (events
& IEVENT_LC
)
3198 dev
->stats
.tx_window_errors
++;
3199 if (events
& IEVENT_CRL
)
3200 dev
->stats
.tx_aborted_errors
++;
3201 if (events
& IEVENT_XFUN
) {
3202 unsigned long flags
;
3204 if (netif_msg_tx_err(priv
))
3205 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
3206 "packet dropped.\n", dev
->name
);
3207 dev
->stats
.tx_dropped
++;
3208 priv
->extra_stats
.tx_underrun
++;
3210 local_irq_save(flags
);
3213 /* Reactivate the Tx Queues */
3214 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3217 local_irq_restore(flags
);
3219 if (netif_msg_tx_err(priv
))
3220 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3222 if (events
& IEVENT_BSY
) {
3223 dev
->stats
.rx_errors
++;
3224 priv
->extra_stats
.rx_bsy
++;
3226 gfar_receive(irq
, grp_id
);
3228 if (netif_msg_rx_err(priv
))
3229 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3230 dev
->name
, gfar_read(®s
->rstat
));
3232 if (events
& IEVENT_BABR
) {
3233 dev
->stats
.rx_errors
++;
3234 priv
->extra_stats
.rx_babr
++;
3236 if (netif_msg_rx_err(priv
))
3237 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3239 if (events
& IEVENT_EBERR
) {
3240 priv
->extra_stats
.eberr
++;
3241 if (netif_msg_rx_err(priv
))
3242 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3244 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3245 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3247 if (events
& IEVENT_BABT
) {
3248 priv
->extra_stats
.tx_babt
++;
3249 if (netif_msg_tx_err(priv
))
3250 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3255 static struct of_device_id gfar_match
[] =
3259 .compatible
= "gianfar",
3262 .compatible
= "fsl,etsec2",
3266 MODULE_DEVICE_TABLE(of
, gfar_match
);
3268 /* Structure for a device driver */
3269 static struct platform_driver gfar_driver
= {
3271 .name
= "fsl-gianfar",
3272 .owner
= THIS_MODULE
,
3274 .of_match_table
= gfar_match
,
3276 .probe
= gfar_probe
,
3277 .remove
= gfar_remove
,
3280 static int __init
gfar_init(void)
3282 return platform_driver_register(&gfar_driver
);
3285 static void __exit
gfar_exit(void)
3287 platform_driver_unregister(&gfar_driver
);
3290 module_init(gfar_init
);
3291 module_exit(gfar_exit
);