1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
7 #include <linux/mm_types.h>
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct
*vma
,
12 unsigned long address
, pte_t
*ptep
,
13 pte_t entry
, int dirty
);
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
18 unsigned long address
, pmd_t
*pmdp
,
19 pmd_t entry
, int dirty
);
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
24 unsigned long address
,
32 set_pte_at(vma
->vm_mm
, address
, ptep
, pte_mkold(pte
));
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
40 unsigned long address
,
48 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd_mkold(pmd
));
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
53 unsigned long address
,
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
64 unsigned long address
, pte_t
*ptep
);
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
69 unsigned long address
, pmd_t
*pmdp
);
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
74 unsigned long address
,
78 pte_clear(mm
, address
, ptep
);
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t
pmdp_get_and_clear(struct mm_struct
*mm
,
86 unsigned long address
,
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
98 unsigned long address
, pte_t
*ptep
,
102 pte
= ptep_get_and_clear(mm
, address
, ptep
);
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct
*mm
,
114 unsigned long address
,
118 pte_clear(mm
, address
, ptep
);
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
124 unsigned long address
,
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t
pmdp_clear_flush(struct vm_area_struct
*vma
,
130 unsigned long address
,
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
136 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
138 pte_t old_pte
= *ptep
;
139 set_pte_at(mm
, address
, ptep
, pte_wrprotect(old_pte
));
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
146 unsigned long address
, pmd_t
*pmdp
)
148 pmd_t old_pmd
= *pmdp
;
149 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(old_pmd
));
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
153 unsigned long address
, pmd_t
*pmdp
)
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern void pmdp_splitting_flush(struct vm_area_struct
*vma
,
162 unsigned long address
, pmd_t
*pmdp
);
165 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166 extern void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pgtable_t pgtable
);
169 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170 extern pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
);
173 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
174 extern void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
178 #ifndef __HAVE_ARCH_PTE_SAME
179 static inline int pte_same(pte_t pte_a
, pte_t pte_b
)
181 return pte_val(pte_a
) == pte_val(pte_b
);
185 #ifndef __HAVE_ARCH_PMD_SAME
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
187 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
189 return pmd_val(pmd_a
) == pmd_val(pmd_b
);
191 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
192 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
200 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
201 #define page_test_and_clear_dirty(pfn, mapped) (0)
204 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
205 #define pte_maybe_dirty(pte) pte_dirty(pte)
207 #define pte_maybe_dirty(pte) (1)
210 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
211 #define page_test_and_clear_young(pfn) (0)
214 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
215 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
218 #ifndef __HAVE_ARCH_MOVE_PTE
219 #define move_pte(pte, prot, old_addr, new_addr) (pte)
222 #ifndef pte_accessible
223 # define pte_accessible(pte) ((void)(pte),1)
226 #ifndef flush_tlb_fix_spurious_fault
227 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
230 #ifndef pgprot_noncached
231 #define pgprot_noncached(prot) (prot)
234 #ifndef pgprot_writecombine
235 #define pgprot_writecombine pgprot_noncached
239 * When walking page tables, get the address of the next boundary,
240 * or the end address of the range if that comes earlier. Although no
241 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
244 #define pgd_addr_end(addr, end) \
245 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
246 (__boundary - 1 < (end) - 1)? __boundary: (end); \
250 #define pud_addr_end(addr, end) \
251 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
252 (__boundary - 1 < (end) - 1)? __boundary: (end); \
257 #define pmd_addr_end(addr, end) \
258 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
259 (__boundary - 1 < (end) - 1)? __boundary: (end); \
264 * When walking page tables, we usually want to skip any p?d_none entries;
265 * and any p?d_bad entries - reporting the error before resetting to none.
266 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
268 void pgd_clear_bad(pgd_t
*);
269 void pud_clear_bad(pud_t
*);
270 void pmd_clear_bad(pmd_t
*);
272 static inline int pgd_none_or_clear_bad(pgd_t
*pgd
)
276 if (unlikely(pgd_bad(*pgd
))) {
283 static inline int pud_none_or_clear_bad(pud_t
*pud
)
287 if (unlikely(pud_bad(*pud
))) {
294 static inline int pmd_none_or_clear_bad(pmd_t
*pmd
)
298 if (unlikely(pmd_bad(*pmd
))) {
305 static inline pte_t
__ptep_modify_prot_start(struct mm_struct
*mm
,
310 * Get the current pte state, but zero it out to make it
311 * non-present, preventing the hardware from asynchronously
314 return ptep_get_and_clear(mm
, addr
, ptep
);
317 static inline void __ptep_modify_prot_commit(struct mm_struct
*mm
,
319 pte_t
*ptep
, pte_t pte
)
322 * The pte is non-present, so there's no hardware state to
325 set_pte_at(mm
, addr
, ptep
, pte
);
328 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
330 * Start a pte protection read-modify-write transaction, which
331 * protects against asynchronous hardware modifications to the pte.
332 * The intention is not to prevent the hardware from making pte
333 * updates, but to prevent any updates it may make from being lost.
335 * This does not protect against other software modifications of the
336 * pte; the appropriate pte lock must be held over the transation.
338 * Note that this interface is intended to be batchable, meaning that
339 * ptep_modify_prot_commit may not actually update the pte, but merely
340 * queue the update to be done at some later time. The update must be
341 * actually committed before the pte lock is released, however.
343 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
347 return __ptep_modify_prot_start(mm
, addr
, ptep
);
351 * Commit an update to a pte, leaving any hardware-controlled bits in
352 * the PTE unmodified.
354 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
356 pte_t
*ptep
, pte_t pte
)
358 __ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
360 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
361 #endif /* CONFIG_MMU */
364 * A facility to provide lazy MMU batching. This allows PTE updates and
365 * page invalidations to be delayed until a call to leave lazy MMU mode
366 * is issued. Some architectures may benefit from doing this, and it is
367 * beneficial for both shadow and direct mode hypervisors, which may batch
368 * the PTE updates which happen during this window. Note that using this
369 * interface requires that read hazards be removed from the code. A read
370 * hazard could result in the direct mode hypervisor case, since the actual
371 * write to the page tables may not yet have taken place, so reads though
372 * a raw PTE pointer after it has been modified are not guaranteed to be
373 * up to date. This mode can only be entered and left under the protection of
374 * the page table locks for all page tables which may be modified. In the UP
375 * case, this is required so that preemption is disabled, and in the SMP case,
376 * it must synchronize the delayed page table writes properly on other CPUs.
378 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
379 #define arch_enter_lazy_mmu_mode() do {} while (0)
380 #define arch_leave_lazy_mmu_mode() do {} while (0)
381 #define arch_flush_lazy_mmu_mode() do {} while (0)
385 * A facility to provide batching of the reload of page tables and
386 * other process state with the actual context switch code for
387 * paravirtualized guests. By convention, only one of the batched
388 * update (lazy) modes (CPU, MMU) should be active at any given time,
389 * entry should never be nested, and entry and exits should always be
390 * paired. This is for sanity of maintaining and reasoning about the
391 * kernel code. In this case, the exit (end of the context switch) is
392 * in architecture-specific code, and so doesn't need a generic
395 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
396 #define arch_start_context_switch(prev) do {} while (0)
399 #ifndef __HAVE_PFNMAP_TRACKING
401 * Interfaces that can be used by architecture code to keep track of
402 * memory type of pfn mappings specified by the remap_pfn_range,
407 * track_pfn_remap is called when a _new_ pfn mapping is being established
408 * by remap_pfn_range() for physical range indicated by pfn and size.
410 static inline int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
411 unsigned long pfn
, unsigned long addr
,
418 * track_pfn_insert is called when a _new_ single pfn is established
419 * by vm_insert_pfn().
421 static inline int track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
428 * track_pfn_copy is called when vma that is covering the pfnmap gets
429 * copied through copy_page_range().
431 static inline int track_pfn_copy(struct vm_area_struct
*vma
)
437 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
438 * untrack can be called for a specific region indicated by pfn and size or
439 * can be for the entire vma (in which case pfn, size are zero).
441 static inline void untrack_pfn(struct vm_area_struct
*vma
,
442 unsigned long pfn
, unsigned long size
)
446 extern int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
447 unsigned long pfn
, unsigned long addr
,
449 extern int track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
451 extern int track_pfn_copy(struct vm_area_struct
*vma
);
452 extern void untrack_pfn(struct vm_area_struct
*vma
, unsigned long pfn
,
456 #ifdef __HAVE_COLOR_ZERO_PAGE
457 static inline int is_zero_pfn(unsigned long pfn
)
459 extern unsigned long zero_pfn
;
460 unsigned long offset_from_zero_pfn
= pfn
- zero_pfn
;
461 return offset_from_zero_pfn
<= (zero_page_mask
>> PAGE_SHIFT
);
464 static inline unsigned long my_zero_pfn(unsigned long addr
)
466 return page_to_pfn(ZERO_PAGE(addr
));
469 static inline int is_zero_pfn(unsigned long pfn
)
471 extern unsigned long zero_pfn
;
472 return pfn
== zero_pfn
;
475 static inline unsigned long my_zero_pfn(unsigned long addr
)
477 extern unsigned long zero_pfn
;
484 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
485 static inline int pmd_trans_huge(pmd_t pmd
)
489 static inline int pmd_trans_splitting(pmd_t pmd
)
493 #ifndef __HAVE_ARCH_PMD_WRITE
494 static inline int pmd_write(pmd_t pmd
)
499 #endif /* __HAVE_ARCH_PMD_WRITE */
500 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
502 #ifndef pmd_read_atomic
503 static inline pmd_t
pmd_read_atomic(pmd_t
*pmdp
)
506 * Depend on compiler for an atomic pmd read. NOTE: this is
507 * only going to work, if the pmdval_t isn't larger than
515 * This function is meant to be used by sites walking pagetables with
516 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
517 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
518 * into a null pmd and the transhuge page fault can convert a null pmd
519 * into an hugepmd or into a regular pmd (if the hugepage allocation
520 * fails). While holding the mmap_sem in read mode the pmd becomes
521 * stable and stops changing under us only if it's not null and not a
522 * transhuge pmd. When those races occurs and this function makes a
523 * difference vs the standard pmd_none_or_clear_bad, the result is
524 * undefined so behaving like if the pmd was none is safe (because it
525 * can return none anyway). The compiler level barrier() is critically
526 * important to compute the two checks atomically on the same pmdval.
528 * For 32bit kernels with a 64bit large pmd_t this automatically takes
529 * care of reading the pmd atomically to avoid SMP race conditions
530 * against pmd_populate() when the mmap_sem is hold for reading by the
531 * caller (a special atomic read not done by "gcc" as in the generic
532 * version above, is also needed when THP is disabled because the page
533 * fault can populate the pmd from under us).
535 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd
)
537 pmd_t pmdval
= pmd_read_atomic(pmd
);
539 * The barrier will stabilize the pmdval in a register or on
540 * the stack so that it will stop changing under the code.
542 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
543 * pmd_read_atomic is allowed to return a not atomic pmdval
544 * (for example pointing to an hugepage that has never been
545 * mapped in the pmd). The below checks will only care about
546 * the low part of the pmd with 32bit PAE x86 anyway, with the
547 * exception of pmd_none(). So the important thing is that if
548 * the low part of the pmd is found null, the high part will
549 * be also null or the pmd_none() check below would be
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 if (pmd_none(pmdval
))
557 if (unlikely(pmd_bad(pmdval
))) {
558 if (!pmd_trans_huge(pmdval
))
566 * This is a noop if Transparent Hugepage Support is not built into
567 * the kernel. Otherwise it is equivalent to
568 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
569 * places that already verified the pmd is not none and they want to
570 * walk ptes while holding the mmap sem in read mode (write mode don't
571 * need this). If THP is not enabled, the pmd can't go away under the
572 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
573 * run a pmd_trans_unstable before walking the ptes after
574 * split_huge_page_pmd returns (because it may have run when the pmd
575 * become null, but then a page fault can map in a THP and not a
578 static inline int pmd_trans_unstable(pmd_t
*pmd
)
580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
581 return pmd_none_or_trans_huge_or_clear_bad(pmd
);
587 #ifdef CONFIG_NUMA_BALANCING
588 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
590 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
591 * same bit too). It's set only when _PAGE_PRESET is not set and it's
592 * never set if _PAGE_PRESENT is set.
594 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
595 * fault triggers on those regions if pte/pmd_numa returns true
596 * (because _PAGE_PRESENT is not set).
599 static inline int pte_numa(pte_t pte
)
601 return (pte_flags(pte
) &
602 (_PAGE_NUMA
|_PAGE_PRESENT
)) == _PAGE_NUMA
;
607 static inline int pmd_numa(pmd_t pmd
)
609 return (pmd_flags(pmd
) &
610 (_PAGE_NUMA
|_PAGE_PRESENT
)) == _PAGE_NUMA
;
615 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
616 * because they're called by the NUMA hinting minor page fault. If we
617 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
618 * would be forced to set it later while filling the TLB after we
619 * return to userland. That would trigger a second write to memory
620 * that we optimize away by setting _PAGE_ACCESSED here.
622 #ifndef pte_mknonnuma
623 static inline pte_t
pte_mknonnuma(pte_t pte
)
625 pte
= pte_clear_flags(pte
, _PAGE_NUMA
);
626 return pte_set_flags(pte
, _PAGE_PRESENT
|_PAGE_ACCESSED
);
630 #ifndef pmd_mknonnuma
631 static inline pmd_t
pmd_mknonnuma(pmd_t pmd
)
633 pmd
= pmd_clear_flags(pmd
, _PAGE_NUMA
);
634 return pmd_set_flags(pmd
, _PAGE_PRESENT
|_PAGE_ACCESSED
);
639 static inline pte_t
pte_mknuma(pte_t pte
)
641 pte
= pte_set_flags(pte
, _PAGE_NUMA
);
642 return pte_clear_flags(pte
, _PAGE_PRESENT
);
647 static inline pmd_t
pmd_mknuma(pmd_t pmd
)
649 pmd
= pmd_set_flags(pmd
, _PAGE_NUMA
);
650 return pmd_clear_flags(pmd
, _PAGE_PRESENT
);
654 extern int pte_numa(pte_t pte
);
655 extern int pmd_numa(pmd_t pmd
);
656 extern pte_t
pte_mknonnuma(pte_t pte
);
657 extern pmd_t
pmd_mknonnuma(pmd_t pmd
);
658 extern pte_t
pte_mknuma(pte_t pte
);
659 extern pmd_t
pmd_mknuma(pmd_t pmd
);
660 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
662 static inline int pmd_numa(pmd_t pmd
)
667 static inline int pte_numa(pte_t pte
)
672 static inline pte_t
pte_mknonnuma(pte_t pte
)
677 static inline pmd_t
pmd_mknonnuma(pmd_t pmd
)
682 static inline pte_t
pte_mknuma(pte_t pte
)
687 static inline pmd_t
pmd_mknuma(pmd_t pmd
)
691 #endif /* CONFIG_NUMA_BALANCING */
693 #endif /* CONFIG_MMU */
695 #endif /* !__ASSEMBLY__ */
697 #endif /* _ASM_GENERIC_PGTABLE_H */