2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
175 static int kmem_size
= sizeof(struct kmem_cache
);
178 static struct notifier_block slab_notifier
;
182 DOWN
, /* No slab functionality available */
183 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
184 UP
, /* Everything works but does not show up in sysfs */
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock
);
190 static LIST_HEAD(slab_caches
);
193 * Tracking user of a slab.
196 unsigned long addr
; /* Called from address */
197 int cpu
; /* Was running on cpu */
198 int pid
; /* Pid context */
199 unsigned long when
; /* When did the operation occur */
202 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache
*);
206 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
207 static void sysfs_slab_remove(struct kmem_cache
*);
210 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
213 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
220 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
222 #ifdef CONFIG_SLUB_STATS
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state
>= UP
;
236 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
239 return s
->node
[node
];
241 return &s
->local_node
;
245 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
248 return s
->cpu_slab
[cpu
];
254 /* Verify that a pointer has an address that is valid within a slab page */
255 static inline int check_valid_pointer(struct kmem_cache
*s
,
256 struct page
*page
, const void *object
)
263 base
= page_address(page
);
264 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
265 (object
- base
) % s
->size
) {
273 * Slow version of get and set free pointer.
275 * This version requires touching the cache lines of kmem_cache which
276 * we avoid to do in the fast alloc free paths. There we obtain the offset
277 * from the page struct.
279 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
281 return *(void **)(object
+ s
->offset
);
284 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
286 *(void **)(object
+ s
->offset
) = fp
;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
295 #define for_each_free_object(__p, __s, __free) \
296 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
298 /* Determine object index from a given position */
299 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
301 return (p
- addr
) / s
->size
;
304 static inline struct kmem_cache_order_objects
oo_make(int order
,
307 struct kmem_cache_order_objects x
= {
308 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
314 static inline int oo_order(struct kmem_cache_order_objects x
)
316 return x
.x
>> OO_SHIFT
;
319 static inline int oo_objects(struct kmem_cache_order_objects x
)
321 return x
.x
& OO_MASK
;
324 #ifdef CONFIG_SLUB_DEBUG
328 #ifdef CONFIG_SLUB_DEBUG_ON
329 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
331 static int slub_debug
;
334 static char *slub_debug_slabs
;
335 static int disable_higher_order_debug
;
340 static void print_section(char *text
, u8
*addr
, unsigned int length
)
348 for (i
= 0; i
< length
; i
++) {
350 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
353 printk(KERN_CONT
" %02x", addr
[i
]);
355 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
357 printk(KERN_CONT
" %s\n", ascii
);
364 printk(KERN_CONT
" ");
368 printk(KERN_CONT
" %s\n", ascii
);
372 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
373 enum track_item alloc
)
378 p
= object
+ s
->offset
+ sizeof(void *);
380 p
= object
+ s
->inuse
;
385 static void set_track(struct kmem_cache
*s
, void *object
,
386 enum track_item alloc
, unsigned long addr
)
388 struct track
*p
= get_track(s
, object
, alloc
);
392 p
->cpu
= smp_processor_id();
393 p
->pid
= current
->pid
;
396 memset(p
, 0, sizeof(struct track
));
399 static void init_tracking(struct kmem_cache
*s
, void *object
)
401 if (!(s
->flags
& SLAB_STORE_USER
))
404 set_track(s
, object
, TRACK_FREE
, 0UL);
405 set_track(s
, object
, TRACK_ALLOC
, 0UL);
408 static void print_track(const char *s
, struct track
*t
)
413 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
414 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
417 static void print_tracking(struct kmem_cache
*s
, void *object
)
419 if (!(s
->flags
& SLAB_STORE_USER
))
422 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
423 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
426 static void print_page_info(struct page
*page
)
428 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
429 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
433 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
439 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
441 printk(KERN_ERR
"========================================"
442 "=====================================\n");
443 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
444 printk(KERN_ERR
"----------------------------------------"
445 "-------------------------------------\n\n");
448 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
454 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
456 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
459 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
461 unsigned int off
; /* Offset of last byte */
462 u8
*addr
= page_address(page
);
464 print_tracking(s
, p
);
466 print_page_info(page
);
468 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
469 p
, p
- addr
, get_freepointer(s
, p
));
472 print_section("Bytes b4", p
- 16, 16);
474 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
476 if (s
->flags
& SLAB_RED_ZONE
)
477 print_section("Redzone", p
+ s
->objsize
,
478 s
->inuse
- s
->objsize
);
481 off
= s
->offset
+ sizeof(void *);
485 if (s
->flags
& SLAB_STORE_USER
)
486 off
+= 2 * sizeof(struct track
);
489 /* Beginning of the filler is the free pointer */
490 print_section("Padding", p
+ off
, s
->size
- off
);
495 static void object_err(struct kmem_cache
*s
, struct page
*page
,
496 u8
*object
, char *reason
)
498 slab_bug(s
, "%s", reason
);
499 print_trailer(s
, page
, object
);
502 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
508 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
510 slab_bug(s
, "%s", buf
);
511 print_page_info(page
);
515 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
519 if (s
->flags
& __OBJECT_POISON
) {
520 memset(p
, POISON_FREE
, s
->objsize
- 1);
521 p
[s
->objsize
- 1] = POISON_END
;
524 if (s
->flags
& SLAB_RED_ZONE
)
525 memset(p
+ s
->objsize
,
526 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
527 s
->inuse
- s
->objsize
);
530 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
533 if (*start
!= (u8
)value
)
541 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
542 void *from
, void *to
)
544 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
545 memset(from
, data
, to
- from
);
548 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
549 u8
*object
, char *what
,
550 u8
*start
, unsigned int value
, unsigned int bytes
)
555 fault
= check_bytes(start
, value
, bytes
);
560 while (end
> fault
&& end
[-1] == value
)
563 slab_bug(s
, "%s overwritten", what
);
564 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
565 fault
, end
- 1, fault
[0], value
);
566 print_trailer(s
, page
, object
);
568 restore_bytes(s
, what
, value
, fault
, end
);
576 * Bytes of the object to be managed.
577 * If the freepointer may overlay the object then the free
578 * pointer is the first word of the object.
580 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
583 * object + s->objsize
584 * Padding to reach word boundary. This is also used for Redzoning.
585 * Padding is extended by another word if Redzoning is enabled and
588 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
589 * 0xcc (RED_ACTIVE) for objects in use.
592 * Meta data starts here.
594 * A. Free pointer (if we cannot overwrite object on free)
595 * B. Tracking data for SLAB_STORE_USER
596 * C. Padding to reach required alignment boundary or at mininum
597 * one word if debugging is on to be able to detect writes
598 * before the word boundary.
600 * Padding is done using 0x5a (POISON_INUSE)
603 * Nothing is used beyond s->size.
605 * If slabcaches are merged then the objsize and inuse boundaries are mostly
606 * ignored. And therefore no slab options that rely on these boundaries
607 * may be used with merged slabcaches.
610 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
612 unsigned long off
= s
->inuse
; /* The end of info */
615 /* Freepointer is placed after the object. */
616 off
+= sizeof(void *);
618 if (s
->flags
& SLAB_STORE_USER
)
619 /* We also have user information there */
620 off
+= 2 * sizeof(struct track
);
625 return check_bytes_and_report(s
, page
, p
, "Object padding",
626 p
+ off
, POISON_INUSE
, s
->size
- off
);
629 /* Check the pad bytes at the end of a slab page */
630 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
638 if (!(s
->flags
& SLAB_POISON
))
641 start
= page_address(page
);
642 length
= (PAGE_SIZE
<< compound_order(page
));
643 end
= start
+ length
;
644 remainder
= length
% s
->size
;
648 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
651 while (end
> fault
&& end
[-1] == POISON_INUSE
)
654 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
655 print_section("Padding", end
- remainder
, remainder
);
657 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
661 static int check_object(struct kmem_cache
*s
, struct page
*page
,
662 void *object
, int active
)
665 u8
*endobject
= object
+ s
->objsize
;
667 if (s
->flags
& SLAB_RED_ZONE
) {
669 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
671 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
672 endobject
, red
, s
->inuse
- s
->objsize
))
675 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
676 check_bytes_and_report(s
, page
, p
, "Alignment padding",
677 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
681 if (s
->flags
& SLAB_POISON
) {
682 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
683 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
684 POISON_FREE
, s
->objsize
- 1) ||
685 !check_bytes_and_report(s
, page
, p
, "Poison",
686 p
+ s
->objsize
- 1, POISON_END
, 1)))
689 * check_pad_bytes cleans up on its own.
691 check_pad_bytes(s
, page
, p
);
694 if (!s
->offset
&& active
)
696 * Object and freepointer overlap. Cannot check
697 * freepointer while object is allocated.
701 /* Check free pointer validity */
702 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
703 object_err(s
, page
, p
, "Freepointer corrupt");
705 * No choice but to zap it and thus lose the remainder
706 * of the free objects in this slab. May cause
707 * another error because the object count is now wrong.
709 set_freepointer(s
, p
, NULL
);
715 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
719 VM_BUG_ON(!irqs_disabled());
721 if (!PageSlab(page
)) {
722 slab_err(s
, page
, "Not a valid slab page");
726 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
727 if (page
->objects
> maxobj
) {
728 slab_err(s
, page
, "objects %u > max %u",
729 s
->name
, page
->objects
, maxobj
);
732 if (page
->inuse
> page
->objects
) {
733 slab_err(s
, page
, "inuse %u > max %u",
734 s
->name
, page
->inuse
, page
->objects
);
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s
, page
);
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
749 void *fp
= page
->freelist
;
751 unsigned long max_objects
;
753 while (fp
&& nr
<= page
->objects
) {
756 if (!check_valid_pointer(s
, page
, fp
)) {
758 object_err(s
, page
, object
,
759 "Freechain corrupt");
760 set_freepointer(s
, object
, NULL
);
763 slab_err(s
, page
, "Freepointer corrupt");
764 page
->freelist
= NULL
;
765 page
->inuse
= page
->objects
;
766 slab_fix(s
, "Freelist cleared");
772 fp
= get_freepointer(s
, object
);
776 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
777 if (max_objects
> MAX_OBJS_PER_PAGE
)
778 max_objects
= MAX_OBJS_PER_PAGE
;
780 if (page
->objects
!= max_objects
) {
781 slab_err(s
, page
, "Wrong number of objects. Found %d but "
782 "should be %d", page
->objects
, max_objects
);
783 page
->objects
= max_objects
;
784 slab_fix(s
, "Number of objects adjusted.");
786 if (page
->inuse
!= page
->objects
- nr
) {
787 slab_err(s
, page
, "Wrong object count. Counter is %d but "
788 "counted were %d", page
->inuse
, page
->objects
- nr
);
789 page
->inuse
= page
->objects
- nr
;
790 slab_fix(s
, "Object count adjusted.");
792 return search
== NULL
;
795 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
798 if (s
->flags
& SLAB_TRACE
) {
799 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
801 alloc
? "alloc" : "free",
806 print_section("Object", (void *)object
, s
->objsize
);
813 * Tracking of fully allocated slabs for debugging purposes.
815 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
817 spin_lock(&n
->list_lock
);
818 list_add(&page
->lru
, &n
->full
);
819 spin_unlock(&n
->list_lock
);
822 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
824 struct kmem_cache_node
*n
;
826 if (!(s
->flags
& SLAB_STORE_USER
))
829 n
= get_node(s
, page_to_nid(page
));
831 spin_lock(&n
->list_lock
);
832 list_del(&page
->lru
);
833 spin_unlock(&n
->list_lock
);
836 /* Tracking of the number of slabs for debugging purposes */
837 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
839 struct kmem_cache_node
*n
= get_node(s
, node
);
841 return atomic_long_read(&n
->nr_slabs
);
844 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
846 return atomic_long_read(&n
->nr_slabs
);
849 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
851 struct kmem_cache_node
*n
= get_node(s
, node
);
854 * May be called early in order to allocate a slab for the
855 * kmem_cache_node structure. Solve the chicken-egg
856 * dilemma by deferring the increment of the count during
857 * bootstrap (see early_kmem_cache_node_alloc).
859 if (!NUMA_BUILD
|| n
) {
860 atomic_long_inc(&n
->nr_slabs
);
861 atomic_long_add(objects
, &n
->total_objects
);
864 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
866 struct kmem_cache_node
*n
= get_node(s
, node
);
868 atomic_long_dec(&n
->nr_slabs
);
869 atomic_long_sub(objects
, &n
->total_objects
);
872 /* Object debug checks for alloc/free paths */
873 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
876 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
879 init_object(s
, object
, 0);
880 init_tracking(s
, object
);
883 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
884 void *object
, unsigned long addr
)
886 if (!check_slab(s
, page
))
889 if (!on_freelist(s
, page
, object
)) {
890 object_err(s
, page
, object
, "Object already allocated");
894 if (!check_valid_pointer(s
, page
, object
)) {
895 object_err(s
, page
, object
, "Freelist Pointer check fails");
899 if (!check_object(s
, page
, object
, 0))
902 /* Success perform special debug activities for allocs */
903 if (s
->flags
& SLAB_STORE_USER
)
904 set_track(s
, object
, TRACK_ALLOC
, addr
);
905 trace(s
, page
, object
, 1);
906 init_object(s
, object
, 1);
910 if (PageSlab(page
)) {
912 * If this is a slab page then lets do the best we can
913 * to avoid issues in the future. Marking all objects
914 * as used avoids touching the remaining objects.
916 slab_fix(s
, "Marking all objects used");
917 page
->inuse
= page
->objects
;
918 page
->freelist
= NULL
;
923 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
924 void *object
, unsigned long addr
)
926 if (!check_slab(s
, page
))
929 if (!check_valid_pointer(s
, page
, object
)) {
930 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
934 if (on_freelist(s
, page
, object
)) {
935 object_err(s
, page
, object
, "Object already free");
939 if (!check_object(s
, page
, object
, 1))
942 if (unlikely(s
!= page
->slab
)) {
943 if (!PageSlab(page
)) {
944 slab_err(s
, page
, "Attempt to free object(0x%p) "
945 "outside of slab", object
);
946 } else if (!page
->slab
) {
948 "SLUB <none>: no slab for object 0x%p.\n",
952 object_err(s
, page
, object
,
953 "page slab pointer corrupt.");
957 /* Special debug activities for freeing objects */
958 if (!PageSlubFrozen(page
) && !page
->freelist
)
959 remove_full(s
, page
);
960 if (s
->flags
& SLAB_STORE_USER
)
961 set_track(s
, object
, TRACK_FREE
, addr
);
962 trace(s
, page
, object
, 0);
963 init_object(s
, object
, 0);
967 slab_fix(s
, "Object at 0x%p not freed", object
);
971 static int __init
setup_slub_debug(char *str
)
973 slub_debug
= DEBUG_DEFAULT_FLAGS
;
974 if (*str
++ != '=' || !*str
)
976 * No options specified. Switch on full debugging.
982 * No options but restriction on slabs. This means full
983 * debugging for slabs matching a pattern.
987 if (tolower(*str
) == 'o') {
989 * Avoid enabling debugging on caches if its minimum order
990 * would increase as a result.
992 disable_higher_order_debug
= 1;
999 * Switch off all debugging measures.
1004 * Determine which debug features should be switched on
1006 for (; *str
&& *str
!= ','; str
++) {
1007 switch (tolower(*str
)) {
1009 slub_debug
|= SLAB_DEBUG_FREE
;
1012 slub_debug
|= SLAB_RED_ZONE
;
1015 slub_debug
|= SLAB_POISON
;
1018 slub_debug
|= SLAB_STORE_USER
;
1021 slub_debug
|= SLAB_TRACE
;
1024 printk(KERN_ERR
"slub_debug option '%c' "
1025 "unknown. skipped\n", *str
);
1031 slub_debug_slabs
= str
+ 1;
1036 __setup("slub_debug", setup_slub_debug
);
1038 static unsigned long kmem_cache_flags(unsigned long objsize
,
1039 unsigned long flags
, const char *name
,
1040 void (*ctor
)(void *))
1043 * Enable debugging if selected on the kernel commandline.
1045 if (slub_debug
&& (!slub_debug_slabs
||
1046 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1047 flags
|= slub_debug
;
1052 static inline void setup_object_debug(struct kmem_cache
*s
,
1053 struct page
*page
, void *object
) {}
1055 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1056 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1058 static inline int free_debug_processing(struct kmem_cache
*s
,
1059 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1061 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1063 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1064 void *object
, int active
) { return 1; }
1065 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1066 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1067 unsigned long flags
, const char *name
,
1068 void (*ctor
)(void *))
1072 #define slub_debug 0
1074 #define disable_higher_order_debug 0
1076 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1080 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1082 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1087 * Slab allocation and freeing
1089 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1090 struct kmem_cache_order_objects oo
)
1092 int order
= oo_order(oo
);
1094 flags
|= __GFP_NOTRACK
;
1097 return alloc_pages(flags
, order
);
1099 return alloc_pages_node(node
, flags
, order
);
1102 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1105 struct kmem_cache_order_objects oo
= s
->oo
;
1108 flags
|= s
->allocflags
;
1111 * Let the initial higher-order allocation fail under memory pressure
1112 * so we fall-back to the minimum order allocation.
1114 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1116 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1117 if (unlikely(!page
)) {
1120 * Allocation may have failed due to fragmentation.
1121 * Try a lower order alloc if possible
1123 page
= alloc_slab_page(flags
, node
, oo
);
1127 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1130 if (kmemcheck_enabled
1131 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1132 int pages
= 1 << oo_order(oo
);
1134 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1137 * Objects from caches that have a constructor don't get
1138 * cleared when they're allocated, so we need to do it here.
1141 kmemcheck_mark_uninitialized_pages(page
, pages
);
1143 kmemcheck_mark_unallocated_pages(page
, pages
);
1146 page
->objects
= oo_objects(oo
);
1147 mod_zone_page_state(page_zone(page
),
1148 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1149 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1155 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1158 setup_object_debug(s
, page
, object
);
1159 if (unlikely(s
->ctor
))
1163 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1170 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1172 page
= allocate_slab(s
,
1173 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1177 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1179 page
->flags
|= 1 << PG_slab
;
1180 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1181 SLAB_STORE_USER
| SLAB_TRACE
))
1182 __SetPageSlubDebug(page
);
1184 start
= page_address(page
);
1186 if (unlikely(s
->flags
& SLAB_POISON
))
1187 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1190 for_each_object(p
, s
, start
, page
->objects
) {
1191 setup_object(s
, page
, last
);
1192 set_freepointer(s
, last
, p
);
1195 setup_object(s
, page
, last
);
1196 set_freepointer(s
, last
, NULL
);
1198 page
->freelist
= start
;
1204 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1206 int order
= compound_order(page
);
1207 int pages
= 1 << order
;
1209 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1212 slab_pad_check(s
, page
);
1213 for_each_object(p
, s
, page_address(page
),
1215 check_object(s
, page
, p
, 0);
1216 __ClearPageSlubDebug(page
);
1219 kmemcheck_free_shadow(page
, compound_order(page
));
1221 mod_zone_page_state(page_zone(page
),
1222 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1223 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1226 __ClearPageSlab(page
);
1227 reset_page_mapcount(page
);
1228 if (current
->reclaim_state
)
1229 current
->reclaim_state
->reclaimed_slab
+= pages
;
1230 __free_pages(page
, order
);
1233 static void rcu_free_slab(struct rcu_head
*h
)
1237 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1238 __free_slab(page
->slab
, page
);
1241 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1243 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1245 * RCU free overloads the RCU head over the LRU
1247 struct rcu_head
*head
= (void *)&page
->lru
;
1249 call_rcu(head
, rcu_free_slab
);
1251 __free_slab(s
, page
);
1254 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1256 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1261 * Per slab locking using the pagelock
1263 static __always_inline
void slab_lock(struct page
*page
)
1265 bit_spin_lock(PG_locked
, &page
->flags
);
1268 static __always_inline
void slab_unlock(struct page
*page
)
1270 __bit_spin_unlock(PG_locked
, &page
->flags
);
1273 static __always_inline
int slab_trylock(struct page
*page
)
1277 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1282 * Management of partially allocated slabs
1284 static void add_partial(struct kmem_cache_node
*n
,
1285 struct page
*page
, int tail
)
1287 spin_lock(&n
->list_lock
);
1290 list_add_tail(&page
->lru
, &n
->partial
);
1292 list_add(&page
->lru
, &n
->partial
);
1293 spin_unlock(&n
->list_lock
);
1296 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1298 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1300 spin_lock(&n
->list_lock
);
1301 list_del(&page
->lru
);
1303 spin_unlock(&n
->list_lock
);
1307 * Lock slab and remove from the partial list.
1309 * Must hold list_lock.
1311 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1314 if (slab_trylock(page
)) {
1315 list_del(&page
->lru
);
1317 __SetPageSlubFrozen(page
);
1324 * Try to allocate a partial slab from a specific node.
1326 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1331 * Racy check. If we mistakenly see no partial slabs then we
1332 * just allocate an empty slab. If we mistakenly try to get a
1333 * partial slab and there is none available then get_partials()
1336 if (!n
|| !n
->nr_partial
)
1339 spin_lock(&n
->list_lock
);
1340 list_for_each_entry(page
, &n
->partial
, lru
)
1341 if (lock_and_freeze_slab(n
, page
))
1345 spin_unlock(&n
->list_lock
);
1350 * Get a page from somewhere. Search in increasing NUMA distances.
1352 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1355 struct zonelist
*zonelist
;
1358 enum zone_type high_zoneidx
= gfp_zone(flags
);
1362 * The defrag ratio allows a configuration of the tradeoffs between
1363 * inter node defragmentation and node local allocations. A lower
1364 * defrag_ratio increases the tendency to do local allocations
1365 * instead of attempting to obtain partial slabs from other nodes.
1367 * If the defrag_ratio is set to 0 then kmalloc() always
1368 * returns node local objects. If the ratio is higher then kmalloc()
1369 * may return off node objects because partial slabs are obtained
1370 * from other nodes and filled up.
1372 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1373 * defrag_ratio = 1000) then every (well almost) allocation will
1374 * first attempt to defrag slab caches on other nodes. This means
1375 * scanning over all nodes to look for partial slabs which may be
1376 * expensive if we do it every time we are trying to find a slab
1377 * with available objects.
1379 if (!s
->remote_node_defrag_ratio
||
1380 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1383 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1384 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1385 struct kmem_cache_node
*n
;
1387 n
= get_node(s
, zone_to_nid(zone
));
1389 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1390 n
->nr_partial
> s
->min_partial
) {
1391 page
= get_partial_node(n
);
1401 * Get a partial page, lock it and return it.
1403 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1406 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1408 page
= get_partial_node(get_node(s
, searchnode
));
1409 if (page
|| (flags
& __GFP_THISNODE
))
1412 return get_any_partial(s
, flags
);
1416 * Move a page back to the lists.
1418 * Must be called with the slab lock held.
1420 * On exit the slab lock will have been dropped.
1422 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1424 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1425 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1427 __ClearPageSlubFrozen(page
);
1430 if (page
->freelist
) {
1431 add_partial(n
, page
, tail
);
1432 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1434 stat(c
, DEACTIVATE_FULL
);
1435 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1436 (s
->flags
& SLAB_STORE_USER
))
1441 stat(c
, DEACTIVATE_EMPTY
);
1442 if (n
->nr_partial
< s
->min_partial
) {
1444 * Adding an empty slab to the partial slabs in order
1445 * to avoid page allocator overhead. This slab needs
1446 * to come after the other slabs with objects in
1447 * so that the others get filled first. That way the
1448 * size of the partial list stays small.
1450 * kmem_cache_shrink can reclaim any empty slabs from
1453 add_partial(n
, page
, 1);
1457 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1458 discard_slab(s
, page
);
1464 * Remove the cpu slab
1466 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1468 struct page
*page
= c
->page
;
1472 stat(c
, DEACTIVATE_REMOTE_FREES
);
1474 * Merge cpu freelist into slab freelist. Typically we get here
1475 * because both freelists are empty. So this is unlikely
1478 while (unlikely(c
->freelist
)) {
1481 tail
= 0; /* Hot objects. Put the slab first */
1483 /* Retrieve object from cpu_freelist */
1484 object
= c
->freelist
;
1485 c
->freelist
= c
->freelist
[c
->offset
];
1487 /* And put onto the regular freelist */
1488 object
[c
->offset
] = page
->freelist
;
1489 page
->freelist
= object
;
1493 unfreeze_slab(s
, page
, tail
);
1496 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1498 stat(c
, CPUSLAB_FLUSH
);
1500 deactivate_slab(s
, c
);
1506 * Called from IPI handler with interrupts disabled.
1508 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1510 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1512 if (likely(c
&& c
->page
))
1516 static void flush_cpu_slab(void *d
)
1518 struct kmem_cache
*s
= d
;
1520 __flush_cpu_slab(s
, smp_processor_id());
1523 static void flush_all(struct kmem_cache
*s
)
1525 on_each_cpu(flush_cpu_slab
, s
, 1);
1529 * Check if the objects in a per cpu structure fit numa
1530 * locality expectations.
1532 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1535 if (node
!= -1 && c
->node
!= node
)
1541 static int count_free(struct page
*page
)
1543 return page
->objects
- page
->inuse
;
1546 static unsigned long count_partial(struct kmem_cache_node
*n
,
1547 int (*get_count
)(struct page
*))
1549 unsigned long flags
;
1550 unsigned long x
= 0;
1553 spin_lock_irqsave(&n
->list_lock
, flags
);
1554 list_for_each_entry(page
, &n
->partial
, lru
)
1555 x
+= get_count(page
);
1556 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1560 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1562 #ifdef CONFIG_SLUB_DEBUG
1563 return atomic_long_read(&n
->total_objects
);
1569 static noinline
void
1570 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1575 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1577 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1578 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1579 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1581 if (oo_order(s
->min
) > get_order(s
->objsize
))
1582 printk(KERN_WARNING
" %s debugging increased min order, use "
1583 "slub_debug=O to disable.\n", s
->name
);
1585 for_each_online_node(node
) {
1586 struct kmem_cache_node
*n
= get_node(s
, node
);
1587 unsigned long nr_slabs
;
1588 unsigned long nr_objs
;
1589 unsigned long nr_free
;
1594 nr_free
= count_partial(n
, count_free
);
1595 nr_slabs
= node_nr_slabs(n
);
1596 nr_objs
= node_nr_objs(n
);
1599 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600 node
, nr_slabs
, nr_objs
, nr_free
);
1605 * Slow path. The lockless freelist is empty or we need to perform
1608 * Interrupts are disabled.
1610 * Processing is still very fast if new objects have been freed to the
1611 * regular freelist. In that case we simply take over the regular freelist
1612 * as the lockless freelist and zap the regular freelist.
1614 * If that is not working then we fall back to the partial lists. We take the
1615 * first element of the freelist as the object to allocate now and move the
1616 * rest of the freelist to the lockless freelist.
1618 * And if we were unable to get a new slab from the partial slab lists then
1619 * we need to allocate a new slab. This is the slowest path since it involves
1620 * a call to the page allocator and the setup of a new slab.
1622 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1623 unsigned long addr
, struct kmem_cache_cpu
*c
)
1628 /* We handle __GFP_ZERO in the caller */
1629 gfpflags
&= ~__GFP_ZERO
;
1635 if (unlikely(!node_match(c
, node
)))
1638 stat(c
, ALLOC_REFILL
);
1641 object
= c
->page
->freelist
;
1642 if (unlikely(!object
))
1644 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1647 c
->freelist
= object
[c
->offset
];
1648 c
->page
->inuse
= c
->page
->objects
;
1649 c
->page
->freelist
= NULL
;
1650 c
->node
= page_to_nid(c
->page
);
1652 slab_unlock(c
->page
);
1653 stat(c
, ALLOC_SLOWPATH
);
1657 deactivate_slab(s
, c
);
1660 new = get_partial(s
, gfpflags
, node
);
1663 stat(c
, ALLOC_FROM_PARTIAL
);
1667 if (gfpflags
& __GFP_WAIT
)
1670 new = new_slab(s
, gfpflags
, node
);
1672 if (gfpflags
& __GFP_WAIT
)
1673 local_irq_disable();
1676 c
= get_cpu_slab(s
, smp_processor_id());
1677 stat(c
, ALLOC_SLAB
);
1681 __SetPageSlubFrozen(new);
1685 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1686 slab_out_of_memory(s
, gfpflags
, node
);
1689 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1693 c
->page
->freelist
= object
[c
->offset
];
1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700 * have the fastpath folded into their functions. So no function call
1701 * overhead for requests that can be satisfied on the fastpath.
1703 * The fastpath works by first checking if the lockless freelist can be used.
1704 * If not then __slab_alloc is called for slow processing.
1706 * Otherwise we can simply pick the next object from the lockless free list.
1708 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1709 gfp_t gfpflags
, int node
, unsigned long addr
)
1712 struct kmem_cache_cpu
*c
;
1713 unsigned long flags
;
1714 unsigned int objsize
;
1716 gfpflags
&= gfp_allowed_mask
;
1718 lockdep_trace_alloc(gfpflags
);
1719 might_sleep_if(gfpflags
& __GFP_WAIT
);
1721 if (should_failslab(s
->objsize
, gfpflags
))
1724 local_irq_save(flags
);
1725 c
= get_cpu_slab(s
, smp_processor_id());
1726 objsize
= c
->objsize
;
1727 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1729 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1732 object
= c
->freelist
;
1733 c
->freelist
= object
[c
->offset
];
1734 stat(c
, ALLOC_FASTPATH
);
1736 local_irq_restore(flags
);
1738 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1739 memset(object
, 0, objsize
);
1741 kmemcheck_slab_alloc(s
, gfpflags
, object
, c
->objsize
);
1742 kmemleak_alloc_recursive(object
, objsize
, 1, s
->flags
, gfpflags
);
1747 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1749 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1751 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1755 EXPORT_SYMBOL(kmem_cache_alloc
);
1757 #ifdef CONFIG_KMEMTRACE
1758 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1760 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1762 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1766 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1768 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1770 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1771 s
->objsize
, s
->size
, gfpflags
, node
);
1775 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1778 #ifdef CONFIG_KMEMTRACE
1779 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1783 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1785 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1789 * Slow patch handling. This may still be called frequently since objects
1790 * have a longer lifetime than the cpu slabs in most processing loads.
1792 * So we still attempt to reduce cache line usage. Just take the slab
1793 * lock and free the item. If there is no additional partial page
1794 * handling required then we can return immediately.
1796 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1797 void *x
, unsigned long addr
, unsigned int offset
)
1800 void **object
= (void *)x
;
1801 struct kmem_cache_cpu
*c
;
1803 c
= get_cpu_slab(s
, raw_smp_processor_id());
1804 stat(c
, FREE_SLOWPATH
);
1807 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1811 prior
= object
[offset
] = page
->freelist
;
1812 page
->freelist
= object
;
1815 if (unlikely(PageSlubFrozen(page
))) {
1816 stat(c
, FREE_FROZEN
);
1820 if (unlikely(!page
->inuse
))
1824 * Objects left in the slab. If it was not on the partial list before
1827 if (unlikely(!prior
)) {
1828 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1829 stat(c
, FREE_ADD_PARTIAL
);
1839 * Slab still on the partial list.
1841 remove_partial(s
, page
);
1842 stat(c
, FREE_REMOVE_PARTIAL
);
1846 discard_slab(s
, page
);
1850 if (!free_debug_processing(s
, page
, x
, addr
))
1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857 * can perform fastpath freeing without additional function calls.
1859 * The fastpath is only possible if we are freeing to the current cpu slab
1860 * of this processor. This typically the case if we have just allocated
1863 * If fastpath is not possible then fall back to __slab_free where we deal
1864 * with all sorts of special processing.
1866 static __always_inline
void slab_free(struct kmem_cache
*s
,
1867 struct page
*page
, void *x
, unsigned long addr
)
1869 void **object
= (void *)x
;
1870 struct kmem_cache_cpu
*c
;
1871 unsigned long flags
;
1873 kmemleak_free_recursive(x
, s
->flags
);
1874 local_irq_save(flags
);
1875 c
= get_cpu_slab(s
, smp_processor_id());
1876 kmemcheck_slab_free(s
, object
, c
->objsize
);
1877 debug_check_no_locks_freed(object
, c
->objsize
);
1878 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1879 debug_check_no_obj_freed(object
, c
->objsize
);
1880 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1881 object
[c
->offset
] = c
->freelist
;
1882 c
->freelist
= object
;
1883 stat(c
, FREE_FASTPATH
);
1885 __slab_free(s
, page
, x
, addr
, c
->offset
);
1887 local_irq_restore(flags
);
1890 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1894 page
= virt_to_head_page(x
);
1896 slab_free(s
, page
, x
, _RET_IP_
);
1898 trace_kmem_cache_free(_RET_IP_
, x
);
1900 EXPORT_SYMBOL(kmem_cache_free
);
1902 /* Figure out on which slab page the object resides */
1903 static struct page
*get_object_page(const void *x
)
1905 struct page
*page
= virt_to_head_page(x
);
1907 if (!PageSlab(page
))
1914 * Object placement in a slab is made very easy because we always start at
1915 * offset 0. If we tune the size of the object to the alignment then we can
1916 * get the required alignment by putting one properly sized object after
1919 * Notice that the allocation order determines the sizes of the per cpu
1920 * caches. Each processor has always one slab available for allocations.
1921 * Increasing the allocation order reduces the number of times that slabs
1922 * must be moved on and off the partial lists and is therefore a factor in
1927 * Mininum / Maximum order of slab pages. This influences locking overhead
1928 * and slab fragmentation. A higher order reduces the number of partial slabs
1929 * and increases the number of allocations possible without having to
1930 * take the list_lock.
1932 static int slub_min_order
;
1933 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1934 static int slub_min_objects
;
1937 * Merge control. If this is set then no merging of slab caches will occur.
1938 * (Could be removed. This was introduced to pacify the merge skeptics.)
1940 static int slub_nomerge
;
1943 * Calculate the order of allocation given an slab object size.
1945 * The order of allocation has significant impact on performance and other
1946 * system components. Generally order 0 allocations should be preferred since
1947 * order 0 does not cause fragmentation in the page allocator. Larger objects
1948 * be problematic to put into order 0 slabs because there may be too much
1949 * unused space left. We go to a higher order if more than 1/16th of the slab
1952 * In order to reach satisfactory performance we must ensure that a minimum
1953 * number of objects is in one slab. Otherwise we may generate too much
1954 * activity on the partial lists which requires taking the list_lock. This is
1955 * less a concern for large slabs though which are rarely used.
1957 * slub_max_order specifies the order where we begin to stop considering the
1958 * number of objects in a slab as critical. If we reach slub_max_order then
1959 * we try to keep the page order as low as possible. So we accept more waste
1960 * of space in favor of a small page order.
1962 * Higher order allocations also allow the placement of more objects in a
1963 * slab and thereby reduce object handling overhead. If the user has
1964 * requested a higher mininum order then we start with that one instead of
1965 * the smallest order which will fit the object.
1967 static inline int slab_order(int size
, int min_objects
,
1968 int max_order
, int fract_leftover
)
1972 int min_order
= slub_min_order
;
1974 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1975 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1977 for (order
= max(min_order
,
1978 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1979 order
<= max_order
; order
++) {
1981 unsigned long slab_size
= PAGE_SIZE
<< order
;
1983 if (slab_size
< min_objects
* size
)
1986 rem
= slab_size
% size
;
1988 if (rem
<= slab_size
/ fract_leftover
)
1996 static inline int calculate_order(int size
)
2004 * Attempt to find best configuration for a slab. This
2005 * works by first attempting to generate a layout with
2006 * the best configuration and backing off gradually.
2008 * First we reduce the acceptable waste in a slab. Then
2009 * we reduce the minimum objects required in a slab.
2011 min_objects
= slub_min_objects
;
2013 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2014 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
2015 min_objects
= min(min_objects
, max_objects
);
2017 while (min_objects
> 1) {
2019 while (fraction
>= 4) {
2020 order
= slab_order(size
, min_objects
,
2021 slub_max_order
, fraction
);
2022 if (order
<= slub_max_order
)
2030 * We were unable to place multiple objects in a slab. Now
2031 * lets see if we can place a single object there.
2033 order
= slab_order(size
, 1, slub_max_order
, 1);
2034 if (order
<= slub_max_order
)
2038 * Doh this slab cannot be placed using slub_max_order.
2040 order
= slab_order(size
, 1, MAX_ORDER
, 1);
2041 if (order
< MAX_ORDER
)
2047 * Figure out what the alignment of the objects will be.
2049 static unsigned long calculate_alignment(unsigned long flags
,
2050 unsigned long align
, unsigned long size
)
2053 * If the user wants hardware cache aligned objects then follow that
2054 * suggestion if the object is sufficiently large.
2056 * The hardware cache alignment cannot override the specified
2057 * alignment though. If that is greater then use it.
2059 if (flags
& SLAB_HWCACHE_ALIGN
) {
2060 unsigned long ralign
= cache_line_size();
2061 while (size
<= ralign
/ 2)
2063 align
= max(align
, ralign
);
2066 if (align
< ARCH_SLAB_MINALIGN
)
2067 align
= ARCH_SLAB_MINALIGN
;
2069 return ALIGN(align
, sizeof(void *));
2072 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
2073 struct kmem_cache_cpu
*c
)
2078 c
->offset
= s
->offset
/ sizeof(void *);
2079 c
->objsize
= s
->objsize
;
2080 #ifdef CONFIG_SLUB_STATS
2081 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
2086 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2089 spin_lock_init(&n
->list_lock
);
2090 INIT_LIST_HEAD(&n
->partial
);
2091 #ifdef CONFIG_SLUB_DEBUG
2092 atomic_long_set(&n
->nr_slabs
, 0);
2093 atomic_long_set(&n
->total_objects
, 0);
2094 INIT_LIST_HEAD(&n
->full
);
2100 * Per cpu array for per cpu structures.
2102 * The per cpu array places all kmem_cache_cpu structures from one processor
2103 * close together meaning that it becomes possible that multiple per cpu
2104 * structures are contained in one cacheline. This may be particularly
2105 * beneficial for the kmalloc caches.
2107 * A desktop system typically has around 60-80 slabs. With 100 here we are
2108 * likely able to get per cpu structures for all caches from the array defined
2109 * here. We must be able to cover all kmalloc caches during bootstrap.
2111 * If the per cpu array is exhausted then fall back to kmalloc
2112 * of individual cachelines. No sharing is possible then.
2114 #define NR_KMEM_CACHE_CPU 100
2116 static DEFINE_PER_CPU(struct kmem_cache_cpu
[NR_KMEM_CACHE_CPU
],
2119 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2120 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2122 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2123 int cpu
, gfp_t flags
)
2125 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2128 per_cpu(kmem_cache_cpu_free
, cpu
) =
2129 (void *)c
->freelist
;
2131 /* Table overflow: So allocate ourselves */
2133 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2134 flags
, cpu_to_node(cpu
));
2139 init_kmem_cache_cpu(s
, c
);
2143 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2145 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2146 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2150 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2151 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2154 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2158 for_each_online_cpu(cpu
) {
2159 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2162 s
->cpu_slab
[cpu
] = NULL
;
2163 free_kmem_cache_cpu(c
, cpu
);
2168 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2172 for_each_online_cpu(cpu
) {
2173 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2178 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2180 free_kmem_cache_cpus(s
);
2183 s
->cpu_slab
[cpu
] = c
;
2189 * Initialize the per cpu array.
2191 static void init_alloc_cpu_cpu(int cpu
)
2195 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2198 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2199 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2201 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2204 static void __init
init_alloc_cpu(void)
2208 for_each_online_cpu(cpu
)
2209 init_alloc_cpu_cpu(cpu
);
2213 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2214 static inline void init_alloc_cpu(void) {}
2216 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2218 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2225 * No kmalloc_node yet so do it by hand. We know that this is the first
2226 * slab on the node for this slabcache. There are no concurrent accesses
2229 * Note that this function only works on the kmalloc_node_cache
2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231 * memory on a fresh node that has no slab structures yet.
2233 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2236 struct kmem_cache_node
*n
;
2237 unsigned long flags
;
2239 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2241 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2244 if (page_to_nid(page
) != node
) {
2245 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2247 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2248 "in order to be able to continue\n");
2253 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2255 kmalloc_caches
->node
[node
] = n
;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 init_object(kmalloc_caches
, n
, 1);
2258 init_tracking(kmalloc_caches
, n
);
2260 init_kmem_cache_node(n
, kmalloc_caches
);
2261 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2264 * lockdep requires consistent irq usage for each lock
2265 * so even though there cannot be a race this early in
2266 * the boot sequence, we still disable irqs.
2268 local_irq_save(flags
);
2269 add_partial(n
, page
, 0);
2270 local_irq_restore(flags
);
2273 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2277 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2278 struct kmem_cache_node
*n
= s
->node
[node
];
2279 if (n
&& n
!= &s
->local_node
)
2280 kmem_cache_free(kmalloc_caches
, n
);
2281 s
->node
[node
] = NULL
;
2285 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2290 if (slab_state
>= UP
)
2291 local_node
= page_to_nid(virt_to_page(s
));
2295 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2296 struct kmem_cache_node
*n
;
2298 if (local_node
== node
)
2301 if (slab_state
== DOWN
) {
2302 early_kmem_cache_node_alloc(gfpflags
, node
);
2305 n
= kmem_cache_alloc_node(kmalloc_caches
,
2309 free_kmem_cache_nodes(s
);
2315 init_kmem_cache_node(n
, s
);
2320 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2324 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2326 init_kmem_cache_node(&s
->local_node
, s
);
2331 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2333 if (min
< MIN_PARTIAL
)
2335 else if (min
> MAX_PARTIAL
)
2337 s
->min_partial
= min
;
2341 * calculate_sizes() determines the order and the distribution of data within
2344 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2346 unsigned long flags
= s
->flags
;
2347 unsigned long size
= s
->objsize
;
2348 unsigned long align
= s
->align
;
2352 * Round up object size to the next word boundary. We can only
2353 * place the free pointer at word boundaries and this determines
2354 * the possible location of the free pointer.
2356 size
= ALIGN(size
, sizeof(void *));
2358 #ifdef CONFIG_SLUB_DEBUG
2360 * Determine if we can poison the object itself. If the user of
2361 * the slab may touch the object after free or before allocation
2362 * then we should never poison the object itself.
2364 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2366 s
->flags
|= __OBJECT_POISON
;
2368 s
->flags
&= ~__OBJECT_POISON
;
2372 * If we are Redzoning then check if there is some space between the
2373 * end of the object and the free pointer. If not then add an
2374 * additional word to have some bytes to store Redzone information.
2376 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2377 size
+= sizeof(void *);
2381 * With that we have determined the number of bytes in actual use
2382 * by the object. This is the potential offset to the free pointer.
2386 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2389 * Relocate free pointer after the object if it is not
2390 * permitted to overwrite the first word of the object on
2393 * This is the case if we do RCU, have a constructor or
2394 * destructor or are poisoning the objects.
2397 size
+= sizeof(void *);
2400 #ifdef CONFIG_SLUB_DEBUG
2401 if (flags
& SLAB_STORE_USER
)
2403 * Need to store information about allocs and frees after
2406 size
+= 2 * sizeof(struct track
);
2408 if (flags
& SLAB_RED_ZONE
)
2410 * Add some empty padding so that we can catch
2411 * overwrites from earlier objects rather than let
2412 * tracking information or the free pointer be
2413 * corrupted if a user writes before the start
2416 size
+= sizeof(void *);
2420 * Determine the alignment based on various parameters that the
2421 * user specified and the dynamic determination of cache line size
2424 align
= calculate_alignment(flags
, align
, s
->objsize
);
2428 * SLUB stores one object immediately after another beginning from
2429 * offset 0. In order to align the objects we have to simply size
2430 * each object to conform to the alignment.
2432 size
= ALIGN(size
, align
);
2434 if (forced_order
>= 0)
2435 order
= forced_order
;
2437 order
= calculate_order(size
);
2444 s
->allocflags
|= __GFP_COMP
;
2446 if (s
->flags
& SLAB_CACHE_DMA
)
2447 s
->allocflags
|= SLUB_DMA
;
2449 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2450 s
->allocflags
|= __GFP_RECLAIMABLE
;
2453 * Determine the number of objects per slab
2455 s
->oo
= oo_make(order
, size
);
2456 s
->min
= oo_make(get_order(size
), size
);
2457 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2460 return !!oo_objects(s
->oo
);
2464 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2465 const char *name
, size_t size
,
2466 size_t align
, unsigned long flags
,
2467 void (*ctor
)(void *))
2469 memset(s
, 0, kmem_size
);
2474 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2476 if (!calculate_sizes(s
, -1))
2478 if (disable_higher_order_debug
) {
2480 * Disable debugging flags that store metadata if the min slab
2483 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2484 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2486 if (!calculate_sizes(s
, -1))
2492 * The larger the object size is, the more pages we want on the partial
2493 * list to avoid pounding the page allocator excessively.
2495 set_min_partial(s
, ilog2(s
->size
));
2498 s
->remote_node_defrag_ratio
= 1000;
2500 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2503 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2505 free_kmem_cache_nodes(s
);
2507 if (flags
& SLAB_PANIC
)
2508 panic("Cannot create slab %s size=%lu realsize=%u "
2509 "order=%u offset=%u flags=%lx\n",
2510 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2516 * Check if a given pointer is valid
2518 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2522 page
= get_object_page(object
);
2524 if (!page
|| s
!= page
->slab
)
2525 /* No slab or wrong slab */
2528 if (!check_valid_pointer(s
, page
, object
))
2532 * We could also check if the object is on the slabs freelist.
2533 * But this would be too expensive and it seems that the main
2534 * purpose of kmem_ptr_valid() is to check if the object belongs
2535 * to a certain slab.
2539 EXPORT_SYMBOL(kmem_ptr_validate
);
2542 * Determine the size of a slab object
2544 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2548 EXPORT_SYMBOL(kmem_cache_size
);
2550 const char *kmem_cache_name(struct kmem_cache
*s
)
2554 EXPORT_SYMBOL(kmem_cache_name
);
2556 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2559 #ifdef CONFIG_SLUB_DEBUG
2560 void *addr
= page_address(page
);
2562 DECLARE_BITMAP(map
, page
->objects
);
2564 bitmap_zero(map
, page
->objects
);
2565 slab_err(s
, page
, "%s", text
);
2567 for_each_free_object(p
, s
, page
->freelist
)
2568 set_bit(slab_index(p
, s
, addr
), map
);
2570 for_each_object(p
, s
, addr
, page
->objects
) {
2572 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2573 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2575 print_tracking(s
, p
);
2583 * Attempt to free all partial slabs on a node.
2585 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2587 unsigned long flags
;
2588 struct page
*page
, *h
;
2590 spin_lock_irqsave(&n
->list_lock
, flags
);
2591 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2593 list_del(&page
->lru
);
2594 discard_slab(s
, page
);
2597 list_slab_objects(s
, page
,
2598 "Objects remaining on kmem_cache_close()");
2601 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2605 * Release all resources used by a slab cache.
2607 static inline int kmem_cache_close(struct kmem_cache
*s
)
2613 /* Attempt to free all objects */
2614 free_kmem_cache_cpus(s
);
2615 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2616 struct kmem_cache_node
*n
= get_node(s
, node
);
2619 if (n
->nr_partial
|| slabs_node(s
, node
))
2622 free_kmem_cache_nodes(s
);
2627 * Close a cache and release the kmem_cache structure
2628 * (must be used for caches created using kmem_cache_create)
2630 void kmem_cache_destroy(struct kmem_cache
*s
)
2632 down_write(&slub_lock
);
2636 up_write(&slub_lock
);
2637 if (kmem_cache_close(s
)) {
2638 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2639 "still has objects.\n", s
->name
, __func__
);
2642 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2644 sysfs_slab_remove(s
);
2646 up_write(&slub_lock
);
2648 EXPORT_SYMBOL(kmem_cache_destroy
);
2650 /********************************************************************
2652 *******************************************************************/
2654 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2655 EXPORT_SYMBOL(kmalloc_caches
);
2657 static int __init
setup_slub_min_order(char *str
)
2659 get_option(&str
, &slub_min_order
);
2664 __setup("slub_min_order=", setup_slub_min_order
);
2666 static int __init
setup_slub_max_order(char *str
)
2668 get_option(&str
, &slub_max_order
);
2669 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2674 __setup("slub_max_order=", setup_slub_max_order
);
2676 static int __init
setup_slub_min_objects(char *str
)
2678 get_option(&str
, &slub_min_objects
);
2683 __setup("slub_min_objects=", setup_slub_min_objects
);
2685 static int __init
setup_slub_nomerge(char *str
)
2691 __setup("slub_nomerge", setup_slub_nomerge
);
2693 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2694 const char *name
, int size
, gfp_t gfp_flags
)
2696 unsigned int flags
= 0;
2698 if (gfp_flags
& SLUB_DMA
)
2699 flags
= SLAB_CACHE_DMA
;
2702 * This function is called with IRQs disabled during early-boot on
2703 * single CPU so there's no need to take slub_lock here.
2705 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2709 list_add(&s
->list
, &slab_caches
);
2711 if (sysfs_slab_add(s
))
2716 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2719 #ifdef CONFIG_ZONE_DMA
2720 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2722 static void sysfs_add_func(struct work_struct
*w
)
2724 struct kmem_cache
*s
;
2726 down_write(&slub_lock
);
2727 list_for_each_entry(s
, &slab_caches
, list
) {
2728 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2729 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2733 up_write(&slub_lock
);
2736 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2738 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2740 struct kmem_cache
*s
;
2743 unsigned long slabflags
;
2745 s
= kmalloc_caches_dma
[index
];
2749 /* Dynamically create dma cache */
2750 if (flags
& __GFP_WAIT
)
2751 down_write(&slub_lock
);
2753 if (!down_write_trylock(&slub_lock
))
2757 if (kmalloc_caches_dma
[index
])
2760 realsize
= kmalloc_caches
[index
].objsize
;
2761 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2762 (unsigned int)realsize
);
2763 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2766 * Must defer sysfs creation to a workqueue because we don't know
2767 * what context we are called from. Before sysfs comes up, we don't
2768 * need to do anything because our sysfs initcall will start by
2769 * adding all existing slabs to sysfs.
2771 slabflags
= SLAB_CACHE_DMA
|SLAB_NOTRACK
;
2772 if (slab_state
>= SYSFS
)
2773 slabflags
|= __SYSFS_ADD_DEFERRED
;
2775 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2776 realsize
, ARCH_KMALLOC_MINALIGN
, slabflags
, NULL
)) {
2782 list_add(&s
->list
, &slab_caches
);
2783 kmalloc_caches_dma
[index
] = s
;
2785 if (slab_state
>= SYSFS
)
2786 schedule_work(&sysfs_add_work
);
2789 up_write(&slub_lock
);
2791 return kmalloc_caches_dma
[index
];
2796 * Conversion table for small slabs sizes / 8 to the index in the
2797 * kmalloc array. This is necessary for slabs < 192 since we have non power
2798 * of two cache sizes there. The size of larger slabs can be determined using
2801 static s8 size_index
[24] = {
2828 static inline int size_index_elem(size_t bytes
)
2830 return (bytes
- 1) / 8;
2833 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2839 return ZERO_SIZE_PTR
;
2841 index
= size_index
[size_index_elem(size
)];
2843 index
= fls(size
- 1);
2845 #ifdef CONFIG_ZONE_DMA
2846 if (unlikely((flags
& SLUB_DMA
)))
2847 return dma_kmalloc_cache(index
, flags
);
2850 return &kmalloc_caches
[index
];
2853 void *__kmalloc(size_t size
, gfp_t flags
)
2855 struct kmem_cache
*s
;
2858 if (unlikely(size
> SLUB_MAX_SIZE
))
2859 return kmalloc_large(size
, flags
);
2861 s
= get_slab(size
, flags
);
2863 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2866 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2868 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2872 EXPORT_SYMBOL(__kmalloc
);
2874 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2879 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2880 page
= alloc_pages_node(node
, flags
, get_order(size
));
2882 ptr
= page_address(page
);
2884 kmemleak_alloc(ptr
, size
, 1, flags
);
2889 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2891 struct kmem_cache
*s
;
2894 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2895 ret
= kmalloc_large_node(size
, flags
, node
);
2897 trace_kmalloc_node(_RET_IP_
, ret
,
2898 size
, PAGE_SIZE
<< get_order(size
),
2904 s
= get_slab(size
, flags
);
2906 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2909 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2911 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2915 EXPORT_SYMBOL(__kmalloc_node
);
2918 size_t ksize(const void *object
)
2921 struct kmem_cache
*s
;
2923 if (unlikely(object
== ZERO_SIZE_PTR
))
2926 page
= virt_to_head_page(object
);
2928 if (unlikely(!PageSlab(page
))) {
2929 WARN_ON(!PageCompound(page
));
2930 return PAGE_SIZE
<< compound_order(page
);
2934 #ifdef CONFIG_SLUB_DEBUG
2936 * Debugging requires use of the padding between object
2937 * and whatever may come after it.
2939 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2944 * If we have the need to store the freelist pointer
2945 * back there or track user information then we can
2946 * only use the space before that information.
2948 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2951 * Else we can use all the padding etc for the allocation
2955 EXPORT_SYMBOL(ksize
);
2957 void kfree(const void *x
)
2960 void *object
= (void *)x
;
2962 trace_kfree(_RET_IP_
, x
);
2964 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2967 page
= virt_to_head_page(x
);
2968 if (unlikely(!PageSlab(page
))) {
2969 BUG_ON(!PageCompound(page
));
2974 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2976 EXPORT_SYMBOL(kfree
);
2979 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2980 * the remaining slabs by the number of items in use. The slabs with the
2981 * most items in use come first. New allocations will then fill those up
2982 * and thus they can be removed from the partial lists.
2984 * The slabs with the least items are placed last. This results in them
2985 * being allocated from last increasing the chance that the last objects
2986 * are freed in them.
2988 int kmem_cache_shrink(struct kmem_cache
*s
)
2992 struct kmem_cache_node
*n
;
2995 int objects
= oo_objects(s
->max
);
2996 struct list_head
*slabs_by_inuse
=
2997 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2998 unsigned long flags
;
3000 if (!slabs_by_inuse
)
3004 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3005 n
= get_node(s
, node
);
3010 for (i
= 0; i
< objects
; i
++)
3011 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3013 spin_lock_irqsave(&n
->list_lock
, flags
);
3016 * Build lists indexed by the items in use in each slab.
3018 * Note that concurrent frees may occur while we hold the
3019 * list_lock. page->inuse here is the upper limit.
3021 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3022 if (!page
->inuse
&& slab_trylock(page
)) {
3024 * Must hold slab lock here because slab_free
3025 * may have freed the last object and be
3026 * waiting to release the slab.
3028 list_del(&page
->lru
);
3031 discard_slab(s
, page
);
3033 list_move(&page
->lru
,
3034 slabs_by_inuse
+ page
->inuse
);
3039 * Rebuild the partial list with the slabs filled up most
3040 * first and the least used slabs at the end.
3042 for (i
= objects
- 1; i
>= 0; i
--)
3043 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3045 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3048 kfree(slabs_by_inuse
);
3051 EXPORT_SYMBOL(kmem_cache_shrink
);
3053 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3054 static int slab_mem_going_offline_callback(void *arg
)
3056 struct kmem_cache
*s
;
3058 down_read(&slub_lock
);
3059 list_for_each_entry(s
, &slab_caches
, list
)
3060 kmem_cache_shrink(s
);
3061 up_read(&slub_lock
);
3066 static void slab_mem_offline_callback(void *arg
)
3068 struct kmem_cache_node
*n
;
3069 struct kmem_cache
*s
;
3070 struct memory_notify
*marg
= arg
;
3073 offline_node
= marg
->status_change_nid
;
3076 * If the node still has available memory. we need kmem_cache_node
3079 if (offline_node
< 0)
3082 down_read(&slub_lock
);
3083 list_for_each_entry(s
, &slab_caches
, list
) {
3084 n
= get_node(s
, offline_node
);
3087 * if n->nr_slabs > 0, slabs still exist on the node
3088 * that is going down. We were unable to free them,
3089 * and offline_pages() function shoudn't call this
3090 * callback. So, we must fail.
3092 BUG_ON(slabs_node(s
, offline_node
));
3094 s
->node
[offline_node
] = NULL
;
3095 kmem_cache_free(kmalloc_caches
, n
);
3098 up_read(&slub_lock
);
3101 static int slab_mem_going_online_callback(void *arg
)
3103 struct kmem_cache_node
*n
;
3104 struct kmem_cache
*s
;
3105 struct memory_notify
*marg
= arg
;
3106 int nid
= marg
->status_change_nid
;
3110 * If the node's memory is already available, then kmem_cache_node is
3111 * already created. Nothing to do.
3117 * We are bringing a node online. No memory is available yet. We must
3118 * allocate a kmem_cache_node structure in order to bring the node
3121 down_read(&slub_lock
);
3122 list_for_each_entry(s
, &slab_caches
, list
) {
3124 * XXX: kmem_cache_alloc_node will fallback to other nodes
3125 * since memory is not yet available from the node that
3128 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
3133 init_kmem_cache_node(n
, s
);
3137 up_read(&slub_lock
);
3141 static int slab_memory_callback(struct notifier_block
*self
,
3142 unsigned long action
, void *arg
)
3147 case MEM_GOING_ONLINE
:
3148 ret
= slab_mem_going_online_callback(arg
);
3150 case MEM_GOING_OFFLINE
:
3151 ret
= slab_mem_going_offline_callback(arg
);
3154 case MEM_CANCEL_ONLINE
:
3155 slab_mem_offline_callback(arg
);
3158 case MEM_CANCEL_OFFLINE
:
3162 ret
= notifier_from_errno(ret
);
3168 #endif /* CONFIG_MEMORY_HOTPLUG */
3170 /********************************************************************
3171 * Basic setup of slabs
3172 *******************************************************************/
3174 void __init
kmem_cache_init(void)
3183 * Must first have the slab cache available for the allocations of the
3184 * struct kmem_cache_node's. There is special bootstrap code in
3185 * kmem_cache_open for slab_state == DOWN.
3187 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3188 sizeof(struct kmem_cache_node
), GFP_NOWAIT
);
3189 kmalloc_caches
[0].refcount
= -1;
3192 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3195 /* Able to allocate the per node structures */
3196 slab_state
= PARTIAL
;
3198 /* Caches that are not of the two-to-the-power-of size */
3199 if (KMALLOC_MIN_SIZE
<= 32) {
3200 create_kmalloc_cache(&kmalloc_caches
[1],
3201 "kmalloc-96", 96, GFP_NOWAIT
);
3204 if (KMALLOC_MIN_SIZE
<= 64) {
3205 create_kmalloc_cache(&kmalloc_caches
[2],
3206 "kmalloc-192", 192, GFP_NOWAIT
);
3210 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3211 create_kmalloc_cache(&kmalloc_caches
[i
],
3212 "kmalloc", 1 << i
, GFP_NOWAIT
);
3218 * Patch up the size_index table if we have strange large alignment
3219 * requirements for the kmalloc array. This is only the case for
3220 * MIPS it seems. The standard arches will not generate any code here.
3222 * Largest permitted alignment is 256 bytes due to the way we
3223 * handle the index determination for the smaller caches.
3225 * Make sure that nothing crazy happens if someone starts tinkering
3226 * around with ARCH_KMALLOC_MINALIGN
3228 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3229 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3231 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3232 int elem
= size_index_elem(i
);
3233 if (elem
>= ARRAY_SIZE(size_index
))
3235 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3238 if (KMALLOC_MIN_SIZE
== 64) {
3240 * The 96 byte size cache is not used if the alignment
3243 for (i
= 64 + 8; i
<= 96; i
+= 8)
3244 size_index
[size_index_elem(i
)] = 7;
3245 } else if (KMALLOC_MIN_SIZE
== 128) {
3247 * The 192 byte sized cache is not used if the alignment
3248 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3251 for (i
= 128 + 8; i
<= 192; i
+= 8)
3252 size_index
[size_index_elem(i
)] = 8;
3257 /* Provide the correct kmalloc names now that the caches are up */
3258 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3259 kmalloc_caches
[i
]. name
=
3260 kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3263 register_cpu_notifier(&slab_notifier
);
3264 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3265 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3267 kmem_size
= sizeof(struct kmem_cache
);
3271 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3272 " CPUs=%d, Nodes=%d\n",
3273 caches
, cache_line_size(),
3274 slub_min_order
, slub_max_order
, slub_min_objects
,
3275 nr_cpu_ids
, nr_node_ids
);
3278 void __init
kmem_cache_init_late(void)
3283 * Find a mergeable slab cache
3285 static int slab_unmergeable(struct kmem_cache
*s
)
3287 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3294 * We may have set a slab to be unmergeable during bootstrap.
3296 if (s
->refcount
< 0)
3302 static struct kmem_cache
*find_mergeable(size_t size
,
3303 size_t align
, unsigned long flags
, const char *name
,
3304 void (*ctor
)(void *))
3306 struct kmem_cache
*s
;
3308 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3314 size
= ALIGN(size
, sizeof(void *));
3315 align
= calculate_alignment(flags
, align
, size
);
3316 size
= ALIGN(size
, align
);
3317 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3319 list_for_each_entry(s
, &slab_caches
, list
) {
3320 if (slab_unmergeable(s
))
3326 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3329 * Check if alignment is compatible.
3330 * Courtesy of Adrian Drzewiecki
3332 if ((s
->size
& ~(align
- 1)) != s
->size
)
3335 if (s
->size
- size
>= sizeof(void *))
3343 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3344 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3346 struct kmem_cache
*s
;
3348 down_write(&slub_lock
);
3349 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3355 * Adjust the object sizes so that we clear
3356 * the complete object on kzalloc.
3358 s
->objsize
= max(s
->objsize
, (int)size
);
3361 * And then we need to update the object size in the
3362 * per cpu structures
3364 for_each_online_cpu(cpu
)
3365 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3367 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3368 up_write(&slub_lock
);
3370 if (sysfs_slab_alias(s
, name
)) {
3371 down_write(&slub_lock
);
3373 up_write(&slub_lock
);
3379 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3381 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3382 size
, align
, flags
, ctor
)) {
3383 list_add(&s
->list
, &slab_caches
);
3384 up_write(&slub_lock
);
3385 if (sysfs_slab_add(s
)) {
3386 down_write(&slub_lock
);
3388 up_write(&slub_lock
);
3396 up_write(&slub_lock
);
3399 if (flags
& SLAB_PANIC
)
3400 panic("Cannot create slabcache %s\n", name
);
3405 EXPORT_SYMBOL(kmem_cache_create
);
3409 * Use the cpu notifier to insure that the cpu slabs are flushed when
3412 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3413 unsigned long action
, void *hcpu
)
3415 long cpu
= (long)hcpu
;
3416 struct kmem_cache
*s
;
3417 unsigned long flags
;
3420 case CPU_UP_PREPARE
:
3421 case CPU_UP_PREPARE_FROZEN
:
3422 init_alloc_cpu_cpu(cpu
);
3423 down_read(&slub_lock
);
3424 list_for_each_entry(s
, &slab_caches
, list
)
3425 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3427 up_read(&slub_lock
);
3430 case CPU_UP_CANCELED
:
3431 case CPU_UP_CANCELED_FROZEN
:
3433 case CPU_DEAD_FROZEN
:
3434 down_read(&slub_lock
);
3435 list_for_each_entry(s
, &slab_caches
, list
) {
3436 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3438 local_irq_save(flags
);
3439 __flush_cpu_slab(s
, cpu
);
3440 local_irq_restore(flags
);
3441 free_kmem_cache_cpu(c
, cpu
);
3442 s
->cpu_slab
[cpu
] = NULL
;
3444 up_read(&slub_lock
);
3452 static struct notifier_block __cpuinitdata slab_notifier
= {
3453 .notifier_call
= slab_cpuup_callback
3458 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3460 struct kmem_cache
*s
;
3463 if (unlikely(size
> SLUB_MAX_SIZE
))
3464 return kmalloc_large(size
, gfpflags
);
3466 s
= get_slab(size
, gfpflags
);
3468 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3471 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3473 /* Honor the call site pointer we recieved. */
3474 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3479 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3480 int node
, unsigned long caller
)
3482 struct kmem_cache
*s
;
3485 if (unlikely(size
> SLUB_MAX_SIZE
))
3486 return kmalloc_large_node(size
, gfpflags
, node
);
3488 s
= get_slab(size
, gfpflags
);
3490 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3493 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3495 /* Honor the call site pointer we recieved. */
3496 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3501 #ifdef CONFIG_SLUB_DEBUG
3502 static int count_inuse(struct page
*page
)
3507 static int count_total(struct page
*page
)
3509 return page
->objects
;
3512 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3516 void *addr
= page_address(page
);
3518 if (!check_slab(s
, page
) ||
3519 !on_freelist(s
, page
, NULL
))
3522 /* Now we know that a valid freelist exists */
3523 bitmap_zero(map
, page
->objects
);
3525 for_each_free_object(p
, s
, page
->freelist
) {
3526 set_bit(slab_index(p
, s
, addr
), map
);
3527 if (!check_object(s
, page
, p
, 0))
3531 for_each_object(p
, s
, addr
, page
->objects
)
3532 if (!test_bit(slab_index(p
, s
, addr
), map
))
3533 if (!check_object(s
, page
, p
, 1))
3538 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3541 if (slab_trylock(page
)) {
3542 validate_slab(s
, page
, map
);
3545 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3548 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3549 if (!PageSlubDebug(page
))
3550 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3551 "on slab 0x%p\n", s
->name
, page
);
3553 if (PageSlubDebug(page
))
3554 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3555 "slab 0x%p\n", s
->name
, page
);
3559 static int validate_slab_node(struct kmem_cache
*s
,
3560 struct kmem_cache_node
*n
, unsigned long *map
)
3562 unsigned long count
= 0;
3564 unsigned long flags
;
3566 spin_lock_irqsave(&n
->list_lock
, flags
);
3568 list_for_each_entry(page
, &n
->partial
, lru
) {
3569 validate_slab_slab(s
, page
, map
);
3572 if (count
!= n
->nr_partial
)
3573 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3574 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3576 if (!(s
->flags
& SLAB_STORE_USER
))
3579 list_for_each_entry(page
, &n
->full
, lru
) {
3580 validate_slab_slab(s
, page
, map
);
3583 if (count
!= atomic_long_read(&n
->nr_slabs
))
3584 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3585 "counter=%ld\n", s
->name
, count
,
3586 atomic_long_read(&n
->nr_slabs
));
3589 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3593 static long validate_slab_cache(struct kmem_cache
*s
)
3596 unsigned long count
= 0;
3597 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3598 sizeof(unsigned long), GFP_KERNEL
);
3604 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3605 struct kmem_cache_node
*n
= get_node(s
, node
);
3607 count
+= validate_slab_node(s
, n
, map
);
3613 #ifdef SLUB_RESILIENCY_TEST
3614 static void resiliency_test(void)
3618 printk(KERN_ERR
"SLUB resiliency testing\n");
3619 printk(KERN_ERR
"-----------------------\n");
3620 printk(KERN_ERR
"A. Corruption after allocation\n");
3622 p
= kzalloc(16, GFP_KERNEL
);
3624 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3625 " 0x12->0x%p\n\n", p
+ 16);
3627 validate_slab_cache(kmalloc_caches
+ 4);
3629 /* Hmmm... The next two are dangerous */
3630 p
= kzalloc(32, GFP_KERNEL
);
3631 p
[32 + sizeof(void *)] = 0x34;
3632 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3633 " 0x34 -> -0x%p\n", p
);
3635 "If allocated object is overwritten then not detectable\n\n");
3637 validate_slab_cache(kmalloc_caches
+ 5);
3638 p
= kzalloc(64, GFP_KERNEL
);
3639 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3641 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3644 "If allocated object is overwritten then not detectable\n\n");
3645 validate_slab_cache(kmalloc_caches
+ 6);
3647 printk(KERN_ERR
"\nB. Corruption after free\n");
3648 p
= kzalloc(128, GFP_KERNEL
);
3651 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3652 validate_slab_cache(kmalloc_caches
+ 7);
3654 p
= kzalloc(256, GFP_KERNEL
);
3657 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3659 validate_slab_cache(kmalloc_caches
+ 8);
3661 p
= kzalloc(512, GFP_KERNEL
);
3664 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3665 validate_slab_cache(kmalloc_caches
+ 9);
3668 static void resiliency_test(void) {};
3672 * Generate lists of code addresses where slabcache objects are allocated
3677 unsigned long count
;
3684 DECLARE_BITMAP(cpus
, NR_CPUS
);
3690 unsigned long count
;
3691 struct location
*loc
;
3694 static void free_loc_track(struct loc_track
*t
)
3697 free_pages((unsigned long)t
->loc
,
3698 get_order(sizeof(struct location
) * t
->max
));
3701 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3706 order
= get_order(sizeof(struct location
) * max
);
3708 l
= (void *)__get_free_pages(flags
, order
);
3713 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3721 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3722 const struct track
*track
)
3724 long start
, end
, pos
;
3726 unsigned long caddr
;
3727 unsigned long age
= jiffies
- track
->when
;
3733 pos
= start
+ (end
- start
+ 1) / 2;
3736 * There is nothing at "end". If we end up there
3737 * we need to add something to before end.
3742 caddr
= t
->loc
[pos
].addr
;
3743 if (track
->addr
== caddr
) {
3749 if (age
< l
->min_time
)
3751 if (age
> l
->max_time
)
3754 if (track
->pid
< l
->min_pid
)
3755 l
->min_pid
= track
->pid
;
3756 if (track
->pid
> l
->max_pid
)
3757 l
->max_pid
= track
->pid
;
3759 cpumask_set_cpu(track
->cpu
,
3760 to_cpumask(l
->cpus
));
3762 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3766 if (track
->addr
< caddr
)
3773 * Not found. Insert new tracking element.
3775 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3781 (t
->count
- pos
) * sizeof(struct location
));
3784 l
->addr
= track
->addr
;
3788 l
->min_pid
= track
->pid
;
3789 l
->max_pid
= track
->pid
;
3790 cpumask_clear(to_cpumask(l
->cpus
));
3791 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3792 nodes_clear(l
->nodes
);
3793 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3797 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3798 struct page
*page
, enum track_item alloc
)
3800 void *addr
= page_address(page
);
3801 DECLARE_BITMAP(map
, page
->objects
);
3804 bitmap_zero(map
, page
->objects
);
3805 for_each_free_object(p
, s
, page
->freelist
)
3806 set_bit(slab_index(p
, s
, addr
), map
);
3808 for_each_object(p
, s
, addr
, page
->objects
)
3809 if (!test_bit(slab_index(p
, s
, addr
), map
))
3810 add_location(t
, s
, get_track(s
, p
, alloc
));
3813 static int list_locations(struct kmem_cache
*s
, char *buf
,
3814 enum track_item alloc
)
3818 struct loc_track t
= { 0, 0, NULL
};
3821 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3823 return sprintf(buf
, "Out of memory\n");
3825 /* Push back cpu slabs */
3828 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3829 struct kmem_cache_node
*n
= get_node(s
, node
);
3830 unsigned long flags
;
3833 if (!atomic_long_read(&n
->nr_slabs
))
3836 spin_lock_irqsave(&n
->list_lock
, flags
);
3837 list_for_each_entry(page
, &n
->partial
, lru
)
3838 process_slab(&t
, s
, page
, alloc
);
3839 list_for_each_entry(page
, &n
->full
, lru
)
3840 process_slab(&t
, s
, page
, alloc
);
3841 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3844 for (i
= 0; i
< t
.count
; i
++) {
3845 struct location
*l
= &t
.loc
[i
];
3847 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3849 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3852 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3854 len
+= sprintf(buf
+ len
, "<not-available>");
3856 if (l
->sum_time
!= l
->min_time
) {
3857 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3859 (long)div_u64(l
->sum_time
, l
->count
),
3862 len
+= sprintf(buf
+ len
, " age=%ld",
3865 if (l
->min_pid
!= l
->max_pid
)
3866 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3867 l
->min_pid
, l
->max_pid
);
3869 len
+= sprintf(buf
+ len
, " pid=%ld",
3872 if (num_online_cpus() > 1 &&
3873 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3874 len
< PAGE_SIZE
- 60) {
3875 len
+= sprintf(buf
+ len
, " cpus=");
3876 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3877 to_cpumask(l
->cpus
));
3880 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3881 len
< PAGE_SIZE
- 60) {
3882 len
+= sprintf(buf
+ len
, " nodes=");
3883 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3887 len
+= sprintf(buf
+ len
, "\n");
3892 len
+= sprintf(buf
, "No data\n");
3896 enum slab_stat_type
{
3897 SL_ALL
, /* All slabs */
3898 SL_PARTIAL
, /* Only partially allocated slabs */
3899 SL_CPU
, /* Only slabs used for cpu caches */
3900 SL_OBJECTS
, /* Determine allocated objects not slabs */
3901 SL_TOTAL
/* Determine object capacity not slabs */
3904 #define SO_ALL (1 << SL_ALL)
3905 #define SO_PARTIAL (1 << SL_PARTIAL)
3906 #define SO_CPU (1 << SL_CPU)
3907 #define SO_OBJECTS (1 << SL_OBJECTS)
3908 #define SO_TOTAL (1 << SL_TOTAL)
3910 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3911 char *buf
, unsigned long flags
)
3913 unsigned long total
= 0;
3916 unsigned long *nodes
;
3917 unsigned long *per_cpu
;
3919 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3922 per_cpu
= nodes
+ nr_node_ids
;
3924 if (flags
& SO_CPU
) {
3927 for_each_possible_cpu(cpu
) {
3928 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3930 if (!c
|| c
->node
< 0)
3934 if (flags
& SO_TOTAL
)
3935 x
= c
->page
->objects
;
3936 else if (flags
& SO_OBJECTS
)
3942 nodes
[c
->node
] += x
;
3948 if (flags
& SO_ALL
) {
3949 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3950 struct kmem_cache_node
*n
= get_node(s
, node
);
3952 if (flags
& SO_TOTAL
)
3953 x
= atomic_long_read(&n
->total_objects
);
3954 else if (flags
& SO_OBJECTS
)
3955 x
= atomic_long_read(&n
->total_objects
) -
3956 count_partial(n
, count_free
);
3959 x
= atomic_long_read(&n
->nr_slabs
);
3964 } else if (flags
& SO_PARTIAL
) {
3965 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3966 struct kmem_cache_node
*n
= get_node(s
, node
);
3968 if (flags
& SO_TOTAL
)
3969 x
= count_partial(n
, count_total
);
3970 else if (flags
& SO_OBJECTS
)
3971 x
= count_partial(n
, count_inuse
);
3978 x
= sprintf(buf
, "%lu", total
);
3980 for_each_node_state(node
, N_NORMAL_MEMORY
)
3982 x
+= sprintf(buf
+ x
, " N%d=%lu",
3986 return x
+ sprintf(buf
+ x
, "\n");
3989 static int any_slab_objects(struct kmem_cache
*s
)
3993 for_each_online_node(node
) {
3994 struct kmem_cache_node
*n
= get_node(s
, node
);
3999 if (atomic_long_read(&n
->total_objects
))
4005 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4006 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4008 struct slab_attribute
{
4009 struct attribute attr
;
4010 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4011 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4014 #define SLAB_ATTR_RO(_name) \
4015 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4017 #define SLAB_ATTR(_name) \
4018 static struct slab_attribute _name##_attr = \
4019 __ATTR(_name, 0644, _name##_show, _name##_store)
4021 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4023 return sprintf(buf
, "%d\n", s
->size
);
4025 SLAB_ATTR_RO(slab_size
);
4027 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4029 return sprintf(buf
, "%d\n", s
->align
);
4031 SLAB_ATTR_RO(align
);
4033 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4035 return sprintf(buf
, "%d\n", s
->objsize
);
4037 SLAB_ATTR_RO(object_size
);
4039 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4041 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4043 SLAB_ATTR_RO(objs_per_slab
);
4045 static ssize_t
order_store(struct kmem_cache
*s
,
4046 const char *buf
, size_t length
)
4048 unsigned long order
;
4051 err
= strict_strtoul(buf
, 10, &order
);
4055 if (order
> slub_max_order
|| order
< slub_min_order
)
4058 calculate_sizes(s
, order
);
4062 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4064 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4068 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4070 return sprintf(buf
, "%lu\n", s
->min_partial
);
4073 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4079 err
= strict_strtoul(buf
, 10, &min
);
4083 set_min_partial(s
, min
);
4086 SLAB_ATTR(min_partial
);
4088 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4091 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
4093 return n
+ sprintf(buf
+ n
, "\n");
4099 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4101 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4103 SLAB_ATTR_RO(aliases
);
4105 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4107 return show_slab_objects(s
, buf
, SO_ALL
);
4109 SLAB_ATTR_RO(slabs
);
4111 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4113 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4115 SLAB_ATTR_RO(partial
);
4117 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4119 return show_slab_objects(s
, buf
, SO_CPU
);
4121 SLAB_ATTR_RO(cpu_slabs
);
4123 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4125 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4127 SLAB_ATTR_RO(objects
);
4129 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4131 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4133 SLAB_ATTR_RO(objects_partial
);
4135 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4137 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4139 SLAB_ATTR_RO(total_objects
);
4141 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4143 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4146 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4147 const char *buf
, size_t length
)
4149 s
->flags
&= ~SLAB_DEBUG_FREE
;
4151 s
->flags
|= SLAB_DEBUG_FREE
;
4154 SLAB_ATTR(sanity_checks
);
4156 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4158 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4161 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4164 s
->flags
&= ~SLAB_TRACE
;
4166 s
->flags
|= SLAB_TRACE
;
4171 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4173 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4176 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4177 const char *buf
, size_t length
)
4179 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4181 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4184 SLAB_ATTR(reclaim_account
);
4186 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4188 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4190 SLAB_ATTR_RO(hwcache_align
);
4192 #ifdef CONFIG_ZONE_DMA
4193 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4195 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4197 SLAB_ATTR_RO(cache_dma
);
4200 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4202 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4204 SLAB_ATTR_RO(destroy_by_rcu
);
4206 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4208 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4211 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4212 const char *buf
, size_t length
)
4214 if (any_slab_objects(s
))
4217 s
->flags
&= ~SLAB_RED_ZONE
;
4219 s
->flags
|= SLAB_RED_ZONE
;
4220 calculate_sizes(s
, -1);
4223 SLAB_ATTR(red_zone
);
4225 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4227 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4230 static ssize_t
poison_store(struct kmem_cache
*s
,
4231 const char *buf
, size_t length
)
4233 if (any_slab_objects(s
))
4236 s
->flags
&= ~SLAB_POISON
;
4238 s
->flags
|= SLAB_POISON
;
4239 calculate_sizes(s
, -1);
4244 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4246 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4249 static ssize_t
store_user_store(struct kmem_cache
*s
,
4250 const char *buf
, size_t length
)
4252 if (any_slab_objects(s
))
4255 s
->flags
&= ~SLAB_STORE_USER
;
4257 s
->flags
|= SLAB_STORE_USER
;
4258 calculate_sizes(s
, -1);
4261 SLAB_ATTR(store_user
);
4263 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4268 static ssize_t
validate_store(struct kmem_cache
*s
,
4269 const char *buf
, size_t length
)
4273 if (buf
[0] == '1') {
4274 ret
= validate_slab_cache(s
);
4280 SLAB_ATTR(validate
);
4282 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4287 static ssize_t
shrink_store(struct kmem_cache
*s
,
4288 const char *buf
, size_t length
)
4290 if (buf
[0] == '1') {
4291 int rc
= kmem_cache_shrink(s
);
4301 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4303 if (!(s
->flags
& SLAB_STORE_USER
))
4305 return list_locations(s
, buf
, TRACK_ALLOC
);
4307 SLAB_ATTR_RO(alloc_calls
);
4309 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4311 if (!(s
->flags
& SLAB_STORE_USER
))
4313 return list_locations(s
, buf
, TRACK_FREE
);
4315 SLAB_ATTR_RO(free_calls
);
4318 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4320 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4323 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4324 const char *buf
, size_t length
)
4326 unsigned long ratio
;
4329 err
= strict_strtoul(buf
, 10, &ratio
);
4334 s
->remote_node_defrag_ratio
= ratio
* 10;
4338 SLAB_ATTR(remote_node_defrag_ratio
);
4341 #ifdef CONFIG_SLUB_STATS
4342 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4344 unsigned long sum
= 0;
4347 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4352 for_each_online_cpu(cpu
) {
4353 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4359 len
= sprintf(buf
, "%lu", sum
);
4362 for_each_online_cpu(cpu
) {
4363 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4364 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4368 return len
+ sprintf(buf
+ len
, "\n");
4371 #define STAT_ATTR(si, text) \
4372 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4374 return show_stat(s, buf, si); \
4376 SLAB_ATTR_RO(text); \
4378 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4379 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4380 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4381 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4382 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4383 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4384 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4385 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4386 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4387 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4388 STAT_ATTR(FREE_SLAB
, free_slab
);
4389 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4390 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4391 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4392 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4393 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4394 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4395 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4398 static struct attribute
*slab_attrs
[] = {
4399 &slab_size_attr
.attr
,
4400 &object_size_attr
.attr
,
4401 &objs_per_slab_attr
.attr
,
4403 &min_partial_attr
.attr
,
4405 &objects_partial_attr
.attr
,
4406 &total_objects_attr
.attr
,
4409 &cpu_slabs_attr
.attr
,
4413 &sanity_checks_attr
.attr
,
4415 &hwcache_align_attr
.attr
,
4416 &reclaim_account_attr
.attr
,
4417 &destroy_by_rcu_attr
.attr
,
4418 &red_zone_attr
.attr
,
4420 &store_user_attr
.attr
,
4421 &validate_attr
.attr
,
4423 &alloc_calls_attr
.attr
,
4424 &free_calls_attr
.attr
,
4425 #ifdef CONFIG_ZONE_DMA
4426 &cache_dma_attr
.attr
,
4429 &remote_node_defrag_ratio_attr
.attr
,
4431 #ifdef CONFIG_SLUB_STATS
4432 &alloc_fastpath_attr
.attr
,
4433 &alloc_slowpath_attr
.attr
,
4434 &free_fastpath_attr
.attr
,
4435 &free_slowpath_attr
.attr
,
4436 &free_frozen_attr
.attr
,
4437 &free_add_partial_attr
.attr
,
4438 &free_remove_partial_attr
.attr
,
4439 &alloc_from_partial_attr
.attr
,
4440 &alloc_slab_attr
.attr
,
4441 &alloc_refill_attr
.attr
,
4442 &free_slab_attr
.attr
,
4443 &cpuslab_flush_attr
.attr
,
4444 &deactivate_full_attr
.attr
,
4445 &deactivate_empty_attr
.attr
,
4446 &deactivate_to_head_attr
.attr
,
4447 &deactivate_to_tail_attr
.attr
,
4448 &deactivate_remote_frees_attr
.attr
,
4449 &order_fallback_attr
.attr
,
4454 static struct attribute_group slab_attr_group
= {
4455 .attrs
= slab_attrs
,
4458 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4459 struct attribute
*attr
,
4462 struct slab_attribute
*attribute
;
4463 struct kmem_cache
*s
;
4466 attribute
= to_slab_attr(attr
);
4469 if (!attribute
->show
)
4472 err
= attribute
->show(s
, buf
);
4477 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4478 struct attribute
*attr
,
4479 const char *buf
, size_t len
)
4481 struct slab_attribute
*attribute
;
4482 struct kmem_cache
*s
;
4485 attribute
= to_slab_attr(attr
);
4488 if (!attribute
->store
)
4491 err
= attribute
->store(s
, buf
, len
);
4496 static void kmem_cache_release(struct kobject
*kobj
)
4498 struct kmem_cache
*s
= to_slab(kobj
);
4503 static struct sysfs_ops slab_sysfs_ops
= {
4504 .show
= slab_attr_show
,
4505 .store
= slab_attr_store
,
4508 static struct kobj_type slab_ktype
= {
4509 .sysfs_ops
= &slab_sysfs_ops
,
4510 .release
= kmem_cache_release
4513 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4515 struct kobj_type
*ktype
= get_ktype(kobj
);
4517 if (ktype
== &slab_ktype
)
4522 static struct kset_uevent_ops slab_uevent_ops
= {
4523 .filter
= uevent_filter
,
4526 static struct kset
*slab_kset
;
4528 #define ID_STR_LENGTH 64
4530 /* Create a unique string id for a slab cache:
4532 * Format :[flags-]size
4534 static char *create_unique_id(struct kmem_cache
*s
)
4536 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4543 * First flags affecting slabcache operations. We will only
4544 * get here for aliasable slabs so we do not need to support
4545 * too many flags. The flags here must cover all flags that
4546 * are matched during merging to guarantee that the id is
4549 if (s
->flags
& SLAB_CACHE_DMA
)
4551 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4553 if (s
->flags
& SLAB_DEBUG_FREE
)
4555 if (!(s
->flags
& SLAB_NOTRACK
))
4559 p
+= sprintf(p
, "%07d", s
->size
);
4560 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4564 static int sysfs_slab_add(struct kmem_cache
*s
)
4570 if (slab_state
< SYSFS
)
4571 /* Defer until later */
4574 unmergeable
= slab_unmergeable(s
);
4577 * Slabcache can never be merged so we can use the name proper.
4578 * This is typically the case for debug situations. In that
4579 * case we can catch duplicate names easily.
4581 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4585 * Create a unique name for the slab as a target
4588 name
= create_unique_id(s
);
4591 s
->kobj
.kset
= slab_kset
;
4592 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4594 kobject_put(&s
->kobj
);
4598 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4600 kobject_del(&s
->kobj
);
4601 kobject_put(&s
->kobj
);
4604 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4606 /* Setup first alias */
4607 sysfs_slab_alias(s
, s
->name
);
4613 static void sysfs_slab_remove(struct kmem_cache
*s
)
4615 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4616 kobject_del(&s
->kobj
);
4617 kobject_put(&s
->kobj
);
4621 * Need to buffer aliases during bootup until sysfs becomes
4622 * available lest we lose that information.
4624 struct saved_alias
{
4625 struct kmem_cache
*s
;
4627 struct saved_alias
*next
;
4630 static struct saved_alias
*alias_list
;
4632 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4634 struct saved_alias
*al
;
4636 if (slab_state
== SYSFS
) {
4638 * If we have a leftover link then remove it.
4640 sysfs_remove_link(&slab_kset
->kobj
, name
);
4641 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4644 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4650 al
->next
= alias_list
;
4655 static int __init
slab_sysfs_init(void)
4657 struct kmem_cache
*s
;
4660 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4662 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4668 list_for_each_entry(s
, &slab_caches
, list
) {
4669 err
= sysfs_slab_add(s
);
4671 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4672 " to sysfs\n", s
->name
);
4675 while (alias_list
) {
4676 struct saved_alias
*al
= alias_list
;
4678 alias_list
= alias_list
->next
;
4679 err
= sysfs_slab_alias(al
->s
, al
->name
);
4681 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4682 " %s to sysfs\n", s
->name
);
4690 __initcall(slab_sysfs_init
);
4694 * The /proc/slabinfo ABI
4696 #ifdef CONFIG_SLABINFO
4697 static void print_slabinfo_header(struct seq_file
*m
)
4699 seq_puts(m
, "slabinfo - version: 2.1\n");
4700 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4701 "<objperslab> <pagesperslab>");
4702 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4703 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4707 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4711 down_read(&slub_lock
);
4713 print_slabinfo_header(m
);
4715 return seq_list_start(&slab_caches
, *pos
);
4718 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4720 return seq_list_next(p
, &slab_caches
, pos
);
4723 static void s_stop(struct seq_file
*m
, void *p
)
4725 up_read(&slub_lock
);
4728 static int s_show(struct seq_file
*m
, void *p
)
4730 unsigned long nr_partials
= 0;
4731 unsigned long nr_slabs
= 0;
4732 unsigned long nr_inuse
= 0;
4733 unsigned long nr_objs
= 0;
4734 unsigned long nr_free
= 0;
4735 struct kmem_cache
*s
;
4738 s
= list_entry(p
, struct kmem_cache
, list
);
4740 for_each_online_node(node
) {
4741 struct kmem_cache_node
*n
= get_node(s
, node
);
4746 nr_partials
+= n
->nr_partial
;
4747 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4748 nr_objs
+= atomic_long_read(&n
->total_objects
);
4749 nr_free
+= count_partial(n
, count_free
);
4752 nr_inuse
= nr_objs
- nr_free
;
4754 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4755 nr_objs
, s
->size
, oo_objects(s
->oo
),
4756 (1 << oo_order(s
->oo
)));
4757 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4758 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4764 static const struct seq_operations slabinfo_op
= {
4771 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4773 return seq_open(file
, &slabinfo_op
);
4776 static const struct file_operations proc_slabinfo_operations
= {
4777 .open
= slabinfo_open
,
4779 .llseek
= seq_lseek
,
4780 .release
= seq_release
,
4783 static int __init
slab_proc_init(void)
4785 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
4788 module_init(slab_proc_init
);
4789 #endif /* CONFIG_SLABINFO */