e1000e: adjust PM QoS request
[linux-2.6/cjktty.git] / net / core / skbuff.c
blob2568c449fe36cb488269986402c31915d00ac647
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__, here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__, here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
150 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151 * the caller if emergency pfmemalloc reserves are being used. If it is and
152 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153 * may be used. Otherwise, the packet data may be discarded until enough
154 * memory is free
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
159 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
160 unsigned long ip, bool *pfmemalloc)
162 void *obj;
163 bool ret_pfmemalloc = false;
166 * Try a regular allocation, when that fails and we're not entitled
167 * to the reserves, fail.
169 obj = kmalloc_node_track_caller(size,
170 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
171 node);
172 if (obj || !(gfp_pfmemalloc_allowed(flags)))
173 goto out;
175 /* Try again but now we are using pfmemalloc reserves */
176 ret_pfmemalloc = true;
177 obj = kmalloc_node_track_caller(size, flags, node);
179 out:
180 if (pfmemalloc)
181 *pfmemalloc = ret_pfmemalloc;
183 return obj;
186 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
187 * 'private' fields and also do memory statistics to find all the
188 * [BEEP] leaks.
193 * __alloc_skb - allocate a network buffer
194 * @size: size to allocate
195 * @gfp_mask: allocation mask
196 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
197 * instead of head cache and allocate a cloned (child) skb.
198 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
199 * allocations in case the data is required for writeback
200 * @node: numa node to allocate memory on
202 * Allocate a new &sk_buff. The returned buffer has no headroom and a
203 * tail room of at least size bytes. The object has a reference count
204 * of one. The return is the buffer. On a failure the return is %NULL.
206 * Buffers may only be allocated from interrupts using a @gfp_mask of
207 * %GFP_ATOMIC.
209 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
210 int flags, int node)
212 struct kmem_cache *cache;
213 struct skb_shared_info *shinfo;
214 struct sk_buff *skb;
215 u8 *data;
216 bool pfmemalloc;
218 cache = (flags & SKB_ALLOC_FCLONE)
219 ? skbuff_fclone_cache : skbuff_head_cache;
221 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
222 gfp_mask |= __GFP_MEMALLOC;
224 /* Get the HEAD */
225 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
226 if (!skb)
227 goto out;
228 prefetchw(skb);
230 /* We do our best to align skb_shared_info on a separate cache
231 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
232 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
233 * Both skb->head and skb_shared_info are cache line aligned.
235 size = SKB_DATA_ALIGN(size);
236 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
237 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
238 if (!data)
239 goto nodata;
240 /* kmalloc(size) might give us more room than requested.
241 * Put skb_shared_info exactly at the end of allocated zone,
242 * to allow max possible filling before reallocation.
244 size = SKB_WITH_OVERHEAD(ksize(data));
245 prefetchw(data + size);
248 * Only clear those fields we need to clear, not those that we will
249 * actually initialise below. Hence, don't put any more fields after
250 * the tail pointer in struct sk_buff!
252 memset(skb, 0, offsetof(struct sk_buff, tail));
253 /* Account for allocated memory : skb + skb->head */
254 skb->truesize = SKB_TRUESIZE(size);
255 skb->pfmemalloc = pfmemalloc;
256 atomic_set(&skb->users, 1);
257 skb->head = data;
258 skb->data = data;
259 skb_reset_tail_pointer(skb);
260 skb->end = skb->tail + size;
261 #ifdef NET_SKBUFF_DATA_USES_OFFSET
262 skb->mac_header = ~0U;
263 skb->transport_header = ~0U;
264 #endif
266 /* make sure we initialize shinfo sequentially */
267 shinfo = skb_shinfo(skb);
268 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
269 atomic_set(&shinfo->dataref, 1);
270 kmemcheck_annotate_variable(shinfo->destructor_arg);
272 if (flags & SKB_ALLOC_FCLONE) {
273 struct sk_buff *child = skb + 1;
274 atomic_t *fclone_ref = (atomic_t *) (child + 1);
276 kmemcheck_annotate_bitfield(child, flags1);
277 kmemcheck_annotate_bitfield(child, flags2);
278 skb->fclone = SKB_FCLONE_ORIG;
279 atomic_set(fclone_ref, 1);
281 child->fclone = SKB_FCLONE_UNAVAILABLE;
282 child->pfmemalloc = pfmemalloc;
284 out:
285 return skb;
286 nodata:
287 kmem_cache_free(cache, skb);
288 skb = NULL;
289 goto out;
291 EXPORT_SYMBOL(__alloc_skb);
294 * build_skb - build a network buffer
295 * @data: data buffer provided by caller
296 * @frag_size: size of fragment, or 0 if head was kmalloced
298 * Allocate a new &sk_buff. Caller provides space holding head and
299 * skb_shared_info. @data must have been allocated by kmalloc()
300 * The return is the new skb buffer.
301 * On a failure the return is %NULL, and @data is not freed.
302 * Notes :
303 * Before IO, driver allocates only data buffer where NIC put incoming frame
304 * Driver should add room at head (NET_SKB_PAD) and
305 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
306 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
307 * before giving packet to stack.
308 * RX rings only contains data buffers, not full skbs.
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
312 struct skb_shared_info *shinfo;
313 struct sk_buff *skb;
314 unsigned int size = frag_size ? : ksize(data);
316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 if (!skb)
318 return NULL;
320 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
322 memset(skb, 0, offsetof(struct sk_buff, tail));
323 skb->truesize = SKB_TRUESIZE(size);
324 skb->head_frag = frag_size != 0;
325 atomic_set(&skb->users, 1);
326 skb->head = data;
327 skb->data = data;
328 skb_reset_tail_pointer(skb);
329 skb->end = skb->tail + size;
330 #ifdef NET_SKBUFF_DATA_USES_OFFSET
331 skb->mac_header = ~0U;
332 skb->transport_header = ~0U;
333 #endif
335 /* make sure we initialize shinfo sequentially */
336 shinfo = skb_shinfo(skb);
337 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
338 atomic_set(&shinfo->dataref, 1);
339 kmemcheck_annotate_variable(shinfo->destructor_arg);
341 return skb;
343 EXPORT_SYMBOL(build_skb);
345 struct netdev_alloc_cache {
346 struct page_frag frag;
347 /* we maintain a pagecount bias, so that we dont dirty cache line
348 * containing page->_count every time we allocate a fragment.
350 unsigned int pagecnt_bias;
352 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
354 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
355 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
356 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
358 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
360 struct netdev_alloc_cache *nc;
361 void *data = NULL;
362 int order;
363 unsigned long flags;
365 local_irq_save(flags);
366 nc = &__get_cpu_var(netdev_alloc_cache);
367 if (unlikely(!nc->frag.page)) {
368 refill:
369 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
370 gfp_t gfp = gfp_mask;
372 if (order)
373 gfp |= __GFP_COMP | __GFP_NOWARN;
374 nc->frag.page = alloc_pages(gfp, order);
375 if (likely(nc->frag.page))
376 break;
377 if (--order < 0)
378 goto end;
380 nc->frag.size = PAGE_SIZE << order;
381 recycle:
382 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
383 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
384 nc->frag.offset = 0;
387 if (nc->frag.offset + fragsz > nc->frag.size) {
388 /* avoid unnecessary locked operations if possible */
389 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
390 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
391 goto recycle;
392 goto refill;
395 data = page_address(nc->frag.page) + nc->frag.offset;
396 nc->frag.offset += fragsz;
397 nc->pagecnt_bias--;
398 end:
399 local_irq_restore(flags);
400 return data;
404 * netdev_alloc_frag - allocate a page fragment
405 * @fragsz: fragment size
407 * Allocates a frag from a page for receive buffer.
408 * Uses GFP_ATOMIC allocations.
410 void *netdev_alloc_frag(unsigned int fragsz)
412 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
414 EXPORT_SYMBOL(netdev_alloc_frag);
417 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
418 * @dev: network device to receive on
419 * @length: length to allocate
420 * @gfp_mask: get_free_pages mask, passed to alloc_skb
422 * Allocate a new &sk_buff and assign it a usage count of one. The
423 * buffer has unspecified headroom built in. Users should allocate
424 * the headroom they think they need without accounting for the
425 * built in space. The built in space is used for optimisations.
427 * %NULL is returned if there is no free memory.
429 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
430 unsigned int length, gfp_t gfp_mask)
432 struct sk_buff *skb = NULL;
433 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
437 void *data;
439 if (sk_memalloc_socks())
440 gfp_mask |= __GFP_MEMALLOC;
442 data = __netdev_alloc_frag(fragsz, gfp_mask);
444 if (likely(data)) {
445 skb = build_skb(data, fragsz);
446 if (unlikely(!skb))
447 put_page(virt_to_head_page(data));
449 } else {
450 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
451 SKB_ALLOC_RX, NUMA_NO_NODE);
453 if (likely(skb)) {
454 skb_reserve(skb, NET_SKB_PAD);
455 skb->dev = dev;
457 return skb;
459 EXPORT_SYMBOL(__netdev_alloc_skb);
461 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
462 int size, unsigned int truesize)
464 skb_fill_page_desc(skb, i, page, off, size);
465 skb->len += size;
466 skb->data_len += size;
467 skb->truesize += truesize;
469 EXPORT_SYMBOL(skb_add_rx_frag);
471 static void skb_drop_list(struct sk_buff **listp)
473 struct sk_buff *list = *listp;
475 *listp = NULL;
477 do {
478 struct sk_buff *this = list;
479 list = list->next;
480 kfree_skb(this);
481 } while (list);
484 static inline void skb_drop_fraglist(struct sk_buff *skb)
486 skb_drop_list(&skb_shinfo(skb)->frag_list);
489 static void skb_clone_fraglist(struct sk_buff *skb)
491 struct sk_buff *list;
493 skb_walk_frags(skb, list)
494 skb_get(list);
497 static void skb_free_head(struct sk_buff *skb)
499 if (skb->head_frag)
500 put_page(virt_to_head_page(skb->head));
501 else
502 kfree(skb->head);
505 static void skb_release_data(struct sk_buff *skb)
507 if (!skb->cloned ||
508 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
509 &skb_shinfo(skb)->dataref)) {
510 if (skb_shinfo(skb)->nr_frags) {
511 int i;
512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
513 skb_frag_unref(skb, i);
517 * If skb buf is from userspace, we need to notify the caller
518 * the lower device DMA has done;
520 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
521 struct ubuf_info *uarg;
523 uarg = skb_shinfo(skb)->destructor_arg;
524 if (uarg->callback)
525 uarg->callback(uarg, true);
528 if (skb_has_frag_list(skb))
529 skb_drop_fraglist(skb);
531 skb_free_head(skb);
536 * Free an skbuff by memory without cleaning the state.
538 static void kfree_skbmem(struct sk_buff *skb)
540 struct sk_buff *other;
541 atomic_t *fclone_ref;
543 switch (skb->fclone) {
544 case SKB_FCLONE_UNAVAILABLE:
545 kmem_cache_free(skbuff_head_cache, skb);
546 break;
548 case SKB_FCLONE_ORIG:
549 fclone_ref = (atomic_t *) (skb + 2);
550 if (atomic_dec_and_test(fclone_ref))
551 kmem_cache_free(skbuff_fclone_cache, skb);
552 break;
554 case SKB_FCLONE_CLONE:
555 fclone_ref = (atomic_t *) (skb + 1);
556 other = skb - 1;
558 /* The clone portion is available for
559 * fast-cloning again.
561 skb->fclone = SKB_FCLONE_UNAVAILABLE;
563 if (atomic_dec_and_test(fclone_ref))
564 kmem_cache_free(skbuff_fclone_cache, other);
565 break;
569 static void skb_release_head_state(struct sk_buff *skb)
571 skb_dst_drop(skb);
572 #ifdef CONFIG_XFRM
573 secpath_put(skb->sp);
574 #endif
575 if (skb->destructor) {
576 WARN_ON(in_irq());
577 skb->destructor(skb);
579 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
580 nf_conntrack_put(skb->nfct);
581 #endif
582 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
583 nf_conntrack_put_reasm(skb->nfct_reasm);
584 #endif
585 #ifdef CONFIG_BRIDGE_NETFILTER
586 nf_bridge_put(skb->nf_bridge);
587 #endif
588 /* XXX: IS this still necessary? - JHS */
589 #ifdef CONFIG_NET_SCHED
590 skb->tc_index = 0;
591 #ifdef CONFIG_NET_CLS_ACT
592 skb->tc_verd = 0;
593 #endif
594 #endif
597 /* Free everything but the sk_buff shell. */
598 static void skb_release_all(struct sk_buff *skb)
600 skb_release_head_state(skb);
601 skb_release_data(skb);
605 * __kfree_skb - private function
606 * @skb: buffer
608 * Free an sk_buff. Release anything attached to the buffer.
609 * Clean the state. This is an internal helper function. Users should
610 * always call kfree_skb
613 void __kfree_skb(struct sk_buff *skb)
615 skb_release_all(skb);
616 kfree_skbmem(skb);
618 EXPORT_SYMBOL(__kfree_skb);
621 * kfree_skb - free an sk_buff
622 * @skb: buffer to free
624 * Drop a reference to the buffer and free it if the usage count has
625 * hit zero.
627 void kfree_skb(struct sk_buff *skb)
629 if (unlikely(!skb))
630 return;
631 if (likely(atomic_read(&skb->users) == 1))
632 smp_rmb();
633 else if (likely(!atomic_dec_and_test(&skb->users)))
634 return;
635 trace_kfree_skb(skb, __builtin_return_address(0));
636 __kfree_skb(skb);
638 EXPORT_SYMBOL(kfree_skb);
641 * skb_tx_error - report an sk_buff xmit error
642 * @skb: buffer that triggered an error
644 * Report xmit error if a device callback is tracking this skb.
645 * skb must be freed afterwards.
647 void skb_tx_error(struct sk_buff *skb)
649 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
650 struct ubuf_info *uarg;
652 uarg = skb_shinfo(skb)->destructor_arg;
653 if (uarg->callback)
654 uarg->callback(uarg, false);
655 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
658 EXPORT_SYMBOL(skb_tx_error);
661 * consume_skb - free an skbuff
662 * @skb: buffer to free
664 * Drop a ref to the buffer and free it if the usage count has hit zero
665 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
666 * is being dropped after a failure and notes that
668 void consume_skb(struct sk_buff *skb)
670 if (unlikely(!skb))
671 return;
672 if (likely(atomic_read(&skb->users) == 1))
673 smp_rmb();
674 else if (likely(!atomic_dec_and_test(&skb->users)))
675 return;
676 trace_consume_skb(skb);
677 __kfree_skb(skb);
679 EXPORT_SYMBOL(consume_skb);
681 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
683 new->tstamp = old->tstamp;
684 new->dev = old->dev;
685 new->transport_header = old->transport_header;
686 new->network_header = old->network_header;
687 new->mac_header = old->mac_header;
688 new->inner_transport_header = old->inner_transport_header;
689 new->inner_network_header = old->inner_transport_header;
690 skb_dst_copy(new, old);
691 new->rxhash = old->rxhash;
692 new->ooo_okay = old->ooo_okay;
693 new->l4_rxhash = old->l4_rxhash;
694 new->no_fcs = old->no_fcs;
695 new->encapsulation = old->encapsulation;
696 #ifdef CONFIG_XFRM
697 new->sp = secpath_get(old->sp);
698 #endif
699 memcpy(new->cb, old->cb, sizeof(old->cb));
700 new->csum = old->csum;
701 new->local_df = old->local_df;
702 new->pkt_type = old->pkt_type;
703 new->ip_summed = old->ip_summed;
704 skb_copy_queue_mapping(new, old);
705 new->priority = old->priority;
706 #if IS_ENABLED(CONFIG_IP_VS)
707 new->ipvs_property = old->ipvs_property;
708 #endif
709 new->pfmemalloc = old->pfmemalloc;
710 new->protocol = old->protocol;
711 new->mark = old->mark;
712 new->skb_iif = old->skb_iif;
713 __nf_copy(new, old);
714 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
715 new->nf_trace = old->nf_trace;
716 #endif
717 #ifdef CONFIG_NET_SCHED
718 new->tc_index = old->tc_index;
719 #ifdef CONFIG_NET_CLS_ACT
720 new->tc_verd = old->tc_verd;
721 #endif
722 #endif
723 new->vlan_tci = old->vlan_tci;
725 skb_copy_secmark(new, old);
729 * You should not add any new code to this function. Add it to
730 * __copy_skb_header above instead.
732 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
734 #define C(x) n->x = skb->x
736 n->next = n->prev = NULL;
737 n->sk = NULL;
738 __copy_skb_header(n, skb);
740 C(len);
741 C(data_len);
742 C(mac_len);
743 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
744 n->cloned = 1;
745 n->nohdr = 0;
746 n->destructor = NULL;
747 C(tail);
748 C(end);
749 C(head);
750 C(head_frag);
751 C(data);
752 C(truesize);
753 atomic_set(&n->users, 1);
755 atomic_inc(&(skb_shinfo(skb)->dataref));
756 skb->cloned = 1;
758 return n;
759 #undef C
763 * skb_morph - morph one skb into another
764 * @dst: the skb to receive the contents
765 * @src: the skb to supply the contents
767 * This is identical to skb_clone except that the target skb is
768 * supplied by the user.
770 * The target skb is returned upon exit.
772 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
774 skb_release_all(dst);
775 return __skb_clone(dst, src);
777 EXPORT_SYMBOL_GPL(skb_morph);
780 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
781 * @skb: the skb to modify
782 * @gfp_mask: allocation priority
784 * This must be called on SKBTX_DEV_ZEROCOPY skb.
785 * It will copy all frags into kernel and drop the reference
786 * to userspace pages.
788 * If this function is called from an interrupt gfp_mask() must be
789 * %GFP_ATOMIC.
791 * Returns 0 on success or a negative error code on failure
792 * to allocate kernel memory to copy to.
794 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
796 int i;
797 int num_frags = skb_shinfo(skb)->nr_frags;
798 struct page *page, *head = NULL;
799 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
801 for (i = 0; i < num_frags; i++) {
802 u8 *vaddr;
803 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
805 page = alloc_page(gfp_mask);
806 if (!page) {
807 while (head) {
808 struct page *next = (struct page *)head->private;
809 put_page(head);
810 head = next;
812 return -ENOMEM;
814 vaddr = kmap_atomic(skb_frag_page(f));
815 memcpy(page_address(page),
816 vaddr + f->page_offset, skb_frag_size(f));
817 kunmap_atomic(vaddr);
818 page->private = (unsigned long)head;
819 head = page;
822 /* skb frags release userspace buffers */
823 for (i = 0; i < num_frags; i++)
824 skb_frag_unref(skb, i);
826 uarg->callback(uarg, false);
828 /* skb frags point to kernel buffers */
829 for (i = num_frags - 1; i >= 0; i--) {
830 __skb_fill_page_desc(skb, i, head, 0,
831 skb_shinfo(skb)->frags[i].size);
832 head = (struct page *)head->private;
835 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
836 return 0;
838 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
841 * skb_clone - duplicate an sk_buff
842 * @skb: buffer to clone
843 * @gfp_mask: allocation priority
845 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
846 * copies share the same packet data but not structure. The new
847 * buffer has a reference count of 1. If the allocation fails the
848 * function returns %NULL otherwise the new buffer is returned.
850 * If this function is called from an interrupt gfp_mask() must be
851 * %GFP_ATOMIC.
854 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
856 struct sk_buff *n;
858 if (skb_orphan_frags(skb, gfp_mask))
859 return NULL;
861 n = skb + 1;
862 if (skb->fclone == SKB_FCLONE_ORIG &&
863 n->fclone == SKB_FCLONE_UNAVAILABLE) {
864 atomic_t *fclone_ref = (atomic_t *) (n + 1);
865 n->fclone = SKB_FCLONE_CLONE;
866 atomic_inc(fclone_ref);
867 } else {
868 if (skb_pfmemalloc(skb))
869 gfp_mask |= __GFP_MEMALLOC;
871 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
872 if (!n)
873 return NULL;
875 kmemcheck_annotate_bitfield(n, flags1);
876 kmemcheck_annotate_bitfield(n, flags2);
877 n->fclone = SKB_FCLONE_UNAVAILABLE;
880 return __skb_clone(n, skb);
882 EXPORT_SYMBOL(skb_clone);
884 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
886 #ifndef NET_SKBUFF_DATA_USES_OFFSET
888 * Shift between the two data areas in bytes
890 unsigned long offset = new->data - old->data;
891 #endif
893 __copy_skb_header(new, old);
895 #ifndef NET_SKBUFF_DATA_USES_OFFSET
896 /* {transport,network,mac}_header are relative to skb->head */
897 new->transport_header += offset;
898 new->network_header += offset;
899 if (skb_mac_header_was_set(new))
900 new->mac_header += offset;
901 new->inner_transport_header += offset;
902 new->inner_network_header += offset;
903 #endif
904 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
905 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
906 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
909 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
911 if (skb_pfmemalloc(skb))
912 return SKB_ALLOC_RX;
913 return 0;
917 * skb_copy - create private copy of an sk_buff
918 * @skb: buffer to copy
919 * @gfp_mask: allocation priority
921 * Make a copy of both an &sk_buff and its data. This is used when the
922 * caller wishes to modify the data and needs a private copy of the
923 * data to alter. Returns %NULL on failure or the pointer to the buffer
924 * on success. The returned buffer has a reference count of 1.
926 * As by-product this function converts non-linear &sk_buff to linear
927 * one, so that &sk_buff becomes completely private and caller is allowed
928 * to modify all the data of returned buffer. This means that this
929 * function is not recommended for use in circumstances when only
930 * header is going to be modified. Use pskb_copy() instead.
933 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
935 int headerlen = skb_headroom(skb);
936 unsigned int size = skb_end_offset(skb) + skb->data_len;
937 struct sk_buff *n = __alloc_skb(size, gfp_mask,
938 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
940 if (!n)
941 return NULL;
943 /* Set the data pointer */
944 skb_reserve(n, headerlen);
945 /* Set the tail pointer and length */
946 skb_put(n, skb->len);
948 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
949 BUG();
951 copy_skb_header(n, skb);
952 return n;
954 EXPORT_SYMBOL(skb_copy);
957 * __pskb_copy - create copy of an sk_buff with private head.
958 * @skb: buffer to copy
959 * @headroom: headroom of new skb
960 * @gfp_mask: allocation priority
962 * Make a copy of both an &sk_buff and part of its data, located
963 * in header. Fragmented data remain shared. This is used when
964 * the caller wishes to modify only header of &sk_buff and needs
965 * private copy of the header to alter. Returns %NULL on failure
966 * or the pointer to the buffer on success.
967 * The returned buffer has a reference count of 1.
970 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
972 unsigned int size = skb_headlen(skb) + headroom;
973 struct sk_buff *n = __alloc_skb(size, gfp_mask,
974 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
976 if (!n)
977 goto out;
979 /* Set the data pointer */
980 skb_reserve(n, headroom);
981 /* Set the tail pointer and length */
982 skb_put(n, skb_headlen(skb));
983 /* Copy the bytes */
984 skb_copy_from_linear_data(skb, n->data, n->len);
986 n->truesize += skb->data_len;
987 n->data_len = skb->data_len;
988 n->len = skb->len;
990 if (skb_shinfo(skb)->nr_frags) {
991 int i;
993 if (skb_orphan_frags(skb, gfp_mask)) {
994 kfree_skb(n);
995 n = NULL;
996 goto out;
998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
999 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1000 skb_frag_ref(skb, i);
1002 skb_shinfo(n)->nr_frags = i;
1005 if (skb_has_frag_list(skb)) {
1006 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1007 skb_clone_fraglist(n);
1010 copy_skb_header(n, skb);
1011 out:
1012 return n;
1014 EXPORT_SYMBOL(__pskb_copy);
1017 * pskb_expand_head - reallocate header of &sk_buff
1018 * @skb: buffer to reallocate
1019 * @nhead: room to add at head
1020 * @ntail: room to add at tail
1021 * @gfp_mask: allocation priority
1023 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1024 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1025 * reference count of 1. Returns zero in the case of success or error,
1026 * if expansion failed. In the last case, &sk_buff is not changed.
1028 * All the pointers pointing into skb header may change and must be
1029 * reloaded after call to this function.
1032 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1033 gfp_t gfp_mask)
1035 int i;
1036 u8 *data;
1037 int size = nhead + skb_end_offset(skb) + ntail;
1038 long off;
1040 BUG_ON(nhead < 0);
1042 if (skb_shared(skb))
1043 BUG();
1045 size = SKB_DATA_ALIGN(size);
1047 if (skb_pfmemalloc(skb))
1048 gfp_mask |= __GFP_MEMALLOC;
1049 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1050 gfp_mask, NUMA_NO_NODE, NULL);
1051 if (!data)
1052 goto nodata;
1053 size = SKB_WITH_OVERHEAD(ksize(data));
1055 /* Copy only real data... and, alas, header. This should be
1056 * optimized for the cases when header is void.
1058 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1060 memcpy((struct skb_shared_info *)(data + size),
1061 skb_shinfo(skb),
1062 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1065 * if shinfo is shared we must drop the old head gracefully, but if it
1066 * is not we can just drop the old head and let the existing refcount
1067 * be since all we did is relocate the values
1069 if (skb_cloned(skb)) {
1070 /* copy this zero copy skb frags */
1071 if (skb_orphan_frags(skb, gfp_mask))
1072 goto nofrags;
1073 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1074 skb_frag_ref(skb, i);
1076 if (skb_has_frag_list(skb))
1077 skb_clone_fraglist(skb);
1079 skb_release_data(skb);
1080 } else {
1081 skb_free_head(skb);
1083 off = (data + nhead) - skb->head;
1085 skb->head = data;
1086 skb->head_frag = 0;
1087 skb->data += off;
1088 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1089 skb->end = size;
1090 off = nhead;
1091 #else
1092 skb->end = skb->head + size;
1093 #endif
1094 /* {transport,network,mac}_header and tail are relative to skb->head */
1095 skb->tail += off;
1096 skb->transport_header += off;
1097 skb->network_header += off;
1098 if (skb_mac_header_was_set(skb))
1099 skb->mac_header += off;
1100 skb->inner_transport_header += off;
1101 skb->inner_network_header += off;
1102 /* Only adjust this if it actually is csum_start rather than csum */
1103 if (skb->ip_summed == CHECKSUM_PARTIAL)
1104 skb->csum_start += nhead;
1105 skb->cloned = 0;
1106 skb->hdr_len = 0;
1107 skb->nohdr = 0;
1108 atomic_set(&skb_shinfo(skb)->dataref, 1);
1109 return 0;
1111 nofrags:
1112 kfree(data);
1113 nodata:
1114 return -ENOMEM;
1116 EXPORT_SYMBOL(pskb_expand_head);
1118 /* Make private copy of skb with writable head and some headroom */
1120 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1122 struct sk_buff *skb2;
1123 int delta = headroom - skb_headroom(skb);
1125 if (delta <= 0)
1126 skb2 = pskb_copy(skb, GFP_ATOMIC);
1127 else {
1128 skb2 = skb_clone(skb, GFP_ATOMIC);
1129 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1130 GFP_ATOMIC)) {
1131 kfree_skb(skb2);
1132 skb2 = NULL;
1135 return skb2;
1137 EXPORT_SYMBOL(skb_realloc_headroom);
1140 * skb_copy_expand - copy and expand sk_buff
1141 * @skb: buffer to copy
1142 * @newheadroom: new free bytes at head
1143 * @newtailroom: new free bytes at tail
1144 * @gfp_mask: allocation priority
1146 * Make a copy of both an &sk_buff and its data and while doing so
1147 * allocate additional space.
1149 * This is used when the caller wishes to modify the data and needs a
1150 * private copy of the data to alter as well as more space for new fields.
1151 * Returns %NULL on failure or the pointer to the buffer
1152 * on success. The returned buffer has a reference count of 1.
1154 * You must pass %GFP_ATOMIC as the allocation priority if this function
1155 * is called from an interrupt.
1157 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1158 int newheadroom, int newtailroom,
1159 gfp_t gfp_mask)
1162 * Allocate the copy buffer
1164 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1165 gfp_mask, skb_alloc_rx_flag(skb),
1166 NUMA_NO_NODE);
1167 int oldheadroom = skb_headroom(skb);
1168 int head_copy_len, head_copy_off;
1169 int off;
1171 if (!n)
1172 return NULL;
1174 skb_reserve(n, newheadroom);
1176 /* Set the tail pointer and length */
1177 skb_put(n, skb->len);
1179 head_copy_len = oldheadroom;
1180 head_copy_off = 0;
1181 if (newheadroom <= head_copy_len)
1182 head_copy_len = newheadroom;
1183 else
1184 head_copy_off = newheadroom - head_copy_len;
1186 /* Copy the linear header and data. */
1187 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1188 skb->len + head_copy_len))
1189 BUG();
1191 copy_skb_header(n, skb);
1193 off = newheadroom - oldheadroom;
1194 if (n->ip_summed == CHECKSUM_PARTIAL)
1195 n->csum_start += off;
1196 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1197 n->transport_header += off;
1198 n->network_header += off;
1199 if (skb_mac_header_was_set(skb))
1200 n->mac_header += off;
1201 n->inner_transport_header += off;
1202 n->inner_network_header += off;
1203 #endif
1205 return n;
1207 EXPORT_SYMBOL(skb_copy_expand);
1210 * skb_pad - zero pad the tail of an skb
1211 * @skb: buffer to pad
1212 * @pad: space to pad
1214 * Ensure that a buffer is followed by a padding area that is zero
1215 * filled. Used by network drivers which may DMA or transfer data
1216 * beyond the buffer end onto the wire.
1218 * May return error in out of memory cases. The skb is freed on error.
1221 int skb_pad(struct sk_buff *skb, int pad)
1223 int err;
1224 int ntail;
1226 /* If the skbuff is non linear tailroom is always zero.. */
1227 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1228 memset(skb->data+skb->len, 0, pad);
1229 return 0;
1232 ntail = skb->data_len + pad - (skb->end - skb->tail);
1233 if (likely(skb_cloned(skb) || ntail > 0)) {
1234 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1235 if (unlikely(err))
1236 goto free_skb;
1239 /* FIXME: The use of this function with non-linear skb's really needs
1240 * to be audited.
1242 err = skb_linearize(skb);
1243 if (unlikely(err))
1244 goto free_skb;
1246 memset(skb->data + skb->len, 0, pad);
1247 return 0;
1249 free_skb:
1250 kfree_skb(skb);
1251 return err;
1253 EXPORT_SYMBOL(skb_pad);
1256 * skb_put - add data to a buffer
1257 * @skb: buffer to use
1258 * @len: amount of data to add
1260 * This function extends the used data area of the buffer. If this would
1261 * exceed the total buffer size the kernel will panic. A pointer to the
1262 * first byte of the extra data is returned.
1264 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1266 unsigned char *tmp = skb_tail_pointer(skb);
1267 SKB_LINEAR_ASSERT(skb);
1268 skb->tail += len;
1269 skb->len += len;
1270 if (unlikely(skb->tail > skb->end))
1271 skb_over_panic(skb, len, __builtin_return_address(0));
1272 return tmp;
1274 EXPORT_SYMBOL(skb_put);
1277 * skb_push - add data to the start of a buffer
1278 * @skb: buffer to use
1279 * @len: amount of data to add
1281 * This function extends the used data area of the buffer at the buffer
1282 * start. If this would exceed the total buffer headroom the kernel will
1283 * panic. A pointer to the first byte of the extra data is returned.
1285 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1287 skb->data -= len;
1288 skb->len += len;
1289 if (unlikely(skb->data<skb->head))
1290 skb_under_panic(skb, len, __builtin_return_address(0));
1291 return skb->data;
1293 EXPORT_SYMBOL(skb_push);
1296 * skb_pull - remove data from the start of a buffer
1297 * @skb: buffer to use
1298 * @len: amount of data to remove
1300 * This function removes data from the start of a buffer, returning
1301 * the memory to the headroom. A pointer to the next data in the buffer
1302 * is returned. Once the data has been pulled future pushes will overwrite
1303 * the old data.
1305 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1307 return skb_pull_inline(skb, len);
1309 EXPORT_SYMBOL(skb_pull);
1312 * skb_trim - remove end from a buffer
1313 * @skb: buffer to alter
1314 * @len: new length
1316 * Cut the length of a buffer down by removing data from the tail. If
1317 * the buffer is already under the length specified it is not modified.
1318 * The skb must be linear.
1320 void skb_trim(struct sk_buff *skb, unsigned int len)
1322 if (skb->len > len)
1323 __skb_trim(skb, len);
1325 EXPORT_SYMBOL(skb_trim);
1327 /* Trims skb to length len. It can change skb pointers.
1330 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1332 struct sk_buff **fragp;
1333 struct sk_buff *frag;
1334 int offset = skb_headlen(skb);
1335 int nfrags = skb_shinfo(skb)->nr_frags;
1336 int i;
1337 int err;
1339 if (skb_cloned(skb) &&
1340 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1341 return err;
1343 i = 0;
1344 if (offset >= len)
1345 goto drop_pages;
1347 for (; i < nfrags; i++) {
1348 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1350 if (end < len) {
1351 offset = end;
1352 continue;
1355 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1357 drop_pages:
1358 skb_shinfo(skb)->nr_frags = i;
1360 for (; i < nfrags; i++)
1361 skb_frag_unref(skb, i);
1363 if (skb_has_frag_list(skb))
1364 skb_drop_fraglist(skb);
1365 goto done;
1368 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1369 fragp = &frag->next) {
1370 int end = offset + frag->len;
1372 if (skb_shared(frag)) {
1373 struct sk_buff *nfrag;
1375 nfrag = skb_clone(frag, GFP_ATOMIC);
1376 if (unlikely(!nfrag))
1377 return -ENOMEM;
1379 nfrag->next = frag->next;
1380 consume_skb(frag);
1381 frag = nfrag;
1382 *fragp = frag;
1385 if (end < len) {
1386 offset = end;
1387 continue;
1390 if (end > len &&
1391 unlikely((err = pskb_trim(frag, len - offset))))
1392 return err;
1394 if (frag->next)
1395 skb_drop_list(&frag->next);
1396 break;
1399 done:
1400 if (len > skb_headlen(skb)) {
1401 skb->data_len -= skb->len - len;
1402 skb->len = len;
1403 } else {
1404 skb->len = len;
1405 skb->data_len = 0;
1406 skb_set_tail_pointer(skb, len);
1409 return 0;
1411 EXPORT_SYMBOL(___pskb_trim);
1414 * __pskb_pull_tail - advance tail of skb header
1415 * @skb: buffer to reallocate
1416 * @delta: number of bytes to advance tail
1418 * The function makes a sense only on a fragmented &sk_buff,
1419 * it expands header moving its tail forward and copying necessary
1420 * data from fragmented part.
1422 * &sk_buff MUST have reference count of 1.
1424 * Returns %NULL (and &sk_buff does not change) if pull failed
1425 * or value of new tail of skb in the case of success.
1427 * All the pointers pointing into skb header may change and must be
1428 * reloaded after call to this function.
1431 /* Moves tail of skb head forward, copying data from fragmented part,
1432 * when it is necessary.
1433 * 1. It may fail due to malloc failure.
1434 * 2. It may change skb pointers.
1436 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1438 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1440 /* If skb has not enough free space at tail, get new one
1441 * plus 128 bytes for future expansions. If we have enough
1442 * room at tail, reallocate without expansion only if skb is cloned.
1444 int i, k, eat = (skb->tail + delta) - skb->end;
1446 if (eat > 0 || skb_cloned(skb)) {
1447 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1448 GFP_ATOMIC))
1449 return NULL;
1452 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1453 BUG();
1455 /* Optimization: no fragments, no reasons to preestimate
1456 * size of pulled pages. Superb.
1458 if (!skb_has_frag_list(skb))
1459 goto pull_pages;
1461 /* Estimate size of pulled pages. */
1462 eat = delta;
1463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1464 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1466 if (size >= eat)
1467 goto pull_pages;
1468 eat -= size;
1471 /* If we need update frag list, we are in troubles.
1472 * Certainly, it possible to add an offset to skb data,
1473 * but taking into account that pulling is expected to
1474 * be very rare operation, it is worth to fight against
1475 * further bloating skb head and crucify ourselves here instead.
1476 * Pure masohism, indeed. 8)8)
1478 if (eat) {
1479 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1480 struct sk_buff *clone = NULL;
1481 struct sk_buff *insp = NULL;
1483 do {
1484 BUG_ON(!list);
1486 if (list->len <= eat) {
1487 /* Eaten as whole. */
1488 eat -= list->len;
1489 list = list->next;
1490 insp = list;
1491 } else {
1492 /* Eaten partially. */
1494 if (skb_shared(list)) {
1495 /* Sucks! We need to fork list. :-( */
1496 clone = skb_clone(list, GFP_ATOMIC);
1497 if (!clone)
1498 return NULL;
1499 insp = list->next;
1500 list = clone;
1501 } else {
1502 /* This may be pulled without
1503 * problems. */
1504 insp = list;
1506 if (!pskb_pull(list, eat)) {
1507 kfree_skb(clone);
1508 return NULL;
1510 break;
1512 } while (eat);
1514 /* Free pulled out fragments. */
1515 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1516 skb_shinfo(skb)->frag_list = list->next;
1517 kfree_skb(list);
1519 /* And insert new clone at head. */
1520 if (clone) {
1521 clone->next = list;
1522 skb_shinfo(skb)->frag_list = clone;
1525 /* Success! Now we may commit changes to skb data. */
1527 pull_pages:
1528 eat = delta;
1529 k = 0;
1530 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1531 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1533 if (size <= eat) {
1534 skb_frag_unref(skb, i);
1535 eat -= size;
1536 } else {
1537 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1538 if (eat) {
1539 skb_shinfo(skb)->frags[k].page_offset += eat;
1540 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1541 eat = 0;
1543 k++;
1546 skb_shinfo(skb)->nr_frags = k;
1548 skb->tail += delta;
1549 skb->data_len -= delta;
1551 return skb_tail_pointer(skb);
1553 EXPORT_SYMBOL(__pskb_pull_tail);
1556 * skb_copy_bits - copy bits from skb to kernel buffer
1557 * @skb: source skb
1558 * @offset: offset in source
1559 * @to: destination buffer
1560 * @len: number of bytes to copy
1562 * Copy the specified number of bytes from the source skb to the
1563 * destination buffer.
1565 * CAUTION ! :
1566 * If its prototype is ever changed,
1567 * check arch/{*}/net/{*}.S files,
1568 * since it is called from BPF assembly code.
1570 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1572 int start = skb_headlen(skb);
1573 struct sk_buff *frag_iter;
1574 int i, copy;
1576 if (offset > (int)skb->len - len)
1577 goto fault;
1579 /* Copy header. */
1580 if ((copy = start - offset) > 0) {
1581 if (copy > len)
1582 copy = len;
1583 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1584 if ((len -= copy) == 0)
1585 return 0;
1586 offset += copy;
1587 to += copy;
1590 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1591 int end;
1592 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1594 WARN_ON(start > offset + len);
1596 end = start + skb_frag_size(f);
1597 if ((copy = end - offset) > 0) {
1598 u8 *vaddr;
1600 if (copy > len)
1601 copy = len;
1603 vaddr = kmap_atomic(skb_frag_page(f));
1604 memcpy(to,
1605 vaddr + f->page_offset + offset - start,
1606 copy);
1607 kunmap_atomic(vaddr);
1609 if ((len -= copy) == 0)
1610 return 0;
1611 offset += copy;
1612 to += copy;
1614 start = end;
1617 skb_walk_frags(skb, frag_iter) {
1618 int end;
1620 WARN_ON(start > offset + len);
1622 end = start + frag_iter->len;
1623 if ((copy = end - offset) > 0) {
1624 if (copy > len)
1625 copy = len;
1626 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1627 goto fault;
1628 if ((len -= copy) == 0)
1629 return 0;
1630 offset += copy;
1631 to += copy;
1633 start = end;
1636 if (!len)
1637 return 0;
1639 fault:
1640 return -EFAULT;
1642 EXPORT_SYMBOL(skb_copy_bits);
1645 * Callback from splice_to_pipe(), if we need to release some pages
1646 * at the end of the spd in case we error'ed out in filling the pipe.
1648 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1650 put_page(spd->pages[i]);
1653 static struct page *linear_to_page(struct page *page, unsigned int *len,
1654 unsigned int *offset,
1655 struct sock *sk)
1657 struct page_frag *pfrag = sk_page_frag(sk);
1659 if (!sk_page_frag_refill(sk, pfrag))
1660 return NULL;
1662 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1664 memcpy(page_address(pfrag->page) + pfrag->offset,
1665 page_address(page) + *offset, *len);
1666 *offset = pfrag->offset;
1667 pfrag->offset += *len;
1669 return pfrag->page;
1672 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1673 struct page *page,
1674 unsigned int offset)
1676 return spd->nr_pages &&
1677 spd->pages[spd->nr_pages - 1] == page &&
1678 (spd->partial[spd->nr_pages - 1].offset +
1679 spd->partial[spd->nr_pages - 1].len == offset);
1683 * Fill page/offset/length into spd, if it can hold more pages.
1685 static bool spd_fill_page(struct splice_pipe_desc *spd,
1686 struct pipe_inode_info *pipe, struct page *page,
1687 unsigned int *len, unsigned int offset,
1688 bool linear,
1689 struct sock *sk)
1691 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1692 return true;
1694 if (linear) {
1695 page = linear_to_page(page, len, &offset, sk);
1696 if (!page)
1697 return true;
1699 if (spd_can_coalesce(spd, page, offset)) {
1700 spd->partial[spd->nr_pages - 1].len += *len;
1701 return false;
1703 get_page(page);
1704 spd->pages[spd->nr_pages] = page;
1705 spd->partial[spd->nr_pages].len = *len;
1706 spd->partial[spd->nr_pages].offset = offset;
1707 spd->nr_pages++;
1709 return false;
1712 static bool __splice_segment(struct page *page, unsigned int poff,
1713 unsigned int plen, unsigned int *off,
1714 unsigned int *len,
1715 struct splice_pipe_desc *spd, bool linear,
1716 struct sock *sk,
1717 struct pipe_inode_info *pipe)
1719 if (!*len)
1720 return true;
1722 /* skip this segment if already processed */
1723 if (*off >= plen) {
1724 *off -= plen;
1725 return false;
1728 /* ignore any bits we already processed */
1729 poff += *off;
1730 plen -= *off;
1731 *off = 0;
1733 do {
1734 unsigned int flen = min(*len, plen);
1736 if (spd_fill_page(spd, pipe, page, &flen, poff,
1737 linear, sk))
1738 return true;
1739 poff += flen;
1740 plen -= flen;
1741 *len -= flen;
1742 } while (*len && plen);
1744 return false;
1748 * Map linear and fragment data from the skb to spd. It reports true if the
1749 * pipe is full or if we already spliced the requested length.
1751 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1752 unsigned int *offset, unsigned int *len,
1753 struct splice_pipe_desc *spd, struct sock *sk)
1755 int seg;
1757 /* map the linear part :
1758 * If skb->head_frag is set, this 'linear' part is backed by a
1759 * fragment, and if the head is not shared with any clones then
1760 * we can avoid a copy since we own the head portion of this page.
1762 if (__splice_segment(virt_to_page(skb->data),
1763 (unsigned long) skb->data & (PAGE_SIZE - 1),
1764 skb_headlen(skb),
1765 offset, len, spd,
1766 skb_head_is_locked(skb),
1767 sk, pipe))
1768 return true;
1771 * then map the fragments
1773 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1774 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1776 if (__splice_segment(skb_frag_page(f),
1777 f->page_offset, skb_frag_size(f),
1778 offset, len, spd, false, sk, pipe))
1779 return true;
1782 return false;
1786 * Map data from the skb to a pipe. Should handle both the linear part,
1787 * the fragments, and the frag list. It does NOT handle frag lists within
1788 * the frag list, if such a thing exists. We'd probably need to recurse to
1789 * handle that cleanly.
1791 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1792 struct pipe_inode_info *pipe, unsigned int tlen,
1793 unsigned int flags)
1795 struct partial_page partial[MAX_SKB_FRAGS];
1796 struct page *pages[MAX_SKB_FRAGS];
1797 struct splice_pipe_desc spd = {
1798 .pages = pages,
1799 .partial = partial,
1800 .nr_pages_max = MAX_SKB_FRAGS,
1801 .flags = flags,
1802 .ops = &sock_pipe_buf_ops,
1803 .spd_release = sock_spd_release,
1805 struct sk_buff *frag_iter;
1806 struct sock *sk = skb->sk;
1807 int ret = 0;
1810 * __skb_splice_bits() only fails if the output has no room left,
1811 * so no point in going over the frag_list for the error case.
1813 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1814 goto done;
1815 else if (!tlen)
1816 goto done;
1819 * now see if we have a frag_list to map
1821 skb_walk_frags(skb, frag_iter) {
1822 if (!tlen)
1823 break;
1824 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1825 break;
1828 done:
1829 if (spd.nr_pages) {
1831 * Drop the socket lock, otherwise we have reverse
1832 * locking dependencies between sk_lock and i_mutex
1833 * here as compared to sendfile(). We enter here
1834 * with the socket lock held, and splice_to_pipe() will
1835 * grab the pipe inode lock. For sendfile() emulation,
1836 * we call into ->sendpage() with the i_mutex lock held
1837 * and networking will grab the socket lock.
1839 release_sock(sk);
1840 ret = splice_to_pipe(pipe, &spd);
1841 lock_sock(sk);
1844 return ret;
1848 * skb_store_bits - store bits from kernel buffer to skb
1849 * @skb: destination buffer
1850 * @offset: offset in destination
1851 * @from: source buffer
1852 * @len: number of bytes to copy
1854 * Copy the specified number of bytes from the source buffer to the
1855 * destination skb. This function handles all the messy bits of
1856 * traversing fragment lists and such.
1859 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1861 int start = skb_headlen(skb);
1862 struct sk_buff *frag_iter;
1863 int i, copy;
1865 if (offset > (int)skb->len - len)
1866 goto fault;
1868 if ((copy = start - offset) > 0) {
1869 if (copy > len)
1870 copy = len;
1871 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1872 if ((len -= copy) == 0)
1873 return 0;
1874 offset += copy;
1875 from += copy;
1878 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1879 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1880 int end;
1882 WARN_ON(start > offset + len);
1884 end = start + skb_frag_size(frag);
1885 if ((copy = end - offset) > 0) {
1886 u8 *vaddr;
1888 if (copy > len)
1889 copy = len;
1891 vaddr = kmap_atomic(skb_frag_page(frag));
1892 memcpy(vaddr + frag->page_offset + offset - start,
1893 from, copy);
1894 kunmap_atomic(vaddr);
1896 if ((len -= copy) == 0)
1897 return 0;
1898 offset += copy;
1899 from += copy;
1901 start = end;
1904 skb_walk_frags(skb, frag_iter) {
1905 int end;
1907 WARN_ON(start > offset + len);
1909 end = start + frag_iter->len;
1910 if ((copy = end - offset) > 0) {
1911 if (copy > len)
1912 copy = len;
1913 if (skb_store_bits(frag_iter, offset - start,
1914 from, copy))
1915 goto fault;
1916 if ((len -= copy) == 0)
1917 return 0;
1918 offset += copy;
1919 from += copy;
1921 start = end;
1923 if (!len)
1924 return 0;
1926 fault:
1927 return -EFAULT;
1929 EXPORT_SYMBOL(skb_store_bits);
1931 /* Checksum skb data. */
1933 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1934 int len, __wsum csum)
1936 int start = skb_headlen(skb);
1937 int i, copy = start - offset;
1938 struct sk_buff *frag_iter;
1939 int pos = 0;
1941 /* Checksum header. */
1942 if (copy > 0) {
1943 if (copy > len)
1944 copy = len;
1945 csum = csum_partial(skb->data + offset, copy, csum);
1946 if ((len -= copy) == 0)
1947 return csum;
1948 offset += copy;
1949 pos = copy;
1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1953 int end;
1954 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1956 WARN_ON(start > offset + len);
1958 end = start + skb_frag_size(frag);
1959 if ((copy = end - offset) > 0) {
1960 __wsum csum2;
1961 u8 *vaddr;
1963 if (copy > len)
1964 copy = len;
1965 vaddr = kmap_atomic(skb_frag_page(frag));
1966 csum2 = csum_partial(vaddr + frag->page_offset +
1967 offset - start, copy, 0);
1968 kunmap_atomic(vaddr);
1969 csum = csum_block_add(csum, csum2, pos);
1970 if (!(len -= copy))
1971 return csum;
1972 offset += copy;
1973 pos += copy;
1975 start = end;
1978 skb_walk_frags(skb, frag_iter) {
1979 int end;
1981 WARN_ON(start > offset + len);
1983 end = start + frag_iter->len;
1984 if ((copy = end - offset) > 0) {
1985 __wsum csum2;
1986 if (copy > len)
1987 copy = len;
1988 csum2 = skb_checksum(frag_iter, offset - start,
1989 copy, 0);
1990 csum = csum_block_add(csum, csum2, pos);
1991 if ((len -= copy) == 0)
1992 return csum;
1993 offset += copy;
1994 pos += copy;
1996 start = end;
1998 BUG_ON(len);
2000 return csum;
2002 EXPORT_SYMBOL(skb_checksum);
2004 /* Both of above in one bottle. */
2006 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2007 u8 *to, int len, __wsum csum)
2009 int start = skb_headlen(skb);
2010 int i, copy = start - offset;
2011 struct sk_buff *frag_iter;
2012 int pos = 0;
2014 /* Copy header. */
2015 if (copy > 0) {
2016 if (copy > len)
2017 copy = len;
2018 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2019 copy, csum);
2020 if ((len -= copy) == 0)
2021 return csum;
2022 offset += copy;
2023 to += copy;
2024 pos = copy;
2027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2028 int end;
2030 WARN_ON(start > offset + len);
2032 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2033 if ((copy = end - offset) > 0) {
2034 __wsum csum2;
2035 u8 *vaddr;
2036 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2038 if (copy > len)
2039 copy = len;
2040 vaddr = kmap_atomic(skb_frag_page(frag));
2041 csum2 = csum_partial_copy_nocheck(vaddr +
2042 frag->page_offset +
2043 offset - start, to,
2044 copy, 0);
2045 kunmap_atomic(vaddr);
2046 csum = csum_block_add(csum, csum2, pos);
2047 if (!(len -= copy))
2048 return csum;
2049 offset += copy;
2050 to += copy;
2051 pos += copy;
2053 start = end;
2056 skb_walk_frags(skb, frag_iter) {
2057 __wsum csum2;
2058 int end;
2060 WARN_ON(start > offset + len);
2062 end = start + frag_iter->len;
2063 if ((copy = end - offset) > 0) {
2064 if (copy > len)
2065 copy = len;
2066 csum2 = skb_copy_and_csum_bits(frag_iter,
2067 offset - start,
2068 to, copy, 0);
2069 csum = csum_block_add(csum, csum2, pos);
2070 if ((len -= copy) == 0)
2071 return csum;
2072 offset += copy;
2073 to += copy;
2074 pos += copy;
2076 start = end;
2078 BUG_ON(len);
2079 return csum;
2081 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2083 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2085 __wsum csum;
2086 long csstart;
2088 if (skb->ip_summed == CHECKSUM_PARTIAL)
2089 csstart = skb_checksum_start_offset(skb);
2090 else
2091 csstart = skb_headlen(skb);
2093 BUG_ON(csstart > skb_headlen(skb));
2095 skb_copy_from_linear_data(skb, to, csstart);
2097 csum = 0;
2098 if (csstart != skb->len)
2099 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2100 skb->len - csstart, 0);
2102 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2103 long csstuff = csstart + skb->csum_offset;
2105 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2108 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2111 * skb_dequeue - remove from the head of the queue
2112 * @list: list to dequeue from
2114 * Remove the head of the list. The list lock is taken so the function
2115 * may be used safely with other locking list functions. The head item is
2116 * returned or %NULL if the list is empty.
2119 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2121 unsigned long flags;
2122 struct sk_buff *result;
2124 spin_lock_irqsave(&list->lock, flags);
2125 result = __skb_dequeue(list);
2126 spin_unlock_irqrestore(&list->lock, flags);
2127 return result;
2129 EXPORT_SYMBOL(skb_dequeue);
2132 * skb_dequeue_tail - remove from the tail of the queue
2133 * @list: list to dequeue from
2135 * Remove the tail of the list. The list lock is taken so the function
2136 * may be used safely with other locking list functions. The tail item is
2137 * returned or %NULL if the list is empty.
2139 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2141 unsigned long flags;
2142 struct sk_buff *result;
2144 spin_lock_irqsave(&list->lock, flags);
2145 result = __skb_dequeue_tail(list);
2146 spin_unlock_irqrestore(&list->lock, flags);
2147 return result;
2149 EXPORT_SYMBOL(skb_dequeue_tail);
2152 * skb_queue_purge - empty a list
2153 * @list: list to empty
2155 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2156 * the list and one reference dropped. This function takes the list
2157 * lock and is atomic with respect to other list locking functions.
2159 void skb_queue_purge(struct sk_buff_head *list)
2161 struct sk_buff *skb;
2162 while ((skb = skb_dequeue(list)) != NULL)
2163 kfree_skb(skb);
2165 EXPORT_SYMBOL(skb_queue_purge);
2168 * skb_queue_head - queue a buffer at the list head
2169 * @list: list to use
2170 * @newsk: buffer to queue
2172 * Queue a buffer at the start of the list. This function takes the
2173 * list lock and can be used safely with other locking &sk_buff functions
2174 * safely.
2176 * A buffer cannot be placed on two lists at the same time.
2178 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2180 unsigned long flags;
2182 spin_lock_irqsave(&list->lock, flags);
2183 __skb_queue_head(list, newsk);
2184 spin_unlock_irqrestore(&list->lock, flags);
2186 EXPORT_SYMBOL(skb_queue_head);
2189 * skb_queue_tail - queue a buffer at the list tail
2190 * @list: list to use
2191 * @newsk: buffer to queue
2193 * Queue a buffer at the tail of the list. This function takes the
2194 * list lock and can be used safely with other locking &sk_buff functions
2195 * safely.
2197 * A buffer cannot be placed on two lists at the same time.
2199 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2201 unsigned long flags;
2203 spin_lock_irqsave(&list->lock, flags);
2204 __skb_queue_tail(list, newsk);
2205 spin_unlock_irqrestore(&list->lock, flags);
2207 EXPORT_SYMBOL(skb_queue_tail);
2210 * skb_unlink - remove a buffer from a list
2211 * @skb: buffer to remove
2212 * @list: list to use
2214 * Remove a packet from a list. The list locks are taken and this
2215 * function is atomic with respect to other list locked calls
2217 * You must know what list the SKB is on.
2219 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2221 unsigned long flags;
2223 spin_lock_irqsave(&list->lock, flags);
2224 __skb_unlink(skb, list);
2225 spin_unlock_irqrestore(&list->lock, flags);
2227 EXPORT_SYMBOL(skb_unlink);
2230 * skb_append - append a buffer
2231 * @old: buffer to insert after
2232 * @newsk: buffer to insert
2233 * @list: list to use
2235 * Place a packet after a given packet in a list. The list locks are taken
2236 * and this function is atomic with respect to other list locked calls.
2237 * A buffer cannot be placed on two lists at the same time.
2239 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2241 unsigned long flags;
2243 spin_lock_irqsave(&list->lock, flags);
2244 __skb_queue_after(list, old, newsk);
2245 spin_unlock_irqrestore(&list->lock, flags);
2247 EXPORT_SYMBOL(skb_append);
2250 * skb_insert - insert a buffer
2251 * @old: buffer to insert before
2252 * @newsk: buffer to insert
2253 * @list: list to use
2255 * Place a packet before a given packet in a list. The list locks are
2256 * taken and this function is atomic with respect to other list locked
2257 * calls.
2259 * A buffer cannot be placed on two lists at the same time.
2261 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2263 unsigned long flags;
2265 spin_lock_irqsave(&list->lock, flags);
2266 __skb_insert(newsk, old->prev, old, list);
2267 spin_unlock_irqrestore(&list->lock, flags);
2269 EXPORT_SYMBOL(skb_insert);
2271 static inline void skb_split_inside_header(struct sk_buff *skb,
2272 struct sk_buff* skb1,
2273 const u32 len, const int pos)
2275 int i;
2277 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2278 pos - len);
2279 /* And move data appendix as is. */
2280 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2281 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2283 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2284 skb_shinfo(skb)->nr_frags = 0;
2285 skb1->data_len = skb->data_len;
2286 skb1->len += skb1->data_len;
2287 skb->data_len = 0;
2288 skb->len = len;
2289 skb_set_tail_pointer(skb, len);
2292 static inline void skb_split_no_header(struct sk_buff *skb,
2293 struct sk_buff* skb1,
2294 const u32 len, int pos)
2296 int i, k = 0;
2297 const int nfrags = skb_shinfo(skb)->nr_frags;
2299 skb_shinfo(skb)->nr_frags = 0;
2300 skb1->len = skb1->data_len = skb->len - len;
2301 skb->len = len;
2302 skb->data_len = len - pos;
2304 for (i = 0; i < nfrags; i++) {
2305 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2307 if (pos + size > len) {
2308 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2310 if (pos < len) {
2311 /* Split frag.
2312 * We have two variants in this case:
2313 * 1. Move all the frag to the second
2314 * part, if it is possible. F.e.
2315 * this approach is mandatory for TUX,
2316 * where splitting is expensive.
2317 * 2. Split is accurately. We make this.
2319 skb_frag_ref(skb, i);
2320 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2321 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2322 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2323 skb_shinfo(skb)->nr_frags++;
2325 k++;
2326 } else
2327 skb_shinfo(skb)->nr_frags++;
2328 pos += size;
2330 skb_shinfo(skb1)->nr_frags = k;
2334 * skb_split - Split fragmented skb to two parts at length len.
2335 * @skb: the buffer to split
2336 * @skb1: the buffer to receive the second part
2337 * @len: new length for skb
2339 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2341 int pos = skb_headlen(skb);
2343 if (len < pos) /* Split line is inside header. */
2344 skb_split_inside_header(skb, skb1, len, pos);
2345 else /* Second chunk has no header, nothing to copy. */
2346 skb_split_no_header(skb, skb1, len, pos);
2348 EXPORT_SYMBOL(skb_split);
2350 /* Shifting from/to a cloned skb is a no-go.
2352 * Caller cannot keep skb_shinfo related pointers past calling here!
2354 static int skb_prepare_for_shift(struct sk_buff *skb)
2356 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2360 * skb_shift - Shifts paged data partially from skb to another
2361 * @tgt: buffer into which tail data gets added
2362 * @skb: buffer from which the paged data comes from
2363 * @shiftlen: shift up to this many bytes
2365 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2366 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2367 * It's up to caller to free skb if everything was shifted.
2369 * If @tgt runs out of frags, the whole operation is aborted.
2371 * Skb cannot include anything else but paged data while tgt is allowed
2372 * to have non-paged data as well.
2374 * TODO: full sized shift could be optimized but that would need
2375 * specialized skb free'er to handle frags without up-to-date nr_frags.
2377 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2379 int from, to, merge, todo;
2380 struct skb_frag_struct *fragfrom, *fragto;
2382 BUG_ON(shiftlen > skb->len);
2383 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2385 todo = shiftlen;
2386 from = 0;
2387 to = skb_shinfo(tgt)->nr_frags;
2388 fragfrom = &skb_shinfo(skb)->frags[from];
2390 /* Actual merge is delayed until the point when we know we can
2391 * commit all, so that we don't have to undo partial changes
2393 if (!to ||
2394 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2395 fragfrom->page_offset)) {
2396 merge = -1;
2397 } else {
2398 merge = to - 1;
2400 todo -= skb_frag_size(fragfrom);
2401 if (todo < 0) {
2402 if (skb_prepare_for_shift(skb) ||
2403 skb_prepare_for_shift(tgt))
2404 return 0;
2406 /* All previous frag pointers might be stale! */
2407 fragfrom = &skb_shinfo(skb)->frags[from];
2408 fragto = &skb_shinfo(tgt)->frags[merge];
2410 skb_frag_size_add(fragto, shiftlen);
2411 skb_frag_size_sub(fragfrom, shiftlen);
2412 fragfrom->page_offset += shiftlen;
2414 goto onlymerged;
2417 from++;
2420 /* Skip full, not-fitting skb to avoid expensive operations */
2421 if ((shiftlen == skb->len) &&
2422 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2423 return 0;
2425 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2426 return 0;
2428 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2429 if (to == MAX_SKB_FRAGS)
2430 return 0;
2432 fragfrom = &skb_shinfo(skb)->frags[from];
2433 fragto = &skb_shinfo(tgt)->frags[to];
2435 if (todo >= skb_frag_size(fragfrom)) {
2436 *fragto = *fragfrom;
2437 todo -= skb_frag_size(fragfrom);
2438 from++;
2439 to++;
2441 } else {
2442 __skb_frag_ref(fragfrom);
2443 fragto->page = fragfrom->page;
2444 fragto->page_offset = fragfrom->page_offset;
2445 skb_frag_size_set(fragto, todo);
2447 fragfrom->page_offset += todo;
2448 skb_frag_size_sub(fragfrom, todo);
2449 todo = 0;
2451 to++;
2452 break;
2456 /* Ready to "commit" this state change to tgt */
2457 skb_shinfo(tgt)->nr_frags = to;
2459 if (merge >= 0) {
2460 fragfrom = &skb_shinfo(skb)->frags[0];
2461 fragto = &skb_shinfo(tgt)->frags[merge];
2463 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2464 __skb_frag_unref(fragfrom);
2467 /* Reposition in the original skb */
2468 to = 0;
2469 while (from < skb_shinfo(skb)->nr_frags)
2470 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2471 skb_shinfo(skb)->nr_frags = to;
2473 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2475 onlymerged:
2476 /* Most likely the tgt won't ever need its checksum anymore, skb on
2477 * the other hand might need it if it needs to be resent
2479 tgt->ip_summed = CHECKSUM_PARTIAL;
2480 skb->ip_summed = CHECKSUM_PARTIAL;
2482 /* Yak, is it really working this way? Some helper please? */
2483 skb->len -= shiftlen;
2484 skb->data_len -= shiftlen;
2485 skb->truesize -= shiftlen;
2486 tgt->len += shiftlen;
2487 tgt->data_len += shiftlen;
2488 tgt->truesize += shiftlen;
2490 return shiftlen;
2494 * skb_prepare_seq_read - Prepare a sequential read of skb data
2495 * @skb: the buffer to read
2496 * @from: lower offset of data to be read
2497 * @to: upper offset of data to be read
2498 * @st: state variable
2500 * Initializes the specified state variable. Must be called before
2501 * invoking skb_seq_read() for the first time.
2503 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2504 unsigned int to, struct skb_seq_state *st)
2506 st->lower_offset = from;
2507 st->upper_offset = to;
2508 st->root_skb = st->cur_skb = skb;
2509 st->frag_idx = st->stepped_offset = 0;
2510 st->frag_data = NULL;
2512 EXPORT_SYMBOL(skb_prepare_seq_read);
2515 * skb_seq_read - Sequentially read skb data
2516 * @consumed: number of bytes consumed by the caller so far
2517 * @data: destination pointer for data to be returned
2518 * @st: state variable
2520 * Reads a block of skb data at &consumed relative to the
2521 * lower offset specified to skb_prepare_seq_read(). Assigns
2522 * the head of the data block to &data and returns the length
2523 * of the block or 0 if the end of the skb data or the upper
2524 * offset has been reached.
2526 * The caller is not required to consume all of the data
2527 * returned, i.e. &consumed is typically set to the number
2528 * of bytes already consumed and the next call to
2529 * skb_seq_read() will return the remaining part of the block.
2531 * Note 1: The size of each block of data returned can be arbitrary,
2532 * this limitation is the cost for zerocopy seqeuental
2533 * reads of potentially non linear data.
2535 * Note 2: Fragment lists within fragments are not implemented
2536 * at the moment, state->root_skb could be replaced with
2537 * a stack for this purpose.
2539 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2540 struct skb_seq_state *st)
2542 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2543 skb_frag_t *frag;
2545 if (unlikely(abs_offset >= st->upper_offset))
2546 return 0;
2548 next_skb:
2549 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2551 if (abs_offset < block_limit && !st->frag_data) {
2552 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2553 return block_limit - abs_offset;
2556 if (st->frag_idx == 0 && !st->frag_data)
2557 st->stepped_offset += skb_headlen(st->cur_skb);
2559 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2560 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2561 block_limit = skb_frag_size(frag) + st->stepped_offset;
2563 if (abs_offset < block_limit) {
2564 if (!st->frag_data)
2565 st->frag_data = kmap_atomic(skb_frag_page(frag));
2567 *data = (u8 *) st->frag_data + frag->page_offset +
2568 (abs_offset - st->stepped_offset);
2570 return block_limit - abs_offset;
2573 if (st->frag_data) {
2574 kunmap_atomic(st->frag_data);
2575 st->frag_data = NULL;
2578 st->frag_idx++;
2579 st->stepped_offset += skb_frag_size(frag);
2582 if (st->frag_data) {
2583 kunmap_atomic(st->frag_data);
2584 st->frag_data = NULL;
2587 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2588 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2589 st->frag_idx = 0;
2590 goto next_skb;
2591 } else if (st->cur_skb->next) {
2592 st->cur_skb = st->cur_skb->next;
2593 st->frag_idx = 0;
2594 goto next_skb;
2597 return 0;
2599 EXPORT_SYMBOL(skb_seq_read);
2602 * skb_abort_seq_read - Abort a sequential read of skb data
2603 * @st: state variable
2605 * Must be called if skb_seq_read() was not called until it
2606 * returned 0.
2608 void skb_abort_seq_read(struct skb_seq_state *st)
2610 if (st->frag_data)
2611 kunmap_atomic(st->frag_data);
2613 EXPORT_SYMBOL(skb_abort_seq_read);
2615 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2617 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2618 struct ts_config *conf,
2619 struct ts_state *state)
2621 return skb_seq_read(offset, text, TS_SKB_CB(state));
2624 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2626 skb_abort_seq_read(TS_SKB_CB(state));
2630 * skb_find_text - Find a text pattern in skb data
2631 * @skb: the buffer to look in
2632 * @from: search offset
2633 * @to: search limit
2634 * @config: textsearch configuration
2635 * @state: uninitialized textsearch state variable
2637 * Finds a pattern in the skb data according to the specified
2638 * textsearch configuration. Use textsearch_next() to retrieve
2639 * subsequent occurrences of the pattern. Returns the offset
2640 * to the first occurrence or UINT_MAX if no match was found.
2642 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2643 unsigned int to, struct ts_config *config,
2644 struct ts_state *state)
2646 unsigned int ret;
2648 config->get_next_block = skb_ts_get_next_block;
2649 config->finish = skb_ts_finish;
2651 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2653 ret = textsearch_find(config, state);
2654 return (ret <= to - from ? ret : UINT_MAX);
2656 EXPORT_SYMBOL(skb_find_text);
2659 * skb_append_datato_frags - append the user data to a skb
2660 * @sk: sock structure
2661 * @skb: skb structure to be appened with user data.
2662 * @getfrag: call back function to be used for getting the user data
2663 * @from: pointer to user message iov
2664 * @length: length of the iov message
2666 * Description: This procedure append the user data in the fragment part
2667 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2669 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2670 int (*getfrag)(void *from, char *to, int offset,
2671 int len, int odd, struct sk_buff *skb),
2672 void *from, int length)
2674 int frg_cnt = skb_shinfo(skb)->nr_frags;
2675 int copy;
2676 int offset = 0;
2677 int ret;
2678 struct page_frag *pfrag = &current->task_frag;
2680 do {
2681 /* Return error if we don't have space for new frag */
2682 if (frg_cnt >= MAX_SKB_FRAGS)
2683 return -EMSGSIZE;
2685 if (!sk_page_frag_refill(sk, pfrag))
2686 return -ENOMEM;
2688 /* copy the user data to page */
2689 copy = min_t(int, length, pfrag->size - pfrag->offset);
2691 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2692 offset, copy, 0, skb);
2693 if (ret < 0)
2694 return -EFAULT;
2696 /* copy was successful so update the size parameters */
2697 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2698 copy);
2699 frg_cnt++;
2700 pfrag->offset += copy;
2701 get_page(pfrag->page);
2703 skb->truesize += copy;
2704 atomic_add(copy, &sk->sk_wmem_alloc);
2705 skb->len += copy;
2706 skb->data_len += copy;
2707 offset += copy;
2708 length -= copy;
2710 } while (length > 0);
2712 return 0;
2714 EXPORT_SYMBOL(skb_append_datato_frags);
2717 * skb_pull_rcsum - pull skb and update receive checksum
2718 * @skb: buffer to update
2719 * @len: length of data pulled
2721 * This function performs an skb_pull on the packet and updates
2722 * the CHECKSUM_COMPLETE checksum. It should be used on
2723 * receive path processing instead of skb_pull unless you know
2724 * that the checksum difference is zero (e.g., a valid IP header)
2725 * or you are setting ip_summed to CHECKSUM_NONE.
2727 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2729 BUG_ON(len > skb->len);
2730 skb->len -= len;
2731 BUG_ON(skb->len < skb->data_len);
2732 skb_postpull_rcsum(skb, skb->data, len);
2733 return skb->data += len;
2735 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2738 * skb_segment - Perform protocol segmentation on skb.
2739 * @skb: buffer to segment
2740 * @features: features for the output path (see dev->features)
2742 * This function performs segmentation on the given skb. It returns
2743 * a pointer to the first in a list of new skbs for the segments.
2744 * In case of error it returns ERR_PTR(err).
2746 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2748 struct sk_buff *segs = NULL;
2749 struct sk_buff *tail = NULL;
2750 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2751 unsigned int mss = skb_shinfo(skb)->gso_size;
2752 unsigned int doffset = skb->data - skb_mac_header(skb);
2753 unsigned int offset = doffset;
2754 unsigned int headroom;
2755 unsigned int len;
2756 int sg = !!(features & NETIF_F_SG);
2757 int nfrags = skb_shinfo(skb)->nr_frags;
2758 int err = -ENOMEM;
2759 int i = 0;
2760 int pos;
2762 __skb_push(skb, doffset);
2763 headroom = skb_headroom(skb);
2764 pos = skb_headlen(skb);
2766 do {
2767 struct sk_buff *nskb;
2768 skb_frag_t *frag;
2769 int hsize;
2770 int size;
2772 len = skb->len - offset;
2773 if (len > mss)
2774 len = mss;
2776 hsize = skb_headlen(skb) - offset;
2777 if (hsize < 0)
2778 hsize = 0;
2779 if (hsize > len || !sg)
2780 hsize = len;
2782 if (!hsize && i >= nfrags) {
2783 BUG_ON(fskb->len != len);
2785 pos += len;
2786 nskb = skb_clone(fskb, GFP_ATOMIC);
2787 fskb = fskb->next;
2789 if (unlikely(!nskb))
2790 goto err;
2792 hsize = skb_end_offset(nskb);
2793 if (skb_cow_head(nskb, doffset + headroom)) {
2794 kfree_skb(nskb);
2795 goto err;
2798 nskb->truesize += skb_end_offset(nskb) - hsize;
2799 skb_release_head_state(nskb);
2800 __skb_push(nskb, doffset);
2801 } else {
2802 nskb = __alloc_skb(hsize + doffset + headroom,
2803 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2804 NUMA_NO_NODE);
2806 if (unlikely(!nskb))
2807 goto err;
2809 skb_reserve(nskb, headroom);
2810 __skb_put(nskb, doffset);
2813 if (segs)
2814 tail->next = nskb;
2815 else
2816 segs = nskb;
2817 tail = nskb;
2819 __copy_skb_header(nskb, skb);
2820 nskb->mac_len = skb->mac_len;
2822 /* nskb and skb might have different headroom */
2823 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2824 nskb->csum_start += skb_headroom(nskb) - headroom;
2826 skb_reset_mac_header(nskb);
2827 skb_set_network_header(nskb, skb->mac_len);
2828 nskb->transport_header = (nskb->network_header +
2829 skb_network_header_len(skb));
2830 skb_copy_from_linear_data(skb, nskb->data, doffset);
2832 if (fskb != skb_shinfo(skb)->frag_list)
2833 continue;
2835 if (!sg) {
2836 nskb->ip_summed = CHECKSUM_NONE;
2837 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2838 skb_put(nskb, len),
2839 len, 0);
2840 continue;
2843 frag = skb_shinfo(nskb)->frags;
2845 skb_copy_from_linear_data_offset(skb, offset,
2846 skb_put(nskb, hsize), hsize);
2848 while (pos < offset + len && i < nfrags) {
2849 *frag = skb_shinfo(skb)->frags[i];
2850 __skb_frag_ref(frag);
2851 size = skb_frag_size(frag);
2853 if (pos < offset) {
2854 frag->page_offset += offset - pos;
2855 skb_frag_size_sub(frag, offset - pos);
2858 skb_shinfo(nskb)->nr_frags++;
2860 if (pos + size <= offset + len) {
2861 i++;
2862 pos += size;
2863 } else {
2864 skb_frag_size_sub(frag, pos + size - (offset + len));
2865 goto skip_fraglist;
2868 frag++;
2871 if (pos < offset + len) {
2872 struct sk_buff *fskb2 = fskb;
2874 BUG_ON(pos + fskb->len != offset + len);
2876 pos += fskb->len;
2877 fskb = fskb->next;
2879 if (fskb2->next) {
2880 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2881 if (!fskb2)
2882 goto err;
2883 } else
2884 skb_get(fskb2);
2886 SKB_FRAG_ASSERT(nskb);
2887 skb_shinfo(nskb)->frag_list = fskb2;
2890 skip_fraglist:
2891 nskb->data_len = len - hsize;
2892 nskb->len += nskb->data_len;
2893 nskb->truesize += nskb->data_len;
2894 } while ((offset += len) < skb->len);
2896 return segs;
2898 err:
2899 while ((skb = segs)) {
2900 segs = skb->next;
2901 kfree_skb(skb);
2903 return ERR_PTR(err);
2905 EXPORT_SYMBOL_GPL(skb_segment);
2907 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2909 struct sk_buff *p = *head;
2910 struct sk_buff *nskb;
2911 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2912 struct skb_shared_info *pinfo = skb_shinfo(p);
2913 unsigned int headroom;
2914 unsigned int len = skb_gro_len(skb);
2915 unsigned int offset = skb_gro_offset(skb);
2916 unsigned int headlen = skb_headlen(skb);
2917 unsigned int delta_truesize;
2919 if (p->len + len >= 65536)
2920 return -E2BIG;
2922 if (pinfo->frag_list)
2923 goto merge;
2924 else if (headlen <= offset) {
2925 skb_frag_t *frag;
2926 skb_frag_t *frag2;
2927 int i = skbinfo->nr_frags;
2928 int nr_frags = pinfo->nr_frags + i;
2930 offset -= headlen;
2932 if (nr_frags > MAX_SKB_FRAGS)
2933 return -E2BIG;
2935 pinfo->nr_frags = nr_frags;
2936 skbinfo->nr_frags = 0;
2938 frag = pinfo->frags + nr_frags;
2939 frag2 = skbinfo->frags + i;
2940 do {
2941 *--frag = *--frag2;
2942 } while (--i);
2944 frag->page_offset += offset;
2945 skb_frag_size_sub(frag, offset);
2947 /* all fragments truesize : remove (head size + sk_buff) */
2948 delta_truesize = skb->truesize -
2949 SKB_TRUESIZE(skb_end_offset(skb));
2951 skb->truesize -= skb->data_len;
2952 skb->len -= skb->data_len;
2953 skb->data_len = 0;
2955 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2956 goto done;
2957 } else if (skb->head_frag) {
2958 int nr_frags = pinfo->nr_frags;
2959 skb_frag_t *frag = pinfo->frags + nr_frags;
2960 struct page *page = virt_to_head_page(skb->head);
2961 unsigned int first_size = headlen - offset;
2962 unsigned int first_offset;
2964 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2965 return -E2BIG;
2967 first_offset = skb->data -
2968 (unsigned char *)page_address(page) +
2969 offset;
2971 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2973 frag->page.p = page;
2974 frag->page_offset = first_offset;
2975 skb_frag_size_set(frag, first_size);
2977 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2978 /* We dont need to clear skbinfo->nr_frags here */
2980 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2981 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2982 goto done;
2983 } else if (skb_gro_len(p) != pinfo->gso_size)
2984 return -E2BIG;
2986 headroom = skb_headroom(p);
2987 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2988 if (unlikely(!nskb))
2989 return -ENOMEM;
2991 __copy_skb_header(nskb, p);
2992 nskb->mac_len = p->mac_len;
2994 skb_reserve(nskb, headroom);
2995 __skb_put(nskb, skb_gro_offset(p));
2997 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2998 skb_set_network_header(nskb, skb_network_offset(p));
2999 skb_set_transport_header(nskb, skb_transport_offset(p));
3001 __skb_pull(p, skb_gro_offset(p));
3002 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3003 p->data - skb_mac_header(p));
3005 skb_shinfo(nskb)->frag_list = p;
3006 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3007 pinfo->gso_size = 0;
3008 skb_header_release(p);
3009 NAPI_GRO_CB(nskb)->last = p;
3011 nskb->data_len += p->len;
3012 nskb->truesize += p->truesize;
3013 nskb->len += p->len;
3015 *head = nskb;
3016 nskb->next = p->next;
3017 p->next = NULL;
3019 p = nskb;
3021 merge:
3022 delta_truesize = skb->truesize;
3023 if (offset > headlen) {
3024 unsigned int eat = offset - headlen;
3026 skbinfo->frags[0].page_offset += eat;
3027 skb_frag_size_sub(&skbinfo->frags[0], eat);
3028 skb->data_len -= eat;
3029 skb->len -= eat;
3030 offset = headlen;
3033 __skb_pull(skb, offset);
3035 NAPI_GRO_CB(p)->last->next = skb;
3036 NAPI_GRO_CB(p)->last = skb;
3037 skb_header_release(skb);
3039 done:
3040 NAPI_GRO_CB(p)->count++;
3041 p->data_len += len;
3042 p->truesize += delta_truesize;
3043 p->len += len;
3045 NAPI_GRO_CB(skb)->same_flow = 1;
3046 return 0;
3048 EXPORT_SYMBOL_GPL(skb_gro_receive);
3050 void __init skb_init(void)
3052 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3053 sizeof(struct sk_buff),
3055 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3056 NULL);
3057 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3058 (2*sizeof(struct sk_buff)) +
3059 sizeof(atomic_t),
3061 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3062 NULL);
3066 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3067 * @skb: Socket buffer containing the buffers to be mapped
3068 * @sg: The scatter-gather list to map into
3069 * @offset: The offset into the buffer's contents to start mapping
3070 * @len: Length of buffer space to be mapped
3072 * Fill the specified scatter-gather list with mappings/pointers into a
3073 * region of the buffer space attached to a socket buffer.
3075 static int
3076 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3078 int start = skb_headlen(skb);
3079 int i, copy = start - offset;
3080 struct sk_buff *frag_iter;
3081 int elt = 0;
3083 if (copy > 0) {
3084 if (copy > len)
3085 copy = len;
3086 sg_set_buf(sg, skb->data + offset, copy);
3087 elt++;
3088 if ((len -= copy) == 0)
3089 return elt;
3090 offset += copy;
3093 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3094 int end;
3096 WARN_ON(start > offset + len);
3098 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3099 if ((copy = end - offset) > 0) {
3100 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3102 if (copy > len)
3103 copy = len;
3104 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3105 frag->page_offset+offset-start);
3106 elt++;
3107 if (!(len -= copy))
3108 return elt;
3109 offset += copy;
3111 start = end;
3114 skb_walk_frags(skb, frag_iter) {
3115 int end;
3117 WARN_ON(start > offset + len);
3119 end = start + frag_iter->len;
3120 if ((copy = end - offset) > 0) {
3121 if (copy > len)
3122 copy = len;
3123 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3124 copy);
3125 if ((len -= copy) == 0)
3126 return elt;
3127 offset += copy;
3129 start = end;
3131 BUG_ON(len);
3132 return elt;
3135 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3137 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3139 sg_mark_end(&sg[nsg - 1]);
3141 return nsg;
3143 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3146 * skb_cow_data - Check that a socket buffer's data buffers are writable
3147 * @skb: The socket buffer to check.
3148 * @tailbits: Amount of trailing space to be added
3149 * @trailer: Returned pointer to the skb where the @tailbits space begins
3151 * Make sure that the data buffers attached to a socket buffer are
3152 * writable. If they are not, private copies are made of the data buffers
3153 * and the socket buffer is set to use these instead.
3155 * If @tailbits is given, make sure that there is space to write @tailbits
3156 * bytes of data beyond current end of socket buffer. @trailer will be
3157 * set to point to the skb in which this space begins.
3159 * The number of scatterlist elements required to completely map the
3160 * COW'd and extended socket buffer will be returned.
3162 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3164 int copyflag;
3165 int elt;
3166 struct sk_buff *skb1, **skb_p;
3168 /* If skb is cloned or its head is paged, reallocate
3169 * head pulling out all the pages (pages are considered not writable
3170 * at the moment even if they are anonymous).
3172 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3173 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3174 return -ENOMEM;
3176 /* Easy case. Most of packets will go this way. */
3177 if (!skb_has_frag_list(skb)) {
3178 /* A little of trouble, not enough of space for trailer.
3179 * This should not happen, when stack is tuned to generate
3180 * good frames. OK, on miss we reallocate and reserve even more
3181 * space, 128 bytes is fair. */
3183 if (skb_tailroom(skb) < tailbits &&
3184 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3185 return -ENOMEM;
3187 /* Voila! */
3188 *trailer = skb;
3189 return 1;
3192 /* Misery. We are in troubles, going to mincer fragments... */
3194 elt = 1;
3195 skb_p = &skb_shinfo(skb)->frag_list;
3196 copyflag = 0;
3198 while ((skb1 = *skb_p) != NULL) {
3199 int ntail = 0;
3201 /* The fragment is partially pulled by someone,
3202 * this can happen on input. Copy it and everything
3203 * after it. */
3205 if (skb_shared(skb1))
3206 copyflag = 1;
3208 /* If the skb is the last, worry about trailer. */
3210 if (skb1->next == NULL && tailbits) {
3211 if (skb_shinfo(skb1)->nr_frags ||
3212 skb_has_frag_list(skb1) ||
3213 skb_tailroom(skb1) < tailbits)
3214 ntail = tailbits + 128;
3217 if (copyflag ||
3218 skb_cloned(skb1) ||
3219 ntail ||
3220 skb_shinfo(skb1)->nr_frags ||
3221 skb_has_frag_list(skb1)) {
3222 struct sk_buff *skb2;
3224 /* Fuck, we are miserable poor guys... */
3225 if (ntail == 0)
3226 skb2 = skb_copy(skb1, GFP_ATOMIC);
3227 else
3228 skb2 = skb_copy_expand(skb1,
3229 skb_headroom(skb1),
3230 ntail,
3231 GFP_ATOMIC);
3232 if (unlikely(skb2 == NULL))
3233 return -ENOMEM;
3235 if (skb1->sk)
3236 skb_set_owner_w(skb2, skb1->sk);
3238 /* Looking around. Are we still alive?
3239 * OK, link new skb, drop old one */
3241 skb2->next = skb1->next;
3242 *skb_p = skb2;
3243 kfree_skb(skb1);
3244 skb1 = skb2;
3246 elt++;
3247 *trailer = skb1;
3248 skb_p = &skb1->next;
3251 return elt;
3253 EXPORT_SYMBOL_GPL(skb_cow_data);
3255 static void sock_rmem_free(struct sk_buff *skb)
3257 struct sock *sk = skb->sk;
3259 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3263 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3265 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3267 int len = skb->len;
3269 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3270 (unsigned int)sk->sk_rcvbuf)
3271 return -ENOMEM;
3273 skb_orphan(skb);
3274 skb->sk = sk;
3275 skb->destructor = sock_rmem_free;
3276 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3278 /* before exiting rcu section, make sure dst is refcounted */
3279 skb_dst_force(skb);
3281 skb_queue_tail(&sk->sk_error_queue, skb);
3282 if (!sock_flag(sk, SOCK_DEAD))
3283 sk->sk_data_ready(sk, len);
3284 return 0;
3286 EXPORT_SYMBOL(sock_queue_err_skb);
3288 void skb_tstamp_tx(struct sk_buff *orig_skb,
3289 struct skb_shared_hwtstamps *hwtstamps)
3291 struct sock *sk = orig_skb->sk;
3292 struct sock_exterr_skb *serr;
3293 struct sk_buff *skb;
3294 int err;
3296 if (!sk)
3297 return;
3299 skb = skb_clone(orig_skb, GFP_ATOMIC);
3300 if (!skb)
3301 return;
3303 if (hwtstamps) {
3304 *skb_hwtstamps(skb) =
3305 *hwtstamps;
3306 } else {
3308 * no hardware time stamps available,
3309 * so keep the shared tx_flags and only
3310 * store software time stamp
3312 skb->tstamp = ktime_get_real();
3315 serr = SKB_EXT_ERR(skb);
3316 memset(serr, 0, sizeof(*serr));
3317 serr->ee.ee_errno = ENOMSG;
3318 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3320 err = sock_queue_err_skb(sk, skb);
3322 if (err)
3323 kfree_skb(skb);
3325 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3327 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3329 struct sock *sk = skb->sk;
3330 struct sock_exterr_skb *serr;
3331 int err;
3333 skb->wifi_acked_valid = 1;
3334 skb->wifi_acked = acked;
3336 serr = SKB_EXT_ERR(skb);
3337 memset(serr, 0, sizeof(*serr));
3338 serr->ee.ee_errno = ENOMSG;
3339 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3341 err = sock_queue_err_skb(sk, skb);
3342 if (err)
3343 kfree_skb(skb);
3345 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3349 * skb_partial_csum_set - set up and verify partial csum values for packet
3350 * @skb: the skb to set
3351 * @start: the number of bytes after skb->data to start checksumming.
3352 * @off: the offset from start to place the checksum.
3354 * For untrusted partially-checksummed packets, we need to make sure the values
3355 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3357 * This function checks and sets those values and skb->ip_summed: if this
3358 * returns false you should drop the packet.
3360 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3362 if (unlikely(start > skb_headlen(skb)) ||
3363 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3364 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3365 start, off, skb_headlen(skb));
3366 return false;
3368 skb->ip_summed = CHECKSUM_PARTIAL;
3369 skb->csum_start = skb_headroom(skb) + start;
3370 skb->csum_offset = off;
3371 return true;
3373 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3375 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3377 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3378 skb->dev->name);
3380 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3382 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3384 if (head_stolen) {
3385 skb_release_head_state(skb);
3386 kmem_cache_free(skbuff_head_cache, skb);
3387 } else {
3388 __kfree_skb(skb);
3391 EXPORT_SYMBOL(kfree_skb_partial);
3394 * skb_try_coalesce - try to merge skb to prior one
3395 * @to: prior buffer
3396 * @from: buffer to add
3397 * @fragstolen: pointer to boolean
3398 * @delta_truesize: how much more was allocated than was requested
3400 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3401 bool *fragstolen, int *delta_truesize)
3403 int i, delta, len = from->len;
3405 *fragstolen = false;
3407 if (skb_cloned(to))
3408 return false;
3410 if (len <= skb_tailroom(to)) {
3411 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3412 *delta_truesize = 0;
3413 return true;
3416 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3417 return false;
3419 if (skb_headlen(from) != 0) {
3420 struct page *page;
3421 unsigned int offset;
3423 if (skb_shinfo(to)->nr_frags +
3424 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3425 return false;
3427 if (skb_head_is_locked(from))
3428 return false;
3430 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3432 page = virt_to_head_page(from->head);
3433 offset = from->data - (unsigned char *)page_address(page);
3435 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3436 page, offset, skb_headlen(from));
3437 *fragstolen = true;
3438 } else {
3439 if (skb_shinfo(to)->nr_frags +
3440 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3441 return false;
3443 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3446 WARN_ON_ONCE(delta < len);
3448 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3449 skb_shinfo(from)->frags,
3450 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3451 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3453 if (!skb_cloned(from))
3454 skb_shinfo(from)->nr_frags = 0;
3456 /* if the skb is not cloned this does nothing
3457 * since we set nr_frags to 0.
3459 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3460 skb_frag_ref(from, i);
3462 to->truesize += delta;
3463 to->len += len;
3464 to->data_len += len;
3466 *delta_truesize = delta;
3467 return true;
3469 EXPORT_SYMBOL(skb_try_coalesce);