4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 raw_spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_USER_SCHED
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct
*user
)
282 user
->tg
->uid
= user
->uid
;
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group
;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq
, init_tg_cfs_rq
);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq
, init_rt_rq_var
);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock
);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group
.children
);
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group
;
346 /* return group to which a task belongs */
347 static inline struct task_group
*task_group(struct task_struct
*p
)
349 struct task_group
*tg
;
351 #ifdef CONFIG_USER_SCHED
353 tg
= __task_cred(p
)->user
->tg
;
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
357 struct task_group
, css
);
359 tg
= &init_task_group
;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
369 p
->se
.parent
= task_group(p
)->se
[cpu
];
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
374 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
380 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
381 static inline struct task_group
*task_group(struct task_struct
*p
)
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
390 struct load_weight load
;
391 unsigned long nr_running
;
396 struct rb_root tasks_timeline
;
397 struct rb_node
*rb_leftmost
;
399 struct list_head tasks
;
400 struct list_head
*balance_iterator
;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity
*curr
, *next
, *last
;
408 unsigned int nr_spread_over
;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list
;
422 struct task_group
*tg
; /* group that "owns" this runqueue */
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight
;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
436 unsigned long h_load
;
439 * this cpu's part of tg->shares
441 unsigned long shares
;
444 * load.weight at the time we set shares
446 unsigned long rq_weight
;
451 /* Real-Time classes' related field in a runqueue: */
453 struct rt_prio_array active
;
454 unsigned long rt_nr_running
;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
457 int curr
; /* highest queued rt task prio */
459 int next
; /* next highest */
464 unsigned long rt_nr_migratory
;
465 unsigned long rt_nr_total
;
467 struct plist_head pushable_tasks
;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock
;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted
;
479 struct list_head leaf_rt_rq_list
;
480 struct task_group
*tg
;
481 struct sched_rt_entity
*rt_se
;
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
498 cpumask_var_t online
;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask
;
507 struct cpupri cpupri
;
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain
;
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running
;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
538 unsigned char in_nohz_recently
;
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load
;
542 unsigned long nr_load_updates
;
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list
;
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list
;
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
562 unsigned long nr_uninterruptible
;
564 struct task_struct
*curr
, *idle
;
565 unsigned long next_balance
;
566 struct mm_struct
*prev_mm
;
573 struct root_domain
*rd
;
574 struct sched_domain
*sd
;
576 unsigned char idle_at_tick
;
577 /* For active balancing */
581 /* cpu of this runqueue: */
585 unsigned long avg_load_per_task
;
587 struct task_struct
*migration_thread
;
588 struct list_head migration_queue
;
596 /* calc_load related fields */
597 unsigned long calc_load_update
;
598 long calc_load_active
;
600 #ifdef CONFIG_SCHED_HRTICK
602 int hrtick_csd_pending
;
603 struct call_single_data hrtick_csd
;
605 struct hrtimer hrtick_timer
;
608 #ifdef CONFIG_SCHEDSTATS
610 struct sched_info rq_sched_info
;
611 unsigned long long rq_cpu_time
;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
614 /* sys_sched_yield() stats */
615 unsigned int yld_count
;
617 /* schedule() stats */
618 unsigned int sched_switch
;
619 unsigned int sched_count
;
620 unsigned int sched_goidle
;
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count
;
624 unsigned int ttwu_local
;
627 unsigned int bkl_count
;
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
634 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
636 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
639 static inline int cpu_of(struct rq
*rq
)
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
664 inline void update_rq_clock(struct rq
*rq
)
666 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
675 # define const_debug static const
680 * @cpu: the processor in question.
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
686 int runqueue_is_locked(int cpu
)
688 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
692 * Debugging: various feature bits
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
699 #include "sched_features.h"
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
707 const_debug
unsigned int sysctl_sched_features
=
708 #include "sched_features.h"
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
717 static __read_mostly
char *sched_feat_names
[] = {
718 #include "sched_features.h"
724 static int sched_feat_show(struct seq_file
*m
, void *v
)
728 for (i
= 0; sched_feat_names
[i
]; i
++) {
729 if (!(sysctl_sched_features
& (1UL << i
)))
731 seq_printf(m
, "%s ", sched_feat_names
[i
]);
739 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
740 size_t cnt
, loff_t
*ppos
)
750 if (copy_from_user(&buf
, ubuf
, cnt
))
755 if (strncmp(buf
, "NO_", 3) == 0) {
760 for (i
= 0; sched_feat_names
[i
]; i
++) {
761 int len
= strlen(sched_feat_names
[i
]);
763 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
765 sysctl_sched_features
&= ~(1UL << i
);
767 sysctl_sched_features
|= (1UL << i
);
772 if (!sched_feat_names
[i
])
780 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
782 return single_open(filp
, sched_feat_show
, NULL
);
785 static const struct file_operations sched_feat_fops
= {
786 .open
= sched_feat_open
,
787 .write
= sched_feat_write
,
790 .release
= single_release
,
793 static __init
int sched_init_debug(void)
795 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
800 late_initcall(sched_init_debug
);
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
810 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
813 * ratelimit for updating the group shares.
816 unsigned int sysctl_sched_shares_ratelimit
= 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
824 unsigned int sysctl_sched_shares_thresh
= 4;
827 * period over which we average the RT time consumption, measured
832 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
835 * period over which we measure -rt task cpu usage in us.
838 unsigned int sysctl_sched_rt_period
= 1000000;
840 static __read_mostly
int scheduler_running
;
843 * part of the period that we allow rt tasks to run in us.
846 int sysctl_sched_rt_runtime
= 950000;
848 static inline u64
global_rt_period(void)
850 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
853 static inline u64
global_rt_runtime(void)
855 if (sysctl_sched_rt_runtime
< 0)
858 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
868 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
870 return rq
->curr
== p
;
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
876 return task_current(rq
, p
);
879 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
883 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq
->lock
.owner
= current
;
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
894 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
896 raw_spin_unlock_irq(&rq
->lock
);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
905 return task_current(rq
, p
);
909 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq
->lock
);
922 raw_spin_unlock(&rq
->lock
);
926 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
947 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
951 struct rq
*rq
= task_rq(p
);
952 raw_spin_lock(&rq
->lock
);
953 if (likely(rq
== task_rq(p
)))
955 raw_spin_unlock(&rq
->lock
);
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
964 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
970 local_irq_save(*flags
);
972 raw_spin_lock(&rq
->lock
);
973 if (likely(rq
== task_rq(p
)))
975 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
979 void task_rq_unlock_wait(struct task_struct
*p
)
981 struct rq
*rq
= task_rq(p
);
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq
->lock
);
987 static void __task_rq_unlock(struct rq
*rq
)
990 raw_spin_unlock(&rq
->lock
);
993 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
996 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq
*this_rq_lock(void)
1003 __acquires(rq
->lock
)
1007 local_irq_disable();
1009 raw_spin_lock(&rq
->lock
);
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq
*rq
)
1033 if (!sched_feat(HRTICK
))
1035 if (!cpu_active(cpu_of(rq
)))
1037 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1040 static void hrtick_clear(struct rq
*rq
)
1042 if (hrtimer_active(&rq
->hrtick_timer
))
1043 hrtimer_cancel(&rq
->hrtick_timer
);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1052 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1054 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1056 raw_spin_lock(&rq
->lock
);
1057 update_rq_clock(rq
);
1058 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1059 raw_spin_unlock(&rq
->lock
);
1061 return HRTIMER_NORESTART
;
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg
)
1070 struct rq
*rq
= arg
;
1072 raw_spin_lock(&rq
->lock
);
1073 hrtimer_restart(&rq
->hrtick_timer
);
1074 rq
->hrtick_csd_pending
= 0;
1075 raw_spin_unlock(&rq
->lock
);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq
*rq
, u64 delay
)
1085 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1086 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1088 hrtimer_set_expires(timer
, time
);
1090 if (rq
== this_rq()) {
1091 hrtimer_restart(timer
);
1092 } else if (!rq
->hrtick_csd_pending
) {
1093 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1094 rq
->hrtick_csd_pending
= 1;
1099 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1101 int cpu
= (int)(long)hcpu
;
1104 case CPU_UP_CANCELED
:
1105 case CPU_UP_CANCELED_FROZEN
:
1106 case CPU_DOWN_PREPARE
:
1107 case CPU_DOWN_PREPARE_FROZEN
:
1109 case CPU_DEAD_FROZEN
:
1110 hrtick_clear(cpu_rq(cpu
));
1117 static __init
void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick
, 0);
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq
*rq
, u64 delay
)
1129 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1130 HRTIMER_MODE_REL_PINNED
, 0);
1133 static inline void init_hrtick(void)
1136 #endif /* CONFIG_SMP */
1138 static void init_rq_hrtick(struct rq
*rq
)
1141 rq
->hrtick_csd_pending
= 0;
1143 rq
->hrtick_csd
.flags
= 0;
1144 rq
->hrtick_csd
.func
= __hrtick_start
;
1145 rq
->hrtick_csd
.info
= rq
;
1148 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1149 rq
->hrtick_timer
.function
= hrtick
;
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq
*rq
)
1156 static inline void init_rq_hrtick(struct rq
*rq
)
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SCHED_HRTICK */
1166 * resched_task - mark a task 'to be rescheduled now'.
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 static void resched_task(struct task_struct
*p
)
1182 assert_raw_spin_locked(&task_rq(p
)->lock
);
1184 if (test_tsk_need_resched(p
))
1187 set_tsk_need_resched(p
);
1190 if (cpu
== smp_processor_id())
1193 /* NEED_RESCHED must be visible before we test polling */
1195 if (!tsk_is_polling(p
))
1196 smp_send_reschedule(cpu
);
1199 static void resched_cpu(int cpu
)
1201 struct rq
*rq
= cpu_rq(cpu
);
1202 unsigned long flags
;
1204 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1206 resched_task(cpu_curr(cpu
));
1207 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1221 void wake_up_idle_cpu(int cpu
)
1223 struct rq
*rq
= cpu_rq(cpu
);
1225 if (cpu
== smp_processor_id())
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1235 if (rq
->curr
!= rq
->idle
)
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1243 set_tsk_need_resched(rq
->idle
);
1245 /* NEED_RESCHED must be visible before we test polling */
1247 if (!tsk_is_polling(rq
->idle
))
1248 smp_send_reschedule(cpu
);
1250 #endif /* CONFIG_NO_HZ */
1252 static u64
sched_avg_period(void)
1254 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1257 static void sched_avg_update(struct rq
*rq
)
1259 s64 period
= sched_avg_period();
1261 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1262 rq
->age_stamp
+= period
;
1267 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1269 rq
->rt_avg
+= rt_delta
;
1270 sched_avg_update(rq
);
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct
*p
)
1276 assert_raw_spin_locked(&task_rq(p
)->lock
);
1277 set_tsk_need_resched(p
);
1280 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1283 #endif /* CONFIG_SMP */
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1288 # define WMULT_CONST (1UL << 32)
1291 #define WMULT_SHIFT 32
1294 * Shift right and round:
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299 * delta *= weight / lw
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1303 struct load_weight
*lw
)
1307 if (!lw
->inv_weight
) {
1308 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1311 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1315 tmp
= (u64
)delta_exec
* weight
;
1317 * Check whether we'd overflow the 64-bit multiplication:
1319 if (unlikely(tmp
> WMULT_CONST
))
1320 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1323 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1325 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1328 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1334 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1364 static const int prio_to_weight
[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1382 static const u32 prio_to_wmult
[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1400 struct rq_iterator
{
1402 struct task_struct
*(*start
)(void *);
1403 struct task_struct
*(*next
)(void *);
1407 static unsigned long
1408 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1409 unsigned long max_load_move
, struct sched_domain
*sd
,
1410 enum cpu_idle_type idle
, int *all_pinned
,
1411 int *this_best_prio
, struct rq_iterator
*iterator
);
1414 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1415 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1416 struct rq_iterator
*iterator
);
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index
{
1421 CPUACCT_STAT_USER
, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1424 CPUACCT_STAT_NSTATS
,
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1429 static void cpuacct_update_stats(struct task_struct
*tsk
,
1430 enum cpuacct_stat_index idx
, cputime_t val
);
1432 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1433 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1434 enum cpuacct_stat_index idx
, cputime_t val
) {}
1437 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1439 update_load_add(&rq
->load
, load
);
1442 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1444 update_load_sub(&rq
->load
, load
);
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor
)(struct task_group
*, void *);
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1454 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1456 struct task_group
*parent
, *child
;
1460 parent
= &root_task_group
;
1462 ret
= (*down
)(parent
, data
);
1465 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1472 ret
= (*up
)(parent
, data
);
1477 parent
= parent
->parent
;
1486 static int tg_nop(struct task_group
*tg
, void *data
)
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu
)
1496 return cpu_rq(cpu
)->load
.weight
;
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1506 static unsigned long source_load(int cpu
, int type
)
1508 struct rq
*rq
= cpu_rq(cpu
);
1509 unsigned long total
= weighted_cpuload(cpu
);
1511 if (type
== 0 || !sched_feat(LB_BIAS
))
1514 return min(rq
->cpu_load
[type
-1], total
);
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 static unsigned long target_load(int cpu
, int type
)
1523 struct rq
*rq
= cpu_rq(cpu
);
1524 unsigned long total
= weighted_cpuload(cpu
);
1526 if (type
== 0 || !sched_feat(LB_BIAS
))
1529 return max(rq
->cpu_load
[type
-1], total
);
1532 static struct sched_group
*group_of(int cpu
)
1534 struct sched_domain
*sd
= rcu_dereference(cpu_rq(cpu
)->sd
);
1542 static unsigned long power_of(int cpu
)
1544 struct sched_group
*group
= group_of(cpu
);
1547 return SCHED_LOAD_SCALE
;
1549 return group
->cpu_power
;
1552 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1554 static unsigned long cpu_avg_load_per_task(int cpu
)
1556 struct rq
*rq
= cpu_rq(cpu
);
1557 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1560 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1562 rq
->avg_load_per_task
= 0;
1564 return rq
->avg_load_per_task
;
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1569 static __read_mostly
unsigned long *update_shares_data
;
1571 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1574 * Calculate and set the cpu's group shares.
1576 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1577 unsigned long sd_shares
,
1578 unsigned long sd_rq_weight
,
1579 unsigned long *usd_rq_weight
)
1581 unsigned long shares
, rq_weight
;
1584 rq_weight
= usd_rq_weight
[cpu
];
1587 rq_weight
= NICE_0_LOAD
;
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1595 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1596 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1598 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1599 sysctl_sched_shares_thresh
) {
1600 struct rq
*rq
= cpu_rq(cpu
);
1601 unsigned long flags
;
1603 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1604 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1605 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1606 __set_se_shares(tg
->se
[cpu
], shares
);
1607 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1616 static int tg_shares_up(struct task_group
*tg
, void *data
)
1618 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1619 unsigned long *usd_rq_weight
;
1620 struct sched_domain
*sd
= data
;
1621 unsigned long flags
;
1627 local_irq_save(flags
);
1628 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1630 for_each_cpu(i
, sched_domain_span(sd
)) {
1631 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1632 usd_rq_weight
[i
] = weight
;
1634 rq_weight
+= weight
;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1641 weight
= NICE_0_LOAD
;
1643 sum_weight
+= weight
;
1644 shares
+= tg
->cfs_rq
[i
]->shares
;
1648 rq_weight
= sum_weight
;
1650 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1651 shares
= tg
->shares
;
1653 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1654 shares
= tg
->shares
;
1656 for_each_cpu(i
, sched_domain_span(sd
))
1657 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1659 local_irq_restore(flags
);
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1669 static int tg_load_down(struct task_group
*tg
, void *data
)
1672 long cpu
= (long)data
;
1675 load
= cpu_rq(cpu
)->load
.weight
;
1677 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1678 load
*= tg
->cfs_rq
[cpu
]->shares
;
1679 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1682 tg
->cfs_rq
[cpu
]->h_load
= load
;
1687 static void update_shares(struct sched_domain
*sd
)
1692 if (root_task_group_empty())
1695 now
= cpu_clock(raw_smp_processor_id());
1696 elapsed
= now
- sd
->last_update
;
1698 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1699 sd
->last_update
= now
;
1700 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1704 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1706 if (root_task_group_empty())
1709 raw_spin_unlock(&rq
->lock
);
1711 raw_spin_lock(&rq
->lock
);
1714 static void update_h_load(long cpu
)
1716 if (root_task_group_empty())
1719 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1724 static inline void update_shares(struct sched_domain
*sd
)
1728 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1734 #ifdef CONFIG_PREEMPT
1736 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1746 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1747 __releases(this_rq
->lock
)
1748 __acquires(busiest
->lock
)
1749 __acquires(this_rq
->lock
)
1751 raw_spin_unlock(&this_rq
->lock
);
1752 double_rq_lock(this_rq
, busiest
);
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1765 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1766 __releases(this_rq
->lock
)
1767 __acquires(busiest
->lock
)
1768 __acquires(this_rq
->lock
)
1772 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1773 if (busiest
< this_rq
) {
1774 raw_spin_unlock(&this_rq
->lock
);
1775 raw_spin_lock(&busiest
->lock
);
1776 raw_spin_lock_nested(&this_rq
->lock
,
1777 SINGLE_DEPTH_NESTING
);
1780 raw_spin_lock_nested(&busiest
->lock
,
1781 SINGLE_DEPTH_NESTING
);
1786 #endif /* CONFIG_PREEMPT */
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq
->lock
);
1799 return _double_lock_balance(this_rq
, busiest
);
1802 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1803 __releases(busiest
->lock
)
1805 raw_spin_unlock(&busiest
->lock
);
1806 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1814 cfs_rq
->shares
= shares
;
1819 static void calc_load_account_active(struct rq
*this_rq
);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1823 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1825 set_task_rq(p
, cpu
);
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1833 task_thread_info(p
)->cpu
= cpu
;
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1849 static void inc_nr_running(struct rq
*rq
)
1854 static void dec_nr_running(struct rq
*rq
)
1859 static void set_load_weight(struct task_struct
*p
)
1861 if (task_has_rt_policy(p
)) {
1862 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1863 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1868 * SCHED_IDLE tasks get minimal weight:
1870 if (p
->policy
== SCHED_IDLE
) {
1871 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1872 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1876 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1877 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1880 static void update_avg(u64
*avg
, u64 sample
)
1882 s64 diff
= sample
- *avg
;
1886 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1889 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1891 sched_info_queued(p
);
1892 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1896 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1899 if (p
->se
.last_wakeup
) {
1900 update_avg(&p
->se
.avg_overlap
,
1901 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1902 p
->se
.last_wakeup
= 0;
1904 update_avg(&p
->se
.avg_wakeup
,
1905 sysctl_sched_wakeup_granularity
);
1909 sched_info_dequeued(p
);
1910 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1915 * __normal_prio - return the priority that is based on the static prio
1917 static inline int __normal_prio(struct task_struct
*p
)
1919 return p
->static_prio
;
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1929 static inline int normal_prio(struct task_struct
*p
)
1933 if (task_has_rt_policy(p
))
1934 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1936 prio
= __normal_prio(p
);
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1947 static int effective_prio(struct task_struct
*p
)
1949 p
->normal_prio
= normal_prio(p
);
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1955 if (!rt_prio(p
->prio
))
1956 return p
->normal_prio
;
1961 * activate_task - move a task to the runqueue.
1963 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1965 if (task_contributes_to_load(p
))
1966 rq
->nr_uninterruptible
--;
1968 enqueue_task(rq
, p
, wakeup
);
1973 * deactivate_task - remove a task from the runqueue.
1975 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1977 if (task_contributes_to_load(p
))
1978 rq
->nr_uninterruptible
++;
1980 dequeue_task(rq
, p
, sleep
);
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1988 inline int task_curr(const struct task_struct
*p
)
1990 return cpu_curr(task_cpu(p
)) == p
;
1993 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1994 const struct sched_class
*prev_class
,
1995 int oldprio
, int running
)
1997 if (prev_class
!= p
->sched_class
) {
1998 if (prev_class
->switched_from
)
1999 prev_class
->switched_from(rq
, p
, running
);
2000 p
->sched_class
->switched_to(rq
, p
, running
);
2002 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2007 * Is this task likely cache-hot:
2010 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2014 if (p
->sched_class
!= &fair_sched_class
)
2018 * Buddy candidates are cache hot:
2020 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2021 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2022 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2025 if (sysctl_sched_migration_cost
== -1)
2027 if (sysctl_sched_migration_cost
== 0)
2030 delta
= now
- p
->se
.exec_start
;
2032 return delta
< (s64
)sysctl_sched_migration_cost
;
2035 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2037 #ifdef CONFIG_SCHED_DEBUG
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2042 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2043 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2046 trace_sched_migrate_task(p
, new_cpu
);
2048 if (task_cpu(p
) == new_cpu
)
2051 p
->se
.nr_migrations
++;
2052 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2054 __set_task_cpu(p
, new_cpu
);
2057 struct migration_req
{
2058 struct list_head list
;
2060 struct task_struct
*task
;
2063 struct completion done
;
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2071 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2073 struct rq
*rq
= task_rq(p
);
2076 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task.
2079 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2082 init_completion(&req
->done
);
2084 req
->dest_cpu
= dest_cpu
;
2085 list_add(&req
->list
, &rq
->migration_queue
);
2091 * wait_task_context_switch - wait for a thread to complete at least one
2094 * @p must not be current.
2096 void wait_task_context_switch(struct task_struct
*p
)
2098 unsigned long nvcsw
, nivcsw
, flags
;
2106 * The runqueue is assigned before the actual context
2107 * switch. We need to take the runqueue lock.
2109 * We could check initially without the lock but it is
2110 * very likely that we need to take the lock in every
2113 rq
= task_rq_lock(p
, &flags
);
2114 running
= task_running(rq
, p
);
2115 task_rq_unlock(rq
, &flags
);
2117 if (likely(!running
))
2120 * The switch count is incremented before the actual
2121 * context switch. We thus wait for two switches to be
2122 * sure at least one completed.
2124 if ((p
->nvcsw
- nvcsw
) > 1)
2126 if ((p
->nivcsw
- nivcsw
) > 1)
2134 * wait_task_inactive - wait for a thread to unschedule.
2136 * If @match_state is nonzero, it's the @p->state value just checked and
2137 * not expected to change. If it changes, i.e. @p might have woken up,
2138 * then return zero. When we succeed in waiting for @p to be off its CPU,
2139 * we return a positive number (its total switch count). If a second call
2140 * a short while later returns the same number, the caller can be sure that
2141 * @p has remained unscheduled the whole time.
2143 * The caller must ensure that the task *will* unschedule sometime soon,
2144 * else this function might spin for a *long* time. This function can't
2145 * be called with interrupts off, or it may introduce deadlock with
2146 * smp_call_function() if an IPI is sent by the same process we are
2147 * waiting to become inactive.
2149 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2151 unsigned long flags
;
2158 * We do the initial early heuristics without holding
2159 * any task-queue locks at all. We'll only try to get
2160 * the runqueue lock when things look like they will
2166 * If the task is actively running on another CPU
2167 * still, just relax and busy-wait without holding
2170 * NOTE! Since we don't hold any locks, it's not
2171 * even sure that "rq" stays as the right runqueue!
2172 * But we don't care, since "task_running()" will
2173 * return false if the runqueue has changed and p
2174 * is actually now running somewhere else!
2176 while (task_running(rq
, p
)) {
2177 if (match_state
&& unlikely(p
->state
!= match_state
))
2183 * Ok, time to look more closely! We need the rq
2184 * lock now, to be *sure*. If we're wrong, we'll
2185 * just go back and repeat.
2187 rq
= task_rq_lock(p
, &flags
);
2188 trace_sched_wait_task(rq
, p
);
2189 running
= task_running(rq
, p
);
2190 on_rq
= p
->se
.on_rq
;
2192 if (!match_state
|| p
->state
== match_state
)
2193 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2194 task_rq_unlock(rq
, &flags
);
2197 * If it changed from the expected state, bail out now.
2199 if (unlikely(!ncsw
))
2203 * Was it really running after all now that we
2204 * checked with the proper locks actually held?
2206 * Oops. Go back and try again..
2208 if (unlikely(running
)) {
2214 * It's not enough that it's not actively running,
2215 * it must be off the runqueue _entirely_, and not
2218 * So if it was still runnable (but just not actively
2219 * running right now), it's preempted, and we should
2220 * yield - it could be a while.
2222 if (unlikely(on_rq
)) {
2223 schedule_timeout_uninterruptible(1);
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2251 void kick_process(struct task_struct
*p
)
2257 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2258 smp_send_reschedule(cpu
);
2261 EXPORT_SYMBOL_GPL(kick_process
);
2262 #endif /* CONFIG_SMP */
2265 * task_oncpu_function_call - call a function on the cpu on which a task runs
2266 * @p: the task to evaluate
2267 * @func: the function to be called
2268 * @info: the function call argument
2270 * Calls the function @func when the task is currently running. This might
2271 * be on the current CPU, which just calls the function directly
2273 void task_oncpu_function_call(struct task_struct
*p
,
2274 void (*func
) (void *info
), void *info
)
2281 smp_call_function_single(cpu
, func
, info
, 1);
2286 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2289 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2293 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2296 /* Any allowed, online CPU? */
2297 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2298 if (dest_cpu
< nr_cpu_ids
)
2301 /* No more Mr. Nice Guy. */
2302 if (dest_cpu
>= nr_cpu_ids
) {
2304 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
2306 dest_cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
2309 * Don't tell them about moving exiting tasks or
2310 * kernel threads (both mm NULL), since they never
2313 if (p
->mm
&& printk_ratelimit()) {
2314 printk(KERN_INFO
"process %d (%s) no "
2315 "longer affine to cpu%d\n",
2316 task_pid_nr(p
), p
->comm
, cpu
);
2326 * - fork, @p is stable because it isn't on the tasklist yet
2328 * - exec, @p is unstable, retry loop
2330 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2331 * we should be good.
2334 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2336 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2339 * In order not to call set_task_cpu() on a blocking task we need
2340 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2343 * Since this is common to all placement strategies, this lives here.
2345 * [ this allows ->select_task() to simply return task_cpu(p) and
2346 * not worry about this generic constraint ]
2348 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2350 cpu
= select_fallback_rq(task_cpu(p
), p
);
2357 * try_to_wake_up - wake up a thread
2358 * @p: the to-be-woken-up thread
2359 * @state: the mask of task states that can be woken
2360 * @sync: do a synchronous wakeup?
2362 * Put it on the run-queue if it's not already there. The "current"
2363 * thread is always on the run-queue (except when the actual
2364 * re-schedule is in progress), and as such you're allowed to do
2365 * the simpler "current->state = TASK_RUNNING" to mark yourself
2366 * runnable without the overhead of this.
2368 * returns failure only if the task is already active.
2370 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2373 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2374 unsigned long flags
;
2375 struct rq
*rq
, *orig_rq
;
2377 if (!sched_feat(SYNC_WAKEUPS
))
2378 wake_flags
&= ~WF_SYNC
;
2380 this_cpu
= get_cpu();
2383 rq
= orig_rq
= task_rq_lock(p
, &flags
);
2384 update_rq_clock(rq
);
2385 if (!(p
->state
& state
))
2395 if (unlikely(task_running(rq
, p
)))
2399 * In order to handle concurrent wakeups and release the rq->lock
2400 * we put the task in TASK_WAKING state.
2402 * First fix up the nr_uninterruptible count:
2404 if (task_contributes_to_load(p
))
2405 rq
->nr_uninterruptible
--;
2406 p
->state
= TASK_WAKING
;
2408 if (p
->sched_class
->task_waking
)
2409 p
->sched_class
->task_waking(rq
, p
);
2411 __task_rq_unlock(rq
);
2413 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2414 if (cpu
!= orig_cpu
)
2415 set_task_cpu(p
, cpu
);
2417 rq
= __task_rq_lock(p
);
2418 update_rq_clock(rq
);
2420 WARN_ON(p
->state
!= TASK_WAKING
);
2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq
, ttwu_count
);
2425 if (cpu
== this_cpu
)
2426 schedstat_inc(rq
, ttwu_local
);
2428 struct sched_domain
*sd
;
2429 for_each_domain(this_cpu
, sd
) {
2430 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2431 schedstat_inc(sd
, ttwu_wake_remote
);
2436 #endif /* CONFIG_SCHEDSTATS */
2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p
, se
.nr_wakeups
);
2441 if (wake_flags
& WF_SYNC
)
2442 schedstat_inc(p
, se
.nr_wakeups_sync
);
2443 if (orig_cpu
!= cpu
)
2444 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2445 if (cpu
== this_cpu
)
2446 schedstat_inc(p
, se
.nr_wakeups_local
);
2448 schedstat_inc(p
, se
.nr_wakeups_remote
);
2449 activate_task(rq
, p
, 1);
2453 * Only attribute actual wakeups done by this task.
2455 if (!in_interrupt()) {
2456 struct sched_entity
*se
= ¤t
->se
;
2457 u64 sample
= se
->sum_exec_runtime
;
2459 if (se
->last_wakeup
)
2460 sample
-= se
->last_wakeup
;
2462 sample
-= se
->start_runtime
;
2463 update_avg(&se
->avg_wakeup
, sample
);
2465 se
->last_wakeup
= se
->sum_exec_runtime
;
2469 trace_sched_wakeup(rq
, p
, success
);
2470 check_preempt_curr(rq
, p
, wake_flags
);
2472 p
->state
= TASK_RUNNING
;
2474 if (p
->sched_class
->task_woken
)
2475 p
->sched_class
->task_woken(rq
, p
);
2477 if (unlikely(rq
->idle_stamp
)) {
2478 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2479 u64 max
= 2*sysctl_sched_migration_cost
;
2484 update_avg(&rq
->avg_idle
, delta
);
2489 task_rq_unlock(rq
, &flags
);
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2506 int wake_up_process(struct task_struct
*p
)
2508 return try_to_wake_up(p
, TASK_ALL
, 0);
2510 EXPORT_SYMBOL(wake_up_process
);
2512 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2514 return try_to_wake_up(p
, state
, 0);
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
2521 * __sched_fork() is basic setup used by init_idle() too:
2523 static void __sched_fork(struct task_struct
*p
)
2525 p
->se
.exec_start
= 0;
2526 p
->se
.sum_exec_runtime
= 0;
2527 p
->se
.prev_sum_exec_runtime
= 0;
2528 p
->se
.nr_migrations
= 0;
2529 p
->se
.last_wakeup
= 0;
2530 p
->se
.avg_overlap
= 0;
2531 p
->se
.start_runtime
= 0;
2532 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2534 #ifdef CONFIG_SCHEDSTATS
2535 p
->se
.wait_start
= 0;
2537 p
->se
.wait_count
= 0;
2540 p
->se
.sleep_start
= 0;
2541 p
->se
.sleep_max
= 0;
2542 p
->se
.sum_sleep_runtime
= 0;
2544 p
->se
.block_start
= 0;
2545 p
->se
.block_max
= 0;
2547 p
->se
.slice_max
= 0;
2549 p
->se
.nr_migrations_cold
= 0;
2550 p
->se
.nr_failed_migrations_affine
= 0;
2551 p
->se
.nr_failed_migrations_running
= 0;
2552 p
->se
.nr_failed_migrations_hot
= 0;
2553 p
->se
.nr_forced_migrations
= 0;
2555 p
->se
.nr_wakeups
= 0;
2556 p
->se
.nr_wakeups_sync
= 0;
2557 p
->se
.nr_wakeups_migrate
= 0;
2558 p
->se
.nr_wakeups_local
= 0;
2559 p
->se
.nr_wakeups_remote
= 0;
2560 p
->se
.nr_wakeups_affine
= 0;
2561 p
->se
.nr_wakeups_affine_attempts
= 0;
2562 p
->se
.nr_wakeups_passive
= 0;
2563 p
->se
.nr_wakeups_idle
= 0;
2567 INIT_LIST_HEAD(&p
->rt
.run_list
);
2569 INIT_LIST_HEAD(&p
->se
.group_node
);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2577 * fork()/clone()-time setup:
2579 void sched_fork(struct task_struct
*p
, int clone_flags
)
2581 int cpu
= get_cpu();
2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either.
2589 p
->state
= TASK_WAKING
;
2592 * Revert to default priority/policy on fork if requested.
2594 if (unlikely(p
->sched_reset_on_fork
)) {
2595 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2596 p
->policy
= SCHED_NORMAL
;
2597 p
->normal_prio
= p
->static_prio
;
2600 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2601 p
->static_prio
= NICE_TO_PRIO(0);
2602 p
->normal_prio
= p
->static_prio
;
2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty:
2610 p
->sched_reset_on_fork
= 0;
2614 * Make sure we do not leak PI boosting priority to the child.
2616 p
->prio
= current
->normal_prio
;
2618 if (!rt_prio(p
->prio
))
2619 p
->sched_class
= &fair_sched_class
;
2621 if (p
->sched_class
->task_fork
)
2622 p
->sched_class
->task_fork(p
);
2625 cpu
= select_task_rq(p
, SD_BALANCE_FORK
, 0);
2627 set_task_cpu(p
, cpu
);
2629 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2630 if (likely(sched_info_on()))
2631 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2633 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2636 #ifdef CONFIG_PREEMPT
2637 /* Want to start with kernel preemption disabled. */
2638 task_thread_info(p
)->preempt_count
= 1;
2640 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2646 * wake_up_new_task - wake up a newly created task for the first time.
2648 * This function will do some initial scheduler statistics housekeeping
2649 * that must be done for every newly created context, then puts the task
2650 * on the runqueue and wakes it.
2652 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2654 unsigned long flags
;
2657 rq
= task_rq_lock(p
, &flags
);
2658 BUG_ON(p
->state
!= TASK_WAKING
);
2659 p
->state
= TASK_RUNNING
;
2660 update_rq_clock(rq
);
2661 activate_task(rq
, p
, 0);
2662 trace_sched_wakeup_new(rq
, p
, 1);
2663 check_preempt_curr(rq
, p
, WF_FORK
);
2665 if (p
->sched_class
->task_woken
)
2666 p
->sched_class
->task_woken(rq
, p
);
2668 task_rq_unlock(rq
, &flags
);
2671 #ifdef CONFIG_PREEMPT_NOTIFIERS
2674 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2675 * @notifier: notifier struct to register
2677 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2679 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2681 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2684 * preempt_notifier_unregister - no longer interested in preemption notifications
2685 * @notifier: notifier struct to unregister
2687 * This is safe to call from within a preemption notifier.
2689 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2691 hlist_del(¬ifier
->link
);
2693 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2695 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2697 struct preempt_notifier
*notifier
;
2698 struct hlist_node
*node
;
2700 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2701 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2705 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2706 struct task_struct
*next
)
2708 struct preempt_notifier
*notifier
;
2709 struct hlist_node
*node
;
2711 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2712 notifier
->ops
->sched_out(notifier
, next
);
2715 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2717 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2722 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2723 struct task_struct
*next
)
2727 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2730 * prepare_task_switch - prepare to switch tasks
2731 * @rq: the runqueue preparing to switch
2732 * @prev: the current task that is being switched out
2733 * @next: the task we are going to switch to.
2735 * This is called with the rq lock held and interrupts off. It must
2736 * be paired with a subsequent finish_task_switch after the context
2739 * prepare_task_switch sets up locking and calls architecture specific
2743 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2744 struct task_struct
*next
)
2746 fire_sched_out_preempt_notifiers(prev
, next
);
2747 prepare_lock_switch(rq
, next
);
2748 prepare_arch_switch(next
);
2752 * finish_task_switch - clean up after a task-switch
2753 * @rq: runqueue associated with task-switch
2754 * @prev: the thread we just switched away from.
2756 * finish_task_switch must be called after the context switch, paired
2757 * with a prepare_task_switch call before the context switch.
2758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2759 * and do any other architecture-specific cleanup actions.
2761 * Note that we may have delayed dropping an mm in context_switch(). If
2762 * so, we finish that here outside of the runqueue lock. (Doing it
2763 * with the lock held can cause deadlocks; see schedule() for
2766 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2767 __releases(rq
->lock
)
2769 struct mm_struct
*mm
= rq
->prev_mm
;
2775 * A task struct has one reference for the use as "current".
2776 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2777 * schedule one last time. The schedule call will never return, and
2778 * the scheduled task must drop that reference.
2779 * The test for TASK_DEAD must occur while the runqueue locks are
2780 * still held, otherwise prev could be scheduled on another cpu, die
2781 * there before we look at prev->state, and then the reference would
2783 * Manfred Spraul <manfred@colorfullife.com>
2785 prev_state
= prev
->state
;
2786 finish_arch_switch(prev
);
2787 perf_event_task_sched_in(current
, cpu_of(rq
));
2788 finish_lock_switch(rq
, prev
);
2790 fire_sched_in_preempt_notifiers(current
);
2793 if (unlikely(prev_state
== TASK_DEAD
)) {
2795 * Remove function-return probe instances associated with this
2796 * task and put them back on the free list.
2798 kprobe_flush_task(prev
);
2799 put_task_struct(prev
);
2805 /* assumes rq->lock is held */
2806 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2808 if (prev
->sched_class
->pre_schedule
)
2809 prev
->sched_class
->pre_schedule(rq
, prev
);
2812 /* rq->lock is NOT held, but preemption is disabled */
2813 static inline void post_schedule(struct rq
*rq
)
2815 if (rq
->post_schedule
) {
2816 unsigned long flags
;
2818 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2819 if (rq
->curr
->sched_class
->post_schedule
)
2820 rq
->curr
->sched_class
->post_schedule(rq
);
2821 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2823 rq
->post_schedule
= 0;
2829 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2833 static inline void post_schedule(struct rq
*rq
)
2840 * schedule_tail - first thing a freshly forked thread must call.
2841 * @prev: the thread we just switched away from.
2843 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2844 __releases(rq
->lock
)
2846 struct rq
*rq
= this_rq();
2848 finish_task_switch(rq
, prev
);
2851 * FIXME: do we need to worry about rq being invalidated by the
2856 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2857 /* In this case, finish_task_switch does not reenable preemption */
2860 if (current
->set_child_tid
)
2861 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2865 * context_switch - switch to the new MM and the new
2866 * thread's register state.
2869 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2870 struct task_struct
*next
)
2872 struct mm_struct
*mm
, *oldmm
;
2874 prepare_task_switch(rq
, prev
, next
);
2875 trace_sched_switch(rq
, prev
, next
);
2877 oldmm
= prev
->active_mm
;
2879 * For paravirt, this is coupled with an exit in switch_to to
2880 * combine the page table reload and the switch backend into
2883 arch_start_context_switch(prev
);
2886 next
->active_mm
= oldmm
;
2887 atomic_inc(&oldmm
->mm_count
);
2888 enter_lazy_tlb(oldmm
, next
);
2890 switch_mm(oldmm
, mm
, next
);
2892 if (likely(!prev
->mm
)) {
2893 prev
->active_mm
= NULL
;
2894 rq
->prev_mm
= oldmm
;
2897 * Since the runqueue lock will be released by the next
2898 * task (which is an invalid locking op but in the case
2899 * of the scheduler it's an obvious special-case), so we
2900 * do an early lockdep release here:
2902 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2903 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2906 /* Here we just switch the register state and the stack. */
2907 switch_to(prev
, next
, prev
);
2911 * this_rq must be evaluated again because prev may have moved
2912 * CPUs since it called schedule(), thus the 'rq' on its stack
2913 * frame will be invalid.
2915 finish_task_switch(this_rq(), prev
);
2919 * nr_running, nr_uninterruptible and nr_context_switches:
2921 * externally visible scheduler statistics: current number of runnable
2922 * threads, current number of uninterruptible-sleeping threads, total
2923 * number of context switches performed since bootup.
2925 unsigned long nr_running(void)
2927 unsigned long i
, sum
= 0;
2929 for_each_online_cpu(i
)
2930 sum
+= cpu_rq(i
)->nr_running
;
2935 unsigned long nr_uninterruptible(void)
2937 unsigned long i
, sum
= 0;
2939 for_each_possible_cpu(i
)
2940 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2943 * Since we read the counters lockless, it might be slightly
2944 * inaccurate. Do not allow it to go below zero though:
2946 if (unlikely((long)sum
< 0))
2952 unsigned long long nr_context_switches(void)
2955 unsigned long long sum
= 0;
2957 for_each_possible_cpu(i
)
2958 sum
+= cpu_rq(i
)->nr_switches
;
2963 unsigned long nr_iowait(void)
2965 unsigned long i
, sum
= 0;
2967 for_each_possible_cpu(i
)
2968 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2973 unsigned long nr_iowait_cpu(void)
2975 struct rq
*this = this_rq();
2976 return atomic_read(&this->nr_iowait
);
2979 unsigned long this_cpu_load(void)
2981 struct rq
*this = this_rq();
2982 return this->cpu_load
[0];
2986 /* Variables and functions for calc_load */
2987 static atomic_long_t calc_load_tasks
;
2988 static unsigned long calc_load_update
;
2989 unsigned long avenrun
[3];
2990 EXPORT_SYMBOL(avenrun
);
2993 * get_avenrun - get the load average array
2994 * @loads: pointer to dest load array
2995 * @offset: offset to add
2996 * @shift: shift count to shift the result left
2998 * These values are estimates at best, so no need for locking.
3000 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3002 loads
[0] = (avenrun
[0] + offset
) << shift
;
3003 loads
[1] = (avenrun
[1] + offset
) << shift
;
3004 loads
[2] = (avenrun
[2] + offset
) << shift
;
3007 static unsigned long
3008 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3011 load
+= active
* (FIXED_1
- exp
);
3012 return load
>> FSHIFT
;
3016 * calc_load - update the avenrun load estimates 10 ticks after the
3017 * CPUs have updated calc_load_tasks.
3019 void calc_global_load(void)
3021 unsigned long upd
= calc_load_update
+ 10;
3024 if (time_before(jiffies
, upd
))
3027 active
= atomic_long_read(&calc_load_tasks
);
3028 active
= active
> 0 ? active
* FIXED_1
: 0;
3030 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3031 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3032 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3034 calc_load_update
+= LOAD_FREQ
;
3038 * Either called from update_cpu_load() or from a cpu going idle
3040 static void calc_load_account_active(struct rq
*this_rq
)
3042 long nr_active
, delta
;
3044 nr_active
= this_rq
->nr_running
;
3045 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3047 if (nr_active
!= this_rq
->calc_load_active
) {
3048 delta
= nr_active
- this_rq
->calc_load_active
;
3049 this_rq
->calc_load_active
= nr_active
;
3050 atomic_long_add(delta
, &calc_load_tasks
);
3055 * Update rq->cpu_load[] statistics. This function is usually called every
3056 * scheduler tick (TICK_NSEC).
3058 static void update_cpu_load(struct rq
*this_rq
)
3060 unsigned long this_load
= this_rq
->load
.weight
;
3063 this_rq
->nr_load_updates
++;
3065 /* Update our load: */
3066 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3067 unsigned long old_load
, new_load
;
3069 /* scale is effectively 1 << i now, and >> i divides by scale */
3071 old_load
= this_rq
->cpu_load
[i
];
3072 new_load
= this_load
;
3074 * Round up the averaging division if load is increasing. This
3075 * prevents us from getting stuck on 9 if the load is 10, for
3078 if (new_load
> old_load
)
3079 new_load
+= scale
-1;
3080 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3083 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3084 this_rq
->calc_load_update
+= LOAD_FREQ
;
3085 calc_load_account_active(this_rq
);
3092 * double_rq_lock - safely lock two runqueues
3094 * Note this does not disable interrupts like task_rq_lock,
3095 * you need to do so manually before calling.
3097 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3098 __acquires(rq1
->lock
)
3099 __acquires(rq2
->lock
)
3101 BUG_ON(!irqs_disabled());
3103 raw_spin_lock(&rq1
->lock
);
3104 __acquire(rq2
->lock
); /* Fake it out ;) */
3107 raw_spin_lock(&rq1
->lock
);
3108 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3110 raw_spin_lock(&rq2
->lock
);
3111 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3114 update_rq_clock(rq1
);
3115 update_rq_clock(rq2
);
3119 * double_rq_unlock - safely unlock two runqueues
3121 * Note this does not restore interrupts like task_rq_unlock,
3122 * you need to do so manually after calling.
3124 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3125 __releases(rq1
->lock
)
3126 __releases(rq2
->lock
)
3128 raw_spin_unlock(&rq1
->lock
);
3130 raw_spin_unlock(&rq2
->lock
);
3132 __release(rq2
->lock
);
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
3139 void sched_exec(void)
3141 struct task_struct
*p
= current
;
3142 struct migration_req req
;
3143 int dest_cpu
, this_cpu
;
3144 unsigned long flags
;
3148 this_cpu
= get_cpu();
3149 dest_cpu
= select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3150 if (dest_cpu
== this_cpu
) {
3155 rq
= task_rq_lock(p
, &flags
);
3159 * select_task_rq() can race against ->cpus_allowed
3161 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3162 || unlikely(!cpu_active(dest_cpu
))) {
3163 task_rq_unlock(rq
, &flags
);
3167 /* force the process onto the specified CPU */
3168 if (migrate_task(p
, dest_cpu
, &req
)) {
3169 /* Need to wait for migration thread (might exit: take ref). */
3170 struct task_struct
*mt
= rq
->migration_thread
;
3172 get_task_struct(mt
);
3173 task_rq_unlock(rq
, &flags
);
3174 wake_up_process(mt
);
3175 put_task_struct(mt
);
3176 wait_for_completion(&req
.done
);
3180 task_rq_unlock(rq
, &flags
);
3184 * pull_task - move a task from a remote runqueue to the local runqueue.
3185 * Both runqueues must be locked.
3187 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3188 struct rq
*this_rq
, int this_cpu
)
3190 deactivate_task(src_rq
, p
, 0);
3191 set_task_cpu(p
, this_cpu
);
3192 activate_task(this_rq
, p
, 0);
3193 check_preempt_curr(this_rq
, p
, 0);
3197 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3200 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3201 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3204 int tsk_cache_hot
= 0;
3206 * We do not migrate tasks that are:
3207 * 1) running (obviously), or
3208 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3209 * 3) are cache-hot on their current CPU.
3211 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3212 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3217 if (task_running(rq
, p
)) {
3218 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3223 * Aggressive migration if:
3224 * 1) task is cache cold, or
3225 * 2) too many balance attempts have failed.
3228 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3229 if (!tsk_cache_hot
||
3230 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3231 #ifdef CONFIG_SCHEDSTATS
3232 if (tsk_cache_hot
) {
3233 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3234 schedstat_inc(p
, se
.nr_forced_migrations
);
3240 if (tsk_cache_hot
) {
3241 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3247 static unsigned long
3248 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3249 unsigned long max_load_move
, struct sched_domain
*sd
,
3250 enum cpu_idle_type idle
, int *all_pinned
,
3251 int *this_best_prio
, struct rq_iterator
*iterator
)
3253 int loops
= 0, pulled
= 0, pinned
= 0;
3254 struct task_struct
*p
;
3255 long rem_load_move
= max_load_move
;
3257 if (max_load_move
== 0)
3263 * Start the load-balancing iterator:
3265 p
= iterator
->start(iterator
->arg
);
3267 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3270 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3271 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3272 p
= iterator
->next(iterator
->arg
);
3276 pull_task(busiest
, p
, this_rq
, this_cpu
);
3278 rem_load_move
-= p
->se
.load
.weight
;
3280 #ifdef CONFIG_PREEMPT
3282 * NEWIDLE balancing is a source of latency, so preemptible kernels
3283 * will stop after the first task is pulled to minimize the critical
3286 if (idle
== CPU_NEWLY_IDLE
)
3291 * We only want to steal up to the prescribed amount of weighted load.
3293 if (rem_load_move
> 0) {
3294 if (p
->prio
< *this_best_prio
)
3295 *this_best_prio
= p
->prio
;
3296 p
= iterator
->next(iterator
->arg
);
3301 * Right now, this is one of only two places pull_task() is called,
3302 * so we can safely collect pull_task() stats here rather than
3303 * inside pull_task().
3305 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3308 *all_pinned
= pinned
;
3310 return max_load_move
- rem_load_move
;
3314 * move_tasks tries to move up to max_load_move weighted load from busiest to
3315 * this_rq, as part of a balancing operation within domain "sd".
3316 * Returns 1 if successful and 0 otherwise.
3318 * Called with both runqueues locked.
3320 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3321 unsigned long max_load_move
,
3322 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3325 const struct sched_class
*class = sched_class_highest
;
3326 unsigned long total_load_moved
= 0;
3327 int this_best_prio
= this_rq
->curr
->prio
;
3331 class->load_balance(this_rq
, this_cpu
, busiest
,
3332 max_load_move
- total_load_moved
,
3333 sd
, idle
, all_pinned
, &this_best_prio
);
3334 class = class->next
;
3336 #ifdef CONFIG_PREEMPT
3338 * NEWIDLE balancing is a source of latency, so preemptible
3339 * kernels will stop after the first task is pulled to minimize
3340 * the critical section.
3342 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3345 } while (class && max_load_move
> total_load_moved
);
3347 return total_load_moved
> 0;
3351 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3352 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3353 struct rq_iterator
*iterator
)
3355 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3359 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3360 pull_task(busiest
, p
, this_rq
, this_cpu
);
3362 * Right now, this is only the second place pull_task()
3363 * is called, so we can safely collect pull_task()
3364 * stats here rather than inside pull_task().
3366 schedstat_inc(sd
, lb_gained
[idle
]);
3370 p
= iterator
->next(iterator
->arg
);
3377 * move_one_task tries to move exactly one task from busiest to this_rq, as
3378 * part of active balancing operations within "domain".
3379 * Returns 1 if successful and 0 otherwise.
3381 * Called with both runqueues locked.
3383 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3384 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3386 const struct sched_class
*class;
3388 for_each_class(class) {
3389 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3395 /********** Helpers for find_busiest_group ************************/
3397 * sd_lb_stats - Structure to store the statistics of a sched_domain
3398 * during load balancing.
3400 struct sd_lb_stats
{
3401 struct sched_group
*busiest
; /* Busiest group in this sd */
3402 struct sched_group
*this; /* Local group in this sd */
3403 unsigned long total_load
; /* Total load of all groups in sd */
3404 unsigned long total_pwr
; /* Total power of all groups in sd */
3405 unsigned long avg_load
; /* Average load across all groups in sd */
3407 /** Statistics of this group */
3408 unsigned long this_load
;
3409 unsigned long this_load_per_task
;
3410 unsigned long this_nr_running
;
3412 /* Statistics of the busiest group */
3413 unsigned long max_load
;
3414 unsigned long busiest_load_per_task
;
3415 unsigned long busiest_nr_running
;
3417 int group_imb
; /* Is there imbalance in this sd */
3418 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3419 int power_savings_balance
; /* Is powersave balance needed for this sd */
3420 struct sched_group
*group_min
; /* Least loaded group in sd */
3421 struct sched_group
*group_leader
; /* Group which relieves group_min */
3422 unsigned long min_load_per_task
; /* load_per_task in group_min */
3423 unsigned long leader_nr_running
; /* Nr running of group_leader */
3424 unsigned long min_nr_running
; /* Nr running of group_min */
3429 * sg_lb_stats - stats of a sched_group required for load_balancing
3431 struct sg_lb_stats
{
3432 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3433 unsigned long group_load
; /* Total load over the CPUs of the group */
3434 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3435 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3436 unsigned long group_capacity
;
3437 int group_imb
; /* Is there an imbalance in the group ? */
3441 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3442 * @group: The group whose first cpu is to be returned.
3444 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3446 return cpumask_first(sched_group_cpus(group
));
3450 * get_sd_load_idx - Obtain the load index for a given sched domain.
3451 * @sd: The sched_domain whose load_idx is to be obtained.
3452 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3454 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3455 enum cpu_idle_type idle
)
3461 load_idx
= sd
->busy_idx
;
3464 case CPU_NEWLY_IDLE
:
3465 load_idx
= sd
->newidle_idx
;
3468 load_idx
= sd
->idle_idx
;
3476 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3478 * init_sd_power_savings_stats - Initialize power savings statistics for
3479 * the given sched_domain, during load balancing.
3481 * @sd: Sched domain whose power-savings statistics are to be initialized.
3482 * @sds: Variable containing the statistics for sd.
3483 * @idle: Idle status of the CPU at which we're performing load-balancing.
3485 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3486 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3489 * Busy processors will not participate in power savings
3492 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3493 sds
->power_savings_balance
= 0;
3495 sds
->power_savings_balance
= 1;
3496 sds
->min_nr_running
= ULONG_MAX
;
3497 sds
->leader_nr_running
= 0;
3502 * update_sd_power_savings_stats - Update the power saving stats for a
3503 * sched_domain while performing load balancing.
3505 * @group: sched_group belonging to the sched_domain under consideration.
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * @local_group: Does group contain the CPU for which we're performing
3509 * @sgs: Variable containing the statistics of the group.
3511 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3512 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3515 if (!sds
->power_savings_balance
)
3519 * If the local group is idle or completely loaded
3520 * no need to do power savings balance at this domain
3522 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3523 !sds
->this_nr_running
))
3524 sds
->power_savings_balance
= 0;
3527 * If a group is already running at full capacity or idle,
3528 * don't include that group in power savings calculations
3530 if (!sds
->power_savings_balance
||
3531 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3532 !sgs
->sum_nr_running
)
3536 * Calculate the group which has the least non-idle load.
3537 * This is the group from where we need to pick up the load
3540 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3541 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3542 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3543 sds
->group_min
= group
;
3544 sds
->min_nr_running
= sgs
->sum_nr_running
;
3545 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3546 sgs
->sum_nr_running
;
3550 * Calculate the group which is almost near its
3551 * capacity but still has some space to pick up some load
3552 * from other group and save more power
3554 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3557 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3558 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3559 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3560 sds
->group_leader
= group
;
3561 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3566 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3567 * @sds: Variable containing the statistics of the sched_domain
3568 * under consideration.
3569 * @this_cpu: Cpu at which we're currently performing load-balancing.
3570 * @imbalance: Variable to store the imbalance.
3573 * Check if we have potential to perform some power-savings balance.
3574 * If yes, set the busiest group to be the least loaded group in the
3575 * sched_domain, so that it's CPUs can be put to idle.
3577 * Returns 1 if there is potential to perform power-savings balance.
3580 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3581 int this_cpu
, unsigned long *imbalance
)
3583 if (!sds
->power_savings_balance
)
3586 if (sds
->this != sds
->group_leader
||
3587 sds
->group_leader
== sds
->group_min
)
3590 *imbalance
= sds
->min_load_per_task
;
3591 sds
->busiest
= sds
->group_min
;
3596 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3597 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3598 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3603 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3604 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3609 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3610 int this_cpu
, unsigned long *imbalance
)
3614 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3617 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3619 return SCHED_LOAD_SCALE
;
3622 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3624 return default_scale_freq_power(sd
, cpu
);
3627 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3629 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3630 unsigned long smt_gain
= sd
->smt_gain
;
3637 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3639 return default_scale_smt_power(sd
, cpu
);
3642 unsigned long scale_rt_power(int cpu
)
3644 struct rq
*rq
= cpu_rq(cpu
);
3645 u64 total
, available
;
3647 sched_avg_update(rq
);
3649 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3650 available
= total
- rq
->rt_avg
;
3652 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3653 total
= SCHED_LOAD_SCALE
;
3655 total
>>= SCHED_LOAD_SHIFT
;
3657 return div_u64(available
, total
);
3660 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3662 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3663 unsigned long power
= SCHED_LOAD_SCALE
;
3664 struct sched_group
*sdg
= sd
->groups
;
3666 if (sched_feat(ARCH_POWER
))
3667 power
*= arch_scale_freq_power(sd
, cpu
);
3669 power
*= default_scale_freq_power(sd
, cpu
);
3671 power
>>= SCHED_LOAD_SHIFT
;
3673 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3674 if (sched_feat(ARCH_POWER
))
3675 power
*= arch_scale_smt_power(sd
, cpu
);
3677 power
*= default_scale_smt_power(sd
, cpu
);
3679 power
>>= SCHED_LOAD_SHIFT
;
3682 power
*= scale_rt_power(cpu
);
3683 power
>>= SCHED_LOAD_SHIFT
;
3688 sdg
->cpu_power
= power
;
3691 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3693 struct sched_domain
*child
= sd
->child
;
3694 struct sched_group
*group
, *sdg
= sd
->groups
;
3695 unsigned long power
;
3698 update_cpu_power(sd
, cpu
);
3704 group
= child
->groups
;
3706 power
+= group
->cpu_power
;
3707 group
= group
->next
;
3708 } while (group
!= child
->groups
);
3710 sdg
->cpu_power
= power
;
3714 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3715 * @sd: The sched_domain whose statistics are to be updated.
3716 * @group: sched_group whose statistics are to be updated.
3717 * @this_cpu: Cpu for which load balance is currently performed.
3718 * @idle: Idle status of this_cpu
3719 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3720 * @sd_idle: Idle status of the sched_domain containing group.
3721 * @local_group: Does group contain this_cpu.
3722 * @cpus: Set of cpus considered for load balancing.
3723 * @balance: Should we balance.
3724 * @sgs: variable to hold the statistics for this group.
3726 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3727 struct sched_group
*group
, int this_cpu
,
3728 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3729 int local_group
, const struct cpumask
*cpus
,
3730 int *balance
, struct sg_lb_stats
*sgs
)
3732 unsigned long load
, max_cpu_load
, min_cpu_load
;
3734 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3735 unsigned long sum_avg_load_per_task
;
3736 unsigned long avg_load_per_task
;
3739 balance_cpu
= group_first_cpu(group
);
3740 if (balance_cpu
== this_cpu
)
3741 update_group_power(sd
, this_cpu
);
3744 /* Tally up the load of all CPUs in the group */
3745 sum_avg_load_per_task
= avg_load_per_task
= 0;
3747 min_cpu_load
= ~0UL;
3749 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3750 struct rq
*rq
= cpu_rq(i
);
3752 if (*sd_idle
&& rq
->nr_running
)
3755 /* Bias balancing toward cpus of our domain */
3757 if (idle_cpu(i
) && !first_idle_cpu
) {
3762 load
= target_load(i
, load_idx
);
3764 load
= source_load(i
, load_idx
);
3765 if (load
> max_cpu_load
)
3766 max_cpu_load
= load
;
3767 if (min_cpu_load
> load
)
3768 min_cpu_load
= load
;
3771 sgs
->group_load
+= load
;
3772 sgs
->sum_nr_running
+= rq
->nr_running
;
3773 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3775 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3779 * First idle cpu or the first cpu(busiest) in this sched group
3780 * is eligible for doing load balancing at this and above
3781 * domains. In the newly idle case, we will allow all the cpu's
3782 * to do the newly idle load balance.
3784 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3785 balance_cpu
!= this_cpu
&& balance
) {
3790 /* Adjust by relative CPU power of the group */
3791 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3795 * Consider the group unbalanced when the imbalance is larger
3796 * than the average weight of two tasks.
3798 * APZ: with cgroup the avg task weight can vary wildly and
3799 * might not be a suitable number - should we keep a
3800 * normalized nr_running number somewhere that negates
3803 avg_load_per_task
= (sum_avg_load_per_task
* SCHED_LOAD_SCALE
) /
3806 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3809 sgs
->group_capacity
=
3810 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3814 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3815 * @sd: sched_domain whose statistics are to be updated.
3816 * @this_cpu: Cpu for which load balance is currently performed.
3817 * @idle: Idle status of this_cpu
3818 * @sd_idle: Idle status of the sched_domain containing group.
3819 * @cpus: Set of cpus considered for load balancing.
3820 * @balance: Should we balance.
3821 * @sds: variable to hold the statistics for this sched_domain.
3823 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3824 enum cpu_idle_type idle
, int *sd_idle
,
3825 const struct cpumask
*cpus
, int *balance
,
3826 struct sd_lb_stats
*sds
)
3828 struct sched_domain
*child
= sd
->child
;
3829 struct sched_group
*group
= sd
->groups
;
3830 struct sg_lb_stats sgs
;
3831 int load_idx
, prefer_sibling
= 0;
3833 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3836 init_sd_power_savings_stats(sd
, sds
, idle
);
3837 load_idx
= get_sd_load_idx(sd
, idle
);
3842 local_group
= cpumask_test_cpu(this_cpu
,
3843 sched_group_cpus(group
));
3844 memset(&sgs
, 0, sizeof(sgs
));
3845 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3846 local_group
, cpus
, balance
, &sgs
);
3848 if (local_group
&& balance
&& !(*balance
))
3851 sds
->total_load
+= sgs
.group_load
;
3852 sds
->total_pwr
+= group
->cpu_power
;
3855 * In case the child domain prefers tasks go to siblings
3856 * first, lower the group capacity to one so that we'll try
3857 * and move all the excess tasks away.
3860 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3863 sds
->this_load
= sgs
.avg_load
;
3865 sds
->this_nr_running
= sgs
.sum_nr_running
;
3866 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3867 } else if (sgs
.avg_load
> sds
->max_load
&&
3868 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3870 sds
->max_load
= sgs
.avg_load
;
3871 sds
->busiest
= group
;
3872 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3873 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3874 sds
->group_imb
= sgs
.group_imb
;
3877 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3878 group
= group
->next
;
3879 } while (group
!= sd
->groups
);
3883 * fix_small_imbalance - Calculate the minor imbalance that exists
3884 * amongst the groups of a sched_domain, during
3886 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3887 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3888 * @imbalance: Variable to store the imbalance.
3890 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3891 int this_cpu
, unsigned long *imbalance
)
3893 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3894 unsigned int imbn
= 2;
3896 if (sds
->this_nr_running
) {
3897 sds
->this_load_per_task
/= sds
->this_nr_running
;
3898 if (sds
->busiest_load_per_task
>
3899 sds
->this_load_per_task
)
3902 sds
->this_load_per_task
=
3903 cpu_avg_load_per_task(this_cpu
);
3905 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3906 sds
->busiest_load_per_task
* imbn
) {
3907 *imbalance
= sds
->busiest_load_per_task
;
3912 * OK, we don't have enough imbalance to justify moving tasks,
3913 * however we may be able to increase total CPU power used by
3917 pwr_now
+= sds
->busiest
->cpu_power
*
3918 min(sds
->busiest_load_per_task
, sds
->max_load
);
3919 pwr_now
+= sds
->this->cpu_power
*
3920 min(sds
->this_load_per_task
, sds
->this_load
);
3921 pwr_now
/= SCHED_LOAD_SCALE
;
3923 /* Amount of load we'd subtract */
3924 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3925 sds
->busiest
->cpu_power
;
3926 if (sds
->max_load
> tmp
)
3927 pwr_move
+= sds
->busiest
->cpu_power
*
3928 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3930 /* Amount of load we'd add */
3931 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3932 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3933 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3934 sds
->this->cpu_power
;
3936 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3937 sds
->this->cpu_power
;
3938 pwr_move
+= sds
->this->cpu_power
*
3939 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3940 pwr_move
/= SCHED_LOAD_SCALE
;
3942 /* Move if we gain throughput */
3943 if (pwr_move
> pwr_now
)
3944 *imbalance
= sds
->busiest_load_per_task
;
3948 * calculate_imbalance - Calculate the amount of imbalance present within the
3949 * groups of a given sched_domain during load balance.
3950 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3951 * @this_cpu: Cpu for which currently load balance is being performed.
3952 * @imbalance: The variable to store the imbalance.
3954 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3955 unsigned long *imbalance
)
3957 unsigned long max_pull
;
3959 * In the presence of smp nice balancing, certain scenarios can have
3960 * max load less than avg load(as we skip the groups at or below
3961 * its cpu_power, while calculating max_load..)
3963 if (sds
->max_load
< sds
->avg_load
) {
3965 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3968 /* Don't want to pull so many tasks that a group would go idle */
3969 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3970 sds
->max_load
- sds
->busiest_load_per_task
);
3972 /* How much load to actually move to equalise the imbalance */
3973 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3974 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3978 * if *imbalance is less than the average load per runnable task
3979 * there is no gaurantee that any tasks will be moved so we'll have
3980 * a think about bumping its value to force at least one task to be
3983 if (*imbalance
< sds
->busiest_load_per_task
)
3984 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3987 /******* find_busiest_group() helpers end here *********************/
3990 * find_busiest_group - Returns the busiest group within the sched_domain
3991 * if there is an imbalance. If there isn't an imbalance, and
3992 * the user has opted for power-savings, it returns a group whose
3993 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3994 * such a group exists.
3996 * Also calculates the amount of weighted load which should be moved
3997 * to restore balance.
3999 * @sd: The sched_domain whose busiest group is to be returned.
4000 * @this_cpu: The cpu for which load balancing is currently being performed.
4001 * @imbalance: Variable which stores amount of weighted load which should
4002 * be moved to restore balance/put a group to idle.
4003 * @idle: The idle status of this_cpu.
4004 * @sd_idle: The idleness of sd
4005 * @cpus: The set of CPUs under consideration for load-balancing.
4006 * @balance: Pointer to a variable indicating if this_cpu
4007 * is the appropriate cpu to perform load balancing at this_level.
4009 * Returns: - the busiest group if imbalance exists.
4010 * - If no imbalance and user has opted for power-savings balance,
4011 * return the least loaded group whose CPUs can be
4012 * put to idle by rebalancing its tasks onto our group.
4014 static struct sched_group
*
4015 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
4016 unsigned long *imbalance
, enum cpu_idle_type idle
,
4017 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
4019 struct sd_lb_stats sds
;
4021 memset(&sds
, 0, sizeof(sds
));
4024 * Compute the various statistics relavent for load balancing at
4027 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
4030 /* Cases where imbalance does not exist from POV of this_cpu */
4031 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4033 * 2) There is no busy sibling group to pull from.
4034 * 3) This group is the busiest group.
4035 * 4) This group is more busy than the avg busieness at this
4037 * 5) The imbalance is within the specified limit.
4038 * 6) Any rebalance would lead to ping-pong
4040 if (balance
&& !(*balance
))
4043 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4046 if (sds
.this_load
>= sds
.max_load
)
4049 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4051 if (sds
.this_load
>= sds
.avg_load
)
4054 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4057 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
4059 sds
.busiest_load_per_task
=
4060 min(sds
.busiest_load_per_task
, sds
.avg_load
);
4063 * We're trying to get all the cpus to the average_load, so we don't
4064 * want to push ourselves above the average load, nor do we wish to
4065 * reduce the max loaded cpu below the average load, as either of these
4066 * actions would just result in more rebalancing later, and ping-pong
4067 * tasks around. Thus we look for the minimum possible imbalance.
4068 * Negative imbalances (*we* are more loaded than anyone else) will
4069 * be counted as no imbalance for these purposes -- we can't fix that
4070 * by pulling tasks to us. Be careful of negative numbers as they'll
4071 * appear as very large values with unsigned longs.
4073 if (sds
.max_load
<= sds
.busiest_load_per_task
)
4076 /* Looks like there is an imbalance. Compute it */
4077 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4082 * There is no obvious imbalance. But check if we can do some balancing
4085 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4093 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4096 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4097 unsigned long imbalance
, const struct cpumask
*cpus
)
4099 struct rq
*busiest
= NULL
, *rq
;
4100 unsigned long max_load
= 0;
4103 for_each_cpu(i
, sched_group_cpus(group
)) {
4104 unsigned long power
= power_of(i
);
4105 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4108 if (!cpumask_test_cpu(i
, cpus
))
4112 wl
= weighted_cpuload(i
) * SCHED_LOAD_SCALE
;
4115 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4118 if (wl
> max_load
) {
4128 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4129 * so long as it is large enough.
4131 #define MAX_PINNED_INTERVAL 512
4133 /* Working cpumask for load_balance and load_balance_newidle. */
4134 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4138 * tasks if there is an imbalance.
4140 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4141 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4144 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4145 struct sched_group
*group
;
4146 unsigned long imbalance
;
4148 unsigned long flags
;
4149 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4151 cpumask_copy(cpus
, cpu_active_mask
);
4154 * When power savings policy is enabled for the parent domain, idle
4155 * sibling can pick up load irrespective of busy siblings. In this case,
4156 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4157 * portraying it as CPU_NOT_IDLE.
4159 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4160 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4163 schedstat_inc(sd
, lb_count
[idle
]);
4167 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4174 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4178 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4180 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4184 BUG_ON(busiest
== this_rq
);
4186 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4189 if (busiest
->nr_running
> 1) {
4191 * Attempt to move tasks. If find_busiest_group has found
4192 * an imbalance but busiest->nr_running <= 1, the group is
4193 * still unbalanced. ld_moved simply stays zero, so it is
4194 * correctly treated as an imbalance.
4196 local_irq_save(flags
);
4197 double_rq_lock(this_rq
, busiest
);
4198 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4199 imbalance
, sd
, idle
, &all_pinned
);
4200 double_rq_unlock(this_rq
, busiest
);
4201 local_irq_restore(flags
);
4204 * some other cpu did the load balance for us.
4206 if (ld_moved
&& this_cpu
!= smp_processor_id())
4207 resched_cpu(this_cpu
);
4209 /* All tasks on this runqueue were pinned by CPU affinity */
4210 if (unlikely(all_pinned
)) {
4211 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4212 if (!cpumask_empty(cpus
))
4219 schedstat_inc(sd
, lb_failed
[idle
]);
4220 sd
->nr_balance_failed
++;
4222 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4224 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
4226 /* don't kick the migration_thread, if the curr
4227 * task on busiest cpu can't be moved to this_cpu
4229 if (!cpumask_test_cpu(this_cpu
,
4230 &busiest
->curr
->cpus_allowed
)) {
4231 raw_spin_unlock_irqrestore(&busiest
->lock
,
4234 goto out_one_pinned
;
4237 if (!busiest
->active_balance
) {
4238 busiest
->active_balance
= 1;
4239 busiest
->push_cpu
= this_cpu
;
4242 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
4244 wake_up_process(busiest
->migration_thread
);
4247 * We've kicked active balancing, reset the failure
4250 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4253 sd
->nr_balance_failed
= 0;
4255 if (likely(!active_balance
)) {
4256 /* We were unbalanced, so reset the balancing interval */
4257 sd
->balance_interval
= sd
->min_interval
;
4260 * If we've begun active balancing, start to back off. This
4261 * case may not be covered by the all_pinned logic if there
4262 * is only 1 task on the busy runqueue (because we don't call
4265 if (sd
->balance_interval
< sd
->max_interval
)
4266 sd
->balance_interval
*= 2;
4269 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4270 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4276 schedstat_inc(sd
, lb_balanced
[idle
]);
4278 sd
->nr_balance_failed
= 0;
4281 /* tune up the balancing interval */
4282 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4283 (sd
->balance_interval
< sd
->max_interval
))
4284 sd
->balance_interval
*= 2;
4286 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4287 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4298 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4299 * tasks if there is an imbalance.
4301 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4302 * this_rq is locked.
4305 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4307 struct sched_group
*group
;
4308 struct rq
*busiest
= NULL
;
4309 unsigned long imbalance
;
4313 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4315 cpumask_copy(cpus
, cpu_active_mask
);
4318 * When power savings policy is enabled for the parent domain, idle
4319 * sibling can pick up load irrespective of busy siblings. In this case,
4320 * let the state of idle sibling percolate up as IDLE, instead of
4321 * portraying it as CPU_NOT_IDLE.
4323 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4324 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4327 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4329 update_shares_locked(this_rq
, sd
);
4330 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4331 &sd_idle
, cpus
, NULL
);
4333 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4337 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4339 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4343 BUG_ON(busiest
== this_rq
);
4345 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4348 if (busiest
->nr_running
> 1) {
4349 /* Attempt to move tasks */
4350 double_lock_balance(this_rq
, busiest
);
4351 /* this_rq->clock is already updated */
4352 update_rq_clock(busiest
);
4353 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4354 imbalance
, sd
, CPU_NEWLY_IDLE
,
4356 double_unlock_balance(this_rq
, busiest
);
4358 if (unlikely(all_pinned
)) {
4359 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4360 if (!cpumask_empty(cpus
))
4366 int active_balance
= 0;
4368 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4369 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4370 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4373 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4376 if (sd
->nr_balance_failed
++ < 2)
4380 * The only task running in a non-idle cpu can be moved to this
4381 * cpu in an attempt to completely freeup the other CPU
4382 * package. The same method used to move task in load_balance()
4383 * have been extended for load_balance_newidle() to speedup
4384 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4386 * The package power saving logic comes from
4387 * find_busiest_group(). If there are no imbalance, then
4388 * f_b_g() will return NULL. However when sched_mc={1,2} then
4389 * f_b_g() will select a group from which a running task may be
4390 * pulled to this cpu in order to make the other package idle.
4391 * If there is no opportunity to make a package idle and if
4392 * there are no imbalance, then f_b_g() will return NULL and no
4393 * action will be taken in load_balance_newidle().
4395 * Under normal task pull operation due to imbalance, there
4396 * will be more than one task in the source run queue and
4397 * move_tasks() will succeed. ld_moved will be true and this
4398 * active balance code will not be triggered.
4401 /* Lock busiest in correct order while this_rq is held */
4402 double_lock_balance(this_rq
, busiest
);
4405 * don't kick the migration_thread, if the curr
4406 * task on busiest cpu can't be moved to this_cpu
4408 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4409 double_unlock_balance(this_rq
, busiest
);
4414 if (!busiest
->active_balance
) {
4415 busiest
->active_balance
= 1;
4416 busiest
->push_cpu
= this_cpu
;
4420 double_unlock_balance(this_rq
, busiest
);
4422 * Should not call ttwu while holding a rq->lock
4424 raw_spin_unlock(&this_rq
->lock
);
4426 wake_up_process(busiest
->migration_thread
);
4427 raw_spin_lock(&this_rq
->lock
);
4430 sd
->nr_balance_failed
= 0;
4432 update_shares_locked(this_rq
, sd
);
4436 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4437 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4438 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4440 sd
->nr_balance_failed
= 0;
4446 * idle_balance is called by schedule() if this_cpu is about to become
4447 * idle. Attempts to pull tasks from other CPUs.
4449 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4451 struct sched_domain
*sd
;
4452 int pulled_task
= 0;
4453 unsigned long next_balance
= jiffies
+ HZ
;
4455 this_rq
->idle_stamp
= this_rq
->clock
;
4457 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4460 for_each_domain(this_cpu
, sd
) {
4461 unsigned long interval
;
4463 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4466 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4467 /* If we've pulled tasks over stop searching: */
4468 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4471 interval
= msecs_to_jiffies(sd
->balance_interval
);
4472 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4473 next_balance
= sd
->last_balance
+ interval
;
4475 this_rq
->idle_stamp
= 0;
4479 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4481 * We are going idle. next_balance may be set based on
4482 * a busy processor. So reset next_balance.
4484 this_rq
->next_balance
= next_balance
;
4489 * active_load_balance is run by migration threads. It pushes running tasks
4490 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4491 * running on each physical CPU where possible, and avoids physical /
4492 * logical imbalances.
4494 * Called with busiest_rq locked.
4496 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4498 int target_cpu
= busiest_rq
->push_cpu
;
4499 struct sched_domain
*sd
;
4500 struct rq
*target_rq
;
4502 /* Is there any task to move? */
4503 if (busiest_rq
->nr_running
<= 1)
4506 target_rq
= cpu_rq(target_cpu
);
4509 * This condition is "impossible", if it occurs
4510 * we need to fix it. Originally reported by
4511 * Bjorn Helgaas on a 128-cpu setup.
4513 BUG_ON(busiest_rq
== target_rq
);
4515 /* move a task from busiest_rq to target_rq */
4516 double_lock_balance(busiest_rq
, target_rq
);
4517 update_rq_clock(busiest_rq
);
4518 update_rq_clock(target_rq
);
4520 /* Search for an sd spanning us and the target CPU. */
4521 for_each_domain(target_cpu
, sd
) {
4522 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4523 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4528 schedstat_inc(sd
, alb_count
);
4530 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4532 schedstat_inc(sd
, alb_pushed
);
4534 schedstat_inc(sd
, alb_failed
);
4536 double_unlock_balance(busiest_rq
, target_rq
);
4541 atomic_t load_balancer
;
4542 cpumask_var_t cpu_mask
;
4543 cpumask_var_t ilb_grp_nohz_mask
;
4544 } nohz ____cacheline_aligned
= {
4545 .load_balancer
= ATOMIC_INIT(-1),
4548 int get_nohz_load_balancer(void)
4550 return atomic_read(&nohz
.load_balancer
);
4553 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4555 * lowest_flag_domain - Return lowest sched_domain containing flag.
4556 * @cpu: The cpu whose lowest level of sched domain is to
4558 * @flag: The flag to check for the lowest sched_domain
4559 * for the given cpu.
4561 * Returns the lowest sched_domain of a cpu which contains the given flag.
4563 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4565 struct sched_domain
*sd
;
4567 for_each_domain(cpu
, sd
)
4568 if (sd
&& (sd
->flags
& flag
))
4575 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4576 * @cpu: The cpu whose domains we're iterating over.
4577 * @sd: variable holding the value of the power_savings_sd
4579 * @flag: The flag to filter the sched_domains to be iterated.
4581 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4582 * set, starting from the lowest sched_domain to the highest.
4584 #define for_each_flag_domain(cpu, sd, flag) \
4585 for (sd = lowest_flag_domain(cpu, flag); \
4586 (sd && (sd->flags & flag)); sd = sd->parent)
4589 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4590 * @ilb_group: group to be checked for semi-idleness
4592 * Returns: 1 if the group is semi-idle. 0 otherwise.
4594 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4595 * and atleast one non-idle CPU. This helper function checks if the given
4596 * sched_group is semi-idle or not.
4598 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4600 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4601 sched_group_cpus(ilb_group
));
4604 * A sched_group is semi-idle when it has atleast one busy cpu
4605 * and atleast one idle cpu.
4607 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4610 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4616 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4617 * @cpu: The cpu which is nominating a new idle_load_balancer.
4619 * Returns: Returns the id of the idle load balancer if it exists,
4620 * Else, returns >= nr_cpu_ids.
4622 * This algorithm picks the idle load balancer such that it belongs to a
4623 * semi-idle powersavings sched_domain. The idea is to try and avoid
4624 * completely idle packages/cores just for the purpose of idle load balancing
4625 * when there are other idle cpu's which are better suited for that job.
4627 static int find_new_ilb(int cpu
)
4629 struct sched_domain
*sd
;
4630 struct sched_group
*ilb_group
;
4633 * Have idle load balancer selection from semi-idle packages only
4634 * when power-aware load balancing is enabled
4636 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4640 * Optimize for the case when we have no idle CPUs or only one
4641 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4643 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4646 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4647 ilb_group
= sd
->groups
;
4650 if (is_semi_idle_group(ilb_group
))
4651 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4653 ilb_group
= ilb_group
->next
;
4655 } while (ilb_group
!= sd
->groups
);
4659 return cpumask_first(nohz
.cpu_mask
);
4661 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4662 static inline int find_new_ilb(int call_cpu
)
4664 return cpumask_first(nohz
.cpu_mask
);
4669 * This routine will try to nominate the ilb (idle load balancing)
4670 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4671 * load balancing on behalf of all those cpus. If all the cpus in the system
4672 * go into this tickless mode, then there will be no ilb owner (as there is
4673 * no need for one) and all the cpus will sleep till the next wakeup event
4676 * For the ilb owner, tick is not stopped. And this tick will be used
4677 * for idle load balancing. ilb owner will still be part of
4680 * While stopping the tick, this cpu will become the ilb owner if there
4681 * is no other owner. And will be the owner till that cpu becomes busy
4682 * or if all cpus in the system stop their ticks at which point
4683 * there is no need for ilb owner.
4685 * When the ilb owner becomes busy, it nominates another owner, during the
4686 * next busy scheduler_tick()
4688 int select_nohz_load_balancer(int stop_tick
)
4690 int cpu
= smp_processor_id();
4693 cpu_rq(cpu
)->in_nohz_recently
= 1;
4695 if (!cpu_active(cpu
)) {
4696 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4700 * If we are going offline and still the leader,
4703 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4709 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4711 /* time for ilb owner also to sleep */
4712 if (cpumask_weight(nohz
.cpu_mask
) == num_active_cpus()) {
4713 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4714 atomic_set(&nohz
.load_balancer
, -1);
4718 if (atomic_read(&nohz
.load_balancer
) == -1) {
4719 /* make me the ilb owner */
4720 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4722 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4725 if (!(sched_smt_power_savings
||
4726 sched_mc_power_savings
))
4729 * Check to see if there is a more power-efficient
4732 new_ilb
= find_new_ilb(cpu
);
4733 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4734 atomic_set(&nohz
.load_balancer
, -1);
4735 resched_cpu(new_ilb
);
4741 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4744 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4746 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4747 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4754 static DEFINE_SPINLOCK(balancing
);
4757 * It checks each scheduling domain to see if it is due to be balanced,
4758 * and initiates a balancing operation if so.
4760 * Balancing parameters are set up in arch_init_sched_domains.
4762 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4765 struct rq
*rq
= cpu_rq(cpu
);
4766 unsigned long interval
;
4767 struct sched_domain
*sd
;
4768 /* Earliest time when we have to do rebalance again */
4769 unsigned long next_balance
= jiffies
+ 60*HZ
;
4770 int update_next_balance
= 0;
4773 for_each_domain(cpu
, sd
) {
4774 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4777 interval
= sd
->balance_interval
;
4778 if (idle
!= CPU_IDLE
)
4779 interval
*= sd
->busy_factor
;
4781 /* scale ms to jiffies */
4782 interval
= msecs_to_jiffies(interval
);
4783 if (unlikely(!interval
))
4785 if (interval
> HZ
*NR_CPUS
/10)
4786 interval
= HZ
*NR_CPUS
/10;
4788 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4790 if (need_serialize
) {
4791 if (!spin_trylock(&balancing
))
4795 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4796 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4798 * We've pulled tasks over so either we're no
4799 * longer idle, or one of our SMT siblings is
4802 idle
= CPU_NOT_IDLE
;
4804 sd
->last_balance
= jiffies
;
4807 spin_unlock(&balancing
);
4809 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4810 next_balance
= sd
->last_balance
+ interval
;
4811 update_next_balance
= 1;
4815 * Stop the load balance at this level. There is another
4816 * CPU in our sched group which is doing load balancing more
4824 * next_balance will be updated only when there is a need.
4825 * When the cpu is attached to null domain for ex, it will not be
4828 if (likely(update_next_balance
))
4829 rq
->next_balance
= next_balance
;
4833 * run_rebalance_domains is triggered when needed from the scheduler tick.
4834 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4835 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4837 static void run_rebalance_domains(struct softirq_action
*h
)
4839 int this_cpu
= smp_processor_id();
4840 struct rq
*this_rq
= cpu_rq(this_cpu
);
4841 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4842 CPU_IDLE
: CPU_NOT_IDLE
;
4844 rebalance_domains(this_cpu
, idle
);
4848 * If this cpu is the owner for idle load balancing, then do the
4849 * balancing on behalf of the other idle cpus whose ticks are
4852 if (this_rq
->idle_at_tick
&&
4853 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4857 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4858 if (balance_cpu
== this_cpu
)
4862 * If this cpu gets work to do, stop the load balancing
4863 * work being done for other cpus. Next load
4864 * balancing owner will pick it up.
4869 rebalance_domains(balance_cpu
, CPU_IDLE
);
4871 rq
= cpu_rq(balance_cpu
);
4872 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4873 this_rq
->next_balance
= rq
->next_balance
;
4879 static inline int on_null_domain(int cpu
)
4881 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4885 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4887 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4888 * idle load balancing owner or decide to stop the periodic load balancing,
4889 * if the whole system is idle.
4891 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4895 * If we were in the nohz mode recently and busy at the current
4896 * scheduler tick, then check if we need to nominate new idle
4899 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4900 rq
->in_nohz_recently
= 0;
4902 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4903 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4904 atomic_set(&nohz
.load_balancer
, -1);
4907 if (atomic_read(&nohz
.load_balancer
) == -1) {
4908 int ilb
= find_new_ilb(cpu
);
4910 if (ilb
< nr_cpu_ids
)
4916 * If this cpu is idle and doing idle load balancing for all the
4917 * cpus with ticks stopped, is it time for that to stop?
4919 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4920 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4926 * If this cpu is idle and the idle load balancing is done by
4927 * someone else, then no need raise the SCHED_SOFTIRQ
4929 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4930 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4933 /* Don't need to rebalance while attached to NULL domain */
4934 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4935 likely(!on_null_domain(cpu
)))
4936 raise_softirq(SCHED_SOFTIRQ
);
4939 #else /* CONFIG_SMP */
4942 * on UP we do not need to balance between CPUs:
4944 static inline void idle_balance(int cpu
, struct rq
*rq
)
4950 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4952 EXPORT_PER_CPU_SYMBOL(kstat
);
4955 * Return any ns on the sched_clock that have not yet been accounted in
4956 * @p in case that task is currently running.
4958 * Called with task_rq_lock() held on @rq.
4960 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4964 if (task_current(rq
, p
)) {
4965 update_rq_clock(rq
);
4966 ns
= rq
->clock
- p
->se
.exec_start
;
4974 unsigned long long task_delta_exec(struct task_struct
*p
)
4976 unsigned long flags
;
4980 rq
= task_rq_lock(p
, &flags
);
4981 ns
= do_task_delta_exec(p
, rq
);
4982 task_rq_unlock(rq
, &flags
);
4988 * Return accounted runtime for the task.
4989 * In case the task is currently running, return the runtime plus current's
4990 * pending runtime that have not been accounted yet.
4992 unsigned long long task_sched_runtime(struct task_struct
*p
)
4994 unsigned long flags
;
4998 rq
= task_rq_lock(p
, &flags
);
4999 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5000 task_rq_unlock(rq
, &flags
);
5006 * Return sum_exec_runtime for the thread group.
5007 * In case the task is currently running, return the sum plus current's
5008 * pending runtime that have not been accounted yet.
5010 * Note that the thread group might have other running tasks as well,
5011 * so the return value not includes other pending runtime that other
5012 * running tasks might have.
5014 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
5016 struct task_cputime totals
;
5017 unsigned long flags
;
5021 rq
= task_rq_lock(p
, &flags
);
5022 thread_group_cputime(p
, &totals
);
5023 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5024 task_rq_unlock(rq
, &flags
);
5030 * Account user cpu time to a process.
5031 * @p: the process that the cpu time gets accounted to
5032 * @cputime: the cpu time spent in user space since the last update
5033 * @cputime_scaled: cputime scaled by cpu frequency
5035 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
5036 cputime_t cputime_scaled
)
5038 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5041 /* Add user time to process. */
5042 p
->utime
= cputime_add(p
->utime
, cputime
);
5043 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5044 account_group_user_time(p
, cputime
);
5046 /* Add user time to cpustat. */
5047 tmp
= cputime_to_cputime64(cputime
);
5048 if (TASK_NICE(p
) > 0)
5049 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5051 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5053 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
5054 /* Account for user time used */
5055 acct_update_integrals(p
);
5059 * Account guest cpu time to a process.
5060 * @p: the process that the cpu time gets accounted to
5061 * @cputime: the cpu time spent in virtual machine since the last update
5062 * @cputime_scaled: cputime scaled by cpu frequency
5064 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
5065 cputime_t cputime_scaled
)
5068 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5070 tmp
= cputime_to_cputime64(cputime
);
5072 /* Add guest time to process. */
5073 p
->utime
= cputime_add(p
->utime
, cputime
);
5074 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5075 account_group_user_time(p
, cputime
);
5076 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5078 /* Add guest time to cpustat. */
5079 if (TASK_NICE(p
) > 0) {
5080 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5081 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
5083 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5084 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5089 * Account system cpu time to a process.
5090 * @p: the process that the cpu time gets accounted to
5091 * @hardirq_offset: the offset to subtract from hardirq_count()
5092 * @cputime: the cpu time spent in kernel space since the last update
5093 * @cputime_scaled: cputime scaled by cpu frequency
5095 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5096 cputime_t cputime
, cputime_t cputime_scaled
)
5098 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5101 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5102 account_guest_time(p
, cputime
, cputime_scaled
);
5106 /* Add system time to process. */
5107 p
->stime
= cputime_add(p
->stime
, cputime
);
5108 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5109 account_group_system_time(p
, cputime
);
5111 /* Add system time to cpustat. */
5112 tmp
= cputime_to_cputime64(cputime
);
5113 if (hardirq_count() - hardirq_offset
)
5114 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5115 else if (softirq_count())
5116 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5118 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5120 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5122 /* Account for system time used */
5123 acct_update_integrals(p
);
5127 * Account for involuntary wait time.
5128 * @steal: the cpu time spent in involuntary wait
5130 void account_steal_time(cputime_t cputime
)
5132 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5133 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5135 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5139 * Account for idle time.
5140 * @cputime: the cpu time spent in idle wait
5142 void account_idle_time(cputime_t cputime
)
5144 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5145 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5146 struct rq
*rq
= this_rq();
5148 if (atomic_read(&rq
->nr_iowait
) > 0)
5149 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5151 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5154 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5157 * Account a single tick of cpu time.
5158 * @p: the process that the cpu time gets accounted to
5159 * @user_tick: indicates if the tick is a user or a system tick
5161 void account_process_tick(struct task_struct
*p
, int user_tick
)
5163 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
5164 struct rq
*rq
= this_rq();
5167 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
5168 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5169 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
5172 account_idle_time(cputime_one_jiffy
);
5176 * Account multiple ticks of steal time.
5177 * @p: the process from which the cpu time has been stolen
5178 * @ticks: number of stolen ticks
5180 void account_steal_ticks(unsigned long ticks
)
5182 account_steal_time(jiffies_to_cputime(ticks
));
5186 * Account multiple ticks of idle time.
5187 * @ticks: number of stolen ticks
5189 void account_idle_ticks(unsigned long ticks
)
5191 account_idle_time(jiffies_to_cputime(ticks
));
5197 * Use precise platform statistics if available:
5199 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5200 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5206 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5208 struct task_cputime cputime
;
5210 thread_group_cputime(p
, &cputime
);
5212 *ut
= cputime
.utime
;
5213 *st
= cputime
.stime
;
5217 #ifndef nsecs_to_cputime
5218 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5221 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5223 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
5226 * Use CFS's precise accounting:
5228 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
5233 temp
= (u64
)(rtime
* utime
);
5234 do_div(temp
, total
);
5235 utime
= (cputime_t
)temp
;
5240 * Compare with previous values, to keep monotonicity:
5242 p
->prev_utime
= max(p
->prev_utime
, utime
);
5243 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
5245 *ut
= p
->prev_utime
;
5246 *st
= p
->prev_stime
;
5250 * Must be called with siglock held.
5252 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5254 struct signal_struct
*sig
= p
->signal
;
5255 struct task_cputime cputime
;
5256 cputime_t rtime
, utime
, total
;
5258 thread_group_cputime(p
, &cputime
);
5260 total
= cputime_add(cputime
.utime
, cputime
.stime
);
5261 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
5266 temp
= (u64
)(rtime
* cputime
.utime
);
5267 do_div(temp
, total
);
5268 utime
= (cputime_t
)temp
;
5272 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
5273 sig
->prev_stime
= max(sig
->prev_stime
,
5274 cputime_sub(rtime
, sig
->prev_utime
));
5276 *ut
= sig
->prev_utime
;
5277 *st
= sig
->prev_stime
;
5282 * This function gets called by the timer code, with HZ frequency.
5283 * We call it with interrupts disabled.
5285 * It also gets called by the fork code, when changing the parent's
5288 void scheduler_tick(void)
5290 int cpu
= smp_processor_id();
5291 struct rq
*rq
= cpu_rq(cpu
);
5292 struct task_struct
*curr
= rq
->curr
;
5296 raw_spin_lock(&rq
->lock
);
5297 update_rq_clock(rq
);
5298 update_cpu_load(rq
);
5299 curr
->sched_class
->task_tick(rq
, curr
, 0);
5300 raw_spin_unlock(&rq
->lock
);
5302 perf_event_task_tick(curr
, cpu
);
5305 rq
->idle_at_tick
= idle_cpu(cpu
);
5306 trigger_load_balance(rq
, cpu
);
5310 notrace
unsigned long get_parent_ip(unsigned long addr
)
5312 if (in_lock_functions(addr
)) {
5313 addr
= CALLER_ADDR2
;
5314 if (in_lock_functions(addr
))
5315 addr
= CALLER_ADDR3
;
5320 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5321 defined(CONFIG_PREEMPT_TRACER))
5323 void __kprobes
add_preempt_count(int val
)
5325 #ifdef CONFIG_DEBUG_PREEMPT
5329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5332 preempt_count() += val
;
5333 #ifdef CONFIG_DEBUG_PREEMPT
5335 * Spinlock count overflowing soon?
5337 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5340 if (preempt_count() == val
)
5341 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5343 EXPORT_SYMBOL(add_preempt_count
);
5345 void __kprobes
sub_preempt_count(int val
)
5347 #ifdef CONFIG_DEBUG_PREEMPT
5351 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5354 * Is the spinlock portion underflowing?
5356 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5357 !(preempt_count() & PREEMPT_MASK
)))
5361 if (preempt_count() == val
)
5362 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5363 preempt_count() -= val
;
5365 EXPORT_SYMBOL(sub_preempt_count
);
5370 * Print scheduling while atomic bug:
5372 static noinline
void __schedule_bug(struct task_struct
*prev
)
5374 struct pt_regs
*regs
= get_irq_regs();
5376 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5377 prev
->comm
, prev
->pid
, preempt_count());
5379 debug_show_held_locks(prev
);
5381 if (irqs_disabled())
5382 print_irqtrace_events(prev
);
5391 * Various schedule()-time debugging checks and statistics:
5393 static inline void schedule_debug(struct task_struct
*prev
)
5396 * Test if we are atomic. Since do_exit() needs to call into
5397 * schedule() atomically, we ignore that path for now.
5398 * Otherwise, whine if we are scheduling when we should not be.
5400 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5401 __schedule_bug(prev
);
5403 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5405 schedstat_inc(this_rq(), sched_count
);
5406 #ifdef CONFIG_SCHEDSTATS
5407 if (unlikely(prev
->lock_depth
>= 0)) {
5408 schedstat_inc(this_rq(), bkl_count
);
5409 schedstat_inc(prev
, sched_info
.bkl_count
);
5414 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
5416 if (prev
->state
== TASK_RUNNING
) {
5417 u64 runtime
= prev
->se
.sum_exec_runtime
;
5419 runtime
-= prev
->se
.prev_sum_exec_runtime
;
5420 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5423 * In order to avoid avg_overlap growing stale when we are
5424 * indeed overlapping and hence not getting put to sleep, grow
5425 * the avg_overlap on preemption.
5427 * We use the average preemption runtime because that
5428 * correlates to the amount of cache footprint a task can
5431 update_avg(&prev
->se
.avg_overlap
, runtime
);
5433 prev
->sched_class
->put_prev_task(rq
, prev
);
5437 * Pick up the highest-prio task:
5439 static inline struct task_struct
*
5440 pick_next_task(struct rq
*rq
)
5442 const struct sched_class
*class;
5443 struct task_struct
*p
;
5446 * Optimization: we know that if all tasks are in
5447 * the fair class we can call that function directly:
5449 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5450 p
= fair_sched_class
.pick_next_task(rq
);
5455 class = sched_class_highest
;
5457 p
= class->pick_next_task(rq
);
5461 * Will never be NULL as the idle class always
5462 * returns a non-NULL p:
5464 class = class->next
;
5469 * schedule() is the main scheduler function.
5471 asmlinkage
void __sched
schedule(void)
5473 struct task_struct
*prev
, *next
;
5474 unsigned long *switch_count
;
5480 cpu
= smp_processor_id();
5484 switch_count
= &prev
->nivcsw
;
5486 release_kernel_lock(prev
);
5487 need_resched_nonpreemptible
:
5489 schedule_debug(prev
);
5491 if (sched_feat(HRTICK
))
5494 raw_spin_lock_irq(&rq
->lock
);
5495 update_rq_clock(rq
);
5496 clear_tsk_need_resched(prev
);
5498 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5499 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5500 prev
->state
= TASK_RUNNING
;
5502 deactivate_task(rq
, prev
, 1);
5503 switch_count
= &prev
->nvcsw
;
5506 pre_schedule(rq
, prev
);
5508 if (unlikely(!rq
->nr_running
))
5509 idle_balance(cpu
, rq
);
5511 put_prev_task(rq
, prev
);
5512 next
= pick_next_task(rq
);
5514 if (likely(prev
!= next
)) {
5515 sched_info_switch(prev
, next
);
5516 perf_event_task_sched_out(prev
, next
, cpu
);
5522 context_switch(rq
, prev
, next
); /* unlocks the rq */
5524 * the context switch might have flipped the stack from under
5525 * us, hence refresh the local variables.
5527 cpu
= smp_processor_id();
5530 raw_spin_unlock_irq(&rq
->lock
);
5534 if (unlikely(reacquire_kernel_lock(current
) < 0))
5535 goto need_resched_nonpreemptible
;
5537 preempt_enable_no_resched();
5541 EXPORT_SYMBOL(schedule
);
5543 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5545 * Look out! "owner" is an entirely speculative pointer
5546 * access and not reliable.
5548 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5553 if (!sched_feat(OWNER_SPIN
))
5556 #ifdef CONFIG_DEBUG_PAGEALLOC
5558 * Need to access the cpu field knowing that
5559 * DEBUG_PAGEALLOC could have unmapped it if
5560 * the mutex owner just released it and exited.
5562 if (probe_kernel_address(&owner
->cpu
, cpu
))
5569 * Even if the access succeeded (likely case),
5570 * the cpu field may no longer be valid.
5572 if (cpu
>= nr_cpumask_bits
)
5576 * We need to validate that we can do a
5577 * get_cpu() and that we have the percpu area.
5579 if (!cpu_online(cpu
))
5586 * Owner changed, break to re-assess state.
5588 if (lock
->owner
!= owner
)
5592 * Is that owner really running on that cpu?
5594 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5604 #ifdef CONFIG_PREEMPT
5606 * this is the entry point to schedule() from in-kernel preemption
5607 * off of preempt_enable. Kernel preemptions off return from interrupt
5608 * occur there and call schedule directly.
5610 asmlinkage
void __sched
preempt_schedule(void)
5612 struct thread_info
*ti
= current_thread_info();
5615 * If there is a non-zero preempt_count or interrupts are disabled,
5616 * we do not want to preempt the current task. Just return..
5618 if (likely(ti
->preempt_count
|| irqs_disabled()))
5622 add_preempt_count(PREEMPT_ACTIVE
);
5624 sub_preempt_count(PREEMPT_ACTIVE
);
5627 * Check again in case we missed a preemption opportunity
5628 * between schedule and now.
5631 } while (need_resched());
5633 EXPORT_SYMBOL(preempt_schedule
);
5636 * this is the entry point to schedule() from kernel preemption
5637 * off of irq context.
5638 * Note, that this is called and return with irqs disabled. This will
5639 * protect us against recursive calling from irq.
5641 asmlinkage
void __sched
preempt_schedule_irq(void)
5643 struct thread_info
*ti
= current_thread_info();
5645 /* Catch callers which need to be fixed */
5646 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5649 add_preempt_count(PREEMPT_ACTIVE
);
5652 local_irq_disable();
5653 sub_preempt_count(PREEMPT_ACTIVE
);
5656 * Check again in case we missed a preemption opportunity
5657 * between schedule and now.
5660 } while (need_resched());
5663 #endif /* CONFIG_PREEMPT */
5665 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5668 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5670 EXPORT_SYMBOL(default_wake_function
);
5673 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5674 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5675 * number) then we wake all the non-exclusive tasks and one exclusive task.
5677 * There are circumstances in which we can try to wake a task which has already
5678 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5679 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5681 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5682 int nr_exclusive
, int wake_flags
, void *key
)
5684 wait_queue_t
*curr
, *next
;
5686 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5687 unsigned flags
= curr
->flags
;
5689 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5690 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5696 * __wake_up - wake up threads blocked on a waitqueue.
5698 * @mode: which threads
5699 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5700 * @key: is directly passed to the wakeup function
5702 * It may be assumed that this function implies a write memory barrier before
5703 * changing the task state if and only if any tasks are woken up.
5705 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5706 int nr_exclusive
, void *key
)
5708 unsigned long flags
;
5710 spin_lock_irqsave(&q
->lock
, flags
);
5711 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5712 spin_unlock_irqrestore(&q
->lock
, flags
);
5714 EXPORT_SYMBOL(__wake_up
);
5717 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5719 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5721 __wake_up_common(q
, mode
, 1, 0, NULL
);
5724 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5726 __wake_up_common(q
, mode
, 1, 0, key
);
5730 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5732 * @mode: which threads
5733 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5734 * @key: opaque value to be passed to wakeup targets
5736 * The sync wakeup differs that the waker knows that it will schedule
5737 * away soon, so while the target thread will be woken up, it will not
5738 * be migrated to another CPU - ie. the two threads are 'synchronized'
5739 * with each other. This can prevent needless bouncing between CPUs.
5741 * On UP it can prevent extra preemption.
5743 * It may be assumed that this function implies a write memory barrier before
5744 * changing the task state if and only if any tasks are woken up.
5746 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5747 int nr_exclusive
, void *key
)
5749 unsigned long flags
;
5750 int wake_flags
= WF_SYNC
;
5755 if (unlikely(!nr_exclusive
))
5758 spin_lock_irqsave(&q
->lock
, flags
);
5759 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5760 spin_unlock_irqrestore(&q
->lock
, flags
);
5762 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5765 * __wake_up_sync - see __wake_up_sync_key()
5767 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5769 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5771 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5774 * complete: - signals a single thread waiting on this completion
5775 * @x: holds the state of this particular completion
5777 * This will wake up a single thread waiting on this completion. Threads will be
5778 * awakened in the same order in which they were queued.
5780 * See also complete_all(), wait_for_completion() and related routines.
5782 * It may be assumed that this function implies a write memory barrier before
5783 * changing the task state if and only if any tasks are woken up.
5785 void complete(struct completion
*x
)
5787 unsigned long flags
;
5789 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5791 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5792 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5794 EXPORT_SYMBOL(complete
);
5797 * complete_all: - signals all threads waiting on this completion
5798 * @x: holds the state of this particular completion
5800 * This will wake up all threads waiting on this particular completion event.
5802 * It may be assumed that this function implies a write memory barrier before
5803 * changing the task state if and only if any tasks are woken up.
5805 void complete_all(struct completion
*x
)
5807 unsigned long flags
;
5809 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5810 x
->done
+= UINT_MAX
/2;
5811 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5812 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5814 EXPORT_SYMBOL(complete_all
);
5816 static inline long __sched
5817 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5820 DECLARE_WAITQUEUE(wait
, current
);
5822 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5823 __add_wait_queue_tail(&x
->wait
, &wait
);
5825 if (signal_pending_state(state
, current
)) {
5826 timeout
= -ERESTARTSYS
;
5829 __set_current_state(state
);
5830 spin_unlock_irq(&x
->wait
.lock
);
5831 timeout
= schedule_timeout(timeout
);
5832 spin_lock_irq(&x
->wait
.lock
);
5833 } while (!x
->done
&& timeout
);
5834 __remove_wait_queue(&x
->wait
, &wait
);
5839 return timeout
?: 1;
5843 wait_for_common(struct completion
*x
, long timeout
, int state
)
5847 spin_lock_irq(&x
->wait
.lock
);
5848 timeout
= do_wait_for_common(x
, timeout
, state
);
5849 spin_unlock_irq(&x
->wait
.lock
);
5854 * wait_for_completion: - waits for completion of a task
5855 * @x: holds the state of this particular completion
5857 * This waits to be signaled for completion of a specific task. It is NOT
5858 * interruptible and there is no timeout.
5860 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5861 * and interrupt capability. Also see complete().
5863 void __sched
wait_for_completion(struct completion
*x
)
5865 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5867 EXPORT_SYMBOL(wait_for_completion
);
5870 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5871 * @x: holds the state of this particular completion
5872 * @timeout: timeout value in jiffies
5874 * This waits for either a completion of a specific task to be signaled or for a
5875 * specified timeout to expire. The timeout is in jiffies. It is not
5878 unsigned long __sched
5879 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5881 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5883 EXPORT_SYMBOL(wait_for_completion_timeout
);
5886 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5887 * @x: holds the state of this particular completion
5889 * This waits for completion of a specific task to be signaled. It is
5892 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5894 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5895 if (t
== -ERESTARTSYS
)
5899 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5902 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5903 * @x: holds the state of this particular completion
5904 * @timeout: timeout value in jiffies
5906 * This waits for either a completion of a specific task to be signaled or for a
5907 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5909 unsigned long __sched
5910 wait_for_completion_interruptible_timeout(struct completion
*x
,
5911 unsigned long timeout
)
5913 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5915 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5918 * wait_for_completion_killable: - waits for completion of a task (killable)
5919 * @x: holds the state of this particular completion
5921 * This waits to be signaled for completion of a specific task. It can be
5922 * interrupted by a kill signal.
5924 int __sched
wait_for_completion_killable(struct completion
*x
)
5926 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5927 if (t
== -ERESTARTSYS
)
5931 EXPORT_SYMBOL(wait_for_completion_killable
);
5934 * try_wait_for_completion - try to decrement a completion without blocking
5935 * @x: completion structure
5937 * Returns: 0 if a decrement cannot be done without blocking
5938 * 1 if a decrement succeeded.
5940 * If a completion is being used as a counting completion,
5941 * attempt to decrement the counter without blocking. This
5942 * enables us to avoid waiting if the resource the completion
5943 * is protecting is not available.
5945 bool try_wait_for_completion(struct completion
*x
)
5947 unsigned long flags
;
5950 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5955 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5958 EXPORT_SYMBOL(try_wait_for_completion
);
5961 * completion_done - Test to see if a completion has any waiters
5962 * @x: completion structure
5964 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5965 * 1 if there are no waiters.
5968 bool completion_done(struct completion
*x
)
5970 unsigned long flags
;
5973 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5976 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5979 EXPORT_SYMBOL(completion_done
);
5982 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5984 unsigned long flags
;
5987 init_waitqueue_entry(&wait
, current
);
5989 __set_current_state(state
);
5991 spin_lock_irqsave(&q
->lock
, flags
);
5992 __add_wait_queue(q
, &wait
);
5993 spin_unlock(&q
->lock
);
5994 timeout
= schedule_timeout(timeout
);
5995 spin_lock_irq(&q
->lock
);
5996 __remove_wait_queue(q
, &wait
);
5997 spin_unlock_irqrestore(&q
->lock
, flags
);
6002 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
6004 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6006 EXPORT_SYMBOL(interruptible_sleep_on
);
6009 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6011 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
6013 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
6015 void __sched
sleep_on(wait_queue_head_t
*q
)
6017 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6019 EXPORT_SYMBOL(sleep_on
);
6021 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6023 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
6025 EXPORT_SYMBOL(sleep_on_timeout
);
6027 #ifdef CONFIG_RT_MUTEXES
6030 * rt_mutex_setprio - set the current priority of a task
6032 * @prio: prio value (kernel-internal form)
6034 * This function changes the 'effective' priority of a task. It does
6035 * not touch ->normal_prio like __setscheduler().
6037 * Used by the rt_mutex code to implement priority inheritance logic.
6039 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
6041 unsigned long flags
;
6042 int oldprio
, on_rq
, running
;
6044 const struct sched_class
*prev_class
= p
->sched_class
;
6046 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
6048 rq
= task_rq_lock(p
, &flags
);
6049 update_rq_clock(rq
);
6052 on_rq
= p
->se
.on_rq
;
6053 running
= task_current(rq
, p
);
6055 dequeue_task(rq
, p
, 0);
6057 p
->sched_class
->put_prev_task(rq
, p
);
6060 p
->sched_class
= &rt_sched_class
;
6062 p
->sched_class
= &fair_sched_class
;
6067 p
->sched_class
->set_curr_task(rq
);
6069 enqueue_task(rq
, p
, 0);
6071 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6073 task_rq_unlock(rq
, &flags
);
6078 void set_user_nice(struct task_struct
*p
, long nice
)
6080 int old_prio
, delta
, on_rq
;
6081 unsigned long flags
;
6084 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
6087 * We have to be careful, if called from sys_setpriority(),
6088 * the task might be in the middle of scheduling on another CPU.
6090 rq
= task_rq_lock(p
, &flags
);
6091 update_rq_clock(rq
);
6093 * The RT priorities are set via sched_setscheduler(), but we still
6094 * allow the 'normal' nice value to be set - but as expected
6095 * it wont have any effect on scheduling until the task is
6096 * SCHED_FIFO/SCHED_RR:
6098 if (task_has_rt_policy(p
)) {
6099 p
->static_prio
= NICE_TO_PRIO(nice
);
6102 on_rq
= p
->se
.on_rq
;
6104 dequeue_task(rq
, p
, 0);
6106 p
->static_prio
= NICE_TO_PRIO(nice
);
6109 p
->prio
= effective_prio(p
);
6110 delta
= p
->prio
- old_prio
;
6113 enqueue_task(rq
, p
, 0);
6115 * If the task increased its priority or is running and
6116 * lowered its priority, then reschedule its CPU:
6118 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6119 resched_task(rq
->curr
);
6122 task_rq_unlock(rq
, &flags
);
6124 EXPORT_SYMBOL(set_user_nice
);
6127 * can_nice - check if a task can reduce its nice value
6131 int can_nice(const struct task_struct
*p
, const int nice
)
6133 /* convert nice value [19,-20] to rlimit style value [1,40] */
6134 int nice_rlim
= 20 - nice
;
6136 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6137 capable(CAP_SYS_NICE
));
6140 #ifdef __ARCH_WANT_SYS_NICE
6143 * sys_nice - change the priority of the current process.
6144 * @increment: priority increment
6146 * sys_setpriority is a more generic, but much slower function that
6147 * does similar things.
6149 SYSCALL_DEFINE1(nice
, int, increment
)
6154 * Setpriority might change our priority at the same moment.
6155 * We don't have to worry. Conceptually one call occurs first
6156 * and we have a single winner.
6158 if (increment
< -40)
6163 nice
= TASK_NICE(current
) + increment
;
6169 if (increment
< 0 && !can_nice(current
, nice
))
6172 retval
= security_task_setnice(current
, nice
);
6176 set_user_nice(current
, nice
);
6183 * task_prio - return the priority value of a given task.
6184 * @p: the task in question.
6186 * This is the priority value as seen by users in /proc.
6187 * RT tasks are offset by -200. Normal tasks are centered
6188 * around 0, value goes from -16 to +15.
6190 int task_prio(const struct task_struct
*p
)
6192 return p
->prio
- MAX_RT_PRIO
;
6196 * task_nice - return the nice value of a given task.
6197 * @p: the task in question.
6199 int task_nice(const struct task_struct
*p
)
6201 return TASK_NICE(p
);
6203 EXPORT_SYMBOL(task_nice
);
6206 * idle_cpu - is a given cpu idle currently?
6207 * @cpu: the processor in question.
6209 int idle_cpu(int cpu
)
6211 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6215 * idle_task - return the idle task for a given cpu.
6216 * @cpu: the processor in question.
6218 struct task_struct
*idle_task(int cpu
)
6220 return cpu_rq(cpu
)->idle
;
6224 * find_process_by_pid - find a process with a matching PID value.
6225 * @pid: the pid in question.
6227 static struct task_struct
*find_process_by_pid(pid_t pid
)
6229 return pid
? find_task_by_vpid(pid
) : current
;
6232 /* Actually do priority change: must hold rq lock. */
6234 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6236 BUG_ON(p
->se
.on_rq
);
6239 p
->rt_priority
= prio
;
6240 p
->normal_prio
= normal_prio(p
);
6241 /* we are holding p->pi_lock already */
6242 p
->prio
= rt_mutex_getprio(p
);
6243 if (rt_prio(p
->prio
))
6244 p
->sched_class
= &rt_sched_class
;
6246 p
->sched_class
= &fair_sched_class
;
6251 * check the target process has a UID that matches the current process's
6253 static bool check_same_owner(struct task_struct
*p
)
6255 const struct cred
*cred
= current_cred(), *pcred
;
6259 pcred
= __task_cred(p
);
6260 match
= (cred
->euid
== pcred
->euid
||
6261 cred
->euid
== pcred
->uid
);
6266 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6267 struct sched_param
*param
, bool user
)
6269 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6270 unsigned long flags
;
6271 const struct sched_class
*prev_class
= p
->sched_class
;
6275 /* may grab non-irq protected spin_locks */
6276 BUG_ON(in_interrupt());
6278 /* double check policy once rq lock held */
6280 reset_on_fork
= p
->sched_reset_on_fork
;
6281 policy
= oldpolicy
= p
->policy
;
6283 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6284 policy
&= ~SCHED_RESET_ON_FORK
;
6286 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6287 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6288 policy
!= SCHED_IDLE
)
6293 * Valid priorities for SCHED_FIFO and SCHED_RR are
6294 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6295 * SCHED_BATCH and SCHED_IDLE is 0.
6297 if (param
->sched_priority
< 0 ||
6298 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6299 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6301 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6305 * Allow unprivileged RT tasks to decrease priority:
6307 if (user
&& !capable(CAP_SYS_NICE
)) {
6308 if (rt_policy(policy
)) {
6309 unsigned long rlim_rtprio
;
6311 if (!lock_task_sighand(p
, &flags
))
6313 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6314 unlock_task_sighand(p
, &flags
);
6316 /* can't set/change the rt policy */
6317 if (policy
!= p
->policy
&& !rlim_rtprio
)
6320 /* can't increase priority */
6321 if (param
->sched_priority
> p
->rt_priority
&&
6322 param
->sched_priority
> rlim_rtprio
)
6326 * Like positive nice levels, dont allow tasks to
6327 * move out of SCHED_IDLE either:
6329 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6332 /* can't change other user's priorities */
6333 if (!check_same_owner(p
))
6336 /* Normal users shall not reset the sched_reset_on_fork flag */
6337 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6342 #ifdef CONFIG_RT_GROUP_SCHED
6344 * Do not allow realtime tasks into groups that have no runtime
6347 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6348 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6352 retval
= security_task_setscheduler(p
, policy
, param
);
6358 * make sure no PI-waiters arrive (or leave) while we are
6359 * changing the priority of the task:
6361 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
6363 * To be able to change p->policy safely, the apropriate
6364 * runqueue lock must be held.
6366 rq
= __task_rq_lock(p
);
6367 /* recheck policy now with rq lock held */
6368 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6369 policy
= oldpolicy
= -1;
6370 __task_rq_unlock(rq
);
6371 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6374 update_rq_clock(rq
);
6375 on_rq
= p
->se
.on_rq
;
6376 running
= task_current(rq
, p
);
6378 deactivate_task(rq
, p
, 0);
6380 p
->sched_class
->put_prev_task(rq
, p
);
6382 p
->sched_reset_on_fork
= reset_on_fork
;
6385 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6388 p
->sched_class
->set_curr_task(rq
);
6390 activate_task(rq
, p
, 0);
6392 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6394 __task_rq_unlock(rq
);
6395 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6397 rt_mutex_adjust_pi(p
);
6403 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6404 * @p: the task in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6408 * NOTE that the task may be already dead.
6410 int sched_setscheduler(struct task_struct
*p
, int policy
,
6411 struct sched_param
*param
)
6413 return __sched_setscheduler(p
, policy
, param
, true);
6415 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6418 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6419 * @p: the task in question.
6420 * @policy: new policy.
6421 * @param: structure containing the new RT priority.
6423 * Just like sched_setscheduler, only don't bother checking if the
6424 * current context has permission. For example, this is needed in
6425 * stop_machine(): we create temporary high priority worker threads,
6426 * but our caller might not have that capability.
6428 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6429 struct sched_param
*param
)
6431 return __sched_setscheduler(p
, policy
, param
, false);
6435 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6437 struct sched_param lparam
;
6438 struct task_struct
*p
;
6441 if (!param
|| pid
< 0)
6443 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6448 p
= find_process_by_pid(pid
);
6450 retval
= sched_setscheduler(p
, policy
, &lparam
);
6457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6458 * @pid: the pid in question.
6459 * @policy: new policy.
6460 * @param: structure containing the new RT priority.
6462 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6463 struct sched_param __user
*, param
)
6465 /* negative values for policy are not valid */
6469 return do_sched_setscheduler(pid
, policy
, param
);
6473 * sys_sched_setparam - set/change the RT priority of a thread
6474 * @pid: the pid in question.
6475 * @param: structure containing the new RT priority.
6477 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6479 return do_sched_setscheduler(pid
, -1, param
);
6483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6484 * @pid: the pid in question.
6486 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6488 struct task_struct
*p
;
6496 p
= find_process_by_pid(pid
);
6498 retval
= security_task_getscheduler(p
);
6501 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6508 * sys_sched_getparam - get the RT priority of a thread
6509 * @pid: the pid in question.
6510 * @param: structure containing the RT priority.
6512 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6514 struct sched_param lp
;
6515 struct task_struct
*p
;
6518 if (!param
|| pid
< 0)
6522 p
= find_process_by_pid(pid
);
6527 retval
= security_task_getscheduler(p
);
6531 lp
.sched_priority
= p
->rt_priority
;
6535 * This one might sleep, we cannot do it with a spinlock held ...
6537 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6546 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6548 cpumask_var_t cpus_allowed
, new_mask
;
6549 struct task_struct
*p
;
6555 p
= find_process_by_pid(pid
);
6562 /* Prevent p going away */
6566 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6570 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6572 goto out_free_cpus_allowed
;
6575 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6578 retval
= security_task_setscheduler(p
, 0, NULL
);
6582 cpuset_cpus_allowed(p
, cpus_allowed
);
6583 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6585 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6588 cpuset_cpus_allowed(p
, cpus_allowed
);
6589 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6591 * We must have raced with a concurrent cpuset
6592 * update. Just reset the cpus_allowed to the
6593 * cpuset's cpus_allowed
6595 cpumask_copy(new_mask
, cpus_allowed
);
6600 free_cpumask_var(new_mask
);
6601 out_free_cpus_allowed
:
6602 free_cpumask_var(cpus_allowed
);
6609 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6610 struct cpumask
*new_mask
)
6612 if (len
< cpumask_size())
6613 cpumask_clear(new_mask
);
6614 else if (len
> cpumask_size())
6615 len
= cpumask_size();
6617 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6621 * sys_sched_setaffinity - set the cpu affinity of a process
6622 * @pid: pid of the process
6623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6624 * @user_mask_ptr: user-space pointer to the new cpu mask
6626 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6627 unsigned long __user
*, user_mask_ptr
)
6629 cpumask_var_t new_mask
;
6632 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6635 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6637 retval
= sched_setaffinity(pid
, new_mask
);
6638 free_cpumask_var(new_mask
);
6642 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6644 struct task_struct
*p
;
6645 unsigned long flags
;
6653 p
= find_process_by_pid(pid
);
6657 retval
= security_task_getscheduler(p
);
6661 rq
= task_rq_lock(p
, &flags
);
6662 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6663 task_rq_unlock(rq
, &flags
);
6673 * sys_sched_getaffinity - get the cpu affinity of a process
6674 * @pid: pid of the process
6675 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6676 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6678 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6679 unsigned long __user
*, user_mask_ptr
)
6684 if (len
< cpumask_size())
6687 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6690 ret
= sched_getaffinity(pid
, mask
);
6692 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6695 ret
= cpumask_size();
6697 free_cpumask_var(mask
);
6703 * sys_sched_yield - yield the current processor to other threads.
6705 * This function yields the current CPU to other tasks. If there are no
6706 * other threads running on this CPU then this function will return.
6708 SYSCALL_DEFINE0(sched_yield
)
6710 struct rq
*rq
= this_rq_lock();
6712 schedstat_inc(rq
, yld_count
);
6713 current
->sched_class
->yield_task(rq
);
6716 * Since we are going to call schedule() anyway, there's
6717 * no need to preempt or enable interrupts:
6719 __release(rq
->lock
);
6720 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6721 do_raw_spin_unlock(&rq
->lock
);
6722 preempt_enable_no_resched();
6729 static inline int should_resched(void)
6731 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6734 static void __cond_resched(void)
6736 add_preempt_count(PREEMPT_ACTIVE
);
6738 sub_preempt_count(PREEMPT_ACTIVE
);
6741 int __sched
_cond_resched(void)
6743 if (should_resched()) {
6749 EXPORT_SYMBOL(_cond_resched
);
6752 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6753 * call schedule, and on return reacquire the lock.
6755 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6756 * operations here to prevent schedule() from being called twice (once via
6757 * spin_unlock(), once by hand).
6759 int __cond_resched_lock(spinlock_t
*lock
)
6761 int resched
= should_resched();
6764 lockdep_assert_held(lock
);
6766 if (spin_needbreak(lock
) || resched
) {
6777 EXPORT_SYMBOL(__cond_resched_lock
);
6779 int __sched
__cond_resched_softirq(void)
6781 BUG_ON(!in_softirq());
6783 if (should_resched()) {
6791 EXPORT_SYMBOL(__cond_resched_softirq
);
6794 * yield - yield the current processor to other threads.
6796 * This is a shortcut for kernel-space yielding - it marks the
6797 * thread runnable and calls sys_sched_yield().
6799 void __sched
yield(void)
6801 set_current_state(TASK_RUNNING
);
6804 EXPORT_SYMBOL(yield
);
6807 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6808 * that process accounting knows that this is a task in IO wait state.
6810 void __sched
io_schedule(void)
6812 struct rq
*rq
= raw_rq();
6814 delayacct_blkio_start();
6815 atomic_inc(&rq
->nr_iowait
);
6816 current
->in_iowait
= 1;
6818 current
->in_iowait
= 0;
6819 atomic_dec(&rq
->nr_iowait
);
6820 delayacct_blkio_end();
6822 EXPORT_SYMBOL(io_schedule
);
6824 long __sched
io_schedule_timeout(long timeout
)
6826 struct rq
*rq
= raw_rq();
6829 delayacct_blkio_start();
6830 atomic_inc(&rq
->nr_iowait
);
6831 current
->in_iowait
= 1;
6832 ret
= schedule_timeout(timeout
);
6833 current
->in_iowait
= 0;
6834 atomic_dec(&rq
->nr_iowait
);
6835 delayacct_blkio_end();
6840 * sys_sched_get_priority_max - return maximum RT priority.
6841 * @policy: scheduling class.
6843 * this syscall returns the maximum rt_priority that can be used
6844 * by a given scheduling class.
6846 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6853 ret
= MAX_USER_RT_PRIO
-1;
6865 * sys_sched_get_priority_min - return minimum RT priority.
6866 * @policy: scheduling class.
6868 * this syscall returns the minimum rt_priority that can be used
6869 * by a given scheduling class.
6871 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6889 * sys_sched_rr_get_interval - return the default timeslice of a process.
6890 * @pid: pid of the process.
6891 * @interval: userspace pointer to the timeslice value.
6893 * this syscall writes the default timeslice value of a given process
6894 * into the user-space timespec buffer. A value of '0' means infinity.
6896 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6897 struct timespec __user
*, interval
)
6899 struct task_struct
*p
;
6900 unsigned int time_slice
;
6901 unsigned long flags
;
6911 p
= find_process_by_pid(pid
);
6915 retval
= security_task_getscheduler(p
);
6919 rq
= task_rq_lock(p
, &flags
);
6920 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
6921 task_rq_unlock(rq
, &flags
);
6924 jiffies_to_timespec(time_slice
, &t
);
6925 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6933 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6935 void sched_show_task(struct task_struct
*p
)
6937 unsigned long free
= 0;
6940 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6941 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6942 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6943 #if BITS_PER_LONG == 32
6944 if (state
== TASK_RUNNING
)
6945 printk(KERN_CONT
" running ");
6947 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6949 if (state
== TASK_RUNNING
)
6950 printk(KERN_CONT
" running task ");
6952 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6954 #ifdef CONFIG_DEBUG_STACK_USAGE
6955 free
= stack_not_used(p
);
6957 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6958 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6959 (unsigned long)task_thread_info(p
)->flags
);
6961 show_stack(p
, NULL
);
6964 void show_state_filter(unsigned long state_filter
)
6966 struct task_struct
*g
, *p
;
6968 #if BITS_PER_LONG == 32
6970 " task PC stack pid father\n");
6973 " task PC stack pid father\n");
6975 read_lock(&tasklist_lock
);
6976 do_each_thread(g
, p
) {
6978 * reset the NMI-timeout, listing all files on a slow
6979 * console might take alot of time:
6981 touch_nmi_watchdog();
6982 if (!state_filter
|| (p
->state
& state_filter
))
6984 } while_each_thread(g
, p
);
6986 touch_all_softlockup_watchdogs();
6988 #ifdef CONFIG_SCHED_DEBUG
6989 sysrq_sched_debug_show();
6991 read_unlock(&tasklist_lock
);
6993 * Only show locks if all tasks are dumped:
6996 debug_show_all_locks();
6999 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
7001 idle
->sched_class
= &idle_sched_class
;
7005 * init_idle - set up an idle thread for a given CPU
7006 * @idle: task in question
7007 * @cpu: cpu the idle task belongs to
7009 * NOTE: this function does not set the idle thread's NEED_RESCHED
7010 * flag, to make booting more robust.
7012 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
7014 struct rq
*rq
= cpu_rq(cpu
);
7015 unsigned long flags
;
7017 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7020 idle
->state
= TASK_RUNNING
;
7021 idle
->se
.exec_start
= sched_clock();
7023 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
7024 __set_task_cpu(idle
, cpu
);
7026 rq
->curr
= rq
->idle
= idle
;
7027 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7030 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7032 /* Set the preempt count _outside_ the spinlocks! */
7033 #if defined(CONFIG_PREEMPT)
7034 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
7036 task_thread_info(idle
)->preempt_count
= 0;
7039 * The idle tasks have their own, simple scheduling class:
7041 idle
->sched_class
= &idle_sched_class
;
7042 ftrace_graph_init_task(idle
);
7046 * In a system that switches off the HZ timer nohz_cpu_mask
7047 * indicates which cpus entered this state. This is used
7048 * in the rcu update to wait only for active cpus. For system
7049 * which do not switch off the HZ timer nohz_cpu_mask should
7050 * always be CPU_BITS_NONE.
7052 cpumask_var_t nohz_cpu_mask
;
7055 * Increase the granularity value when there are more CPUs,
7056 * because with more CPUs the 'effective latency' as visible
7057 * to users decreases. But the relationship is not linear,
7058 * so pick a second-best guess by going with the log2 of the
7061 * This idea comes from the SD scheduler of Con Kolivas:
7063 static int get_update_sysctl_factor(void)
7065 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
7066 unsigned int factor
;
7068 switch (sysctl_sched_tunable_scaling
) {
7069 case SCHED_TUNABLESCALING_NONE
:
7072 case SCHED_TUNABLESCALING_LINEAR
:
7075 case SCHED_TUNABLESCALING_LOG
:
7077 factor
= 1 + ilog2(cpus
);
7084 static void update_sysctl(void)
7086 unsigned int factor
= get_update_sysctl_factor();
7088 #define SET_SYSCTL(name) \
7089 (sysctl_##name = (factor) * normalized_sysctl_##name)
7090 SET_SYSCTL(sched_min_granularity
);
7091 SET_SYSCTL(sched_latency
);
7092 SET_SYSCTL(sched_wakeup_granularity
);
7093 SET_SYSCTL(sched_shares_ratelimit
);
7097 static inline void sched_init_granularity(void)
7104 * This is how migration works:
7106 * 1) we queue a struct migration_req structure in the source CPU's
7107 * runqueue and wake up that CPU's migration thread.
7108 * 2) we down() the locked semaphore => thread blocks.
7109 * 3) migration thread wakes up (implicitly it forces the migrated
7110 * thread off the CPU)
7111 * 4) it gets the migration request and checks whether the migrated
7112 * task is still in the wrong runqueue.
7113 * 5) if it's in the wrong runqueue then the migration thread removes
7114 * it and puts it into the right queue.
7115 * 6) migration thread up()s the semaphore.
7116 * 7) we wake up and the migration is done.
7120 * Change a given task's CPU affinity. Migrate the thread to a
7121 * proper CPU and schedule it away if the CPU it's executing on
7122 * is removed from the allowed bitmask.
7124 * NOTE: the caller must have a valid reference to the task, the
7125 * task must not exit() & deallocate itself prematurely. The
7126 * call is not atomic; no spinlocks may be held.
7128 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7130 struct migration_req req
;
7131 unsigned long flags
;
7136 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7137 * the ->cpus_allowed mask from under waking tasks, which would be
7138 * possible when we change rq->lock in ttwu(), so synchronize against
7139 * TASK_WAKING to avoid that.
7142 while (p
->state
== TASK_WAKING
)
7145 rq
= task_rq_lock(p
, &flags
);
7147 if (p
->state
== TASK_WAKING
) {
7148 task_rq_unlock(rq
, &flags
);
7152 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
7157 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7158 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7163 if (p
->sched_class
->set_cpus_allowed
)
7164 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7166 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7167 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7170 /* Can the task run on the task's current CPU? If so, we're done */
7171 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7174 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
7175 /* Need help from migration thread: drop lock and wait. */
7176 struct task_struct
*mt
= rq
->migration_thread
;
7178 get_task_struct(mt
);
7179 task_rq_unlock(rq
, &flags
);
7180 wake_up_process(rq
->migration_thread
);
7181 put_task_struct(mt
);
7182 wait_for_completion(&req
.done
);
7183 tlb_migrate_finish(p
->mm
);
7187 task_rq_unlock(rq
, &flags
);
7191 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7194 * Move (not current) task off this cpu, onto dest cpu. We're doing
7195 * this because either it can't run here any more (set_cpus_allowed()
7196 * away from this CPU, or CPU going down), or because we're
7197 * attempting to rebalance this task on exec (sched_exec).
7199 * So we race with normal scheduler movements, but that's OK, as long
7200 * as the task is no longer on this CPU.
7202 * Returns non-zero if task was successfully migrated.
7204 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7206 struct rq
*rq_dest
, *rq_src
;
7209 if (unlikely(!cpu_active(dest_cpu
)))
7212 rq_src
= cpu_rq(src_cpu
);
7213 rq_dest
= cpu_rq(dest_cpu
);
7215 double_rq_lock(rq_src
, rq_dest
);
7216 /* Already moved. */
7217 if (task_cpu(p
) != src_cpu
)
7219 /* Affinity changed (again). */
7220 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7224 * If we're not on a rq, the next wake-up will ensure we're
7228 deactivate_task(rq_src
, p
, 0);
7229 set_task_cpu(p
, dest_cpu
);
7230 activate_task(rq_dest
, p
, 0);
7231 check_preempt_curr(rq_dest
, p
, 0);
7236 double_rq_unlock(rq_src
, rq_dest
);
7240 #define RCU_MIGRATION_IDLE 0
7241 #define RCU_MIGRATION_NEED_QS 1
7242 #define RCU_MIGRATION_GOT_QS 2
7243 #define RCU_MIGRATION_MUST_SYNC 3
7246 * migration_thread - this is a highprio system thread that performs
7247 * thread migration by bumping thread off CPU then 'pushing' onto
7250 static int migration_thread(void *data
)
7253 int cpu
= (long)data
;
7257 BUG_ON(rq
->migration_thread
!= current
);
7259 set_current_state(TASK_INTERRUPTIBLE
);
7260 while (!kthread_should_stop()) {
7261 struct migration_req
*req
;
7262 struct list_head
*head
;
7264 raw_spin_lock_irq(&rq
->lock
);
7266 if (cpu_is_offline(cpu
)) {
7267 raw_spin_unlock_irq(&rq
->lock
);
7271 if (rq
->active_balance
) {
7272 active_load_balance(rq
, cpu
);
7273 rq
->active_balance
= 0;
7276 head
= &rq
->migration_queue
;
7278 if (list_empty(head
)) {
7279 raw_spin_unlock_irq(&rq
->lock
);
7281 set_current_state(TASK_INTERRUPTIBLE
);
7284 req
= list_entry(head
->next
, struct migration_req
, list
);
7285 list_del_init(head
->next
);
7287 if (req
->task
!= NULL
) {
7288 raw_spin_unlock(&rq
->lock
);
7289 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7290 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7291 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7292 raw_spin_unlock(&rq
->lock
);
7294 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7295 raw_spin_unlock(&rq
->lock
);
7296 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7300 complete(&req
->done
);
7302 __set_current_state(TASK_RUNNING
);
7307 #ifdef CONFIG_HOTPLUG_CPU
7309 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7313 local_irq_disable();
7314 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7320 * Figure out where task on dead CPU should go, use force if necessary.
7322 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7327 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
7329 /* It can have affinity changed while we were choosing. */
7330 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7335 * While a dead CPU has no uninterruptible tasks queued at this point,
7336 * it might still have a nonzero ->nr_uninterruptible counter, because
7337 * for performance reasons the counter is not stricly tracking tasks to
7338 * their home CPUs. So we just add the counter to another CPU's counter,
7339 * to keep the global sum constant after CPU-down:
7341 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7343 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
7344 unsigned long flags
;
7346 local_irq_save(flags
);
7347 double_rq_lock(rq_src
, rq_dest
);
7348 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7349 rq_src
->nr_uninterruptible
= 0;
7350 double_rq_unlock(rq_src
, rq_dest
);
7351 local_irq_restore(flags
);
7354 /* Run through task list and migrate tasks from the dead cpu. */
7355 static void migrate_live_tasks(int src_cpu
)
7357 struct task_struct
*p
, *t
;
7359 read_lock(&tasklist_lock
);
7361 do_each_thread(t
, p
) {
7365 if (task_cpu(p
) == src_cpu
)
7366 move_task_off_dead_cpu(src_cpu
, p
);
7367 } while_each_thread(t
, p
);
7369 read_unlock(&tasklist_lock
);
7373 * Schedules idle task to be the next runnable task on current CPU.
7374 * It does so by boosting its priority to highest possible.
7375 * Used by CPU offline code.
7377 void sched_idle_next(void)
7379 int this_cpu
= smp_processor_id();
7380 struct rq
*rq
= cpu_rq(this_cpu
);
7381 struct task_struct
*p
= rq
->idle
;
7382 unsigned long flags
;
7384 /* cpu has to be offline */
7385 BUG_ON(cpu_online(this_cpu
));
7388 * Strictly not necessary since rest of the CPUs are stopped by now
7389 * and interrupts disabled on the current cpu.
7391 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7393 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7395 update_rq_clock(rq
);
7396 activate_task(rq
, p
, 0);
7398 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7402 * Ensures that the idle task is using init_mm right before its cpu goes
7405 void idle_task_exit(void)
7407 struct mm_struct
*mm
= current
->active_mm
;
7409 BUG_ON(cpu_online(smp_processor_id()));
7412 switch_mm(mm
, &init_mm
, current
);
7416 /* called under rq->lock with disabled interrupts */
7417 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7419 struct rq
*rq
= cpu_rq(dead_cpu
);
7421 /* Must be exiting, otherwise would be on tasklist. */
7422 BUG_ON(!p
->exit_state
);
7424 /* Cannot have done final schedule yet: would have vanished. */
7425 BUG_ON(p
->state
== TASK_DEAD
);
7430 * Drop lock around migration; if someone else moves it,
7431 * that's OK. No task can be added to this CPU, so iteration is
7434 raw_spin_unlock_irq(&rq
->lock
);
7435 move_task_off_dead_cpu(dead_cpu
, p
);
7436 raw_spin_lock_irq(&rq
->lock
);
7441 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7442 static void migrate_dead_tasks(unsigned int dead_cpu
)
7444 struct rq
*rq
= cpu_rq(dead_cpu
);
7445 struct task_struct
*next
;
7448 if (!rq
->nr_running
)
7450 update_rq_clock(rq
);
7451 next
= pick_next_task(rq
);
7454 next
->sched_class
->put_prev_task(rq
, next
);
7455 migrate_dead(dead_cpu
, next
);
7461 * remove the tasks which were accounted by rq from calc_load_tasks.
7463 static void calc_global_load_remove(struct rq
*rq
)
7465 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7466 rq
->calc_load_active
= 0;
7468 #endif /* CONFIG_HOTPLUG_CPU */
7470 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7472 static struct ctl_table sd_ctl_dir
[] = {
7474 .procname
= "sched_domain",
7480 static struct ctl_table sd_ctl_root
[] = {
7482 .procname
= "kernel",
7484 .child
= sd_ctl_dir
,
7489 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7491 struct ctl_table
*entry
=
7492 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7497 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7499 struct ctl_table
*entry
;
7502 * In the intermediate directories, both the child directory and
7503 * procname are dynamically allocated and could fail but the mode
7504 * will always be set. In the lowest directory the names are
7505 * static strings and all have proc handlers.
7507 for (entry
= *tablep
; entry
->mode
; entry
++) {
7509 sd_free_ctl_entry(&entry
->child
);
7510 if (entry
->proc_handler
== NULL
)
7511 kfree(entry
->procname
);
7519 set_table_entry(struct ctl_table
*entry
,
7520 const char *procname
, void *data
, int maxlen
,
7521 mode_t mode
, proc_handler
*proc_handler
)
7523 entry
->procname
= procname
;
7525 entry
->maxlen
= maxlen
;
7527 entry
->proc_handler
= proc_handler
;
7530 static struct ctl_table
*
7531 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7533 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7538 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7539 sizeof(long), 0644, proc_doulongvec_minmax
);
7540 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7541 sizeof(long), 0644, proc_doulongvec_minmax
);
7542 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7543 sizeof(int), 0644, proc_dointvec_minmax
);
7544 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7545 sizeof(int), 0644, proc_dointvec_minmax
);
7546 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7547 sizeof(int), 0644, proc_dointvec_minmax
);
7548 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7549 sizeof(int), 0644, proc_dointvec_minmax
);
7550 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7551 sizeof(int), 0644, proc_dointvec_minmax
);
7552 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7553 sizeof(int), 0644, proc_dointvec_minmax
);
7554 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7555 sizeof(int), 0644, proc_dointvec_minmax
);
7556 set_table_entry(&table
[9], "cache_nice_tries",
7557 &sd
->cache_nice_tries
,
7558 sizeof(int), 0644, proc_dointvec_minmax
);
7559 set_table_entry(&table
[10], "flags", &sd
->flags
,
7560 sizeof(int), 0644, proc_dointvec_minmax
);
7561 set_table_entry(&table
[11], "name", sd
->name
,
7562 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7563 /* &table[12] is terminator */
7568 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7570 struct ctl_table
*entry
, *table
;
7571 struct sched_domain
*sd
;
7572 int domain_num
= 0, i
;
7575 for_each_domain(cpu
, sd
)
7577 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7582 for_each_domain(cpu
, sd
) {
7583 snprintf(buf
, 32, "domain%d", i
);
7584 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7586 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7593 static struct ctl_table_header
*sd_sysctl_header
;
7594 static void register_sched_domain_sysctl(void)
7596 int i
, cpu_num
= num_possible_cpus();
7597 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7600 WARN_ON(sd_ctl_dir
[0].child
);
7601 sd_ctl_dir
[0].child
= entry
;
7606 for_each_possible_cpu(i
) {
7607 snprintf(buf
, 32, "cpu%d", i
);
7608 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7610 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7614 WARN_ON(sd_sysctl_header
);
7615 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7618 /* may be called multiple times per register */
7619 static void unregister_sched_domain_sysctl(void)
7621 if (sd_sysctl_header
)
7622 unregister_sysctl_table(sd_sysctl_header
);
7623 sd_sysctl_header
= NULL
;
7624 if (sd_ctl_dir
[0].child
)
7625 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7628 static void register_sched_domain_sysctl(void)
7631 static void unregister_sched_domain_sysctl(void)
7636 static void set_rq_online(struct rq
*rq
)
7639 const struct sched_class
*class;
7641 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7644 for_each_class(class) {
7645 if (class->rq_online
)
7646 class->rq_online(rq
);
7651 static void set_rq_offline(struct rq
*rq
)
7654 const struct sched_class
*class;
7656 for_each_class(class) {
7657 if (class->rq_offline
)
7658 class->rq_offline(rq
);
7661 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7667 * migration_call - callback that gets triggered when a CPU is added.
7668 * Here we can start up the necessary migration thread for the new CPU.
7670 static int __cpuinit
7671 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7673 struct task_struct
*p
;
7674 int cpu
= (long)hcpu
;
7675 unsigned long flags
;
7680 case CPU_UP_PREPARE
:
7681 case CPU_UP_PREPARE_FROZEN
:
7682 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7685 kthread_bind(p
, cpu
);
7686 /* Must be high prio: stop_machine expects to yield to it. */
7687 rq
= task_rq_lock(p
, &flags
);
7688 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7689 task_rq_unlock(rq
, &flags
);
7691 cpu_rq(cpu
)->migration_thread
= p
;
7692 rq
->calc_load_update
= calc_load_update
;
7696 case CPU_ONLINE_FROZEN
:
7697 /* Strictly unnecessary, as first user will wake it. */
7698 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7700 /* Update our root-domain */
7702 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7704 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7708 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7711 #ifdef CONFIG_HOTPLUG_CPU
7712 case CPU_UP_CANCELED
:
7713 case CPU_UP_CANCELED_FROZEN
:
7714 if (!cpu_rq(cpu
)->migration_thread
)
7716 /* Unbind it from offline cpu so it can run. Fall thru. */
7717 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7718 cpumask_any(cpu_online_mask
));
7719 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7720 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7721 cpu_rq(cpu
)->migration_thread
= NULL
;
7725 case CPU_DEAD_FROZEN
:
7726 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7727 migrate_live_tasks(cpu
);
7729 kthread_stop(rq
->migration_thread
);
7730 put_task_struct(rq
->migration_thread
);
7731 rq
->migration_thread
= NULL
;
7732 /* Idle task back to normal (off runqueue, low prio) */
7733 raw_spin_lock_irq(&rq
->lock
);
7734 update_rq_clock(rq
);
7735 deactivate_task(rq
, rq
->idle
, 0);
7736 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7737 rq
->idle
->sched_class
= &idle_sched_class
;
7738 migrate_dead_tasks(cpu
);
7739 raw_spin_unlock_irq(&rq
->lock
);
7741 migrate_nr_uninterruptible(rq
);
7742 BUG_ON(rq
->nr_running
!= 0);
7743 calc_global_load_remove(rq
);
7745 * No need to migrate the tasks: it was best-effort if
7746 * they didn't take sched_hotcpu_mutex. Just wake up
7749 raw_spin_lock_irq(&rq
->lock
);
7750 while (!list_empty(&rq
->migration_queue
)) {
7751 struct migration_req
*req
;
7753 req
= list_entry(rq
->migration_queue
.next
,
7754 struct migration_req
, list
);
7755 list_del_init(&req
->list
);
7756 raw_spin_unlock_irq(&rq
->lock
);
7757 complete(&req
->done
);
7758 raw_spin_lock_irq(&rq
->lock
);
7760 raw_spin_unlock_irq(&rq
->lock
);
7764 case CPU_DYING_FROZEN
:
7765 /* Update our root-domain */
7767 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7769 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7772 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7780 * Register at high priority so that task migration (migrate_all_tasks)
7781 * happens before everything else. This has to be lower priority than
7782 * the notifier in the perf_event subsystem, though.
7784 static struct notifier_block __cpuinitdata migration_notifier
= {
7785 .notifier_call
= migration_call
,
7789 static int __init
migration_init(void)
7791 void *cpu
= (void *)(long)smp_processor_id();
7794 /* Start one for the boot CPU: */
7795 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7796 BUG_ON(err
== NOTIFY_BAD
);
7797 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7798 register_cpu_notifier(&migration_notifier
);
7802 early_initcall(migration_init
);
7807 #ifdef CONFIG_SCHED_DEBUG
7809 static __read_mostly
int sched_domain_debug_enabled
;
7811 static int __init
sched_domain_debug_setup(char *str
)
7813 sched_domain_debug_enabled
= 1;
7817 early_param("sched_debug", sched_domain_debug_setup
);
7819 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7820 struct cpumask
*groupmask
)
7822 struct sched_group
*group
= sd
->groups
;
7825 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7826 cpumask_clear(groupmask
);
7828 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7830 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7831 printk("does not load-balance\n");
7833 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7838 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7840 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7841 printk(KERN_ERR
"ERROR: domain->span does not contain "
7844 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7845 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7849 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7853 printk(KERN_ERR
"ERROR: group is NULL\n");
7857 if (!group
->cpu_power
) {
7858 printk(KERN_CONT
"\n");
7859 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7864 if (!cpumask_weight(sched_group_cpus(group
))) {
7865 printk(KERN_CONT
"\n");
7866 printk(KERN_ERR
"ERROR: empty group\n");
7870 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7871 printk(KERN_CONT
"\n");
7872 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7876 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7878 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7880 printk(KERN_CONT
" %s", str
);
7881 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
7882 printk(KERN_CONT
" (cpu_power = %d)",
7886 group
= group
->next
;
7887 } while (group
!= sd
->groups
);
7888 printk(KERN_CONT
"\n");
7890 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7891 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7894 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7895 printk(KERN_ERR
"ERROR: parent span is not a superset "
7896 "of domain->span\n");
7900 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7902 cpumask_var_t groupmask
;
7905 if (!sched_domain_debug_enabled
)
7909 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7913 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7915 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7916 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7921 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7928 free_cpumask_var(groupmask
);
7930 #else /* !CONFIG_SCHED_DEBUG */
7931 # define sched_domain_debug(sd, cpu) do { } while (0)
7932 #endif /* CONFIG_SCHED_DEBUG */
7934 static int sd_degenerate(struct sched_domain
*sd
)
7936 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7939 /* Following flags need at least 2 groups */
7940 if (sd
->flags
& (SD_LOAD_BALANCE
|
7941 SD_BALANCE_NEWIDLE
|
7945 SD_SHARE_PKG_RESOURCES
)) {
7946 if (sd
->groups
!= sd
->groups
->next
)
7950 /* Following flags don't use groups */
7951 if (sd
->flags
& (SD_WAKE_AFFINE
))
7958 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7960 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7962 if (sd_degenerate(parent
))
7965 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7968 /* Flags needing groups don't count if only 1 group in parent */
7969 if (parent
->groups
== parent
->groups
->next
) {
7970 pflags
&= ~(SD_LOAD_BALANCE
|
7971 SD_BALANCE_NEWIDLE
|
7975 SD_SHARE_PKG_RESOURCES
);
7976 if (nr_node_ids
== 1)
7977 pflags
&= ~SD_SERIALIZE
;
7979 if (~cflags
& pflags
)
7985 static void free_rootdomain(struct root_domain
*rd
)
7987 synchronize_sched();
7989 cpupri_cleanup(&rd
->cpupri
);
7991 free_cpumask_var(rd
->rto_mask
);
7992 free_cpumask_var(rd
->online
);
7993 free_cpumask_var(rd
->span
);
7997 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7999 struct root_domain
*old_rd
= NULL
;
8000 unsigned long flags
;
8002 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8007 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
8010 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
8013 * If we dont want to free the old_rt yet then
8014 * set old_rd to NULL to skip the freeing later
8017 if (!atomic_dec_and_test(&old_rd
->refcount
))
8021 atomic_inc(&rd
->refcount
);
8024 cpumask_set_cpu(rq
->cpu
, rd
->span
);
8025 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
8028 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8031 free_rootdomain(old_rd
);
8034 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
8036 gfp_t gfp
= GFP_KERNEL
;
8038 memset(rd
, 0, sizeof(*rd
));
8043 if (!alloc_cpumask_var(&rd
->span
, gfp
))
8045 if (!alloc_cpumask_var(&rd
->online
, gfp
))
8047 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
8050 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
8055 free_cpumask_var(rd
->rto_mask
);
8057 free_cpumask_var(rd
->online
);
8059 free_cpumask_var(rd
->span
);
8064 static void init_defrootdomain(void)
8066 init_rootdomain(&def_root_domain
, true);
8068 atomic_set(&def_root_domain
.refcount
, 1);
8071 static struct root_domain
*alloc_rootdomain(void)
8073 struct root_domain
*rd
;
8075 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
8079 if (init_rootdomain(rd
, false) != 0) {
8088 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8089 * hold the hotplug lock.
8092 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
8094 struct rq
*rq
= cpu_rq(cpu
);
8095 struct sched_domain
*tmp
;
8097 /* Remove the sched domains which do not contribute to scheduling. */
8098 for (tmp
= sd
; tmp
; ) {
8099 struct sched_domain
*parent
= tmp
->parent
;
8103 if (sd_parent_degenerate(tmp
, parent
)) {
8104 tmp
->parent
= parent
->parent
;
8106 parent
->parent
->child
= tmp
;
8111 if (sd
&& sd_degenerate(sd
)) {
8117 sched_domain_debug(sd
, cpu
);
8119 rq_attach_root(rq
, rd
);
8120 rcu_assign_pointer(rq
->sd
, sd
);
8123 /* cpus with isolated domains */
8124 static cpumask_var_t cpu_isolated_map
;
8126 /* Setup the mask of cpus configured for isolated domains */
8127 static int __init
isolated_cpu_setup(char *str
)
8129 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8130 cpulist_parse(str
, cpu_isolated_map
);
8134 __setup("isolcpus=", isolated_cpu_setup
);
8137 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8138 * to a function which identifies what group(along with sched group) a CPU
8139 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8140 * (due to the fact that we keep track of groups covered with a struct cpumask).
8142 * init_sched_build_groups will build a circular linked list of the groups
8143 * covered by the given span, and will set each group's ->cpumask correctly,
8144 * and ->cpu_power to 0.
8147 init_sched_build_groups(const struct cpumask
*span
,
8148 const struct cpumask
*cpu_map
,
8149 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8150 struct sched_group
**sg
,
8151 struct cpumask
*tmpmask
),
8152 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8154 struct sched_group
*first
= NULL
, *last
= NULL
;
8157 cpumask_clear(covered
);
8159 for_each_cpu(i
, span
) {
8160 struct sched_group
*sg
;
8161 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8164 if (cpumask_test_cpu(i
, covered
))
8167 cpumask_clear(sched_group_cpus(sg
));
8170 for_each_cpu(j
, span
) {
8171 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8174 cpumask_set_cpu(j
, covered
);
8175 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8186 #define SD_NODES_PER_DOMAIN 16
8191 * find_next_best_node - find the next node to include in a sched_domain
8192 * @node: node whose sched_domain we're building
8193 * @used_nodes: nodes already in the sched_domain
8195 * Find the next node to include in a given scheduling domain. Simply
8196 * finds the closest node not already in the @used_nodes map.
8198 * Should use nodemask_t.
8200 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8202 int i
, n
, val
, min_val
, best_node
= 0;
8206 for (i
= 0; i
< nr_node_ids
; i
++) {
8207 /* Start at @node */
8208 n
= (node
+ i
) % nr_node_ids
;
8210 if (!nr_cpus_node(n
))
8213 /* Skip already used nodes */
8214 if (node_isset(n
, *used_nodes
))
8217 /* Simple min distance search */
8218 val
= node_distance(node
, n
);
8220 if (val
< min_val
) {
8226 node_set(best_node
, *used_nodes
);
8231 * sched_domain_node_span - get a cpumask for a node's sched_domain
8232 * @node: node whose cpumask we're constructing
8233 * @span: resulting cpumask
8235 * Given a node, construct a good cpumask for its sched_domain to span. It
8236 * should be one that prevents unnecessary balancing, but also spreads tasks
8239 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8241 nodemask_t used_nodes
;
8244 cpumask_clear(span
);
8245 nodes_clear(used_nodes
);
8247 cpumask_or(span
, span
, cpumask_of_node(node
));
8248 node_set(node
, used_nodes
);
8250 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8251 int next_node
= find_next_best_node(node
, &used_nodes
);
8253 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8256 #endif /* CONFIG_NUMA */
8258 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8261 * The cpus mask in sched_group and sched_domain hangs off the end.
8263 * ( See the the comments in include/linux/sched.h:struct sched_group
8264 * and struct sched_domain. )
8266 struct static_sched_group
{
8267 struct sched_group sg
;
8268 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8271 struct static_sched_domain
{
8272 struct sched_domain sd
;
8273 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8279 cpumask_var_t domainspan
;
8280 cpumask_var_t covered
;
8281 cpumask_var_t notcovered
;
8283 cpumask_var_t nodemask
;
8284 cpumask_var_t this_sibling_map
;
8285 cpumask_var_t this_core_map
;
8286 cpumask_var_t send_covered
;
8287 cpumask_var_t tmpmask
;
8288 struct sched_group
**sched_group_nodes
;
8289 struct root_domain
*rd
;
8293 sa_sched_groups
= 0,
8298 sa_this_sibling_map
,
8300 sa_sched_group_nodes
,
8310 * SMT sched-domains:
8312 #ifdef CONFIG_SCHED_SMT
8313 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8314 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
8317 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8318 struct sched_group
**sg
, struct cpumask
*unused
)
8321 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
8324 #endif /* CONFIG_SCHED_SMT */
8327 * multi-core sched-domains:
8329 #ifdef CONFIG_SCHED_MC
8330 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8331 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8332 #endif /* CONFIG_SCHED_MC */
8334 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8336 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8337 struct sched_group
**sg
, struct cpumask
*mask
)
8341 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8342 group
= cpumask_first(mask
);
8344 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8347 #elif defined(CONFIG_SCHED_MC)
8349 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8350 struct sched_group
**sg
, struct cpumask
*unused
)
8353 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8358 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8359 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8362 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8363 struct sched_group
**sg
, struct cpumask
*mask
)
8366 #ifdef CONFIG_SCHED_MC
8367 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8368 group
= cpumask_first(mask
);
8369 #elif defined(CONFIG_SCHED_SMT)
8370 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8371 group
= cpumask_first(mask
);
8376 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8382 * The init_sched_build_groups can't handle what we want to do with node
8383 * groups, so roll our own. Now each node has its own list of groups which
8384 * gets dynamically allocated.
8386 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8387 static struct sched_group
***sched_group_nodes_bycpu
;
8389 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8390 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8392 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8393 struct sched_group
**sg
,
8394 struct cpumask
*nodemask
)
8398 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8399 group
= cpumask_first(nodemask
);
8402 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8406 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8408 struct sched_group
*sg
= group_head
;
8414 for_each_cpu(j
, sched_group_cpus(sg
)) {
8415 struct sched_domain
*sd
;
8417 sd
= &per_cpu(phys_domains
, j
).sd
;
8418 if (j
!= group_first_cpu(sd
->groups
)) {
8420 * Only add "power" once for each
8426 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8429 } while (sg
!= group_head
);
8432 static int build_numa_sched_groups(struct s_data
*d
,
8433 const struct cpumask
*cpu_map
, int num
)
8435 struct sched_domain
*sd
;
8436 struct sched_group
*sg
, *prev
;
8439 cpumask_clear(d
->covered
);
8440 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8441 if (cpumask_empty(d
->nodemask
)) {
8442 d
->sched_group_nodes
[num
] = NULL
;
8446 sched_domain_node_span(num
, d
->domainspan
);
8447 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8449 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8452 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8456 d
->sched_group_nodes
[num
] = sg
;
8458 for_each_cpu(j
, d
->nodemask
) {
8459 sd
= &per_cpu(node_domains
, j
).sd
;
8464 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8466 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8469 for (j
= 0; j
< nr_node_ids
; j
++) {
8470 n
= (num
+ j
) % nr_node_ids
;
8471 cpumask_complement(d
->notcovered
, d
->covered
);
8472 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8473 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8474 if (cpumask_empty(d
->tmpmask
))
8476 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8477 if (cpumask_empty(d
->tmpmask
))
8479 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8483 "Can not alloc domain group for node %d\n", j
);
8487 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8488 sg
->next
= prev
->next
;
8489 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8496 #endif /* CONFIG_NUMA */
8499 /* Free memory allocated for various sched_group structures */
8500 static void free_sched_groups(const struct cpumask
*cpu_map
,
8501 struct cpumask
*nodemask
)
8505 for_each_cpu(cpu
, cpu_map
) {
8506 struct sched_group
**sched_group_nodes
8507 = sched_group_nodes_bycpu
[cpu
];
8509 if (!sched_group_nodes
)
8512 for (i
= 0; i
< nr_node_ids
; i
++) {
8513 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8515 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8516 if (cpumask_empty(nodemask
))
8526 if (oldsg
!= sched_group_nodes
[i
])
8529 kfree(sched_group_nodes
);
8530 sched_group_nodes_bycpu
[cpu
] = NULL
;
8533 #else /* !CONFIG_NUMA */
8534 static void free_sched_groups(const struct cpumask
*cpu_map
,
8535 struct cpumask
*nodemask
)
8538 #endif /* CONFIG_NUMA */
8541 * Initialize sched groups cpu_power.
8543 * cpu_power indicates the capacity of sched group, which is used while
8544 * distributing the load between different sched groups in a sched domain.
8545 * Typically cpu_power for all the groups in a sched domain will be same unless
8546 * there are asymmetries in the topology. If there are asymmetries, group
8547 * having more cpu_power will pickup more load compared to the group having
8550 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8552 struct sched_domain
*child
;
8553 struct sched_group
*group
;
8557 WARN_ON(!sd
|| !sd
->groups
);
8559 if (cpu
!= group_first_cpu(sd
->groups
))
8564 sd
->groups
->cpu_power
= 0;
8567 power
= SCHED_LOAD_SCALE
;
8568 weight
= cpumask_weight(sched_domain_span(sd
));
8570 * SMT siblings share the power of a single core.
8571 * Usually multiple threads get a better yield out of
8572 * that one core than a single thread would have,
8573 * reflect that in sd->smt_gain.
8575 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8576 power
*= sd
->smt_gain
;
8578 power
>>= SCHED_LOAD_SHIFT
;
8580 sd
->groups
->cpu_power
+= power
;
8585 * Add cpu_power of each child group to this groups cpu_power.
8587 group
= child
->groups
;
8589 sd
->groups
->cpu_power
+= group
->cpu_power
;
8590 group
= group
->next
;
8591 } while (group
!= child
->groups
);
8595 * Initializers for schedule domains
8596 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8599 #ifdef CONFIG_SCHED_DEBUG
8600 # define SD_INIT_NAME(sd, type) sd->name = #type
8602 # define SD_INIT_NAME(sd, type) do { } while (0)
8605 #define SD_INIT(sd, type) sd_init_##type(sd)
8607 #define SD_INIT_FUNC(type) \
8608 static noinline void sd_init_##type(struct sched_domain *sd) \
8610 memset(sd, 0, sizeof(*sd)); \
8611 *sd = SD_##type##_INIT; \
8612 sd->level = SD_LV_##type; \
8613 SD_INIT_NAME(sd, type); \
8618 SD_INIT_FUNC(ALLNODES
)
8621 #ifdef CONFIG_SCHED_SMT
8622 SD_INIT_FUNC(SIBLING
)
8624 #ifdef CONFIG_SCHED_MC
8628 static int default_relax_domain_level
= -1;
8630 static int __init
setup_relax_domain_level(char *str
)
8634 val
= simple_strtoul(str
, NULL
, 0);
8635 if (val
< SD_LV_MAX
)
8636 default_relax_domain_level
= val
;
8640 __setup("relax_domain_level=", setup_relax_domain_level
);
8642 static void set_domain_attribute(struct sched_domain
*sd
,
8643 struct sched_domain_attr
*attr
)
8647 if (!attr
|| attr
->relax_domain_level
< 0) {
8648 if (default_relax_domain_level
< 0)
8651 request
= default_relax_domain_level
;
8653 request
= attr
->relax_domain_level
;
8654 if (request
< sd
->level
) {
8655 /* turn off idle balance on this domain */
8656 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8658 /* turn on idle balance on this domain */
8659 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8663 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8664 const struct cpumask
*cpu_map
)
8667 case sa_sched_groups
:
8668 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8669 d
->sched_group_nodes
= NULL
;
8671 free_rootdomain(d
->rd
); /* fall through */
8673 free_cpumask_var(d
->tmpmask
); /* fall through */
8674 case sa_send_covered
:
8675 free_cpumask_var(d
->send_covered
); /* fall through */
8676 case sa_this_core_map
:
8677 free_cpumask_var(d
->this_core_map
); /* fall through */
8678 case sa_this_sibling_map
:
8679 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8681 free_cpumask_var(d
->nodemask
); /* fall through */
8682 case sa_sched_group_nodes
:
8684 kfree(d
->sched_group_nodes
); /* fall through */
8686 free_cpumask_var(d
->notcovered
); /* fall through */
8688 free_cpumask_var(d
->covered
); /* fall through */
8690 free_cpumask_var(d
->domainspan
); /* fall through */
8697 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8698 const struct cpumask
*cpu_map
)
8701 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8703 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8704 return sa_domainspan
;
8705 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8707 /* Allocate the per-node list of sched groups */
8708 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8709 sizeof(struct sched_group
*), GFP_KERNEL
);
8710 if (!d
->sched_group_nodes
) {
8711 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8712 return sa_notcovered
;
8714 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8716 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8717 return sa_sched_group_nodes
;
8718 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8720 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8721 return sa_this_sibling_map
;
8722 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8723 return sa_this_core_map
;
8724 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8725 return sa_send_covered
;
8726 d
->rd
= alloc_rootdomain();
8728 printk(KERN_WARNING
"Cannot alloc root domain\n");
8731 return sa_rootdomain
;
8734 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8735 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8737 struct sched_domain
*sd
= NULL
;
8739 struct sched_domain
*parent
;
8742 if (cpumask_weight(cpu_map
) >
8743 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8744 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8745 SD_INIT(sd
, ALLNODES
);
8746 set_domain_attribute(sd
, attr
);
8747 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8748 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8753 sd
= &per_cpu(node_domains
, i
).sd
;
8755 set_domain_attribute(sd
, attr
);
8756 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8757 sd
->parent
= parent
;
8760 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8765 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8766 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8767 struct sched_domain
*parent
, int i
)
8769 struct sched_domain
*sd
;
8770 sd
= &per_cpu(phys_domains
, i
).sd
;
8772 set_domain_attribute(sd
, attr
);
8773 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8774 sd
->parent
= parent
;
8777 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8781 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
8782 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8783 struct sched_domain
*parent
, int i
)
8785 struct sched_domain
*sd
= parent
;
8786 #ifdef CONFIG_SCHED_MC
8787 sd
= &per_cpu(core_domains
, i
).sd
;
8789 set_domain_attribute(sd
, attr
);
8790 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
8791 sd
->parent
= parent
;
8793 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8798 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
8799 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8800 struct sched_domain
*parent
, int i
)
8802 struct sched_domain
*sd
= parent
;
8803 #ifdef CONFIG_SCHED_SMT
8804 sd
= &per_cpu(cpu_domains
, i
).sd
;
8805 SD_INIT(sd
, SIBLING
);
8806 set_domain_attribute(sd
, attr
);
8807 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
8808 sd
->parent
= parent
;
8810 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8815 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
8816 const struct cpumask
*cpu_map
, int cpu
)
8819 #ifdef CONFIG_SCHED_SMT
8820 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
8821 cpumask_and(d
->this_sibling_map
, cpu_map
,
8822 topology_thread_cpumask(cpu
));
8823 if (cpu
== cpumask_first(d
->this_sibling_map
))
8824 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
8826 d
->send_covered
, d
->tmpmask
);
8829 #ifdef CONFIG_SCHED_MC
8830 case SD_LV_MC
: /* set up multi-core groups */
8831 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
8832 if (cpu
== cpumask_first(d
->this_core_map
))
8833 init_sched_build_groups(d
->this_core_map
, cpu_map
,
8835 d
->send_covered
, d
->tmpmask
);
8838 case SD_LV_CPU
: /* set up physical groups */
8839 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
8840 if (!cpumask_empty(d
->nodemask
))
8841 init_sched_build_groups(d
->nodemask
, cpu_map
,
8843 d
->send_covered
, d
->tmpmask
);
8846 case SD_LV_ALLNODES
:
8847 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
8848 d
->send_covered
, d
->tmpmask
);
8857 * Build sched domains for a given set of cpus and attach the sched domains
8858 * to the individual cpus
8860 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8861 struct sched_domain_attr
*attr
)
8863 enum s_alloc alloc_state
= sa_none
;
8865 struct sched_domain
*sd
;
8871 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
8872 if (alloc_state
!= sa_rootdomain
)
8874 alloc_state
= sa_sched_groups
;
8877 * Set up domains for cpus specified by the cpu_map.
8879 for_each_cpu(i
, cpu_map
) {
8880 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
8883 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
8884 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8885 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8886 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8889 for_each_cpu(i
, cpu_map
) {
8890 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
8891 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
8894 /* Set up physical groups */
8895 for (i
= 0; i
< nr_node_ids
; i
++)
8896 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
8899 /* Set up node groups */
8901 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
8903 for (i
= 0; i
< nr_node_ids
; i
++)
8904 if (build_numa_sched_groups(&d
, cpu_map
, i
))
8908 /* Calculate CPU power for physical packages and nodes */
8909 #ifdef CONFIG_SCHED_SMT
8910 for_each_cpu(i
, cpu_map
) {
8911 sd
= &per_cpu(cpu_domains
, i
).sd
;
8912 init_sched_groups_power(i
, sd
);
8915 #ifdef CONFIG_SCHED_MC
8916 for_each_cpu(i
, cpu_map
) {
8917 sd
= &per_cpu(core_domains
, i
).sd
;
8918 init_sched_groups_power(i
, sd
);
8922 for_each_cpu(i
, cpu_map
) {
8923 sd
= &per_cpu(phys_domains
, i
).sd
;
8924 init_sched_groups_power(i
, sd
);
8928 for (i
= 0; i
< nr_node_ids
; i
++)
8929 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
8931 if (d
.sd_allnodes
) {
8932 struct sched_group
*sg
;
8934 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8936 init_numa_sched_groups_power(sg
);
8940 /* Attach the domains */
8941 for_each_cpu(i
, cpu_map
) {
8942 #ifdef CONFIG_SCHED_SMT
8943 sd
= &per_cpu(cpu_domains
, i
).sd
;
8944 #elif defined(CONFIG_SCHED_MC)
8945 sd
= &per_cpu(core_domains
, i
).sd
;
8947 sd
= &per_cpu(phys_domains
, i
).sd
;
8949 cpu_attach_domain(sd
, d
.rd
, i
);
8952 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
8953 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
8957 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
8961 static int build_sched_domains(const struct cpumask
*cpu_map
)
8963 return __build_sched_domains(cpu_map
, NULL
);
8966 static cpumask_var_t
*doms_cur
; /* current sched domains */
8967 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8968 static struct sched_domain_attr
*dattr_cur
;
8969 /* attribues of custom domains in 'doms_cur' */
8972 * Special case: If a kmalloc of a doms_cur partition (array of
8973 * cpumask) fails, then fallback to a single sched domain,
8974 * as determined by the single cpumask fallback_doms.
8976 static cpumask_var_t fallback_doms
;
8979 * arch_update_cpu_topology lets virtualized architectures update the
8980 * cpu core maps. It is supposed to return 1 if the topology changed
8981 * or 0 if it stayed the same.
8983 int __attribute__((weak
)) arch_update_cpu_topology(void)
8988 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
8991 cpumask_var_t
*doms
;
8993 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
8996 for (i
= 0; i
< ndoms
; i
++) {
8997 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
8998 free_sched_domains(doms
, i
);
9005 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
9008 for (i
= 0; i
< ndoms
; i
++)
9009 free_cpumask_var(doms
[i
]);
9014 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9015 * For now this just excludes isolated cpus, but could be used to
9016 * exclude other special cases in the future.
9018 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
9022 arch_update_cpu_topology();
9024 doms_cur
= alloc_sched_domains(ndoms_cur
);
9026 doms_cur
= &fallback_doms
;
9027 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
9029 err
= build_sched_domains(doms_cur
[0]);
9030 register_sched_domain_sysctl();
9035 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
9036 struct cpumask
*tmpmask
)
9038 free_sched_groups(cpu_map
, tmpmask
);
9042 * Detach sched domains from a group of cpus specified in cpu_map
9043 * These cpus will now be attached to the NULL domain
9045 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
9047 /* Save because hotplug lock held. */
9048 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
9051 for_each_cpu(i
, cpu_map
)
9052 cpu_attach_domain(NULL
, &def_root_domain
, i
);
9053 synchronize_sched();
9054 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
9057 /* handle null as "default" */
9058 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
9059 struct sched_domain_attr
*new, int idx_new
)
9061 struct sched_domain_attr tmp
;
9068 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
9069 new ? (new + idx_new
) : &tmp
,
9070 sizeof(struct sched_domain_attr
));
9074 * Partition sched domains as specified by the 'ndoms_new'
9075 * cpumasks in the array doms_new[] of cpumasks. This compares
9076 * doms_new[] to the current sched domain partitioning, doms_cur[].
9077 * It destroys each deleted domain and builds each new domain.
9079 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9080 * The masks don't intersect (don't overlap.) We should setup one
9081 * sched domain for each mask. CPUs not in any of the cpumasks will
9082 * not be load balanced. If the same cpumask appears both in the
9083 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9086 * The passed in 'doms_new' should be allocated using
9087 * alloc_sched_domains. This routine takes ownership of it and will
9088 * free_sched_domains it when done with it. If the caller failed the
9089 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9090 * and partition_sched_domains() will fallback to the single partition
9091 * 'fallback_doms', it also forces the domains to be rebuilt.
9093 * If doms_new == NULL it will be replaced with cpu_online_mask.
9094 * ndoms_new == 0 is a special case for destroying existing domains,
9095 * and it will not create the default domain.
9097 * Call with hotplug lock held
9099 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
9100 struct sched_domain_attr
*dattr_new
)
9105 mutex_lock(&sched_domains_mutex
);
9107 /* always unregister in case we don't destroy any domains */
9108 unregister_sched_domain_sysctl();
9110 /* Let architecture update cpu core mappings. */
9111 new_topology
= arch_update_cpu_topology();
9113 n
= doms_new
? ndoms_new
: 0;
9115 /* Destroy deleted domains */
9116 for (i
= 0; i
< ndoms_cur
; i
++) {
9117 for (j
= 0; j
< n
&& !new_topology
; j
++) {
9118 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
9119 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
9122 /* no match - a current sched domain not in new doms_new[] */
9123 detach_destroy_domains(doms_cur
[i
]);
9128 if (doms_new
== NULL
) {
9130 doms_new
= &fallback_doms
;
9131 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
9132 WARN_ON_ONCE(dattr_new
);
9135 /* Build new domains */
9136 for (i
= 0; i
< ndoms_new
; i
++) {
9137 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
9138 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
9139 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
9142 /* no match - add a new doms_new */
9143 __build_sched_domains(doms_new
[i
],
9144 dattr_new
? dattr_new
+ i
: NULL
);
9149 /* Remember the new sched domains */
9150 if (doms_cur
!= &fallback_doms
)
9151 free_sched_domains(doms_cur
, ndoms_cur
);
9152 kfree(dattr_cur
); /* kfree(NULL) is safe */
9153 doms_cur
= doms_new
;
9154 dattr_cur
= dattr_new
;
9155 ndoms_cur
= ndoms_new
;
9157 register_sched_domain_sysctl();
9159 mutex_unlock(&sched_domains_mutex
);
9162 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9163 static void arch_reinit_sched_domains(void)
9167 /* Destroy domains first to force the rebuild */
9168 partition_sched_domains(0, NULL
, NULL
);
9170 rebuild_sched_domains();
9174 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9176 unsigned int level
= 0;
9178 if (sscanf(buf
, "%u", &level
) != 1)
9182 * level is always be positive so don't check for
9183 * level < POWERSAVINGS_BALANCE_NONE which is 0
9184 * What happens on 0 or 1 byte write,
9185 * need to check for count as well?
9188 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9192 sched_smt_power_savings
= level
;
9194 sched_mc_power_savings
= level
;
9196 arch_reinit_sched_domains();
9201 #ifdef CONFIG_SCHED_MC
9202 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9205 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9207 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9208 const char *buf
, size_t count
)
9210 return sched_power_savings_store(buf
, count
, 0);
9212 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9213 sched_mc_power_savings_show
,
9214 sched_mc_power_savings_store
);
9217 #ifdef CONFIG_SCHED_SMT
9218 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9221 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9223 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9224 const char *buf
, size_t count
)
9226 return sched_power_savings_store(buf
, count
, 1);
9228 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9229 sched_smt_power_savings_show
,
9230 sched_smt_power_savings_store
);
9233 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9237 #ifdef CONFIG_SCHED_SMT
9239 err
= sysfs_create_file(&cls
->kset
.kobj
,
9240 &attr_sched_smt_power_savings
.attr
);
9242 #ifdef CONFIG_SCHED_MC
9243 if (!err
&& mc_capable())
9244 err
= sysfs_create_file(&cls
->kset
.kobj
,
9245 &attr_sched_mc_power_savings
.attr
);
9249 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9251 #ifndef CONFIG_CPUSETS
9253 * Add online and remove offline CPUs from the scheduler domains.
9254 * When cpusets are enabled they take over this function.
9256 static int update_sched_domains(struct notifier_block
*nfb
,
9257 unsigned long action
, void *hcpu
)
9261 case CPU_ONLINE_FROZEN
:
9262 case CPU_DOWN_PREPARE
:
9263 case CPU_DOWN_PREPARE_FROZEN
:
9264 case CPU_DOWN_FAILED
:
9265 case CPU_DOWN_FAILED_FROZEN
:
9266 partition_sched_domains(1, NULL
, NULL
);
9275 static int update_runtime(struct notifier_block
*nfb
,
9276 unsigned long action
, void *hcpu
)
9278 int cpu
= (int)(long)hcpu
;
9281 case CPU_DOWN_PREPARE
:
9282 case CPU_DOWN_PREPARE_FROZEN
:
9283 disable_runtime(cpu_rq(cpu
));
9286 case CPU_DOWN_FAILED
:
9287 case CPU_DOWN_FAILED_FROZEN
:
9289 case CPU_ONLINE_FROZEN
:
9290 enable_runtime(cpu_rq(cpu
));
9298 void __init
sched_init_smp(void)
9300 cpumask_var_t non_isolated_cpus
;
9302 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9303 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9305 #if defined(CONFIG_NUMA)
9306 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9308 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9311 mutex_lock(&sched_domains_mutex
);
9312 arch_init_sched_domains(cpu_active_mask
);
9313 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9314 if (cpumask_empty(non_isolated_cpus
))
9315 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9316 mutex_unlock(&sched_domains_mutex
);
9319 #ifndef CONFIG_CPUSETS
9320 /* XXX: Theoretical race here - CPU may be hotplugged now */
9321 hotcpu_notifier(update_sched_domains
, 0);
9324 /* RT runtime code needs to handle some hotplug events */
9325 hotcpu_notifier(update_runtime
, 0);
9329 /* Move init over to a non-isolated CPU */
9330 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9332 sched_init_granularity();
9333 free_cpumask_var(non_isolated_cpus
);
9335 init_sched_rt_class();
9338 void __init
sched_init_smp(void)
9340 sched_init_granularity();
9342 #endif /* CONFIG_SMP */
9344 const_debug
unsigned int sysctl_timer_migration
= 1;
9346 int in_sched_functions(unsigned long addr
)
9348 return in_lock_functions(addr
) ||
9349 (addr
>= (unsigned long)__sched_text_start
9350 && addr
< (unsigned long)__sched_text_end
);
9353 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9355 cfs_rq
->tasks_timeline
= RB_ROOT
;
9356 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9357 #ifdef CONFIG_FAIR_GROUP_SCHED
9360 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9363 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9365 struct rt_prio_array
*array
;
9368 array
= &rt_rq
->active
;
9369 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9370 INIT_LIST_HEAD(array
->queue
+ i
);
9371 __clear_bit(i
, array
->bitmap
);
9373 /* delimiter for bitsearch: */
9374 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9376 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9377 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9379 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9383 rt_rq
->rt_nr_migratory
= 0;
9384 rt_rq
->overloaded
= 0;
9385 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
9389 rt_rq
->rt_throttled
= 0;
9390 rt_rq
->rt_runtime
= 0;
9391 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
9393 #ifdef CONFIG_RT_GROUP_SCHED
9394 rt_rq
->rt_nr_boosted
= 0;
9399 #ifdef CONFIG_FAIR_GROUP_SCHED
9400 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9401 struct sched_entity
*se
, int cpu
, int add
,
9402 struct sched_entity
*parent
)
9404 struct rq
*rq
= cpu_rq(cpu
);
9405 tg
->cfs_rq
[cpu
] = cfs_rq
;
9406 init_cfs_rq(cfs_rq
, rq
);
9409 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9412 /* se could be NULL for init_task_group */
9417 se
->cfs_rq
= &rq
->cfs
;
9419 se
->cfs_rq
= parent
->my_q
;
9422 se
->load
.weight
= tg
->shares
;
9423 se
->load
.inv_weight
= 0;
9424 se
->parent
= parent
;
9428 #ifdef CONFIG_RT_GROUP_SCHED
9429 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9430 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9431 struct sched_rt_entity
*parent
)
9433 struct rq
*rq
= cpu_rq(cpu
);
9435 tg
->rt_rq
[cpu
] = rt_rq
;
9436 init_rt_rq(rt_rq
, rq
);
9438 rt_rq
->rt_se
= rt_se
;
9439 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9441 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9443 tg
->rt_se
[cpu
] = rt_se
;
9448 rt_se
->rt_rq
= &rq
->rt
;
9450 rt_se
->rt_rq
= parent
->my_q
;
9452 rt_se
->my_q
= rt_rq
;
9453 rt_se
->parent
= parent
;
9454 INIT_LIST_HEAD(&rt_se
->run_list
);
9458 void __init
sched_init(void)
9461 unsigned long alloc_size
= 0, ptr
;
9463 #ifdef CONFIG_FAIR_GROUP_SCHED
9464 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9466 #ifdef CONFIG_RT_GROUP_SCHED
9467 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9469 #ifdef CONFIG_USER_SCHED
9472 #ifdef CONFIG_CPUMASK_OFFSTACK
9473 alloc_size
+= num_possible_cpus() * cpumask_size();
9476 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9478 #ifdef CONFIG_FAIR_GROUP_SCHED
9479 init_task_group
.se
= (struct sched_entity
**)ptr
;
9480 ptr
+= nr_cpu_ids
* sizeof(void **);
9482 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9483 ptr
+= nr_cpu_ids
* sizeof(void **);
9485 #ifdef CONFIG_USER_SCHED
9486 root_task_group
.se
= (struct sched_entity
**)ptr
;
9487 ptr
+= nr_cpu_ids
* sizeof(void **);
9489 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9490 ptr
+= nr_cpu_ids
* sizeof(void **);
9491 #endif /* CONFIG_USER_SCHED */
9492 #endif /* CONFIG_FAIR_GROUP_SCHED */
9493 #ifdef CONFIG_RT_GROUP_SCHED
9494 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9495 ptr
+= nr_cpu_ids
* sizeof(void **);
9497 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9498 ptr
+= nr_cpu_ids
* sizeof(void **);
9500 #ifdef CONFIG_USER_SCHED
9501 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9502 ptr
+= nr_cpu_ids
* sizeof(void **);
9504 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9505 ptr
+= nr_cpu_ids
* sizeof(void **);
9506 #endif /* CONFIG_USER_SCHED */
9507 #endif /* CONFIG_RT_GROUP_SCHED */
9508 #ifdef CONFIG_CPUMASK_OFFSTACK
9509 for_each_possible_cpu(i
) {
9510 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9511 ptr
+= cpumask_size();
9513 #endif /* CONFIG_CPUMASK_OFFSTACK */
9517 init_defrootdomain();
9520 init_rt_bandwidth(&def_rt_bandwidth
,
9521 global_rt_period(), global_rt_runtime());
9523 #ifdef CONFIG_RT_GROUP_SCHED
9524 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9525 global_rt_period(), global_rt_runtime());
9526 #ifdef CONFIG_USER_SCHED
9527 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9528 global_rt_period(), RUNTIME_INF
);
9529 #endif /* CONFIG_USER_SCHED */
9530 #endif /* CONFIG_RT_GROUP_SCHED */
9532 #ifdef CONFIG_GROUP_SCHED
9533 list_add(&init_task_group
.list
, &task_groups
);
9534 INIT_LIST_HEAD(&init_task_group
.children
);
9536 #ifdef CONFIG_USER_SCHED
9537 INIT_LIST_HEAD(&root_task_group
.children
);
9538 init_task_group
.parent
= &root_task_group
;
9539 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9540 #endif /* CONFIG_USER_SCHED */
9541 #endif /* CONFIG_GROUP_SCHED */
9543 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9544 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
9545 __alignof__(unsigned long));
9547 for_each_possible_cpu(i
) {
9551 raw_spin_lock_init(&rq
->lock
);
9553 rq
->calc_load_active
= 0;
9554 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9555 init_cfs_rq(&rq
->cfs
, rq
);
9556 init_rt_rq(&rq
->rt
, rq
);
9557 #ifdef CONFIG_FAIR_GROUP_SCHED
9558 init_task_group
.shares
= init_task_group_load
;
9559 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9560 #ifdef CONFIG_CGROUP_SCHED
9562 * How much cpu bandwidth does init_task_group get?
9564 * In case of task-groups formed thr' the cgroup filesystem, it
9565 * gets 100% of the cpu resources in the system. This overall
9566 * system cpu resource is divided among the tasks of
9567 * init_task_group and its child task-groups in a fair manner,
9568 * based on each entity's (task or task-group's) weight
9569 * (se->load.weight).
9571 * In other words, if init_task_group has 10 tasks of weight
9572 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9573 * then A0's share of the cpu resource is:
9575 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9577 * We achieve this by letting init_task_group's tasks sit
9578 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9580 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9581 #elif defined CONFIG_USER_SCHED
9582 root_task_group
.shares
= NICE_0_LOAD
;
9583 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9585 * In case of task-groups formed thr' the user id of tasks,
9586 * init_task_group represents tasks belonging to root user.
9587 * Hence it forms a sibling of all subsequent groups formed.
9588 * In this case, init_task_group gets only a fraction of overall
9589 * system cpu resource, based on the weight assigned to root
9590 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9591 * by letting tasks of init_task_group sit in a separate cfs_rq
9592 * (init_tg_cfs_rq) and having one entity represent this group of
9593 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9595 init_tg_cfs_entry(&init_task_group
,
9596 &per_cpu(init_tg_cfs_rq
, i
),
9597 &per_cpu(init_sched_entity
, i
), i
, 1,
9598 root_task_group
.se
[i
]);
9601 #endif /* CONFIG_FAIR_GROUP_SCHED */
9603 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9604 #ifdef CONFIG_RT_GROUP_SCHED
9605 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9606 #ifdef CONFIG_CGROUP_SCHED
9607 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9608 #elif defined CONFIG_USER_SCHED
9609 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9610 init_tg_rt_entry(&init_task_group
,
9611 &per_cpu(init_rt_rq_var
, i
),
9612 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9613 root_task_group
.rt_se
[i
]);
9617 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9618 rq
->cpu_load
[j
] = 0;
9622 rq
->post_schedule
= 0;
9623 rq
->active_balance
= 0;
9624 rq
->next_balance
= jiffies
;
9628 rq
->migration_thread
= NULL
;
9630 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
9631 INIT_LIST_HEAD(&rq
->migration_queue
);
9632 rq_attach_root(rq
, &def_root_domain
);
9635 atomic_set(&rq
->nr_iowait
, 0);
9638 set_load_weight(&init_task
);
9640 #ifdef CONFIG_PREEMPT_NOTIFIERS
9641 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9645 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9648 #ifdef CONFIG_RT_MUTEXES
9649 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9653 * The boot idle thread does lazy MMU switching as well:
9655 atomic_inc(&init_mm
.mm_count
);
9656 enter_lazy_tlb(&init_mm
, current
);
9659 * Make us the idle thread. Technically, schedule() should not be
9660 * called from this thread, however somewhere below it might be,
9661 * but because we are the idle thread, we just pick up running again
9662 * when this runqueue becomes "idle".
9664 init_idle(current
, smp_processor_id());
9666 calc_load_update
= jiffies
+ LOAD_FREQ
;
9669 * During early bootup we pretend to be a normal task:
9671 current
->sched_class
= &fair_sched_class
;
9673 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9674 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9677 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9678 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9680 /* May be allocated at isolcpus cmdline parse time */
9681 if (cpu_isolated_map
== NULL
)
9682 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9687 scheduler_running
= 1;
9690 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9691 static inline int preempt_count_equals(int preempt_offset
)
9693 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
9695 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9698 void __might_sleep(char *file
, int line
, int preempt_offset
)
9701 static unsigned long prev_jiffy
; /* ratelimiting */
9703 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9704 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9706 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9708 prev_jiffy
= jiffies
;
9711 "BUG: sleeping function called from invalid context at %s:%d\n",
9714 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9715 in_atomic(), irqs_disabled(),
9716 current
->pid
, current
->comm
);
9718 debug_show_held_locks(current
);
9719 if (irqs_disabled())
9720 print_irqtrace_events(current
);
9724 EXPORT_SYMBOL(__might_sleep
);
9727 #ifdef CONFIG_MAGIC_SYSRQ
9728 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9732 update_rq_clock(rq
);
9733 on_rq
= p
->se
.on_rq
;
9735 deactivate_task(rq
, p
, 0);
9736 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9738 activate_task(rq
, p
, 0);
9739 resched_task(rq
->curr
);
9743 void normalize_rt_tasks(void)
9745 struct task_struct
*g
, *p
;
9746 unsigned long flags
;
9749 read_lock_irqsave(&tasklist_lock
, flags
);
9750 do_each_thread(g
, p
) {
9752 * Only normalize user tasks:
9757 p
->se
.exec_start
= 0;
9758 #ifdef CONFIG_SCHEDSTATS
9759 p
->se
.wait_start
= 0;
9760 p
->se
.sleep_start
= 0;
9761 p
->se
.block_start
= 0;
9766 * Renice negative nice level userspace
9769 if (TASK_NICE(p
) < 0 && p
->mm
)
9770 set_user_nice(p
, 0);
9774 raw_spin_lock(&p
->pi_lock
);
9775 rq
= __task_rq_lock(p
);
9777 normalize_task(rq
, p
);
9779 __task_rq_unlock(rq
);
9780 raw_spin_unlock(&p
->pi_lock
);
9781 } while_each_thread(g
, p
);
9783 read_unlock_irqrestore(&tasklist_lock
, flags
);
9786 #endif /* CONFIG_MAGIC_SYSRQ */
9790 * These functions are only useful for the IA64 MCA handling.
9792 * They can only be called when the whole system has been
9793 * stopped - every CPU needs to be quiescent, and no scheduling
9794 * activity can take place. Using them for anything else would
9795 * be a serious bug, and as a result, they aren't even visible
9796 * under any other configuration.
9800 * curr_task - return the current task for a given cpu.
9801 * @cpu: the processor in question.
9803 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9805 struct task_struct
*curr_task(int cpu
)
9807 return cpu_curr(cpu
);
9811 * set_curr_task - set the current task for a given cpu.
9812 * @cpu: the processor in question.
9813 * @p: the task pointer to set.
9815 * Description: This function must only be used when non-maskable interrupts
9816 * are serviced on a separate stack. It allows the architecture to switch the
9817 * notion of the current task on a cpu in a non-blocking manner. This function
9818 * must be called with all CPU's synchronized, and interrupts disabled, the
9819 * and caller must save the original value of the current task (see
9820 * curr_task() above) and restore that value before reenabling interrupts and
9821 * re-starting the system.
9823 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9825 void set_curr_task(int cpu
, struct task_struct
*p
)
9832 #ifdef CONFIG_FAIR_GROUP_SCHED
9833 static void free_fair_sched_group(struct task_group
*tg
)
9837 for_each_possible_cpu(i
) {
9839 kfree(tg
->cfs_rq
[i
]);
9849 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9851 struct cfs_rq
*cfs_rq
;
9852 struct sched_entity
*se
;
9856 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9859 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9863 tg
->shares
= NICE_0_LOAD
;
9865 for_each_possible_cpu(i
) {
9868 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9869 GFP_KERNEL
, cpu_to_node(i
));
9873 se
= kzalloc_node(sizeof(struct sched_entity
),
9874 GFP_KERNEL
, cpu_to_node(i
));
9878 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9889 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9891 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9892 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9895 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9897 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9899 #else /* !CONFG_FAIR_GROUP_SCHED */
9900 static inline void free_fair_sched_group(struct task_group
*tg
)
9905 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9910 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9914 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9917 #endif /* CONFIG_FAIR_GROUP_SCHED */
9919 #ifdef CONFIG_RT_GROUP_SCHED
9920 static void free_rt_sched_group(struct task_group
*tg
)
9924 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9926 for_each_possible_cpu(i
) {
9928 kfree(tg
->rt_rq
[i
]);
9930 kfree(tg
->rt_se
[i
]);
9938 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9940 struct rt_rq
*rt_rq
;
9941 struct sched_rt_entity
*rt_se
;
9945 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9948 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9952 init_rt_bandwidth(&tg
->rt_bandwidth
,
9953 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9955 for_each_possible_cpu(i
) {
9958 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9959 GFP_KERNEL
, cpu_to_node(i
));
9963 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9964 GFP_KERNEL
, cpu_to_node(i
));
9968 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9979 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9981 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9982 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9985 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9987 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9989 #else /* !CONFIG_RT_GROUP_SCHED */
9990 static inline void free_rt_sched_group(struct task_group
*tg
)
9995 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10000 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
10004 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
10007 #endif /* CONFIG_RT_GROUP_SCHED */
10009 #ifdef CONFIG_GROUP_SCHED
10010 static void free_sched_group(struct task_group
*tg
)
10012 free_fair_sched_group(tg
);
10013 free_rt_sched_group(tg
);
10017 /* allocate runqueue etc for a new task group */
10018 struct task_group
*sched_create_group(struct task_group
*parent
)
10020 struct task_group
*tg
;
10021 unsigned long flags
;
10024 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
10026 return ERR_PTR(-ENOMEM
);
10028 if (!alloc_fair_sched_group(tg
, parent
))
10031 if (!alloc_rt_sched_group(tg
, parent
))
10034 spin_lock_irqsave(&task_group_lock
, flags
);
10035 for_each_possible_cpu(i
) {
10036 register_fair_sched_group(tg
, i
);
10037 register_rt_sched_group(tg
, i
);
10039 list_add_rcu(&tg
->list
, &task_groups
);
10041 WARN_ON(!parent
); /* root should already exist */
10043 tg
->parent
= parent
;
10044 INIT_LIST_HEAD(&tg
->children
);
10045 list_add_rcu(&tg
->siblings
, &parent
->children
);
10046 spin_unlock_irqrestore(&task_group_lock
, flags
);
10051 free_sched_group(tg
);
10052 return ERR_PTR(-ENOMEM
);
10055 /* rcu callback to free various structures associated with a task group */
10056 static void free_sched_group_rcu(struct rcu_head
*rhp
)
10058 /* now it should be safe to free those cfs_rqs */
10059 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
10062 /* Destroy runqueue etc associated with a task group */
10063 void sched_destroy_group(struct task_group
*tg
)
10065 unsigned long flags
;
10068 spin_lock_irqsave(&task_group_lock
, flags
);
10069 for_each_possible_cpu(i
) {
10070 unregister_fair_sched_group(tg
, i
);
10071 unregister_rt_sched_group(tg
, i
);
10073 list_del_rcu(&tg
->list
);
10074 list_del_rcu(&tg
->siblings
);
10075 spin_unlock_irqrestore(&task_group_lock
, flags
);
10077 /* wait for possible concurrent references to cfs_rqs complete */
10078 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
10081 /* change task's runqueue when it moves between groups.
10082 * The caller of this function should have put the task in its new group
10083 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10084 * reflect its new group.
10086 void sched_move_task(struct task_struct
*tsk
)
10088 int on_rq
, running
;
10089 unsigned long flags
;
10092 rq
= task_rq_lock(tsk
, &flags
);
10094 update_rq_clock(rq
);
10096 running
= task_current(rq
, tsk
);
10097 on_rq
= tsk
->se
.on_rq
;
10100 dequeue_task(rq
, tsk
, 0);
10101 if (unlikely(running
))
10102 tsk
->sched_class
->put_prev_task(rq
, tsk
);
10104 set_task_rq(tsk
, task_cpu(tsk
));
10106 #ifdef CONFIG_FAIR_GROUP_SCHED
10107 if (tsk
->sched_class
->moved_group
)
10108 tsk
->sched_class
->moved_group(tsk
, on_rq
);
10111 if (unlikely(running
))
10112 tsk
->sched_class
->set_curr_task(rq
);
10114 enqueue_task(rq
, tsk
, 0);
10116 task_rq_unlock(rq
, &flags
);
10118 #endif /* CONFIG_GROUP_SCHED */
10120 #ifdef CONFIG_FAIR_GROUP_SCHED
10121 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10123 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10128 dequeue_entity(cfs_rq
, se
, 0);
10130 se
->load
.weight
= shares
;
10131 se
->load
.inv_weight
= 0;
10134 enqueue_entity(cfs_rq
, se
, 0);
10137 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10139 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10140 struct rq
*rq
= cfs_rq
->rq
;
10141 unsigned long flags
;
10143 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10144 __set_se_shares(se
, shares
);
10145 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10148 static DEFINE_MUTEX(shares_mutex
);
10150 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10153 unsigned long flags
;
10156 * We can't change the weight of the root cgroup.
10161 if (shares
< MIN_SHARES
)
10162 shares
= MIN_SHARES
;
10163 else if (shares
> MAX_SHARES
)
10164 shares
= MAX_SHARES
;
10166 mutex_lock(&shares_mutex
);
10167 if (tg
->shares
== shares
)
10170 spin_lock_irqsave(&task_group_lock
, flags
);
10171 for_each_possible_cpu(i
)
10172 unregister_fair_sched_group(tg
, i
);
10173 list_del_rcu(&tg
->siblings
);
10174 spin_unlock_irqrestore(&task_group_lock
, flags
);
10176 /* wait for any ongoing reference to this group to finish */
10177 synchronize_sched();
10180 * Now we are free to modify the group's share on each cpu
10181 * w/o tripping rebalance_share or load_balance_fair.
10183 tg
->shares
= shares
;
10184 for_each_possible_cpu(i
) {
10186 * force a rebalance
10188 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10189 set_se_shares(tg
->se
[i
], shares
);
10193 * Enable load balance activity on this group, by inserting it back on
10194 * each cpu's rq->leaf_cfs_rq_list.
10196 spin_lock_irqsave(&task_group_lock
, flags
);
10197 for_each_possible_cpu(i
)
10198 register_fair_sched_group(tg
, i
);
10199 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10200 spin_unlock_irqrestore(&task_group_lock
, flags
);
10202 mutex_unlock(&shares_mutex
);
10206 unsigned long sched_group_shares(struct task_group
*tg
)
10212 #ifdef CONFIG_RT_GROUP_SCHED
10214 * Ensure that the real time constraints are schedulable.
10216 static DEFINE_MUTEX(rt_constraints_mutex
);
10218 static unsigned long to_ratio(u64 period
, u64 runtime
)
10220 if (runtime
== RUNTIME_INF
)
10223 return div64_u64(runtime
<< 20, period
);
10226 /* Must be called with tasklist_lock held */
10227 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10229 struct task_struct
*g
, *p
;
10231 do_each_thread(g
, p
) {
10232 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10234 } while_each_thread(g
, p
);
10239 struct rt_schedulable_data
{
10240 struct task_group
*tg
;
10245 static int tg_schedulable(struct task_group
*tg
, void *data
)
10247 struct rt_schedulable_data
*d
= data
;
10248 struct task_group
*child
;
10249 unsigned long total
, sum
= 0;
10250 u64 period
, runtime
;
10252 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10253 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10256 period
= d
->rt_period
;
10257 runtime
= d
->rt_runtime
;
10260 #ifdef CONFIG_USER_SCHED
10261 if (tg
== &root_task_group
) {
10262 period
= global_rt_period();
10263 runtime
= global_rt_runtime();
10268 * Cannot have more runtime than the period.
10270 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10274 * Ensure we don't starve existing RT tasks.
10276 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10279 total
= to_ratio(period
, runtime
);
10282 * Nobody can have more than the global setting allows.
10284 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10288 * The sum of our children's runtime should not exceed our own.
10290 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10291 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10292 runtime
= child
->rt_bandwidth
.rt_runtime
;
10294 if (child
== d
->tg
) {
10295 period
= d
->rt_period
;
10296 runtime
= d
->rt_runtime
;
10299 sum
+= to_ratio(period
, runtime
);
10308 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10310 struct rt_schedulable_data data
= {
10312 .rt_period
= period
,
10313 .rt_runtime
= runtime
,
10316 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10319 static int tg_set_bandwidth(struct task_group
*tg
,
10320 u64 rt_period
, u64 rt_runtime
)
10324 mutex_lock(&rt_constraints_mutex
);
10325 read_lock(&tasklist_lock
);
10326 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10330 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10331 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10332 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10334 for_each_possible_cpu(i
) {
10335 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10337 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
10338 rt_rq
->rt_runtime
= rt_runtime
;
10339 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
10341 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10343 read_unlock(&tasklist_lock
);
10344 mutex_unlock(&rt_constraints_mutex
);
10349 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10351 u64 rt_runtime
, rt_period
;
10353 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10354 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10355 if (rt_runtime_us
< 0)
10356 rt_runtime
= RUNTIME_INF
;
10358 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10361 long sched_group_rt_runtime(struct task_group
*tg
)
10365 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10368 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10369 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10370 return rt_runtime_us
;
10373 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10375 u64 rt_runtime
, rt_period
;
10377 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10378 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10380 if (rt_period
== 0)
10383 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10386 long sched_group_rt_period(struct task_group
*tg
)
10390 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10391 do_div(rt_period_us
, NSEC_PER_USEC
);
10392 return rt_period_us
;
10395 static int sched_rt_global_constraints(void)
10397 u64 runtime
, period
;
10400 if (sysctl_sched_rt_period
<= 0)
10403 runtime
= global_rt_runtime();
10404 period
= global_rt_period();
10407 * Sanity check on the sysctl variables.
10409 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10412 mutex_lock(&rt_constraints_mutex
);
10413 read_lock(&tasklist_lock
);
10414 ret
= __rt_schedulable(NULL
, 0, 0);
10415 read_unlock(&tasklist_lock
);
10416 mutex_unlock(&rt_constraints_mutex
);
10421 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10423 /* Don't accept realtime tasks when there is no way for them to run */
10424 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10430 #else /* !CONFIG_RT_GROUP_SCHED */
10431 static int sched_rt_global_constraints(void)
10433 unsigned long flags
;
10436 if (sysctl_sched_rt_period
<= 0)
10440 * There's always some RT tasks in the root group
10441 * -- migration, kstopmachine etc..
10443 if (sysctl_sched_rt_runtime
== 0)
10446 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10447 for_each_possible_cpu(i
) {
10448 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10450 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
10451 rt_rq
->rt_runtime
= global_rt_runtime();
10452 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
10454 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10458 #endif /* CONFIG_RT_GROUP_SCHED */
10460 int sched_rt_handler(struct ctl_table
*table
, int write
,
10461 void __user
*buffer
, size_t *lenp
,
10465 int old_period
, old_runtime
;
10466 static DEFINE_MUTEX(mutex
);
10468 mutex_lock(&mutex
);
10469 old_period
= sysctl_sched_rt_period
;
10470 old_runtime
= sysctl_sched_rt_runtime
;
10472 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
10474 if (!ret
&& write
) {
10475 ret
= sched_rt_global_constraints();
10477 sysctl_sched_rt_period
= old_period
;
10478 sysctl_sched_rt_runtime
= old_runtime
;
10480 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10481 def_rt_bandwidth
.rt_period
=
10482 ns_to_ktime(global_rt_period());
10485 mutex_unlock(&mutex
);
10490 #ifdef CONFIG_CGROUP_SCHED
10492 /* return corresponding task_group object of a cgroup */
10493 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10495 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10496 struct task_group
, css
);
10499 static struct cgroup_subsys_state
*
10500 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10502 struct task_group
*tg
, *parent
;
10504 if (!cgrp
->parent
) {
10505 /* This is early initialization for the top cgroup */
10506 return &init_task_group
.css
;
10509 parent
= cgroup_tg(cgrp
->parent
);
10510 tg
= sched_create_group(parent
);
10512 return ERR_PTR(-ENOMEM
);
10518 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10520 struct task_group
*tg
= cgroup_tg(cgrp
);
10522 sched_destroy_group(tg
);
10526 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
10528 #ifdef CONFIG_RT_GROUP_SCHED
10529 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10532 /* We don't support RT-tasks being in separate groups */
10533 if (tsk
->sched_class
!= &fair_sched_class
)
10540 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10541 struct task_struct
*tsk
, bool threadgroup
)
10543 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
10547 struct task_struct
*c
;
10549 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10550 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
10562 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10563 struct cgroup
*old_cont
, struct task_struct
*tsk
,
10566 sched_move_task(tsk
);
10568 struct task_struct
*c
;
10570 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10571 sched_move_task(c
);
10577 #ifdef CONFIG_FAIR_GROUP_SCHED
10578 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10581 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10584 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10586 struct task_group
*tg
= cgroup_tg(cgrp
);
10588 return (u64
) tg
->shares
;
10590 #endif /* CONFIG_FAIR_GROUP_SCHED */
10592 #ifdef CONFIG_RT_GROUP_SCHED
10593 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10596 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10599 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10601 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10604 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10607 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10610 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10612 return sched_group_rt_period(cgroup_tg(cgrp
));
10614 #endif /* CONFIG_RT_GROUP_SCHED */
10616 static struct cftype cpu_files
[] = {
10617 #ifdef CONFIG_FAIR_GROUP_SCHED
10620 .read_u64
= cpu_shares_read_u64
,
10621 .write_u64
= cpu_shares_write_u64
,
10624 #ifdef CONFIG_RT_GROUP_SCHED
10626 .name
= "rt_runtime_us",
10627 .read_s64
= cpu_rt_runtime_read
,
10628 .write_s64
= cpu_rt_runtime_write
,
10631 .name
= "rt_period_us",
10632 .read_u64
= cpu_rt_period_read_uint
,
10633 .write_u64
= cpu_rt_period_write_uint
,
10638 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10640 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10643 struct cgroup_subsys cpu_cgroup_subsys
= {
10645 .create
= cpu_cgroup_create
,
10646 .destroy
= cpu_cgroup_destroy
,
10647 .can_attach
= cpu_cgroup_can_attach
,
10648 .attach
= cpu_cgroup_attach
,
10649 .populate
= cpu_cgroup_populate
,
10650 .subsys_id
= cpu_cgroup_subsys_id
,
10654 #endif /* CONFIG_CGROUP_SCHED */
10656 #ifdef CONFIG_CGROUP_CPUACCT
10659 * CPU accounting code for task groups.
10661 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10662 * (balbir@in.ibm.com).
10665 /* track cpu usage of a group of tasks and its child groups */
10667 struct cgroup_subsys_state css
;
10668 /* cpuusage holds pointer to a u64-type object on every cpu */
10670 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10671 struct cpuacct
*parent
;
10674 struct cgroup_subsys cpuacct_subsys
;
10676 /* return cpu accounting group corresponding to this container */
10677 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10679 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10680 struct cpuacct
, css
);
10683 /* return cpu accounting group to which this task belongs */
10684 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10686 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10687 struct cpuacct
, css
);
10690 /* create a new cpu accounting group */
10691 static struct cgroup_subsys_state
*cpuacct_create(
10692 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10694 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10700 ca
->cpuusage
= alloc_percpu(u64
);
10704 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10705 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10706 goto out_free_counters
;
10709 ca
->parent
= cgroup_ca(cgrp
->parent
);
10715 percpu_counter_destroy(&ca
->cpustat
[i
]);
10716 free_percpu(ca
->cpuusage
);
10720 return ERR_PTR(-ENOMEM
);
10723 /* destroy an existing cpu accounting group */
10725 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10727 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10730 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10731 percpu_counter_destroy(&ca
->cpustat
[i
]);
10732 free_percpu(ca
->cpuusage
);
10736 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10738 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10741 #ifndef CONFIG_64BIT
10743 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10745 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
10747 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10755 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10757 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10759 #ifndef CONFIG_64BIT
10761 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10763 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
10765 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10771 /* return total cpu usage (in nanoseconds) of a group */
10772 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10774 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10775 u64 totalcpuusage
= 0;
10778 for_each_present_cpu(i
)
10779 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10781 return totalcpuusage
;
10784 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10787 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10796 for_each_present_cpu(i
)
10797 cpuacct_cpuusage_write(ca
, i
, 0);
10803 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10804 struct seq_file
*m
)
10806 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10810 for_each_present_cpu(i
) {
10811 percpu
= cpuacct_cpuusage_read(ca
, i
);
10812 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10814 seq_printf(m
, "\n");
10818 static const char *cpuacct_stat_desc
[] = {
10819 [CPUACCT_STAT_USER
] = "user",
10820 [CPUACCT_STAT_SYSTEM
] = "system",
10823 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10824 struct cgroup_map_cb
*cb
)
10826 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10829 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10830 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10831 val
= cputime64_to_clock_t(val
);
10832 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10837 static struct cftype files
[] = {
10840 .read_u64
= cpuusage_read
,
10841 .write_u64
= cpuusage_write
,
10844 .name
= "usage_percpu",
10845 .read_seq_string
= cpuacct_percpu_seq_read
,
10849 .read_map
= cpuacct_stats_show
,
10853 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10855 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10859 * charge this task's execution time to its accounting group.
10861 * called with rq->lock held.
10863 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10865 struct cpuacct
*ca
;
10868 if (unlikely(!cpuacct_subsys
.active
))
10871 cpu
= task_cpu(tsk
);
10877 for (; ca
; ca
= ca
->parent
) {
10878 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10879 *cpuusage
+= cputime
;
10886 * Charge the system/user time to the task's accounting group.
10888 static void cpuacct_update_stats(struct task_struct
*tsk
,
10889 enum cpuacct_stat_index idx
, cputime_t val
)
10891 struct cpuacct
*ca
;
10893 if (unlikely(!cpuacct_subsys
.active
))
10900 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10906 struct cgroup_subsys cpuacct_subsys
= {
10908 .create
= cpuacct_create
,
10909 .destroy
= cpuacct_destroy
,
10910 .populate
= cpuacct_populate
,
10911 .subsys_id
= cpuacct_subsys_id
,
10913 #endif /* CONFIG_CGROUP_CPUACCT */
10917 int rcu_expedited_torture_stats(char *page
)
10921 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10923 void synchronize_sched_expedited(void)
10926 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10928 #else /* #ifndef CONFIG_SMP */
10930 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
10931 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
10933 #define RCU_EXPEDITED_STATE_POST -2
10934 #define RCU_EXPEDITED_STATE_IDLE -1
10936 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10938 int rcu_expedited_torture_stats(char *page
)
10943 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
10944 for_each_online_cpu(cpu
) {
10945 cnt
+= sprintf(&page
[cnt
], " %d:%d",
10946 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
10948 cnt
+= sprintf(&page
[cnt
], "\n");
10951 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10953 static long synchronize_sched_expedited_count
;
10956 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10957 * approach to force grace period to end quickly. This consumes
10958 * significant time on all CPUs, and is thus not recommended for
10959 * any sort of common-case code.
10961 * Note that it is illegal to call this function while holding any
10962 * lock that is acquired by a CPU-hotplug notifier. Failing to
10963 * observe this restriction will result in deadlock.
10965 void synchronize_sched_expedited(void)
10968 unsigned long flags
;
10969 bool need_full_sync
= 0;
10971 struct migration_req
*req
;
10975 smp_mb(); /* ensure prior mod happens before capturing snap. */
10976 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
10978 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
10980 if (trycount
++ < 10)
10981 udelay(trycount
* num_online_cpus());
10983 synchronize_sched();
10986 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
10987 smp_mb(); /* ensure test happens before caller kfree */
10992 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
10993 for_each_online_cpu(cpu
) {
10995 req
= &per_cpu(rcu_migration_req
, cpu
);
10996 init_completion(&req
->done
);
10998 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
10999 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11000 list_add(&req
->list
, &rq
->migration_queue
);
11001 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11002 wake_up_process(rq
->migration_thread
);
11004 for_each_online_cpu(cpu
) {
11005 rcu_expedited_state
= cpu
;
11006 req
= &per_cpu(rcu_migration_req
, cpu
);
11008 wait_for_completion(&req
->done
);
11009 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11010 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
11011 need_full_sync
= 1;
11012 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
11013 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11015 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
11016 synchronize_sched_expedited_count
++;
11017 mutex_unlock(&rcu_sched_expedited_mutex
);
11019 if (need_full_sync
)
11020 synchronize_sched();
11022 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
11024 #endif /* #else #ifndef CONFIG_SMP */