sys_swapon: simplify error flow in read_swap_header()
[linux-2.6/cjktty.git] / mm / swap.c
blob0a33714a7cba41786ede53139a77362653c2fd37
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
35 #include "internal.h"
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs. But it gets used by networking.
48 static void __page_cache_release(struct page *page)
50 if (PageLRU(page)) {
51 unsigned long flags;
52 struct zone *zone = page_zone(page);
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 VM_BUG_ON(!PageLRU(page));
56 __ClearPageLRU(page);
57 del_page_from_lru(zone, page);
58 spin_unlock_irqrestore(&zone->lru_lock, flags);
62 static void __put_single_page(struct page *page)
64 __page_cache_release(page);
65 free_hot_cold_page(page, 0);
68 static void __put_compound_page(struct page *page)
70 compound_page_dtor *dtor;
72 __page_cache_release(page);
73 dtor = get_compound_page_dtor(page);
74 (*dtor)(page);
77 static void put_compound_page(struct page *page)
79 if (unlikely(PageTail(page))) {
80 /* __split_huge_page_refcount can run under us */
81 struct page *page_head = page->first_page;
82 smp_rmb();
84 * If PageTail is still set after smp_rmb() we can be sure
85 * that the page->first_page we read wasn't a dangling pointer.
86 * See __split_huge_page_refcount() smp_wmb().
88 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89 unsigned long flags;
91 * Verify that our page_head wasn't converted
92 * to a a regular page before we got a
93 * reference on it.
95 if (unlikely(!PageHead(page_head))) {
96 /* PageHead is cleared after PageTail */
97 smp_rmb();
98 VM_BUG_ON(PageTail(page));
99 goto out_put_head;
102 * Only run compound_lock on a valid PageHead,
103 * after having it pinned with
104 * get_page_unless_zero() above.
106 smp_mb();
107 /* page_head wasn't a dangling pointer */
108 flags = compound_lock_irqsave(page_head);
109 if (unlikely(!PageTail(page))) {
110 /* __split_huge_page_refcount run before us */
111 compound_unlock_irqrestore(page_head, flags);
112 VM_BUG_ON(PageHead(page_head));
113 out_put_head:
114 if (put_page_testzero(page_head))
115 __put_single_page(page_head);
116 out_put_single:
117 if (put_page_testzero(page))
118 __put_single_page(page);
119 return;
121 VM_BUG_ON(page_head != page->first_page);
123 * We can release the refcount taken by
124 * get_page_unless_zero now that
125 * split_huge_page_refcount is blocked on the
126 * compound_lock.
128 if (put_page_testzero(page_head))
129 VM_BUG_ON(1);
130 /* __split_huge_page_refcount will wait now */
131 VM_BUG_ON(atomic_read(&page->_count) <= 0);
132 atomic_dec(&page->_count);
133 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134 compound_unlock_irqrestore(page_head, flags);
135 if (put_page_testzero(page_head)) {
136 if (PageHead(page_head))
137 __put_compound_page(page_head);
138 else
139 __put_single_page(page_head);
141 } else {
142 /* page_head is a dangling pointer */
143 VM_BUG_ON(PageTail(page));
144 goto out_put_single;
146 } else if (put_page_testzero(page)) {
147 if (PageHead(page))
148 __put_compound_page(page);
149 else
150 __put_single_page(page);
154 void put_page(struct page *page)
156 if (unlikely(PageCompound(page)))
157 put_compound_page(page);
158 else if (put_page_testzero(page))
159 __put_single_page(page);
161 EXPORT_SYMBOL(put_page);
164 * put_pages_list() - release a list of pages
165 * @pages: list of pages threaded on page->lru
167 * Release a list of pages which are strung together on page.lru. Currently
168 * used by read_cache_pages() and related error recovery code.
170 void put_pages_list(struct list_head *pages)
172 while (!list_empty(pages)) {
173 struct page *victim;
175 victim = list_entry(pages->prev, struct page, lru);
176 list_del(&victim->lru);
177 page_cache_release(victim);
180 EXPORT_SYMBOL(put_pages_list);
183 * pagevec_move_tail() must be called with IRQ disabled.
184 * Otherwise this may cause nasty races.
186 static void pagevec_move_tail(struct pagevec *pvec)
188 int i;
189 int pgmoved = 0;
190 struct zone *zone = NULL;
192 for (i = 0; i < pagevec_count(pvec); i++) {
193 struct page *page = pvec->pages[i];
194 struct zone *pagezone = page_zone(page);
196 if (pagezone != zone) {
197 if (zone)
198 spin_unlock(&zone->lru_lock);
199 zone = pagezone;
200 spin_lock(&zone->lru_lock);
202 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
203 enum lru_list lru = page_lru_base_type(page);
204 list_move_tail(&page->lru, &zone->lru[lru].list);
205 mem_cgroup_rotate_reclaimable_page(page);
206 pgmoved++;
209 if (zone)
210 spin_unlock(&zone->lru_lock);
211 __count_vm_events(PGROTATED, pgmoved);
212 release_pages(pvec->pages, pvec->nr, pvec->cold);
213 pagevec_reinit(pvec);
217 * Writeback is about to end against a page which has been marked for immediate
218 * reclaim. If it still appears to be reclaimable, move it to the tail of the
219 * inactive list.
221 void rotate_reclaimable_page(struct page *page)
223 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
224 !PageUnevictable(page) && PageLRU(page)) {
225 struct pagevec *pvec;
226 unsigned long flags;
228 page_cache_get(page);
229 local_irq_save(flags);
230 pvec = &__get_cpu_var(lru_rotate_pvecs);
231 if (!pagevec_add(pvec, page))
232 pagevec_move_tail(pvec);
233 local_irq_restore(flags);
237 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
238 int file, int rotated)
240 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
241 struct zone_reclaim_stat *memcg_reclaim_stat;
243 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
245 reclaim_stat->recent_scanned[file]++;
246 if (rotated)
247 reclaim_stat->recent_rotated[file]++;
249 if (!memcg_reclaim_stat)
250 return;
252 memcg_reclaim_stat->recent_scanned[file]++;
253 if (rotated)
254 memcg_reclaim_stat->recent_rotated[file]++;
258 * FIXME: speed this up?
260 void activate_page(struct page *page)
262 struct zone *zone = page_zone(page);
264 spin_lock_irq(&zone->lru_lock);
265 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
266 int file = page_is_file_cache(page);
267 int lru = page_lru_base_type(page);
268 del_page_from_lru_list(zone, page, lru);
270 SetPageActive(page);
271 lru += LRU_ACTIVE;
272 add_page_to_lru_list(zone, page, lru);
273 __count_vm_event(PGACTIVATE);
275 update_page_reclaim_stat(zone, page, file, 1);
277 spin_unlock_irq(&zone->lru_lock);
281 * Mark a page as having seen activity.
283 * inactive,unreferenced -> inactive,referenced
284 * inactive,referenced -> active,unreferenced
285 * active,unreferenced -> active,referenced
287 void mark_page_accessed(struct page *page)
289 if (!PageActive(page) && !PageUnevictable(page) &&
290 PageReferenced(page) && PageLRU(page)) {
291 activate_page(page);
292 ClearPageReferenced(page);
293 } else if (!PageReferenced(page)) {
294 SetPageReferenced(page);
298 EXPORT_SYMBOL(mark_page_accessed);
300 void __lru_cache_add(struct page *page, enum lru_list lru)
302 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
304 page_cache_get(page);
305 if (!pagevec_add(pvec, page))
306 ____pagevec_lru_add(pvec, lru);
307 put_cpu_var(lru_add_pvecs);
309 EXPORT_SYMBOL(__lru_cache_add);
312 * lru_cache_add_lru - add a page to a page list
313 * @page: the page to be added to the LRU.
314 * @lru: the LRU list to which the page is added.
316 void lru_cache_add_lru(struct page *page, enum lru_list lru)
318 if (PageActive(page)) {
319 VM_BUG_ON(PageUnevictable(page));
320 ClearPageActive(page);
321 } else if (PageUnevictable(page)) {
322 VM_BUG_ON(PageActive(page));
323 ClearPageUnevictable(page);
326 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
327 __lru_cache_add(page, lru);
331 * add_page_to_unevictable_list - add a page to the unevictable list
332 * @page: the page to be added to the unevictable list
334 * Add page directly to its zone's unevictable list. To avoid races with
335 * tasks that might be making the page evictable, through eg. munlock,
336 * munmap or exit, while it's not on the lru, we want to add the page
337 * while it's locked or otherwise "invisible" to other tasks. This is
338 * difficult to do when using the pagevec cache, so bypass that.
340 void add_page_to_unevictable_list(struct page *page)
342 struct zone *zone = page_zone(page);
344 spin_lock_irq(&zone->lru_lock);
345 SetPageUnevictable(page);
346 SetPageLRU(page);
347 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
348 spin_unlock_irq(&zone->lru_lock);
352 * If the page can not be invalidated, it is moved to the
353 * inactive list to speed up its reclaim. It is moved to the
354 * head of the list, rather than the tail, to give the flusher
355 * threads some time to write it out, as this is much more
356 * effective than the single-page writeout from reclaim.
358 * If the page isn't page_mapped and dirty/writeback, the page
359 * could reclaim asap using PG_reclaim.
361 * 1. active, mapped page -> none
362 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
363 * 3. inactive, mapped page -> none
364 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
365 * 5. inactive, clean -> inactive, tail
366 * 6. Others -> none
368 * In 4, why it moves inactive's head, the VM expects the page would
369 * be write it out by flusher threads as this is much more effective
370 * than the single-page writeout from reclaim.
372 static void lru_deactivate(struct page *page, struct zone *zone)
374 int lru, file;
375 bool active;
377 if (!PageLRU(page))
378 return;
380 /* Some processes are using the page */
381 if (page_mapped(page))
382 return;
384 active = PageActive(page);
386 file = page_is_file_cache(page);
387 lru = page_lru_base_type(page);
388 del_page_from_lru_list(zone, page, lru + active);
389 ClearPageActive(page);
390 ClearPageReferenced(page);
391 add_page_to_lru_list(zone, page, lru);
393 if (PageWriteback(page) || PageDirty(page)) {
395 * PG_reclaim could be raced with end_page_writeback
396 * It can make readahead confusing. But race window
397 * is _really_ small and it's non-critical problem.
399 SetPageReclaim(page);
400 } else {
402 * The page's writeback ends up during pagevec
403 * We moves tha page into tail of inactive.
405 list_move_tail(&page->lru, &zone->lru[lru].list);
406 mem_cgroup_rotate_reclaimable_page(page);
407 __count_vm_event(PGROTATED);
410 if (active)
411 __count_vm_event(PGDEACTIVATE);
412 update_page_reclaim_stat(zone, page, file, 0);
415 static void ____pagevec_lru_deactivate(struct pagevec *pvec)
417 int i;
418 struct zone *zone = NULL;
420 for (i = 0; i < pagevec_count(pvec); i++) {
421 struct page *page = pvec->pages[i];
422 struct zone *pagezone = page_zone(page);
424 if (pagezone != zone) {
425 if (zone)
426 spin_unlock_irq(&zone->lru_lock);
427 zone = pagezone;
428 spin_lock_irq(&zone->lru_lock);
430 lru_deactivate(page, zone);
432 if (zone)
433 spin_unlock_irq(&zone->lru_lock);
435 release_pages(pvec->pages, pvec->nr, pvec->cold);
436 pagevec_reinit(pvec);
441 * Drain pages out of the cpu's pagevecs.
442 * Either "cpu" is the current CPU, and preemption has already been
443 * disabled; or "cpu" is being hot-unplugged, and is already dead.
445 static void drain_cpu_pagevecs(int cpu)
447 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
448 struct pagevec *pvec;
449 int lru;
451 for_each_lru(lru) {
452 pvec = &pvecs[lru - LRU_BASE];
453 if (pagevec_count(pvec))
454 ____pagevec_lru_add(pvec, lru);
457 pvec = &per_cpu(lru_rotate_pvecs, cpu);
458 if (pagevec_count(pvec)) {
459 unsigned long flags;
461 /* No harm done if a racing interrupt already did this */
462 local_irq_save(flags);
463 pagevec_move_tail(pvec);
464 local_irq_restore(flags);
467 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
468 if (pagevec_count(pvec))
469 ____pagevec_lru_deactivate(pvec);
473 * deactivate_page - forcefully deactivate a page
474 * @page: page to deactivate
476 * This function hints the VM that @page is a good reclaim candidate,
477 * for example if its invalidation fails due to the page being dirty
478 * or under writeback.
480 void deactivate_page(struct page *page)
482 if (likely(get_page_unless_zero(page))) {
483 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
485 if (!pagevec_add(pvec, page))
486 ____pagevec_lru_deactivate(pvec);
487 put_cpu_var(lru_deactivate_pvecs);
491 void lru_add_drain(void)
493 drain_cpu_pagevecs(get_cpu());
494 put_cpu();
497 static void lru_add_drain_per_cpu(struct work_struct *dummy)
499 lru_add_drain();
503 * Returns 0 for success
505 int lru_add_drain_all(void)
507 return schedule_on_each_cpu(lru_add_drain_per_cpu);
511 * Batched page_cache_release(). Decrement the reference count on all the
512 * passed pages. If it fell to zero then remove the page from the LRU and
513 * free it.
515 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
516 * for the remainder of the operation.
518 * The locking in this function is against shrink_inactive_list(): we recheck
519 * the page count inside the lock to see whether shrink_inactive_list()
520 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
521 * will free it.
523 void release_pages(struct page **pages, int nr, int cold)
525 int i;
526 struct pagevec pages_to_free;
527 struct zone *zone = NULL;
528 unsigned long uninitialized_var(flags);
530 pagevec_init(&pages_to_free, cold);
531 for (i = 0; i < nr; i++) {
532 struct page *page = pages[i];
534 if (unlikely(PageCompound(page))) {
535 if (zone) {
536 spin_unlock_irqrestore(&zone->lru_lock, flags);
537 zone = NULL;
539 put_compound_page(page);
540 continue;
543 if (!put_page_testzero(page))
544 continue;
546 if (PageLRU(page)) {
547 struct zone *pagezone = page_zone(page);
549 if (pagezone != zone) {
550 if (zone)
551 spin_unlock_irqrestore(&zone->lru_lock,
552 flags);
553 zone = pagezone;
554 spin_lock_irqsave(&zone->lru_lock, flags);
556 VM_BUG_ON(!PageLRU(page));
557 __ClearPageLRU(page);
558 del_page_from_lru(zone, page);
561 if (!pagevec_add(&pages_to_free, page)) {
562 if (zone) {
563 spin_unlock_irqrestore(&zone->lru_lock, flags);
564 zone = NULL;
566 __pagevec_free(&pages_to_free);
567 pagevec_reinit(&pages_to_free);
570 if (zone)
571 spin_unlock_irqrestore(&zone->lru_lock, flags);
573 pagevec_free(&pages_to_free);
575 EXPORT_SYMBOL(release_pages);
578 * The pages which we're about to release may be in the deferred lru-addition
579 * queues. That would prevent them from really being freed right now. That's
580 * OK from a correctness point of view but is inefficient - those pages may be
581 * cache-warm and we want to give them back to the page allocator ASAP.
583 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
584 * and __pagevec_lru_add_active() call release_pages() directly to avoid
585 * mutual recursion.
587 void __pagevec_release(struct pagevec *pvec)
589 lru_add_drain();
590 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
591 pagevec_reinit(pvec);
594 EXPORT_SYMBOL(__pagevec_release);
596 /* used by __split_huge_page_refcount() */
597 void lru_add_page_tail(struct zone* zone,
598 struct page *page, struct page *page_tail)
600 int active;
601 enum lru_list lru;
602 const int file = 0;
603 struct list_head *head;
605 VM_BUG_ON(!PageHead(page));
606 VM_BUG_ON(PageCompound(page_tail));
607 VM_BUG_ON(PageLRU(page_tail));
608 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
610 SetPageLRU(page_tail);
612 if (page_evictable(page_tail, NULL)) {
613 if (PageActive(page)) {
614 SetPageActive(page_tail);
615 active = 1;
616 lru = LRU_ACTIVE_ANON;
617 } else {
618 active = 0;
619 lru = LRU_INACTIVE_ANON;
621 update_page_reclaim_stat(zone, page_tail, file, active);
622 if (likely(PageLRU(page)))
623 head = page->lru.prev;
624 else
625 head = &zone->lru[lru].list;
626 __add_page_to_lru_list(zone, page_tail, lru, head);
627 } else {
628 SetPageUnevictable(page_tail);
629 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
634 * Add the passed pages to the LRU, then drop the caller's refcount
635 * on them. Reinitialises the caller's pagevec.
637 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
639 int i;
640 struct zone *zone = NULL;
642 VM_BUG_ON(is_unevictable_lru(lru));
644 for (i = 0; i < pagevec_count(pvec); i++) {
645 struct page *page = pvec->pages[i];
646 struct zone *pagezone = page_zone(page);
647 int file;
648 int active;
650 if (pagezone != zone) {
651 if (zone)
652 spin_unlock_irq(&zone->lru_lock);
653 zone = pagezone;
654 spin_lock_irq(&zone->lru_lock);
656 VM_BUG_ON(PageActive(page));
657 VM_BUG_ON(PageUnevictable(page));
658 VM_BUG_ON(PageLRU(page));
659 SetPageLRU(page);
660 active = is_active_lru(lru);
661 file = is_file_lru(lru);
662 if (active)
663 SetPageActive(page);
664 update_page_reclaim_stat(zone, page, file, active);
665 add_page_to_lru_list(zone, page, lru);
667 if (zone)
668 spin_unlock_irq(&zone->lru_lock);
669 release_pages(pvec->pages, pvec->nr, pvec->cold);
670 pagevec_reinit(pvec);
673 EXPORT_SYMBOL(____pagevec_lru_add);
676 * Try to drop buffers from the pages in a pagevec
678 void pagevec_strip(struct pagevec *pvec)
680 int i;
682 for (i = 0; i < pagevec_count(pvec); i++) {
683 struct page *page = pvec->pages[i];
685 if (page_has_private(page) && trylock_page(page)) {
686 if (page_has_private(page))
687 try_to_release_page(page, 0);
688 unlock_page(page);
694 * pagevec_lookup - gang pagecache lookup
695 * @pvec: Where the resulting pages are placed
696 * @mapping: The address_space to search
697 * @start: The starting page index
698 * @nr_pages: The maximum number of pages
700 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
701 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
702 * reference against the pages in @pvec.
704 * The search returns a group of mapping-contiguous pages with ascending
705 * indexes. There may be holes in the indices due to not-present pages.
707 * pagevec_lookup() returns the number of pages which were found.
709 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
710 pgoff_t start, unsigned nr_pages)
712 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
713 return pagevec_count(pvec);
716 EXPORT_SYMBOL(pagevec_lookup);
718 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
719 pgoff_t *index, int tag, unsigned nr_pages)
721 pvec->nr = find_get_pages_tag(mapping, index, tag,
722 nr_pages, pvec->pages);
723 return pagevec_count(pvec);
726 EXPORT_SYMBOL(pagevec_lookup_tag);
729 * Perform any setup for the swap system
731 void __init swap_setup(void)
733 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
735 #ifdef CONFIG_SWAP
736 bdi_init(swapper_space.backing_dev_info);
737 #endif
739 /* Use a smaller cluster for small-memory machines */
740 if (megs < 16)
741 page_cluster = 2;
742 else
743 page_cluster = 3;
745 * Right now other parts of the system means that we
746 * _really_ don't want to cluster much more