jffs2: use cond_resched() instead of yield()
[linux-2.6/cjktty.git] / fs / namespace.c
bloba72eaabfe8f2a58868e96397b320ba819e159884
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/acct.h>
20 #include <linux/capability.h>
21 #include <linux/cpumask.h>
22 #include <linux/module.h>
23 #include <linux/sysfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/mnt_namespace.h>
26 #include <linux/namei.h>
27 #include <linux/nsproxy.h>
28 #include <linux/security.h>
29 #include <linux/mount.h>
30 #include <linux/ramfs.h>
31 #include <linux/log2.h>
32 #include <linux/idr.h>
33 #include <linux/fs_struct.h>
34 #include <linux/fsnotify.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include "pnode.h"
38 #include "internal.h"
40 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
41 #define HASH_SIZE (1UL << HASH_SHIFT)
43 static int event;
44 static DEFINE_IDA(mnt_id_ida);
45 static DEFINE_IDA(mnt_group_ida);
46 static DEFINE_SPINLOCK(mnt_id_lock);
47 static int mnt_id_start = 0;
48 static int mnt_group_start = 1;
50 static struct list_head *mount_hashtable __read_mostly;
51 static struct kmem_cache *mnt_cache __read_mostly;
52 static struct rw_semaphore namespace_sem;
54 /* /sys/fs */
55 struct kobject *fs_kobj;
56 EXPORT_SYMBOL_GPL(fs_kobj);
59 * vfsmount lock may be taken for read to prevent changes to the
60 * vfsmount hash, ie. during mountpoint lookups or walking back
61 * up the tree.
63 * It should be taken for write in all cases where the vfsmount
64 * tree or hash is modified or when a vfsmount structure is modified.
66 DEFINE_BRLOCK(vfsmount_lock);
68 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
70 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
71 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
72 tmp = tmp + (tmp >> HASH_SHIFT);
73 return tmp & (HASH_SIZE - 1);
76 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
79 * allocation is serialized by namespace_sem, but we need the spinlock to
80 * serialize with freeing.
82 static int mnt_alloc_id(struct vfsmount *mnt)
84 int res;
86 retry:
87 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
88 spin_lock(&mnt_id_lock);
89 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
90 if (!res)
91 mnt_id_start = mnt->mnt_id + 1;
92 spin_unlock(&mnt_id_lock);
93 if (res == -EAGAIN)
94 goto retry;
96 return res;
99 static void mnt_free_id(struct vfsmount *mnt)
101 int id = mnt->mnt_id;
102 spin_lock(&mnt_id_lock);
103 ida_remove(&mnt_id_ida, id);
104 if (mnt_id_start > id)
105 mnt_id_start = id;
106 spin_unlock(&mnt_id_lock);
110 * Allocate a new peer group ID
112 * mnt_group_ida is protected by namespace_sem
114 static int mnt_alloc_group_id(struct vfsmount *mnt)
116 int res;
118 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
119 return -ENOMEM;
121 res = ida_get_new_above(&mnt_group_ida,
122 mnt_group_start,
123 &mnt->mnt_group_id);
124 if (!res)
125 mnt_group_start = mnt->mnt_group_id + 1;
127 return res;
131 * Release a peer group ID
133 void mnt_release_group_id(struct vfsmount *mnt)
135 int id = mnt->mnt_group_id;
136 ida_remove(&mnt_group_ida, id);
137 if (mnt_group_start > id)
138 mnt_group_start = id;
139 mnt->mnt_group_id = 0;
142 struct vfsmount *alloc_vfsmnt(const char *name)
144 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
145 if (mnt) {
146 int err;
148 err = mnt_alloc_id(mnt);
149 if (err)
150 goto out_free_cache;
152 if (name) {
153 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
154 if (!mnt->mnt_devname)
155 goto out_free_id;
158 atomic_set(&mnt->mnt_count, 1);
159 INIT_LIST_HEAD(&mnt->mnt_hash);
160 INIT_LIST_HEAD(&mnt->mnt_child);
161 INIT_LIST_HEAD(&mnt->mnt_mounts);
162 INIT_LIST_HEAD(&mnt->mnt_list);
163 INIT_LIST_HEAD(&mnt->mnt_expire);
164 INIT_LIST_HEAD(&mnt->mnt_share);
165 INIT_LIST_HEAD(&mnt->mnt_slave_list);
166 INIT_LIST_HEAD(&mnt->mnt_slave);
167 #ifdef CONFIG_FSNOTIFY
168 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
169 #endif
170 #ifdef CONFIG_SMP
171 mnt->mnt_writers = alloc_percpu(int);
172 if (!mnt->mnt_writers)
173 goto out_free_devname;
174 #else
175 mnt->mnt_writers = 0;
176 #endif
178 return mnt;
180 #ifdef CONFIG_SMP
181 out_free_devname:
182 kfree(mnt->mnt_devname);
183 #endif
184 out_free_id:
185 mnt_free_id(mnt);
186 out_free_cache:
187 kmem_cache_free(mnt_cache, mnt);
188 return NULL;
192 * Most r/o checks on a fs are for operations that take
193 * discrete amounts of time, like a write() or unlink().
194 * We must keep track of when those operations start
195 * (for permission checks) and when they end, so that
196 * we can determine when writes are able to occur to
197 * a filesystem.
200 * __mnt_is_readonly: check whether a mount is read-only
201 * @mnt: the mount to check for its write status
203 * This shouldn't be used directly ouside of the VFS.
204 * It does not guarantee that the filesystem will stay
205 * r/w, just that it is right *now*. This can not and
206 * should not be used in place of IS_RDONLY(inode).
207 * mnt_want/drop_write() will _keep_ the filesystem
208 * r/w.
210 int __mnt_is_readonly(struct vfsmount *mnt)
212 if (mnt->mnt_flags & MNT_READONLY)
213 return 1;
214 if (mnt->mnt_sb->s_flags & MS_RDONLY)
215 return 1;
216 return 0;
218 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
220 static inline void inc_mnt_writers(struct vfsmount *mnt)
222 #ifdef CONFIG_SMP
223 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
224 #else
225 mnt->mnt_writers++;
226 #endif
229 static inline void dec_mnt_writers(struct vfsmount *mnt)
231 #ifdef CONFIG_SMP
232 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
233 #else
234 mnt->mnt_writers--;
235 #endif
238 static unsigned int count_mnt_writers(struct vfsmount *mnt)
240 #ifdef CONFIG_SMP
241 unsigned int count = 0;
242 int cpu;
244 for_each_possible_cpu(cpu) {
245 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
248 return count;
249 #else
250 return mnt->mnt_writers;
251 #endif
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
263 * mnt_want_write - get write access to a mount
264 * @mnt: the mount on which to take a write
266 * This tells the low-level filesystem that a write is
267 * about to be performed to it, and makes sure that
268 * writes are allowed before returning success. When
269 * the write operation is finished, mnt_drop_write()
270 * must be called. This is effectively a refcount.
272 int mnt_want_write(struct vfsmount *mnt)
274 int ret = 0;
276 preempt_disable();
277 inc_mnt_writers(mnt);
279 * The store to inc_mnt_writers must be visible before we pass
280 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
281 * incremented count after it has set MNT_WRITE_HOLD.
283 smp_mb();
284 while (mnt->mnt_flags & MNT_WRITE_HOLD)
285 cpu_relax();
287 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
288 * be set to match its requirements. So we must not load that until
289 * MNT_WRITE_HOLD is cleared.
291 smp_rmb();
292 if (__mnt_is_readonly(mnt)) {
293 dec_mnt_writers(mnt);
294 ret = -EROFS;
295 goto out;
297 out:
298 preempt_enable();
299 return ret;
301 EXPORT_SYMBOL_GPL(mnt_want_write);
304 * mnt_clone_write - get write access to a mount
305 * @mnt: the mount on which to take a write
307 * This is effectively like mnt_want_write, except
308 * it must only be used to take an extra write reference
309 * on a mountpoint that we already know has a write reference
310 * on it. This allows some optimisation.
312 * After finished, mnt_drop_write must be called as usual to
313 * drop the reference.
315 int mnt_clone_write(struct vfsmount *mnt)
317 /* superblock may be r/o */
318 if (__mnt_is_readonly(mnt))
319 return -EROFS;
320 preempt_disable();
321 inc_mnt_writers(mnt);
322 preempt_enable();
323 return 0;
325 EXPORT_SYMBOL_GPL(mnt_clone_write);
328 * mnt_want_write_file - get write access to a file's mount
329 * @file: the file who's mount on which to take a write
331 * This is like mnt_want_write, but it takes a file and can
332 * do some optimisations if the file is open for write already
334 int mnt_want_write_file(struct file *file)
336 struct inode *inode = file->f_dentry->d_inode;
337 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
338 return mnt_want_write(file->f_path.mnt);
339 else
340 return mnt_clone_write(file->f_path.mnt);
342 EXPORT_SYMBOL_GPL(mnt_want_write_file);
345 * mnt_drop_write - give up write access to a mount
346 * @mnt: the mount on which to give up write access
348 * Tells the low-level filesystem that we are done
349 * performing writes to it. Must be matched with
350 * mnt_want_write() call above.
352 void mnt_drop_write(struct vfsmount *mnt)
354 preempt_disable();
355 dec_mnt_writers(mnt);
356 preempt_enable();
358 EXPORT_SYMBOL_GPL(mnt_drop_write);
360 static int mnt_make_readonly(struct vfsmount *mnt)
362 int ret = 0;
364 br_write_lock(vfsmount_lock);
365 mnt->mnt_flags |= MNT_WRITE_HOLD;
367 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
368 * should be visible before we do.
370 smp_mb();
373 * With writers on hold, if this value is zero, then there are
374 * definitely no active writers (although held writers may subsequently
375 * increment the count, they'll have to wait, and decrement it after
376 * seeing MNT_READONLY).
378 * It is OK to have counter incremented on one CPU and decremented on
379 * another: the sum will add up correctly. The danger would be when we
380 * sum up each counter, if we read a counter before it is incremented,
381 * but then read another CPU's count which it has been subsequently
382 * decremented from -- we would see more decrements than we should.
383 * MNT_WRITE_HOLD protects against this scenario, because
384 * mnt_want_write first increments count, then smp_mb, then spins on
385 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
386 * we're counting up here.
388 if (count_mnt_writers(mnt) > 0)
389 ret = -EBUSY;
390 else
391 mnt->mnt_flags |= MNT_READONLY;
393 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
394 * that become unheld will see MNT_READONLY.
396 smp_wmb();
397 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
398 br_write_unlock(vfsmount_lock);
399 return ret;
402 static void __mnt_unmake_readonly(struct vfsmount *mnt)
404 br_write_lock(vfsmount_lock);
405 mnt->mnt_flags &= ~MNT_READONLY;
406 br_write_unlock(vfsmount_lock);
409 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
411 mnt->mnt_sb = sb;
412 mnt->mnt_root = dget(sb->s_root);
415 EXPORT_SYMBOL(simple_set_mnt);
417 void free_vfsmnt(struct vfsmount *mnt)
419 kfree(mnt->mnt_devname);
420 mnt_free_id(mnt);
421 #ifdef CONFIG_SMP
422 free_percpu(mnt->mnt_writers);
423 #endif
424 kmem_cache_free(mnt_cache, mnt);
428 * find the first or last mount at @dentry on vfsmount @mnt depending on
429 * @dir. If @dir is set return the first mount else return the last mount.
430 * vfsmount_lock must be held for read or write.
432 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
433 int dir)
435 struct list_head *head = mount_hashtable + hash(mnt, dentry);
436 struct list_head *tmp = head;
437 struct vfsmount *p, *found = NULL;
439 for (;;) {
440 tmp = dir ? tmp->next : tmp->prev;
441 p = NULL;
442 if (tmp == head)
443 break;
444 p = list_entry(tmp, struct vfsmount, mnt_hash);
445 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
446 found = p;
447 break;
450 return found;
454 * lookup_mnt increments the ref count before returning
455 * the vfsmount struct.
457 struct vfsmount *lookup_mnt(struct path *path)
459 struct vfsmount *child_mnt;
461 br_read_lock(vfsmount_lock);
462 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
463 mntget(child_mnt);
464 br_read_unlock(vfsmount_lock);
465 return child_mnt;
468 static inline int check_mnt(struct vfsmount *mnt)
470 return mnt->mnt_ns == current->nsproxy->mnt_ns;
474 * vfsmount lock must be held for write
476 static void touch_mnt_namespace(struct mnt_namespace *ns)
478 if (ns) {
479 ns->event = ++event;
480 wake_up_interruptible(&ns->poll);
485 * vfsmount lock must be held for write
487 static void __touch_mnt_namespace(struct mnt_namespace *ns)
489 if (ns && ns->event != event) {
490 ns->event = event;
491 wake_up_interruptible(&ns->poll);
496 * vfsmount lock must be held for write
498 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
500 old_path->dentry = mnt->mnt_mountpoint;
501 old_path->mnt = mnt->mnt_parent;
502 mnt->mnt_parent = mnt;
503 mnt->mnt_mountpoint = mnt->mnt_root;
504 list_del_init(&mnt->mnt_child);
505 list_del_init(&mnt->mnt_hash);
506 old_path->dentry->d_mounted--;
510 * vfsmount lock must be held for write
512 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
513 struct vfsmount *child_mnt)
515 child_mnt->mnt_parent = mntget(mnt);
516 child_mnt->mnt_mountpoint = dget(dentry);
517 dentry->d_mounted++;
521 * vfsmount lock must be held for write
523 static void attach_mnt(struct vfsmount *mnt, struct path *path)
525 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
526 list_add_tail(&mnt->mnt_hash, mount_hashtable +
527 hash(path->mnt, path->dentry));
528 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
532 * vfsmount lock must be held for write
534 static void commit_tree(struct vfsmount *mnt)
536 struct vfsmount *parent = mnt->mnt_parent;
537 struct vfsmount *m;
538 LIST_HEAD(head);
539 struct mnt_namespace *n = parent->mnt_ns;
541 BUG_ON(parent == mnt);
543 list_add_tail(&head, &mnt->mnt_list);
544 list_for_each_entry(m, &head, mnt_list)
545 m->mnt_ns = n;
546 list_splice(&head, n->list.prev);
548 list_add_tail(&mnt->mnt_hash, mount_hashtable +
549 hash(parent, mnt->mnt_mountpoint));
550 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
551 touch_mnt_namespace(n);
554 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
556 struct list_head *next = p->mnt_mounts.next;
557 if (next == &p->mnt_mounts) {
558 while (1) {
559 if (p == root)
560 return NULL;
561 next = p->mnt_child.next;
562 if (next != &p->mnt_parent->mnt_mounts)
563 break;
564 p = p->mnt_parent;
567 return list_entry(next, struct vfsmount, mnt_child);
570 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
572 struct list_head *prev = p->mnt_mounts.prev;
573 while (prev != &p->mnt_mounts) {
574 p = list_entry(prev, struct vfsmount, mnt_child);
575 prev = p->mnt_mounts.prev;
577 return p;
580 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
581 int flag)
583 struct super_block *sb = old->mnt_sb;
584 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
586 if (mnt) {
587 if (flag & (CL_SLAVE | CL_PRIVATE))
588 mnt->mnt_group_id = 0; /* not a peer of original */
589 else
590 mnt->mnt_group_id = old->mnt_group_id;
592 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
593 int err = mnt_alloc_group_id(mnt);
594 if (err)
595 goto out_free;
598 mnt->mnt_flags = old->mnt_flags;
599 atomic_inc(&sb->s_active);
600 mnt->mnt_sb = sb;
601 mnt->mnt_root = dget(root);
602 mnt->mnt_mountpoint = mnt->mnt_root;
603 mnt->mnt_parent = mnt;
605 if (flag & CL_SLAVE) {
606 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
607 mnt->mnt_master = old;
608 CLEAR_MNT_SHARED(mnt);
609 } else if (!(flag & CL_PRIVATE)) {
610 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
611 list_add(&mnt->mnt_share, &old->mnt_share);
612 if (IS_MNT_SLAVE(old))
613 list_add(&mnt->mnt_slave, &old->mnt_slave);
614 mnt->mnt_master = old->mnt_master;
616 if (flag & CL_MAKE_SHARED)
617 set_mnt_shared(mnt);
619 /* stick the duplicate mount on the same expiry list
620 * as the original if that was on one */
621 if (flag & CL_EXPIRE) {
622 if (!list_empty(&old->mnt_expire))
623 list_add(&mnt->mnt_expire, &old->mnt_expire);
626 return mnt;
628 out_free:
629 free_vfsmnt(mnt);
630 return NULL;
633 static inline void __mntput(struct vfsmount *mnt)
635 struct super_block *sb = mnt->mnt_sb;
637 * This probably indicates that somebody messed
638 * up a mnt_want/drop_write() pair. If this
639 * happens, the filesystem was probably unable
640 * to make r/w->r/o transitions.
643 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
644 * provides barriers, so count_mnt_writers() below is safe. AV
646 WARN_ON(count_mnt_writers(mnt));
647 fsnotify_vfsmount_delete(mnt);
648 dput(mnt->mnt_root);
649 free_vfsmnt(mnt);
650 deactivate_super(sb);
653 void mntput_no_expire(struct vfsmount *mnt)
655 repeat:
656 if (atomic_add_unless(&mnt->mnt_count, -1, 1))
657 return;
658 br_write_lock(vfsmount_lock);
659 if (!atomic_dec_and_test(&mnt->mnt_count)) {
660 br_write_unlock(vfsmount_lock);
661 return;
663 if (likely(!mnt->mnt_pinned)) {
664 br_write_unlock(vfsmount_lock);
665 __mntput(mnt);
666 return;
668 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
669 mnt->mnt_pinned = 0;
670 br_write_unlock(vfsmount_lock);
671 acct_auto_close_mnt(mnt);
672 goto repeat;
674 EXPORT_SYMBOL(mntput_no_expire);
676 void mnt_pin(struct vfsmount *mnt)
678 br_write_lock(vfsmount_lock);
679 mnt->mnt_pinned++;
680 br_write_unlock(vfsmount_lock);
683 EXPORT_SYMBOL(mnt_pin);
685 void mnt_unpin(struct vfsmount *mnt)
687 br_write_lock(vfsmount_lock);
688 if (mnt->mnt_pinned) {
689 atomic_inc(&mnt->mnt_count);
690 mnt->mnt_pinned--;
692 br_write_unlock(vfsmount_lock);
695 EXPORT_SYMBOL(mnt_unpin);
697 static inline void mangle(struct seq_file *m, const char *s)
699 seq_escape(m, s, " \t\n\\");
703 * Simple .show_options callback for filesystems which don't want to
704 * implement more complex mount option showing.
706 * See also save_mount_options().
708 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
710 const char *options;
712 rcu_read_lock();
713 options = rcu_dereference(mnt->mnt_sb->s_options);
715 if (options != NULL && options[0]) {
716 seq_putc(m, ',');
717 mangle(m, options);
719 rcu_read_unlock();
721 return 0;
723 EXPORT_SYMBOL(generic_show_options);
726 * If filesystem uses generic_show_options(), this function should be
727 * called from the fill_super() callback.
729 * The .remount_fs callback usually needs to be handled in a special
730 * way, to make sure, that previous options are not overwritten if the
731 * remount fails.
733 * Also note, that if the filesystem's .remount_fs function doesn't
734 * reset all options to their default value, but changes only newly
735 * given options, then the displayed options will not reflect reality
736 * any more.
738 void save_mount_options(struct super_block *sb, char *options)
740 BUG_ON(sb->s_options);
741 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
743 EXPORT_SYMBOL(save_mount_options);
745 void replace_mount_options(struct super_block *sb, char *options)
747 char *old = sb->s_options;
748 rcu_assign_pointer(sb->s_options, options);
749 if (old) {
750 synchronize_rcu();
751 kfree(old);
754 EXPORT_SYMBOL(replace_mount_options);
756 #ifdef CONFIG_PROC_FS
757 /* iterator */
758 static void *m_start(struct seq_file *m, loff_t *pos)
760 struct proc_mounts *p = m->private;
762 down_read(&namespace_sem);
763 return seq_list_start(&p->ns->list, *pos);
766 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
768 struct proc_mounts *p = m->private;
770 return seq_list_next(v, &p->ns->list, pos);
773 static void m_stop(struct seq_file *m, void *v)
775 up_read(&namespace_sem);
778 int mnt_had_events(struct proc_mounts *p)
780 struct mnt_namespace *ns = p->ns;
781 int res = 0;
783 br_read_lock(vfsmount_lock);
784 if (p->event != ns->event) {
785 p->event = ns->event;
786 res = 1;
788 br_read_unlock(vfsmount_lock);
790 return res;
793 struct proc_fs_info {
794 int flag;
795 const char *str;
798 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
800 static const struct proc_fs_info fs_info[] = {
801 { MS_SYNCHRONOUS, ",sync" },
802 { MS_DIRSYNC, ",dirsync" },
803 { MS_MANDLOCK, ",mand" },
804 { 0, NULL }
806 const struct proc_fs_info *fs_infop;
808 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
809 if (sb->s_flags & fs_infop->flag)
810 seq_puts(m, fs_infop->str);
813 return security_sb_show_options(m, sb);
816 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
818 static const struct proc_fs_info mnt_info[] = {
819 { MNT_NOSUID, ",nosuid" },
820 { MNT_NODEV, ",nodev" },
821 { MNT_NOEXEC, ",noexec" },
822 { MNT_NOATIME, ",noatime" },
823 { MNT_NODIRATIME, ",nodiratime" },
824 { MNT_RELATIME, ",relatime" },
825 { 0, NULL }
827 const struct proc_fs_info *fs_infop;
829 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
830 if (mnt->mnt_flags & fs_infop->flag)
831 seq_puts(m, fs_infop->str);
835 static void show_type(struct seq_file *m, struct super_block *sb)
837 mangle(m, sb->s_type->name);
838 if (sb->s_subtype && sb->s_subtype[0]) {
839 seq_putc(m, '.');
840 mangle(m, sb->s_subtype);
844 static int show_vfsmnt(struct seq_file *m, void *v)
846 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
847 int err = 0;
848 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
850 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
851 seq_putc(m, ' ');
852 seq_path(m, &mnt_path, " \t\n\\");
853 seq_putc(m, ' ');
854 show_type(m, mnt->mnt_sb);
855 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
856 err = show_sb_opts(m, mnt->mnt_sb);
857 if (err)
858 goto out;
859 show_mnt_opts(m, mnt);
860 if (mnt->mnt_sb->s_op->show_options)
861 err = mnt->mnt_sb->s_op->show_options(m, mnt);
862 seq_puts(m, " 0 0\n");
863 out:
864 return err;
867 const struct seq_operations mounts_op = {
868 .start = m_start,
869 .next = m_next,
870 .stop = m_stop,
871 .show = show_vfsmnt
874 static int show_mountinfo(struct seq_file *m, void *v)
876 struct proc_mounts *p = m->private;
877 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
878 struct super_block *sb = mnt->mnt_sb;
879 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
880 struct path root = p->root;
881 int err = 0;
883 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
884 MAJOR(sb->s_dev), MINOR(sb->s_dev));
885 seq_dentry(m, mnt->mnt_root, " \t\n\\");
886 seq_putc(m, ' ');
887 seq_path_root(m, &mnt_path, &root, " \t\n\\");
888 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
890 * Mountpoint is outside root, discard that one. Ugly,
891 * but less so than trying to do that in iterator in a
892 * race-free way (due to renames).
894 return SEQ_SKIP;
896 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
897 show_mnt_opts(m, mnt);
899 /* Tagged fields ("foo:X" or "bar") */
900 if (IS_MNT_SHARED(mnt))
901 seq_printf(m, " shared:%i", mnt->mnt_group_id);
902 if (IS_MNT_SLAVE(mnt)) {
903 int master = mnt->mnt_master->mnt_group_id;
904 int dom = get_dominating_id(mnt, &p->root);
905 seq_printf(m, " master:%i", master);
906 if (dom && dom != master)
907 seq_printf(m, " propagate_from:%i", dom);
909 if (IS_MNT_UNBINDABLE(mnt))
910 seq_puts(m, " unbindable");
912 /* Filesystem specific data */
913 seq_puts(m, " - ");
914 show_type(m, sb);
915 seq_putc(m, ' ');
916 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
917 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
918 err = show_sb_opts(m, sb);
919 if (err)
920 goto out;
921 if (sb->s_op->show_options)
922 err = sb->s_op->show_options(m, mnt);
923 seq_putc(m, '\n');
924 out:
925 return err;
928 const struct seq_operations mountinfo_op = {
929 .start = m_start,
930 .next = m_next,
931 .stop = m_stop,
932 .show = show_mountinfo,
935 static int show_vfsstat(struct seq_file *m, void *v)
937 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
938 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
939 int err = 0;
941 /* device */
942 if (mnt->mnt_devname) {
943 seq_puts(m, "device ");
944 mangle(m, mnt->mnt_devname);
945 } else
946 seq_puts(m, "no device");
948 /* mount point */
949 seq_puts(m, " mounted on ");
950 seq_path(m, &mnt_path, " \t\n\\");
951 seq_putc(m, ' ');
953 /* file system type */
954 seq_puts(m, "with fstype ");
955 show_type(m, mnt->mnt_sb);
957 /* optional statistics */
958 if (mnt->mnt_sb->s_op->show_stats) {
959 seq_putc(m, ' ');
960 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
963 seq_putc(m, '\n');
964 return err;
967 const struct seq_operations mountstats_op = {
968 .start = m_start,
969 .next = m_next,
970 .stop = m_stop,
971 .show = show_vfsstat,
973 #endif /* CONFIG_PROC_FS */
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
981 * busy.
983 int may_umount_tree(struct vfsmount *mnt)
985 int actual_refs = 0;
986 int minimum_refs = 0;
987 struct vfsmount *p;
989 br_read_lock(vfsmount_lock);
990 for (p = mnt; p; p = next_mnt(p, mnt)) {
991 actual_refs += atomic_read(&p->mnt_count);
992 minimum_refs += 2;
994 br_read_unlock(vfsmount_lock);
996 if (actual_refs > minimum_refs)
997 return 0;
999 return 1;
1002 EXPORT_SYMBOL(may_umount_tree);
1005 * may_umount - check if a mount point is busy
1006 * @mnt: root of mount
1008 * This is called to check if a mount point has any
1009 * open files, pwds, chroots or sub mounts. If the
1010 * mount has sub mounts this will return busy
1011 * regardless of whether the sub mounts are busy.
1013 * Doesn't take quota and stuff into account. IOW, in some cases it will
1014 * give false negatives. The main reason why it's here is that we need
1015 * a non-destructive way to look for easily umountable filesystems.
1017 int may_umount(struct vfsmount *mnt)
1019 int ret = 1;
1020 down_read(&namespace_sem);
1021 br_read_lock(vfsmount_lock);
1022 if (propagate_mount_busy(mnt, 2))
1023 ret = 0;
1024 br_read_unlock(vfsmount_lock);
1025 up_read(&namespace_sem);
1026 return ret;
1029 EXPORT_SYMBOL(may_umount);
1031 void release_mounts(struct list_head *head)
1033 struct vfsmount *mnt;
1034 while (!list_empty(head)) {
1035 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1036 list_del_init(&mnt->mnt_hash);
1037 if (mnt->mnt_parent != mnt) {
1038 struct dentry *dentry;
1039 struct vfsmount *m;
1041 br_write_lock(vfsmount_lock);
1042 dentry = mnt->mnt_mountpoint;
1043 m = mnt->mnt_parent;
1044 mnt->mnt_mountpoint = mnt->mnt_root;
1045 mnt->mnt_parent = mnt;
1046 m->mnt_ghosts--;
1047 br_write_unlock(vfsmount_lock);
1048 dput(dentry);
1049 mntput(m);
1051 mntput(mnt);
1056 * vfsmount lock must be held for write
1057 * namespace_sem must be held for write
1059 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1061 struct vfsmount *p;
1063 for (p = mnt; p; p = next_mnt(p, mnt))
1064 list_move(&p->mnt_hash, kill);
1066 if (propagate)
1067 propagate_umount(kill);
1069 list_for_each_entry(p, kill, mnt_hash) {
1070 list_del_init(&p->mnt_expire);
1071 list_del_init(&p->mnt_list);
1072 __touch_mnt_namespace(p->mnt_ns);
1073 p->mnt_ns = NULL;
1074 list_del_init(&p->mnt_child);
1075 if (p->mnt_parent != p) {
1076 p->mnt_parent->mnt_ghosts++;
1077 p->mnt_mountpoint->d_mounted--;
1079 change_mnt_propagation(p, MS_PRIVATE);
1083 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1085 static int do_umount(struct vfsmount *mnt, int flags)
1087 struct super_block *sb = mnt->mnt_sb;
1088 int retval;
1089 LIST_HEAD(umount_list);
1091 retval = security_sb_umount(mnt, flags);
1092 if (retval)
1093 return retval;
1096 * Allow userspace to request a mountpoint be expired rather than
1097 * unmounting unconditionally. Unmount only happens if:
1098 * (1) the mark is already set (the mark is cleared by mntput())
1099 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1101 if (flags & MNT_EXPIRE) {
1102 if (mnt == current->fs->root.mnt ||
1103 flags & (MNT_FORCE | MNT_DETACH))
1104 return -EINVAL;
1106 if (atomic_read(&mnt->mnt_count) != 2)
1107 return -EBUSY;
1109 if (!xchg(&mnt->mnt_expiry_mark, 1))
1110 return -EAGAIN;
1114 * If we may have to abort operations to get out of this
1115 * mount, and they will themselves hold resources we must
1116 * allow the fs to do things. In the Unix tradition of
1117 * 'Gee thats tricky lets do it in userspace' the umount_begin
1118 * might fail to complete on the first run through as other tasks
1119 * must return, and the like. Thats for the mount program to worry
1120 * about for the moment.
1123 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1124 sb->s_op->umount_begin(sb);
1128 * No sense to grab the lock for this test, but test itself looks
1129 * somewhat bogus. Suggestions for better replacement?
1130 * Ho-hum... In principle, we might treat that as umount + switch
1131 * to rootfs. GC would eventually take care of the old vfsmount.
1132 * Actually it makes sense, especially if rootfs would contain a
1133 * /reboot - static binary that would close all descriptors and
1134 * call reboot(9). Then init(8) could umount root and exec /reboot.
1136 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1138 * Special case for "unmounting" root ...
1139 * we just try to remount it readonly.
1141 down_write(&sb->s_umount);
1142 if (!(sb->s_flags & MS_RDONLY))
1143 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1144 up_write(&sb->s_umount);
1145 return retval;
1148 down_write(&namespace_sem);
1149 br_write_lock(vfsmount_lock);
1150 event++;
1152 if (!(flags & MNT_DETACH))
1153 shrink_submounts(mnt, &umount_list);
1155 retval = -EBUSY;
1156 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1157 if (!list_empty(&mnt->mnt_list))
1158 umount_tree(mnt, 1, &umount_list);
1159 retval = 0;
1161 br_write_unlock(vfsmount_lock);
1162 up_write(&namespace_sem);
1163 release_mounts(&umount_list);
1164 return retval;
1168 * Now umount can handle mount points as well as block devices.
1169 * This is important for filesystems which use unnamed block devices.
1171 * We now support a flag for forced unmount like the other 'big iron'
1172 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1175 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1177 struct path path;
1178 int retval;
1179 int lookup_flags = 0;
1181 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1182 return -EINVAL;
1184 if (!(flags & UMOUNT_NOFOLLOW))
1185 lookup_flags |= LOOKUP_FOLLOW;
1187 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1188 if (retval)
1189 goto out;
1190 retval = -EINVAL;
1191 if (path.dentry != path.mnt->mnt_root)
1192 goto dput_and_out;
1193 if (!check_mnt(path.mnt))
1194 goto dput_and_out;
1196 retval = -EPERM;
1197 if (!capable(CAP_SYS_ADMIN))
1198 goto dput_and_out;
1200 retval = do_umount(path.mnt, flags);
1201 dput_and_out:
1202 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1203 dput(path.dentry);
1204 mntput_no_expire(path.mnt);
1205 out:
1206 return retval;
1209 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1212 * The 2.0 compatible umount. No flags.
1214 SYSCALL_DEFINE1(oldumount, char __user *, name)
1216 return sys_umount(name, 0);
1219 #endif
1221 static int mount_is_safe(struct path *path)
1223 if (capable(CAP_SYS_ADMIN))
1224 return 0;
1225 return -EPERM;
1226 #ifdef notyet
1227 if (S_ISLNK(path->dentry->d_inode->i_mode))
1228 return -EPERM;
1229 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1230 if (current_uid() != path->dentry->d_inode->i_uid)
1231 return -EPERM;
1233 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1234 return -EPERM;
1235 return 0;
1236 #endif
1239 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1240 int flag)
1242 struct vfsmount *res, *p, *q, *r, *s;
1243 struct path path;
1245 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1246 return NULL;
1248 res = q = clone_mnt(mnt, dentry, flag);
1249 if (!q)
1250 goto Enomem;
1251 q->mnt_mountpoint = mnt->mnt_mountpoint;
1253 p = mnt;
1254 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1255 if (!is_subdir(r->mnt_mountpoint, dentry))
1256 continue;
1258 for (s = r; s; s = next_mnt(s, r)) {
1259 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1260 s = skip_mnt_tree(s);
1261 continue;
1263 while (p != s->mnt_parent) {
1264 p = p->mnt_parent;
1265 q = q->mnt_parent;
1267 p = s;
1268 path.mnt = q;
1269 path.dentry = p->mnt_mountpoint;
1270 q = clone_mnt(p, p->mnt_root, flag);
1271 if (!q)
1272 goto Enomem;
1273 br_write_lock(vfsmount_lock);
1274 list_add_tail(&q->mnt_list, &res->mnt_list);
1275 attach_mnt(q, &path);
1276 br_write_unlock(vfsmount_lock);
1279 return res;
1280 Enomem:
1281 if (res) {
1282 LIST_HEAD(umount_list);
1283 br_write_lock(vfsmount_lock);
1284 umount_tree(res, 0, &umount_list);
1285 br_write_unlock(vfsmount_lock);
1286 release_mounts(&umount_list);
1288 return NULL;
1291 struct vfsmount *collect_mounts(struct path *path)
1293 struct vfsmount *tree;
1294 down_write(&namespace_sem);
1295 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1296 up_write(&namespace_sem);
1297 return tree;
1300 void drop_collected_mounts(struct vfsmount *mnt)
1302 LIST_HEAD(umount_list);
1303 down_write(&namespace_sem);
1304 br_write_lock(vfsmount_lock);
1305 umount_tree(mnt, 0, &umount_list);
1306 br_write_unlock(vfsmount_lock);
1307 up_write(&namespace_sem);
1308 release_mounts(&umount_list);
1311 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1312 struct vfsmount *root)
1314 struct vfsmount *mnt;
1315 int res = f(root, arg);
1316 if (res)
1317 return res;
1318 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1319 res = f(mnt, arg);
1320 if (res)
1321 return res;
1323 return 0;
1326 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1328 struct vfsmount *p;
1330 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1331 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1332 mnt_release_group_id(p);
1336 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1338 struct vfsmount *p;
1340 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1341 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1342 int err = mnt_alloc_group_id(p);
1343 if (err) {
1344 cleanup_group_ids(mnt, p);
1345 return err;
1350 return 0;
1354 * @source_mnt : mount tree to be attached
1355 * @nd : place the mount tree @source_mnt is attached
1356 * @parent_nd : if non-null, detach the source_mnt from its parent and
1357 * store the parent mount and mountpoint dentry.
1358 * (done when source_mnt is moved)
1360 * NOTE: in the table below explains the semantics when a source mount
1361 * of a given type is attached to a destination mount of a given type.
1362 * ---------------------------------------------------------------------------
1363 * | BIND MOUNT OPERATION |
1364 * |**************************************************************************
1365 * | source-->| shared | private | slave | unbindable |
1366 * | dest | | | | |
1367 * | | | | | | |
1368 * | v | | | | |
1369 * |**************************************************************************
1370 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1371 * | | | | | |
1372 * |non-shared| shared (+) | private | slave (*) | invalid |
1373 * ***************************************************************************
1374 * A bind operation clones the source mount and mounts the clone on the
1375 * destination mount.
1377 * (++) the cloned mount is propagated to all the mounts in the propagation
1378 * tree of the destination mount and the cloned mount is added to
1379 * the peer group of the source mount.
1380 * (+) the cloned mount is created under the destination mount and is marked
1381 * as shared. The cloned mount is added to the peer group of the source
1382 * mount.
1383 * (+++) the mount is propagated to all the mounts in the propagation tree
1384 * of the destination mount and the cloned mount is made slave
1385 * of the same master as that of the source mount. The cloned mount
1386 * is marked as 'shared and slave'.
1387 * (*) the cloned mount is made a slave of the same master as that of the
1388 * source mount.
1390 * ---------------------------------------------------------------------------
1391 * | MOVE MOUNT OPERATION |
1392 * |**************************************************************************
1393 * | source-->| shared | private | slave | unbindable |
1394 * | dest | | | | |
1395 * | | | | | | |
1396 * | v | | | | |
1397 * |**************************************************************************
1398 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1399 * | | | | | |
1400 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1401 * ***************************************************************************
1403 * (+) the mount is moved to the destination. And is then propagated to
1404 * all the mounts in the propagation tree of the destination mount.
1405 * (+*) the mount is moved to the destination.
1406 * (+++) the mount is moved to the destination and is then propagated to
1407 * all the mounts belonging to the destination mount's propagation tree.
1408 * the mount is marked as 'shared and slave'.
1409 * (*) the mount continues to be a slave at the new location.
1411 * if the source mount is a tree, the operations explained above is
1412 * applied to each mount in the tree.
1413 * Must be called without spinlocks held, since this function can sleep
1414 * in allocations.
1416 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1417 struct path *path, struct path *parent_path)
1419 LIST_HEAD(tree_list);
1420 struct vfsmount *dest_mnt = path->mnt;
1421 struct dentry *dest_dentry = path->dentry;
1422 struct vfsmount *child, *p;
1423 int err;
1425 if (IS_MNT_SHARED(dest_mnt)) {
1426 err = invent_group_ids(source_mnt, true);
1427 if (err)
1428 goto out;
1430 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1431 if (err)
1432 goto out_cleanup_ids;
1434 br_write_lock(vfsmount_lock);
1436 if (IS_MNT_SHARED(dest_mnt)) {
1437 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1438 set_mnt_shared(p);
1440 if (parent_path) {
1441 detach_mnt(source_mnt, parent_path);
1442 attach_mnt(source_mnt, path);
1443 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1444 } else {
1445 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1446 commit_tree(source_mnt);
1449 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1450 list_del_init(&child->mnt_hash);
1451 commit_tree(child);
1453 br_write_unlock(vfsmount_lock);
1455 return 0;
1457 out_cleanup_ids:
1458 if (IS_MNT_SHARED(dest_mnt))
1459 cleanup_group_ids(source_mnt, NULL);
1460 out:
1461 return err;
1464 static int graft_tree(struct vfsmount *mnt, struct path *path)
1466 int err;
1467 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1468 return -EINVAL;
1470 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1471 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1472 return -ENOTDIR;
1474 err = -ENOENT;
1475 mutex_lock(&path->dentry->d_inode->i_mutex);
1476 if (cant_mount(path->dentry))
1477 goto out_unlock;
1479 if (!d_unlinked(path->dentry))
1480 err = attach_recursive_mnt(mnt, path, NULL);
1481 out_unlock:
1482 mutex_unlock(&path->dentry->d_inode->i_mutex);
1483 return err;
1487 * Sanity check the flags to change_mnt_propagation.
1490 static int flags_to_propagation_type(int flags)
1492 int type = flags & ~MS_REC;
1494 /* Fail if any non-propagation flags are set */
1495 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1496 return 0;
1497 /* Only one propagation flag should be set */
1498 if (!is_power_of_2(type))
1499 return 0;
1500 return type;
1504 * recursively change the type of the mountpoint.
1506 static int do_change_type(struct path *path, int flag)
1508 struct vfsmount *m, *mnt = path->mnt;
1509 int recurse = flag & MS_REC;
1510 int type;
1511 int err = 0;
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1516 if (path->dentry != path->mnt->mnt_root)
1517 return -EINVAL;
1519 type = flags_to_propagation_type(flag);
1520 if (!type)
1521 return -EINVAL;
1523 down_write(&namespace_sem);
1524 if (type == MS_SHARED) {
1525 err = invent_group_ids(mnt, recurse);
1526 if (err)
1527 goto out_unlock;
1530 br_write_lock(vfsmount_lock);
1531 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1532 change_mnt_propagation(m, type);
1533 br_write_unlock(vfsmount_lock);
1535 out_unlock:
1536 up_write(&namespace_sem);
1537 return err;
1541 * do loopback mount.
1543 static int do_loopback(struct path *path, char *old_name,
1544 int recurse)
1546 struct path old_path;
1547 struct vfsmount *mnt = NULL;
1548 int err = mount_is_safe(path);
1549 if (err)
1550 return err;
1551 if (!old_name || !*old_name)
1552 return -EINVAL;
1553 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1554 if (err)
1555 return err;
1557 down_write(&namespace_sem);
1558 err = -EINVAL;
1559 if (IS_MNT_UNBINDABLE(old_path.mnt))
1560 goto out;
1562 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1563 goto out;
1565 err = -ENOMEM;
1566 if (recurse)
1567 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1568 else
1569 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1571 if (!mnt)
1572 goto out;
1574 err = graft_tree(mnt, path);
1575 if (err) {
1576 LIST_HEAD(umount_list);
1578 br_write_lock(vfsmount_lock);
1579 umount_tree(mnt, 0, &umount_list);
1580 br_write_unlock(vfsmount_lock);
1581 release_mounts(&umount_list);
1584 out:
1585 up_write(&namespace_sem);
1586 path_put(&old_path);
1587 return err;
1590 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1592 int error = 0;
1593 int readonly_request = 0;
1595 if (ms_flags & MS_RDONLY)
1596 readonly_request = 1;
1597 if (readonly_request == __mnt_is_readonly(mnt))
1598 return 0;
1600 if (readonly_request)
1601 error = mnt_make_readonly(mnt);
1602 else
1603 __mnt_unmake_readonly(mnt);
1604 return error;
1608 * change filesystem flags. dir should be a physical root of filesystem.
1609 * If you've mounted a non-root directory somewhere and want to do remount
1610 * on it - tough luck.
1612 static int do_remount(struct path *path, int flags, int mnt_flags,
1613 void *data)
1615 int err;
1616 struct super_block *sb = path->mnt->mnt_sb;
1618 if (!capable(CAP_SYS_ADMIN))
1619 return -EPERM;
1621 if (!check_mnt(path->mnt))
1622 return -EINVAL;
1624 if (path->dentry != path->mnt->mnt_root)
1625 return -EINVAL;
1627 down_write(&sb->s_umount);
1628 if (flags & MS_BIND)
1629 err = change_mount_flags(path->mnt, flags);
1630 else
1631 err = do_remount_sb(sb, flags, data, 0);
1632 if (!err) {
1633 br_write_lock(vfsmount_lock);
1634 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1635 path->mnt->mnt_flags = mnt_flags;
1636 br_write_unlock(vfsmount_lock);
1638 up_write(&sb->s_umount);
1639 if (!err) {
1640 br_write_lock(vfsmount_lock);
1641 touch_mnt_namespace(path->mnt->mnt_ns);
1642 br_write_unlock(vfsmount_lock);
1644 return err;
1647 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1649 struct vfsmount *p;
1650 for (p = mnt; p; p = next_mnt(p, mnt)) {
1651 if (IS_MNT_UNBINDABLE(p))
1652 return 1;
1654 return 0;
1657 static int do_move_mount(struct path *path, char *old_name)
1659 struct path old_path, parent_path;
1660 struct vfsmount *p;
1661 int err = 0;
1662 if (!capable(CAP_SYS_ADMIN))
1663 return -EPERM;
1664 if (!old_name || !*old_name)
1665 return -EINVAL;
1666 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1667 if (err)
1668 return err;
1670 down_write(&namespace_sem);
1671 while (d_mountpoint(path->dentry) &&
1672 follow_down(path))
1674 err = -EINVAL;
1675 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1676 goto out;
1678 err = -ENOENT;
1679 mutex_lock(&path->dentry->d_inode->i_mutex);
1680 if (cant_mount(path->dentry))
1681 goto out1;
1683 if (d_unlinked(path->dentry))
1684 goto out1;
1686 err = -EINVAL;
1687 if (old_path.dentry != old_path.mnt->mnt_root)
1688 goto out1;
1690 if (old_path.mnt == old_path.mnt->mnt_parent)
1691 goto out1;
1693 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1694 S_ISDIR(old_path.dentry->d_inode->i_mode))
1695 goto out1;
1697 * Don't move a mount residing in a shared parent.
1699 if (old_path.mnt->mnt_parent &&
1700 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1701 goto out1;
1703 * Don't move a mount tree containing unbindable mounts to a destination
1704 * mount which is shared.
1706 if (IS_MNT_SHARED(path->mnt) &&
1707 tree_contains_unbindable(old_path.mnt))
1708 goto out1;
1709 err = -ELOOP;
1710 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1711 if (p == old_path.mnt)
1712 goto out1;
1714 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1715 if (err)
1716 goto out1;
1718 /* if the mount is moved, it should no longer be expire
1719 * automatically */
1720 list_del_init(&old_path.mnt->mnt_expire);
1721 out1:
1722 mutex_unlock(&path->dentry->d_inode->i_mutex);
1723 out:
1724 up_write(&namespace_sem);
1725 if (!err)
1726 path_put(&parent_path);
1727 path_put(&old_path);
1728 return err;
1732 * create a new mount for userspace and request it to be added into the
1733 * namespace's tree
1735 static int do_new_mount(struct path *path, char *type, int flags,
1736 int mnt_flags, char *name, void *data)
1738 struct vfsmount *mnt;
1740 if (!type)
1741 return -EINVAL;
1743 /* we need capabilities... */
1744 if (!capable(CAP_SYS_ADMIN))
1745 return -EPERM;
1747 lock_kernel();
1748 mnt = do_kern_mount(type, flags, name, data);
1749 unlock_kernel();
1750 if (IS_ERR(mnt))
1751 return PTR_ERR(mnt);
1753 return do_add_mount(mnt, path, mnt_flags, NULL);
1757 * add a mount into a namespace's mount tree
1758 * - provide the option of adding the new mount to an expiration list
1760 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1761 int mnt_flags, struct list_head *fslist)
1763 int err;
1765 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1767 down_write(&namespace_sem);
1768 /* Something was mounted here while we slept */
1769 while (d_mountpoint(path->dentry) &&
1770 follow_down(path))
1772 err = -EINVAL;
1773 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1774 goto unlock;
1776 /* Refuse the same filesystem on the same mount point */
1777 err = -EBUSY;
1778 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1779 path->mnt->mnt_root == path->dentry)
1780 goto unlock;
1782 err = -EINVAL;
1783 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1784 goto unlock;
1786 newmnt->mnt_flags = mnt_flags;
1787 if ((err = graft_tree(newmnt, path)))
1788 goto unlock;
1790 if (fslist) /* add to the specified expiration list */
1791 list_add_tail(&newmnt->mnt_expire, fslist);
1793 up_write(&namespace_sem);
1794 return 0;
1796 unlock:
1797 up_write(&namespace_sem);
1798 mntput(newmnt);
1799 return err;
1802 EXPORT_SYMBOL_GPL(do_add_mount);
1805 * process a list of expirable mountpoints with the intent of discarding any
1806 * mountpoints that aren't in use and haven't been touched since last we came
1807 * here
1809 void mark_mounts_for_expiry(struct list_head *mounts)
1811 struct vfsmount *mnt, *next;
1812 LIST_HEAD(graveyard);
1813 LIST_HEAD(umounts);
1815 if (list_empty(mounts))
1816 return;
1818 down_write(&namespace_sem);
1819 br_write_lock(vfsmount_lock);
1821 /* extract from the expiration list every vfsmount that matches the
1822 * following criteria:
1823 * - only referenced by its parent vfsmount
1824 * - still marked for expiry (marked on the last call here; marks are
1825 * cleared by mntput())
1827 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1828 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1829 propagate_mount_busy(mnt, 1))
1830 continue;
1831 list_move(&mnt->mnt_expire, &graveyard);
1833 while (!list_empty(&graveyard)) {
1834 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1835 touch_mnt_namespace(mnt->mnt_ns);
1836 umount_tree(mnt, 1, &umounts);
1838 br_write_unlock(vfsmount_lock);
1839 up_write(&namespace_sem);
1841 release_mounts(&umounts);
1844 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1847 * Ripoff of 'select_parent()'
1849 * search the list of submounts for a given mountpoint, and move any
1850 * shrinkable submounts to the 'graveyard' list.
1852 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1854 struct vfsmount *this_parent = parent;
1855 struct list_head *next;
1856 int found = 0;
1858 repeat:
1859 next = this_parent->mnt_mounts.next;
1860 resume:
1861 while (next != &this_parent->mnt_mounts) {
1862 struct list_head *tmp = next;
1863 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1865 next = tmp->next;
1866 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1867 continue;
1869 * Descend a level if the d_mounts list is non-empty.
1871 if (!list_empty(&mnt->mnt_mounts)) {
1872 this_parent = mnt;
1873 goto repeat;
1876 if (!propagate_mount_busy(mnt, 1)) {
1877 list_move_tail(&mnt->mnt_expire, graveyard);
1878 found++;
1882 * All done at this level ... ascend and resume the search
1884 if (this_parent != parent) {
1885 next = this_parent->mnt_child.next;
1886 this_parent = this_parent->mnt_parent;
1887 goto resume;
1889 return found;
1893 * process a list of expirable mountpoints with the intent of discarding any
1894 * submounts of a specific parent mountpoint
1896 * vfsmount_lock must be held for write
1898 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1900 LIST_HEAD(graveyard);
1901 struct vfsmount *m;
1903 /* extract submounts of 'mountpoint' from the expiration list */
1904 while (select_submounts(mnt, &graveyard)) {
1905 while (!list_empty(&graveyard)) {
1906 m = list_first_entry(&graveyard, struct vfsmount,
1907 mnt_expire);
1908 touch_mnt_namespace(m->mnt_ns);
1909 umount_tree(m, 1, umounts);
1915 * Some copy_from_user() implementations do not return the exact number of
1916 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1917 * Note that this function differs from copy_from_user() in that it will oops
1918 * on bad values of `to', rather than returning a short copy.
1920 static long exact_copy_from_user(void *to, const void __user * from,
1921 unsigned long n)
1923 char *t = to;
1924 const char __user *f = from;
1925 char c;
1927 if (!access_ok(VERIFY_READ, from, n))
1928 return n;
1930 while (n) {
1931 if (__get_user(c, f)) {
1932 memset(t, 0, n);
1933 break;
1935 *t++ = c;
1936 f++;
1937 n--;
1939 return n;
1942 int copy_mount_options(const void __user * data, unsigned long *where)
1944 int i;
1945 unsigned long page;
1946 unsigned long size;
1948 *where = 0;
1949 if (!data)
1950 return 0;
1952 if (!(page = __get_free_page(GFP_KERNEL)))
1953 return -ENOMEM;
1955 /* We only care that *some* data at the address the user
1956 * gave us is valid. Just in case, we'll zero
1957 * the remainder of the page.
1959 /* copy_from_user cannot cross TASK_SIZE ! */
1960 size = TASK_SIZE - (unsigned long)data;
1961 if (size > PAGE_SIZE)
1962 size = PAGE_SIZE;
1964 i = size - exact_copy_from_user((void *)page, data, size);
1965 if (!i) {
1966 free_page(page);
1967 return -EFAULT;
1969 if (i != PAGE_SIZE)
1970 memset((char *)page + i, 0, PAGE_SIZE - i);
1971 *where = page;
1972 return 0;
1975 int copy_mount_string(const void __user *data, char **where)
1977 char *tmp;
1979 if (!data) {
1980 *where = NULL;
1981 return 0;
1984 tmp = strndup_user(data, PAGE_SIZE);
1985 if (IS_ERR(tmp))
1986 return PTR_ERR(tmp);
1988 *where = tmp;
1989 return 0;
1993 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1994 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1996 * data is a (void *) that can point to any structure up to
1997 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1998 * information (or be NULL).
2000 * Pre-0.97 versions of mount() didn't have a flags word.
2001 * When the flags word was introduced its top half was required
2002 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2003 * Therefore, if this magic number is present, it carries no information
2004 * and must be discarded.
2006 long do_mount(char *dev_name, char *dir_name, char *type_page,
2007 unsigned long flags, void *data_page)
2009 struct path path;
2010 int retval = 0;
2011 int mnt_flags = 0;
2013 /* Discard magic */
2014 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2015 flags &= ~MS_MGC_MSK;
2017 /* Basic sanity checks */
2019 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2020 return -EINVAL;
2022 if (data_page)
2023 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2025 /* ... and get the mountpoint */
2026 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2027 if (retval)
2028 return retval;
2030 retval = security_sb_mount(dev_name, &path,
2031 type_page, flags, data_page);
2032 if (retval)
2033 goto dput_out;
2035 /* Default to relatime unless overriden */
2036 if (!(flags & MS_NOATIME))
2037 mnt_flags |= MNT_RELATIME;
2039 /* Separate the per-mountpoint flags */
2040 if (flags & MS_NOSUID)
2041 mnt_flags |= MNT_NOSUID;
2042 if (flags & MS_NODEV)
2043 mnt_flags |= MNT_NODEV;
2044 if (flags & MS_NOEXEC)
2045 mnt_flags |= MNT_NOEXEC;
2046 if (flags & MS_NOATIME)
2047 mnt_flags |= MNT_NOATIME;
2048 if (flags & MS_NODIRATIME)
2049 mnt_flags |= MNT_NODIRATIME;
2050 if (flags & MS_STRICTATIME)
2051 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2052 if (flags & MS_RDONLY)
2053 mnt_flags |= MNT_READONLY;
2055 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2056 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2057 MS_STRICTATIME);
2059 if (flags & MS_REMOUNT)
2060 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2061 data_page);
2062 else if (flags & MS_BIND)
2063 retval = do_loopback(&path, dev_name, flags & MS_REC);
2064 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2065 retval = do_change_type(&path, flags);
2066 else if (flags & MS_MOVE)
2067 retval = do_move_mount(&path, dev_name);
2068 else
2069 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2070 dev_name, data_page);
2071 dput_out:
2072 path_put(&path);
2073 return retval;
2076 static struct mnt_namespace *alloc_mnt_ns(void)
2078 struct mnt_namespace *new_ns;
2080 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2081 if (!new_ns)
2082 return ERR_PTR(-ENOMEM);
2083 atomic_set(&new_ns->count, 1);
2084 new_ns->root = NULL;
2085 INIT_LIST_HEAD(&new_ns->list);
2086 init_waitqueue_head(&new_ns->poll);
2087 new_ns->event = 0;
2088 return new_ns;
2092 * Allocate a new namespace structure and populate it with contents
2093 * copied from the namespace of the passed in task structure.
2095 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2096 struct fs_struct *fs)
2098 struct mnt_namespace *new_ns;
2099 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2100 struct vfsmount *p, *q;
2102 new_ns = alloc_mnt_ns();
2103 if (IS_ERR(new_ns))
2104 return new_ns;
2106 down_write(&namespace_sem);
2107 /* First pass: copy the tree topology */
2108 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2109 CL_COPY_ALL | CL_EXPIRE);
2110 if (!new_ns->root) {
2111 up_write(&namespace_sem);
2112 kfree(new_ns);
2113 return ERR_PTR(-ENOMEM);
2115 br_write_lock(vfsmount_lock);
2116 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2117 br_write_unlock(vfsmount_lock);
2120 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2121 * as belonging to new namespace. We have already acquired a private
2122 * fs_struct, so tsk->fs->lock is not needed.
2124 p = mnt_ns->root;
2125 q = new_ns->root;
2126 while (p) {
2127 q->mnt_ns = new_ns;
2128 if (fs) {
2129 if (p == fs->root.mnt) {
2130 rootmnt = p;
2131 fs->root.mnt = mntget(q);
2133 if (p == fs->pwd.mnt) {
2134 pwdmnt = p;
2135 fs->pwd.mnt = mntget(q);
2138 p = next_mnt(p, mnt_ns->root);
2139 q = next_mnt(q, new_ns->root);
2141 up_write(&namespace_sem);
2143 if (rootmnt)
2144 mntput(rootmnt);
2145 if (pwdmnt)
2146 mntput(pwdmnt);
2148 return new_ns;
2151 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2152 struct fs_struct *new_fs)
2154 struct mnt_namespace *new_ns;
2156 BUG_ON(!ns);
2157 get_mnt_ns(ns);
2159 if (!(flags & CLONE_NEWNS))
2160 return ns;
2162 new_ns = dup_mnt_ns(ns, new_fs);
2164 put_mnt_ns(ns);
2165 return new_ns;
2169 * create_mnt_ns - creates a private namespace and adds a root filesystem
2170 * @mnt: pointer to the new root filesystem mountpoint
2172 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2174 struct mnt_namespace *new_ns;
2176 new_ns = alloc_mnt_ns();
2177 if (!IS_ERR(new_ns)) {
2178 mnt->mnt_ns = new_ns;
2179 new_ns->root = mnt;
2180 list_add(&new_ns->list, &new_ns->root->mnt_list);
2182 return new_ns;
2184 EXPORT_SYMBOL(create_mnt_ns);
2186 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2187 char __user *, type, unsigned long, flags, void __user *, data)
2189 int ret;
2190 char *kernel_type;
2191 char *kernel_dir;
2192 char *kernel_dev;
2193 unsigned long data_page;
2195 ret = copy_mount_string(type, &kernel_type);
2196 if (ret < 0)
2197 goto out_type;
2199 kernel_dir = getname(dir_name);
2200 if (IS_ERR(kernel_dir)) {
2201 ret = PTR_ERR(kernel_dir);
2202 goto out_dir;
2205 ret = copy_mount_string(dev_name, &kernel_dev);
2206 if (ret < 0)
2207 goto out_dev;
2209 ret = copy_mount_options(data, &data_page);
2210 if (ret < 0)
2211 goto out_data;
2213 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2214 (void *) data_page);
2216 free_page(data_page);
2217 out_data:
2218 kfree(kernel_dev);
2219 out_dev:
2220 putname(kernel_dir);
2221 out_dir:
2222 kfree(kernel_type);
2223 out_type:
2224 return ret;
2228 * pivot_root Semantics:
2229 * Moves the root file system of the current process to the directory put_old,
2230 * makes new_root as the new root file system of the current process, and sets
2231 * root/cwd of all processes which had them on the current root to new_root.
2233 * Restrictions:
2234 * The new_root and put_old must be directories, and must not be on the
2235 * same file system as the current process root. The put_old must be
2236 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2237 * pointed to by put_old must yield the same directory as new_root. No other
2238 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2240 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2241 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2242 * in this situation.
2244 * Notes:
2245 * - we don't move root/cwd if they are not at the root (reason: if something
2246 * cared enough to change them, it's probably wrong to force them elsewhere)
2247 * - it's okay to pick a root that isn't the root of a file system, e.g.
2248 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2249 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2250 * first.
2252 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2253 const char __user *, put_old)
2255 struct vfsmount *tmp;
2256 struct path new, old, parent_path, root_parent, root;
2257 int error;
2259 if (!capable(CAP_SYS_ADMIN))
2260 return -EPERM;
2262 error = user_path_dir(new_root, &new);
2263 if (error)
2264 goto out0;
2265 error = -EINVAL;
2266 if (!check_mnt(new.mnt))
2267 goto out1;
2269 error = user_path_dir(put_old, &old);
2270 if (error)
2271 goto out1;
2273 error = security_sb_pivotroot(&old, &new);
2274 if (error) {
2275 path_put(&old);
2276 goto out1;
2279 get_fs_root(current->fs, &root);
2280 down_write(&namespace_sem);
2281 mutex_lock(&old.dentry->d_inode->i_mutex);
2282 error = -EINVAL;
2283 if (IS_MNT_SHARED(old.mnt) ||
2284 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2285 IS_MNT_SHARED(root.mnt->mnt_parent))
2286 goto out2;
2287 if (!check_mnt(root.mnt))
2288 goto out2;
2289 error = -ENOENT;
2290 if (cant_mount(old.dentry))
2291 goto out2;
2292 if (d_unlinked(new.dentry))
2293 goto out2;
2294 if (d_unlinked(old.dentry))
2295 goto out2;
2296 error = -EBUSY;
2297 if (new.mnt == root.mnt ||
2298 old.mnt == root.mnt)
2299 goto out2; /* loop, on the same file system */
2300 error = -EINVAL;
2301 if (root.mnt->mnt_root != root.dentry)
2302 goto out2; /* not a mountpoint */
2303 if (root.mnt->mnt_parent == root.mnt)
2304 goto out2; /* not attached */
2305 if (new.mnt->mnt_root != new.dentry)
2306 goto out2; /* not a mountpoint */
2307 if (new.mnt->mnt_parent == new.mnt)
2308 goto out2; /* not attached */
2309 /* make sure we can reach put_old from new_root */
2310 tmp = old.mnt;
2311 br_write_lock(vfsmount_lock);
2312 if (tmp != new.mnt) {
2313 for (;;) {
2314 if (tmp->mnt_parent == tmp)
2315 goto out3; /* already mounted on put_old */
2316 if (tmp->mnt_parent == new.mnt)
2317 break;
2318 tmp = tmp->mnt_parent;
2320 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2321 goto out3;
2322 } else if (!is_subdir(old.dentry, new.dentry))
2323 goto out3;
2324 detach_mnt(new.mnt, &parent_path);
2325 detach_mnt(root.mnt, &root_parent);
2326 /* mount old root on put_old */
2327 attach_mnt(root.mnt, &old);
2328 /* mount new_root on / */
2329 attach_mnt(new.mnt, &root_parent);
2330 touch_mnt_namespace(current->nsproxy->mnt_ns);
2331 br_write_unlock(vfsmount_lock);
2332 chroot_fs_refs(&root, &new);
2333 error = 0;
2334 path_put(&root_parent);
2335 path_put(&parent_path);
2336 out2:
2337 mutex_unlock(&old.dentry->d_inode->i_mutex);
2338 up_write(&namespace_sem);
2339 path_put(&root);
2340 path_put(&old);
2341 out1:
2342 path_put(&new);
2343 out0:
2344 return error;
2345 out3:
2346 br_write_unlock(vfsmount_lock);
2347 goto out2;
2350 static void __init init_mount_tree(void)
2352 struct vfsmount *mnt;
2353 struct mnt_namespace *ns;
2354 struct path root;
2356 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2357 if (IS_ERR(mnt))
2358 panic("Can't create rootfs");
2359 ns = create_mnt_ns(mnt);
2360 if (IS_ERR(ns))
2361 panic("Can't allocate initial namespace");
2363 init_task.nsproxy->mnt_ns = ns;
2364 get_mnt_ns(ns);
2366 root.mnt = ns->root;
2367 root.dentry = ns->root->mnt_root;
2369 set_fs_pwd(current->fs, &root);
2370 set_fs_root(current->fs, &root);
2373 void __init mnt_init(void)
2375 unsigned u;
2376 int err;
2378 init_rwsem(&namespace_sem);
2380 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2381 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2383 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2385 if (!mount_hashtable)
2386 panic("Failed to allocate mount hash table\n");
2388 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2390 for (u = 0; u < HASH_SIZE; u++)
2391 INIT_LIST_HEAD(&mount_hashtable[u]);
2393 br_lock_init(vfsmount_lock);
2395 err = sysfs_init();
2396 if (err)
2397 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2398 __func__, err);
2399 fs_kobj = kobject_create_and_add("fs", NULL);
2400 if (!fs_kobj)
2401 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2402 init_rootfs();
2403 init_mount_tree();
2406 void put_mnt_ns(struct mnt_namespace *ns)
2408 LIST_HEAD(umount_list);
2410 if (!atomic_dec_and_test(&ns->count))
2411 return;
2412 down_write(&namespace_sem);
2413 br_write_lock(vfsmount_lock);
2414 umount_tree(ns->root, 0, &umount_list);
2415 br_write_unlock(vfsmount_lock);
2416 up_write(&namespace_sem);
2417 release_mounts(&umount_list);
2418 kfree(ns);
2420 EXPORT_SYMBOL(put_mnt_ns);