pipe: add support for shrinking and growing pipes
[linux-2.6/cjktty.git] / net / core / skbuff.c
blob931981774b1a56a3eed61c6219e84c67192abad7
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
71 #include "kmap_skb.h"
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
79 put_page(buf->page);
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
85 get_page(buf->page);
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 return 1;
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 .can_merge = 0,
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
109 * reliable.
113 * skb_over_panic - private function
114 * @skb: buffer
115 * @sz: size
116 * @here: address
118 * Out of line support code for skb_put(). Not user callable.
120 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
129 EXPORT_SYMBOL(skb_over_panic);
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
137 * Out of line support code for skb_push(). Not user callable.
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
149 EXPORT_SYMBOL(skb_under_panic);
151 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
152 * 'private' fields and also do memory statistics to find all the
153 * [BEEP] leaks.
158 * __alloc_skb - allocate a network buffer
159 * @size: size to allocate
160 * @gfp_mask: allocation mask
161 * @fclone: allocate from fclone cache instead of head cache
162 * and allocate a cloned (child) skb
163 * @node: numa node to allocate memory on
165 * Allocate a new &sk_buff. The returned buffer has no headroom and a
166 * tail room of size bytes. The object has a reference count of one.
167 * The return is the buffer. On a failure the return is %NULL.
169 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 * %GFP_ATOMIC.
172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
173 int fclone, int node)
175 struct kmem_cache *cache;
176 struct skb_shared_info *shinfo;
177 struct sk_buff *skb;
178 u8 *data;
180 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
182 /* Get the HEAD */
183 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
184 if (!skb)
185 goto out;
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 kmemcheck_annotate_bitfield(skb, flags1);
206 kmemcheck_annotate_bitfield(skb, flags2);
207 #ifdef NET_SKBUFF_DATA_USES_OFFSET
208 skb->mac_header = ~0U;
209 #endif
211 /* make sure we initialize shinfo sequentially */
212 shinfo = skb_shinfo(skb);
213 atomic_set(&shinfo->dataref, 1);
214 shinfo->nr_frags = 0;
215 shinfo->gso_size = 0;
216 shinfo->gso_segs = 0;
217 shinfo->gso_type = 0;
218 shinfo->ip6_frag_id = 0;
219 shinfo->tx_flags.flags = 0;
220 skb_frag_list_init(skb);
221 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
223 if (fclone) {
224 struct sk_buff *child = skb + 1;
225 atomic_t *fclone_ref = (atomic_t *) (child + 1);
227 kmemcheck_annotate_bitfield(child, flags1);
228 kmemcheck_annotate_bitfield(child, flags2);
229 skb->fclone = SKB_FCLONE_ORIG;
230 atomic_set(fclone_ref, 1);
232 child->fclone = SKB_FCLONE_UNAVAILABLE;
234 out:
235 return skb;
236 nodata:
237 kmem_cache_free(cache, skb);
238 skb = NULL;
239 goto out;
241 EXPORT_SYMBOL(__alloc_skb);
244 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
245 * @dev: network device to receive on
246 * @length: length to allocate
247 * @gfp_mask: get_free_pages mask, passed to alloc_skb
249 * Allocate a new &sk_buff and assign it a usage count of one. The
250 * buffer has unspecified headroom built in. Users should allocate
251 * the headroom they think they need without accounting for the
252 * built in space. The built in space is used for optimisations.
254 * %NULL is returned if there is no free memory.
256 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
257 unsigned int length, gfp_t gfp_mask)
259 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
260 struct sk_buff *skb;
262 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
263 if (likely(skb)) {
264 skb_reserve(skb, NET_SKB_PAD);
265 skb->dev = dev;
267 return skb;
269 EXPORT_SYMBOL(__netdev_alloc_skb);
271 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
273 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
274 struct page *page;
276 page = alloc_pages_node(node, gfp_mask, 0);
277 return page;
279 EXPORT_SYMBOL(__netdev_alloc_page);
281 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
282 int size)
284 skb_fill_page_desc(skb, i, page, off, size);
285 skb->len += size;
286 skb->data_len += size;
287 skb->truesize += size;
289 EXPORT_SYMBOL(skb_add_rx_frag);
292 * dev_alloc_skb - allocate an skbuff for receiving
293 * @length: length to allocate
295 * Allocate a new &sk_buff and assign it a usage count of one. The
296 * buffer has unspecified headroom built in. Users should allocate
297 * the headroom they think they need without accounting for the
298 * built in space. The built in space is used for optimisations.
300 * %NULL is returned if there is no free memory. Although this function
301 * allocates memory it can be called from an interrupt.
303 struct sk_buff *dev_alloc_skb(unsigned int length)
306 * There is more code here than it seems:
307 * __dev_alloc_skb is an inline
309 return __dev_alloc_skb(length, GFP_ATOMIC);
311 EXPORT_SYMBOL(dev_alloc_skb);
313 static void skb_drop_list(struct sk_buff **listp)
315 struct sk_buff *list = *listp;
317 *listp = NULL;
319 do {
320 struct sk_buff *this = list;
321 list = list->next;
322 kfree_skb(this);
323 } while (list);
326 static inline void skb_drop_fraglist(struct sk_buff *skb)
328 skb_drop_list(&skb_shinfo(skb)->frag_list);
331 static void skb_clone_fraglist(struct sk_buff *skb)
333 struct sk_buff *list;
335 skb_walk_frags(skb, list)
336 skb_get(list);
339 static void skb_release_data(struct sk_buff *skb)
341 if (!skb->cloned ||
342 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
343 &skb_shinfo(skb)->dataref)) {
344 if (skb_shinfo(skb)->nr_frags) {
345 int i;
346 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
347 put_page(skb_shinfo(skb)->frags[i].page);
350 if (skb_has_frags(skb))
351 skb_drop_fraglist(skb);
353 kfree(skb->head);
358 * Free an skbuff by memory without cleaning the state.
360 static void kfree_skbmem(struct sk_buff *skb)
362 struct sk_buff *other;
363 atomic_t *fclone_ref;
365 switch (skb->fclone) {
366 case SKB_FCLONE_UNAVAILABLE:
367 kmem_cache_free(skbuff_head_cache, skb);
368 break;
370 case SKB_FCLONE_ORIG:
371 fclone_ref = (atomic_t *) (skb + 2);
372 if (atomic_dec_and_test(fclone_ref))
373 kmem_cache_free(skbuff_fclone_cache, skb);
374 break;
376 case SKB_FCLONE_CLONE:
377 fclone_ref = (atomic_t *) (skb + 1);
378 other = skb - 1;
380 /* The clone portion is available for
381 * fast-cloning again.
383 skb->fclone = SKB_FCLONE_UNAVAILABLE;
385 if (atomic_dec_and_test(fclone_ref))
386 kmem_cache_free(skbuff_fclone_cache, other);
387 break;
391 static void skb_release_head_state(struct sk_buff *skb)
393 skb_dst_drop(skb);
394 #ifdef CONFIG_XFRM
395 secpath_put(skb->sp);
396 #endif
397 if (skb->destructor) {
398 WARN_ON(in_irq());
399 skb->destructor(skb);
401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
402 nf_conntrack_put(skb->nfct);
403 nf_conntrack_put_reasm(skb->nfct_reasm);
404 #endif
405 #ifdef CONFIG_BRIDGE_NETFILTER
406 nf_bridge_put(skb->nf_bridge);
407 #endif
408 /* XXX: IS this still necessary? - JHS */
409 #ifdef CONFIG_NET_SCHED
410 skb->tc_index = 0;
411 #ifdef CONFIG_NET_CLS_ACT
412 skb->tc_verd = 0;
413 #endif
414 #endif
417 /* Free everything but the sk_buff shell. */
418 static void skb_release_all(struct sk_buff *skb)
420 skb_release_head_state(skb);
421 skb_release_data(skb);
425 * __kfree_skb - private function
426 * @skb: buffer
428 * Free an sk_buff. Release anything attached to the buffer.
429 * Clean the state. This is an internal helper function. Users should
430 * always call kfree_skb
433 void __kfree_skb(struct sk_buff *skb)
435 skb_release_all(skb);
436 kfree_skbmem(skb);
438 EXPORT_SYMBOL(__kfree_skb);
441 * kfree_skb - free an sk_buff
442 * @skb: buffer to free
444 * Drop a reference to the buffer and free it if the usage count has
445 * hit zero.
447 void kfree_skb(struct sk_buff *skb)
449 if (unlikely(!skb))
450 return;
451 if (likely(atomic_read(&skb->users) == 1))
452 smp_rmb();
453 else if (likely(!atomic_dec_and_test(&skb->users)))
454 return;
455 trace_kfree_skb(skb, __builtin_return_address(0));
456 __kfree_skb(skb);
458 EXPORT_SYMBOL(kfree_skb);
461 * consume_skb - free an skbuff
462 * @skb: buffer to free
464 * Drop a ref to the buffer and free it if the usage count has hit zero
465 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
466 * is being dropped after a failure and notes that
468 void consume_skb(struct sk_buff *skb)
470 if (unlikely(!skb))
471 return;
472 if (likely(atomic_read(&skb->users) == 1))
473 smp_rmb();
474 else if (likely(!atomic_dec_and_test(&skb->users)))
475 return;
476 __kfree_skb(skb);
478 EXPORT_SYMBOL(consume_skb);
481 * skb_recycle_check - check if skb can be reused for receive
482 * @skb: buffer
483 * @skb_size: minimum receive buffer size
485 * Checks that the skb passed in is not shared or cloned, and
486 * that it is linear and its head portion at least as large as
487 * skb_size so that it can be recycled as a receive buffer.
488 * If these conditions are met, this function does any necessary
489 * reference count dropping and cleans up the skbuff as if it
490 * just came from __alloc_skb().
492 int skb_recycle_check(struct sk_buff *skb, int skb_size)
494 struct skb_shared_info *shinfo;
496 if (irqs_disabled())
497 return 0;
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return 0;
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return 0;
506 if (skb_shared(skb) || skb_cloned(skb))
507 return 0;
509 skb_release_head_state(skb);
510 shinfo = skb_shinfo(skb);
511 atomic_set(&shinfo->dataref, 1);
512 shinfo->nr_frags = 0;
513 shinfo->gso_size = 0;
514 shinfo->gso_segs = 0;
515 shinfo->gso_type = 0;
516 shinfo->ip6_frag_id = 0;
517 shinfo->tx_flags.flags = 0;
518 skb_frag_list_init(skb);
519 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
521 memset(skb, 0, offsetof(struct sk_buff, tail));
522 skb->data = skb->head + NET_SKB_PAD;
523 skb_reset_tail_pointer(skb);
525 return 1;
527 EXPORT_SYMBOL(skb_recycle_check);
529 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
531 new->tstamp = old->tstamp;
532 new->dev = old->dev;
533 new->transport_header = old->transport_header;
534 new->network_header = old->network_header;
535 new->mac_header = old->mac_header;
536 skb_dst_set(new, dst_clone(skb_dst(old)));
537 #ifdef CONFIG_XFRM
538 new->sp = secpath_get(old->sp);
539 #endif
540 memcpy(new->cb, old->cb, sizeof(old->cb));
541 new->csum = old->csum;
542 new->local_df = old->local_df;
543 new->pkt_type = old->pkt_type;
544 new->ip_summed = old->ip_summed;
545 skb_copy_queue_mapping(new, old);
546 new->priority = old->priority;
547 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
548 new->ipvs_property = old->ipvs_property;
549 #endif
550 new->protocol = old->protocol;
551 new->mark = old->mark;
552 new->skb_iif = old->skb_iif;
553 __nf_copy(new, old);
554 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
555 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
556 new->nf_trace = old->nf_trace;
557 #endif
558 #ifdef CONFIG_NET_SCHED
559 new->tc_index = old->tc_index;
560 #ifdef CONFIG_NET_CLS_ACT
561 new->tc_verd = old->tc_verd;
562 #endif
563 #endif
564 new->vlan_tci = old->vlan_tci;
566 skb_copy_secmark(new, old);
570 * You should not add any new code to this function. Add it to
571 * __copy_skb_header above instead.
573 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
575 #define C(x) n->x = skb->x
577 n->next = n->prev = NULL;
578 n->sk = NULL;
579 __copy_skb_header(n, skb);
581 C(len);
582 C(data_len);
583 C(mac_len);
584 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
585 n->cloned = 1;
586 n->nohdr = 0;
587 n->destructor = NULL;
588 C(tail);
589 C(end);
590 C(head);
591 C(data);
592 C(truesize);
593 atomic_set(&n->users, 1);
595 atomic_inc(&(skb_shinfo(skb)->dataref));
596 skb->cloned = 1;
598 return n;
599 #undef C
603 * skb_morph - morph one skb into another
604 * @dst: the skb to receive the contents
605 * @src: the skb to supply the contents
607 * This is identical to skb_clone except that the target skb is
608 * supplied by the user.
610 * The target skb is returned upon exit.
612 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
614 skb_release_all(dst);
615 return __skb_clone(dst, src);
617 EXPORT_SYMBOL_GPL(skb_morph);
620 * skb_clone - duplicate an sk_buff
621 * @skb: buffer to clone
622 * @gfp_mask: allocation priority
624 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
625 * copies share the same packet data but not structure. The new
626 * buffer has a reference count of 1. If the allocation fails the
627 * function returns %NULL otherwise the new buffer is returned.
629 * If this function is called from an interrupt gfp_mask() must be
630 * %GFP_ATOMIC.
633 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
635 struct sk_buff *n;
637 n = skb + 1;
638 if (skb->fclone == SKB_FCLONE_ORIG &&
639 n->fclone == SKB_FCLONE_UNAVAILABLE) {
640 atomic_t *fclone_ref = (atomic_t *) (n + 1);
641 n->fclone = SKB_FCLONE_CLONE;
642 atomic_inc(fclone_ref);
643 } else {
644 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
645 if (!n)
646 return NULL;
648 kmemcheck_annotate_bitfield(n, flags1);
649 kmemcheck_annotate_bitfield(n, flags2);
650 n->fclone = SKB_FCLONE_UNAVAILABLE;
653 return __skb_clone(n, skb);
655 EXPORT_SYMBOL(skb_clone);
657 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
659 #ifndef NET_SKBUFF_DATA_USES_OFFSET
661 * Shift between the two data areas in bytes
663 unsigned long offset = new->data - old->data;
664 #endif
666 __copy_skb_header(new, old);
668 #ifndef NET_SKBUFF_DATA_USES_OFFSET
669 /* {transport,network,mac}_header are relative to skb->head */
670 new->transport_header += offset;
671 new->network_header += offset;
672 if (skb_mac_header_was_set(new))
673 new->mac_header += offset;
674 #endif
675 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
676 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
677 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
681 * skb_copy - create private copy of an sk_buff
682 * @skb: buffer to copy
683 * @gfp_mask: allocation priority
685 * Make a copy of both an &sk_buff and its data. This is used when the
686 * caller wishes to modify the data and needs a private copy of the
687 * data to alter. Returns %NULL on failure or the pointer to the buffer
688 * on success. The returned buffer has a reference count of 1.
690 * As by-product this function converts non-linear &sk_buff to linear
691 * one, so that &sk_buff becomes completely private and caller is allowed
692 * to modify all the data of returned buffer. This means that this
693 * function is not recommended for use in circumstances when only
694 * header is going to be modified. Use pskb_copy() instead.
697 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
699 int headerlen = skb->data - skb->head;
701 * Allocate the copy buffer
703 struct sk_buff *n;
704 #ifdef NET_SKBUFF_DATA_USES_OFFSET
705 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
706 #else
707 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
708 #endif
709 if (!n)
710 return NULL;
712 /* Set the data pointer */
713 skb_reserve(n, headerlen);
714 /* Set the tail pointer and length */
715 skb_put(n, skb->len);
717 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
718 BUG();
720 copy_skb_header(n, skb);
721 return n;
723 EXPORT_SYMBOL(skb_copy);
726 * pskb_copy - create copy of an sk_buff with private head.
727 * @skb: buffer to copy
728 * @gfp_mask: allocation priority
730 * Make a copy of both an &sk_buff and part of its data, located
731 * in header. Fragmented data remain shared. This is used when
732 * the caller wishes to modify only header of &sk_buff and needs
733 * private copy of the header to alter. Returns %NULL on failure
734 * or the pointer to the buffer on success.
735 * The returned buffer has a reference count of 1.
738 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
741 * Allocate the copy buffer
743 struct sk_buff *n;
744 #ifdef NET_SKBUFF_DATA_USES_OFFSET
745 n = alloc_skb(skb->end, gfp_mask);
746 #else
747 n = alloc_skb(skb->end - skb->head, gfp_mask);
748 #endif
749 if (!n)
750 goto out;
752 /* Set the data pointer */
753 skb_reserve(n, skb->data - skb->head);
754 /* Set the tail pointer and length */
755 skb_put(n, skb_headlen(skb));
756 /* Copy the bytes */
757 skb_copy_from_linear_data(skb, n->data, n->len);
759 n->truesize += skb->data_len;
760 n->data_len = skb->data_len;
761 n->len = skb->len;
763 if (skb_shinfo(skb)->nr_frags) {
764 int i;
766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
767 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
768 get_page(skb_shinfo(n)->frags[i].page);
770 skb_shinfo(n)->nr_frags = i;
773 if (skb_has_frags(skb)) {
774 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
775 skb_clone_fraglist(n);
778 copy_skb_header(n, skb);
779 out:
780 return n;
782 EXPORT_SYMBOL(pskb_copy);
785 * pskb_expand_head - reallocate header of &sk_buff
786 * @skb: buffer to reallocate
787 * @nhead: room to add at head
788 * @ntail: room to add at tail
789 * @gfp_mask: allocation priority
791 * Expands (or creates identical copy, if &nhead and &ntail are zero)
792 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
793 * reference count of 1. Returns zero in the case of success or error,
794 * if expansion failed. In the last case, &sk_buff is not changed.
796 * All the pointers pointing into skb header may change and must be
797 * reloaded after call to this function.
800 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
801 gfp_t gfp_mask)
803 int i;
804 u8 *data;
805 #ifdef NET_SKBUFF_DATA_USES_OFFSET
806 int size = nhead + skb->end + ntail;
807 #else
808 int size = nhead + (skb->end - skb->head) + ntail;
809 #endif
810 long off;
812 BUG_ON(nhead < 0);
814 if (skb_shared(skb))
815 BUG();
817 size = SKB_DATA_ALIGN(size);
819 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
820 if (!data)
821 goto nodata;
823 /* Copy only real data... and, alas, header. This should be
824 * optimized for the cases when header is void. */
825 #ifdef NET_SKBUFF_DATA_USES_OFFSET
826 memcpy(data + nhead, skb->head, skb->tail);
827 #else
828 memcpy(data + nhead, skb->head, skb->tail - skb->head);
829 #endif
830 memcpy(data + size, skb_end_pointer(skb),
831 sizeof(struct skb_shared_info));
833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
834 get_page(skb_shinfo(skb)->frags[i].page);
836 if (skb_has_frags(skb))
837 skb_clone_fraglist(skb);
839 skb_release_data(skb);
841 off = (data + nhead) - skb->head;
843 skb->head = data;
844 skb->data += off;
845 #ifdef NET_SKBUFF_DATA_USES_OFFSET
846 skb->end = size;
847 off = nhead;
848 #else
849 skb->end = skb->head + size;
850 #endif
851 /* {transport,network,mac}_header and tail are relative to skb->head */
852 skb->tail += off;
853 skb->transport_header += off;
854 skb->network_header += off;
855 if (skb_mac_header_was_set(skb))
856 skb->mac_header += off;
857 skb->csum_start += nhead;
858 skb->cloned = 0;
859 skb->hdr_len = 0;
860 skb->nohdr = 0;
861 atomic_set(&skb_shinfo(skb)->dataref, 1);
862 return 0;
864 nodata:
865 return -ENOMEM;
867 EXPORT_SYMBOL(pskb_expand_head);
869 /* Make private copy of skb with writable head and some headroom */
871 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
873 struct sk_buff *skb2;
874 int delta = headroom - skb_headroom(skb);
876 if (delta <= 0)
877 skb2 = pskb_copy(skb, GFP_ATOMIC);
878 else {
879 skb2 = skb_clone(skb, GFP_ATOMIC);
880 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
881 GFP_ATOMIC)) {
882 kfree_skb(skb2);
883 skb2 = NULL;
886 return skb2;
888 EXPORT_SYMBOL(skb_realloc_headroom);
891 * skb_copy_expand - copy and expand sk_buff
892 * @skb: buffer to copy
893 * @newheadroom: new free bytes at head
894 * @newtailroom: new free bytes at tail
895 * @gfp_mask: allocation priority
897 * Make a copy of both an &sk_buff and its data and while doing so
898 * allocate additional space.
900 * This is used when the caller wishes to modify the data and needs a
901 * private copy of the data to alter as well as more space for new fields.
902 * Returns %NULL on failure or the pointer to the buffer
903 * on success. The returned buffer has a reference count of 1.
905 * You must pass %GFP_ATOMIC as the allocation priority if this function
906 * is called from an interrupt.
908 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
909 int newheadroom, int newtailroom,
910 gfp_t gfp_mask)
913 * Allocate the copy buffer
915 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
916 gfp_mask);
917 int oldheadroom = skb_headroom(skb);
918 int head_copy_len, head_copy_off;
919 int off;
921 if (!n)
922 return NULL;
924 skb_reserve(n, newheadroom);
926 /* Set the tail pointer and length */
927 skb_put(n, skb->len);
929 head_copy_len = oldheadroom;
930 head_copy_off = 0;
931 if (newheadroom <= head_copy_len)
932 head_copy_len = newheadroom;
933 else
934 head_copy_off = newheadroom - head_copy_len;
936 /* Copy the linear header and data. */
937 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
938 skb->len + head_copy_len))
939 BUG();
941 copy_skb_header(n, skb);
943 off = newheadroom - oldheadroom;
944 n->csum_start += off;
945 #ifdef NET_SKBUFF_DATA_USES_OFFSET
946 n->transport_header += off;
947 n->network_header += off;
948 if (skb_mac_header_was_set(skb))
949 n->mac_header += off;
950 #endif
952 return n;
954 EXPORT_SYMBOL(skb_copy_expand);
957 * skb_pad - zero pad the tail of an skb
958 * @skb: buffer to pad
959 * @pad: space to pad
961 * Ensure that a buffer is followed by a padding area that is zero
962 * filled. Used by network drivers which may DMA or transfer data
963 * beyond the buffer end onto the wire.
965 * May return error in out of memory cases. The skb is freed on error.
968 int skb_pad(struct sk_buff *skb, int pad)
970 int err;
971 int ntail;
973 /* If the skbuff is non linear tailroom is always zero.. */
974 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
975 memset(skb->data+skb->len, 0, pad);
976 return 0;
979 ntail = skb->data_len + pad - (skb->end - skb->tail);
980 if (likely(skb_cloned(skb) || ntail > 0)) {
981 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
982 if (unlikely(err))
983 goto free_skb;
986 /* FIXME: The use of this function with non-linear skb's really needs
987 * to be audited.
989 err = skb_linearize(skb);
990 if (unlikely(err))
991 goto free_skb;
993 memset(skb->data + skb->len, 0, pad);
994 return 0;
996 free_skb:
997 kfree_skb(skb);
998 return err;
1000 EXPORT_SYMBOL(skb_pad);
1003 * skb_put - add data to a buffer
1004 * @skb: buffer to use
1005 * @len: amount of data to add
1007 * This function extends the used data area of the buffer. If this would
1008 * exceed the total buffer size the kernel will panic. A pointer to the
1009 * first byte of the extra data is returned.
1011 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1013 unsigned char *tmp = skb_tail_pointer(skb);
1014 SKB_LINEAR_ASSERT(skb);
1015 skb->tail += len;
1016 skb->len += len;
1017 if (unlikely(skb->tail > skb->end))
1018 skb_over_panic(skb, len, __builtin_return_address(0));
1019 return tmp;
1021 EXPORT_SYMBOL(skb_put);
1024 * skb_push - add data to the start of a buffer
1025 * @skb: buffer to use
1026 * @len: amount of data to add
1028 * This function extends the used data area of the buffer at the buffer
1029 * start. If this would exceed the total buffer headroom the kernel will
1030 * panic. A pointer to the first byte of the extra data is returned.
1032 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1034 skb->data -= len;
1035 skb->len += len;
1036 if (unlikely(skb->data<skb->head))
1037 skb_under_panic(skb, len, __builtin_return_address(0));
1038 return skb->data;
1040 EXPORT_SYMBOL(skb_push);
1043 * skb_pull - remove data from the start of a buffer
1044 * @skb: buffer to use
1045 * @len: amount of data to remove
1047 * This function removes data from the start of a buffer, returning
1048 * the memory to the headroom. A pointer to the next data in the buffer
1049 * is returned. Once the data has been pulled future pushes will overwrite
1050 * the old data.
1052 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1054 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1056 EXPORT_SYMBOL(skb_pull);
1059 * skb_trim - remove end from a buffer
1060 * @skb: buffer to alter
1061 * @len: new length
1063 * Cut the length of a buffer down by removing data from the tail. If
1064 * the buffer is already under the length specified it is not modified.
1065 * The skb must be linear.
1067 void skb_trim(struct sk_buff *skb, unsigned int len)
1069 if (skb->len > len)
1070 __skb_trim(skb, len);
1072 EXPORT_SYMBOL(skb_trim);
1074 /* Trims skb to length len. It can change skb pointers.
1077 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1079 struct sk_buff **fragp;
1080 struct sk_buff *frag;
1081 int offset = skb_headlen(skb);
1082 int nfrags = skb_shinfo(skb)->nr_frags;
1083 int i;
1084 int err;
1086 if (skb_cloned(skb) &&
1087 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1088 return err;
1090 i = 0;
1091 if (offset >= len)
1092 goto drop_pages;
1094 for (; i < nfrags; i++) {
1095 int end = offset + skb_shinfo(skb)->frags[i].size;
1097 if (end < len) {
1098 offset = end;
1099 continue;
1102 skb_shinfo(skb)->frags[i++].size = len - offset;
1104 drop_pages:
1105 skb_shinfo(skb)->nr_frags = i;
1107 for (; i < nfrags; i++)
1108 put_page(skb_shinfo(skb)->frags[i].page);
1110 if (skb_has_frags(skb))
1111 skb_drop_fraglist(skb);
1112 goto done;
1115 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1116 fragp = &frag->next) {
1117 int end = offset + frag->len;
1119 if (skb_shared(frag)) {
1120 struct sk_buff *nfrag;
1122 nfrag = skb_clone(frag, GFP_ATOMIC);
1123 if (unlikely(!nfrag))
1124 return -ENOMEM;
1126 nfrag->next = frag->next;
1127 kfree_skb(frag);
1128 frag = nfrag;
1129 *fragp = frag;
1132 if (end < len) {
1133 offset = end;
1134 continue;
1137 if (end > len &&
1138 unlikely((err = pskb_trim(frag, len - offset))))
1139 return err;
1141 if (frag->next)
1142 skb_drop_list(&frag->next);
1143 break;
1146 done:
1147 if (len > skb_headlen(skb)) {
1148 skb->data_len -= skb->len - len;
1149 skb->len = len;
1150 } else {
1151 skb->len = len;
1152 skb->data_len = 0;
1153 skb_set_tail_pointer(skb, len);
1156 return 0;
1158 EXPORT_SYMBOL(___pskb_trim);
1161 * __pskb_pull_tail - advance tail of skb header
1162 * @skb: buffer to reallocate
1163 * @delta: number of bytes to advance tail
1165 * The function makes a sense only on a fragmented &sk_buff,
1166 * it expands header moving its tail forward and copying necessary
1167 * data from fragmented part.
1169 * &sk_buff MUST have reference count of 1.
1171 * Returns %NULL (and &sk_buff does not change) if pull failed
1172 * or value of new tail of skb in the case of success.
1174 * All the pointers pointing into skb header may change and must be
1175 * reloaded after call to this function.
1178 /* Moves tail of skb head forward, copying data from fragmented part,
1179 * when it is necessary.
1180 * 1. It may fail due to malloc failure.
1181 * 2. It may change skb pointers.
1183 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1185 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1187 /* If skb has not enough free space at tail, get new one
1188 * plus 128 bytes for future expansions. If we have enough
1189 * room at tail, reallocate without expansion only if skb is cloned.
1191 int i, k, eat = (skb->tail + delta) - skb->end;
1193 if (eat > 0 || skb_cloned(skb)) {
1194 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1195 GFP_ATOMIC))
1196 return NULL;
1199 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1200 BUG();
1202 /* Optimization: no fragments, no reasons to preestimate
1203 * size of pulled pages. Superb.
1205 if (!skb_has_frags(skb))
1206 goto pull_pages;
1208 /* Estimate size of pulled pages. */
1209 eat = delta;
1210 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1211 if (skb_shinfo(skb)->frags[i].size >= eat)
1212 goto pull_pages;
1213 eat -= skb_shinfo(skb)->frags[i].size;
1216 /* If we need update frag list, we are in troubles.
1217 * Certainly, it possible to add an offset to skb data,
1218 * but taking into account that pulling is expected to
1219 * be very rare operation, it is worth to fight against
1220 * further bloating skb head and crucify ourselves here instead.
1221 * Pure masohism, indeed. 8)8)
1223 if (eat) {
1224 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1225 struct sk_buff *clone = NULL;
1226 struct sk_buff *insp = NULL;
1228 do {
1229 BUG_ON(!list);
1231 if (list->len <= eat) {
1232 /* Eaten as whole. */
1233 eat -= list->len;
1234 list = list->next;
1235 insp = list;
1236 } else {
1237 /* Eaten partially. */
1239 if (skb_shared(list)) {
1240 /* Sucks! We need to fork list. :-( */
1241 clone = skb_clone(list, GFP_ATOMIC);
1242 if (!clone)
1243 return NULL;
1244 insp = list->next;
1245 list = clone;
1246 } else {
1247 /* This may be pulled without
1248 * problems. */
1249 insp = list;
1251 if (!pskb_pull(list, eat)) {
1252 kfree_skb(clone);
1253 return NULL;
1255 break;
1257 } while (eat);
1259 /* Free pulled out fragments. */
1260 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1261 skb_shinfo(skb)->frag_list = list->next;
1262 kfree_skb(list);
1264 /* And insert new clone at head. */
1265 if (clone) {
1266 clone->next = list;
1267 skb_shinfo(skb)->frag_list = clone;
1270 /* Success! Now we may commit changes to skb data. */
1272 pull_pages:
1273 eat = delta;
1274 k = 0;
1275 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1276 if (skb_shinfo(skb)->frags[i].size <= eat) {
1277 put_page(skb_shinfo(skb)->frags[i].page);
1278 eat -= skb_shinfo(skb)->frags[i].size;
1279 } else {
1280 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1281 if (eat) {
1282 skb_shinfo(skb)->frags[k].page_offset += eat;
1283 skb_shinfo(skb)->frags[k].size -= eat;
1284 eat = 0;
1286 k++;
1289 skb_shinfo(skb)->nr_frags = k;
1291 skb->tail += delta;
1292 skb->data_len -= delta;
1294 return skb_tail_pointer(skb);
1296 EXPORT_SYMBOL(__pskb_pull_tail);
1298 /* Copy some data bits from skb to kernel buffer. */
1300 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1302 int start = skb_headlen(skb);
1303 struct sk_buff *frag_iter;
1304 int i, copy;
1306 if (offset > (int)skb->len - len)
1307 goto fault;
1309 /* Copy header. */
1310 if ((copy = start - offset) > 0) {
1311 if (copy > len)
1312 copy = len;
1313 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1314 if ((len -= copy) == 0)
1315 return 0;
1316 offset += copy;
1317 to += copy;
1320 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1321 int end;
1323 WARN_ON(start > offset + len);
1325 end = start + skb_shinfo(skb)->frags[i].size;
1326 if ((copy = end - offset) > 0) {
1327 u8 *vaddr;
1329 if (copy > len)
1330 copy = len;
1332 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1333 memcpy(to,
1334 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1335 offset - start, copy);
1336 kunmap_skb_frag(vaddr);
1338 if ((len -= copy) == 0)
1339 return 0;
1340 offset += copy;
1341 to += copy;
1343 start = end;
1346 skb_walk_frags(skb, frag_iter) {
1347 int end;
1349 WARN_ON(start > offset + len);
1351 end = start + frag_iter->len;
1352 if ((copy = end - offset) > 0) {
1353 if (copy > len)
1354 copy = len;
1355 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1356 goto fault;
1357 if ((len -= copy) == 0)
1358 return 0;
1359 offset += copy;
1360 to += copy;
1362 start = end;
1364 if (!len)
1365 return 0;
1367 fault:
1368 return -EFAULT;
1370 EXPORT_SYMBOL(skb_copy_bits);
1373 * Callback from splice_to_pipe(), if we need to release some pages
1374 * at the end of the spd in case we error'ed out in filling the pipe.
1376 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1378 put_page(spd->pages[i]);
1381 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1382 unsigned int *offset,
1383 struct sk_buff *skb, struct sock *sk)
1385 struct page *p = sk->sk_sndmsg_page;
1386 unsigned int off;
1388 if (!p) {
1389 new_page:
1390 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1391 if (!p)
1392 return NULL;
1394 off = sk->sk_sndmsg_off = 0;
1395 /* hold one ref to this page until it's full */
1396 } else {
1397 unsigned int mlen;
1399 off = sk->sk_sndmsg_off;
1400 mlen = PAGE_SIZE - off;
1401 if (mlen < 64 && mlen < *len) {
1402 put_page(p);
1403 goto new_page;
1406 *len = min_t(unsigned int, *len, mlen);
1409 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1410 sk->sk_sndmsg_off += *len;
1411 *offset = off;
1412 get_page(p);
1414 return p;
1418 * Fill page/offset/length into spd, if it can hold more pages.
1420 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1421 struct pipe_inode_info *pipe, struct page *page,
1422 unsigned int *len, unsigned int offset,
1423 struct sk_buff *skb, int linear,
1424 struct sock *sk)
1426 if (unlikely(spd->nr_pages == pipe->buffers))
1427 return 1;
1429 if (linear) {
1430 page = linear_to_page(page, len, &offset, skb, sk);
1431 if (!page)
1432 return 1;
1433 } else
1434 get_page(page);
1436 spd->pages[spd->nr_pages] = page;
1437 spd->partial[spd->nr_pages].len = *len;
1438 spd->partial[spd->nr_pages].offset = offset;
1439 spd->nr_pages++;
1441 return 0;
1444 static inline void __segment_seek(struct page **page, unsigned int *poff,
1445 unsigned int *plen, unsigned int off)
1447 unsigned long n;
1449 *poff += off;
1450 n = *poff / PAGE_SIZE;
1451 if (n)
1452 *page = nth_page(*page, n);
1454 *poff = *poff % PAGE_SIZE;
1455 *plen -= off;
1458 static inline int __splice_segment(struct page *page, unsigned int poff,
1459 unsigned int plen, unsigned int *off,
1460 unsigned int *len, struct sk_buff *skb,
1461 struct splice_pipe_desc *spd, int linear,
1462 struct sock *sk,
1463 struct pipe_inode_info *pipe)
1465 if (!*len)
1466 return 1;
1468 /* skip this segment if already processed */
1469 if (*off >= plen) {
1470 *off -= plen;
1471 return 0;
1474 /* ignore any bits we already processed */
1475 if (*off) {
1476 __segment_seek(&page, &poff, &plen, *off);
1477 *off = 0;
1480 do {
1481 unsigned int flen = min(*len, plen);
1483 /* the linear region may spread across several pages */
1484 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1486 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1487 return 1;
1489 __segment_seek(&page, &poff, &plen, flen);
1490 *len -= flen;
1492 } while (*len && plen);
1494 return 0;
1498 * Map linear and fragment data from the skb to spd. It reports failure if the
1499 * pipe is full or if we already spliced the requested length.
1501 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1502 unsigned int *offset, unsigned int *len,
1503 struct splice_pipe_desc *spd, struct sock *sk)
1505 int seg;
1508 * map the linear part
1510 if (__splice_segment(virt_to_page(skb->data),
1511 (unsigned long) skb->data & (PAGE_SIZE - 1),
1512 skb_headlen(skb),
1513 offset, len, skb, spd, 1, sk, pipe))
1514 return 1;
1517 * then map the fragments
1519 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1520 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1522 if (__splice_segment(f->page, f->page_offset, f->size,
1523 offset, len, skb, spd, 0, sk, pipe))
1524 return 1;
1527 return 0;
1531 * Map data from the skb to a pipe. Should handle both the linear part,
1532 * the fragments, and the frag list. It does NOT handle frag lists within
1533 * the frag list, if such a thing exists. We'd probably need to recurse to
1534 * handle that cleanly.
1536 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1537 struct pipe_inode_info *pipe, unsigned int tlen,
1538 unsigned int flags)
1540 struct partial_page partial[PIPE_DEF_BUFFERS];
1541 struct page *pages[PIPE_DEF_BUFFERS];
1542 struct splice_pipe_desc spd = {
1543 .pages = pages,
1544 .partial = partial,
1545 .flags = flags,
1546 .ops = &sock_pipe_buf_ops,
1547 .spd_release = sock_spd_release,
1549 struct sk_buff *frag_iter;
1550 struct sock *sk = skb->sk;
1551 int ret = 0;
1553 if (splice_grow_spd(pipe, &spd))
1554 return -ENOMEM;
1557 * __skb_splice_bits() only fails if the output has no room left,
1558 * so no point in going over the frag_list for the error case.
1560 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1561 goto done;
1562 else if (!tlen)
1563 goto done;
1566 * now see if we have a frag_list to map
1568 skb_walk_frags(skb, frag_iter) {
1569 if (!tlen)
1570 break;
1571 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1572 break;
1575 done:
1576 if (spd.nr_pages) {
1578 * Drop the socket lock, otherwise we have reverse
1579 * locking dependencies between sk_lock and i_mutex
1580 * here as compared to sendfile(). We enter here
1581 * with the socket lock held, and splice_to_pipe() will
1582 * grab the pipe inode lock. For sendfile() emulation,
1583 * we call into ->sendpage() with the i_mutex lock held
1584 * and networking will grab the socket lock.
1586 release_sock(sk);
1587 ret = splice_to_pipe(pipe, &spd);
1588 lock_sock(sk);
1591 splice_shrink_spd(pipe, &spd);
1592 return ret;
1596 * skb_store_bits - store bits from kernel buffer to skb
1597 * @skb: destination buffer
1598 * @offset: offset in destination
1599 * @from: source buffer
1600 * @len: number of bytes to copy
1602 * Copy the specified number of bytes from the source buffer to the
1603 * destination skb. This function handles all the messy bits of
1604 * traversing fragment lists and such.
1607 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1609 int start = skb_headlen(skb);
1610 struct sk_buff *frag_iter;
1611 int i, copy;
1613 if (offset > (int)skb->len - len)
1614 goto fault;
1616 if ((copy = start - offset) > 0) {
1617 if (copy > len)
1618 copy = len;
1619 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1620 if ((len -= copy) == 0)
1621 return 0;
1622 offset += copy;
1623 from += copy;
1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1628 int end;
1630 WARN_ON(start > offset + len);
1632 end = start + frag->size;
1633 if ((copy = end - offset) > 0) {
1634 u8 *vaddr;
1636 if (copy > len)
1637 copy = len;
1639 vaddr = kmap_skb_frag(frag);
1640 memcpy(vaddr + frag->page_offset + offset - start,
1641 from, copy);
1642 kunmap_skb_frag(vaddr);
1644 if ((len -= copy) == 0)
1645 return 0;
1646 offset += copy;
1647 from += copy;
1649 start = end;
1652 skb_walk_frags(skb, frag_iter) {
1653 int end;
1655 WARN_ON(start > offset + len);
1657 end = start + frag_iter->len;
1658 if ((copy = end - offset) > 0) {
1659 if (copy > len)
1660 copy = len;
1661 if (skb_store_bits(frag_iter, offset - start,
1662 from, copy))
1663 goto fault;
1664 if ((len -= copy) == 0)
1665 return 0;
1666 offset += copy;
1667 from += copy;
1669 start = end;
1671 if (!len)
1672 return 0;
1674 fault:
1675 return -EFAULT;
1677 EXPORT_SYMBOL(skb_store_bits);
1679 /* Checksum skb data. */
1681 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1682 int len, __wsum csum)
1684 int start = skb_headlen(skb);
1685 int i, copy = start - offset;
1686 struct sk_buff *frag_iter;
1687 int pos = 0;
1689 /* Checksum header. */
1690 if (copy > 0) {
1691 if (copy > len)
1692 copy = len;
1693 csum = csum_partial(skb->data + offset, copy, csum);
1694 if ((len -= copy) == 0)
1695 return csum;
1696 offset += copy;
1697 pos = copy;
1700 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1701 int end;
1703 WARN_ON(start > offset + len);
1705 end = start + skb_shinfo(skb)->frags[i].size;
1706 if ((copy = end - offset) > 0) {
1707 __wsum csum2;
1708 u8 *vaddr;
1709 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1711 if (copy > len)
1712 copy = len;
1713 vaddr = kmap_skb_frag(frag);
1714 csum2 = csum_partial(vaddr + frag->page_offset +
1715 offset - start, copy, 0);
1716 kunmap_skb_frag(vaddr);
1717 csum = csum_block_add(csum, csum2, pos);
1718 if (!(len -= copy))
1719 return csum;
1720 offset += copy;
1721 pos += copy;
1723 start = end;
1726 skb_walk_frags(skb, frag_iter) {
1727 int end;
1729 WARN_ON(start > offset + len);
1731 end = start + frag_iter->len;
1732 if ((copy = end - offset) > 0) {
1733 __wsum csum2;
1734 if (copy > len)
1735 copy = len;
1736 csum2 = skb_checksum(frag_iter, offset - start,
1737 copy, 0);
1738 csum = csum_block_add(csum, csum2, pos);
1739 if ((len -= copy) == 0)
1740 return csum;
1741 offset += copy;
1742 pos += copy;
1744 start = end;
1746 BUG_ON(len);
1748 return csum;
1750 EXPORT_SYMBOL(skb_checksum);
1752 /* Both of above in one bottle. */
1754 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1755 u8 *to, int len, __wsum csum)
1757 int start = skb_headlen(skb);
1758 int i, copy = start - offset;
1759 struct sk_buff *frag_iter;
1760 int pos = 0;
1762 /* Copy header. */
1763 if (copy > 0) {
1764 if (copy > len)
1765 copy = len;
1766 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1767 copy, csum);
1768 if ((len -= copy) == 0)
1769 return csum;
1770 offset += copy;
1771 to += copy;
1772 pos = copy;
1775 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1776 int end;
1778 WARN_ON(start > offset + len);
1780 end = start + skb_shinfo(skb)->frags[i].size;
1781 if ((copy = end - offset) > 0) {
1782 __wsum csum2;
1783 u8 *vaddr;
1784 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1786 if (copy > len)
1787 copy = len;
1788 vaddr = kmap_skb_frag(frag);
1789 csum2 = csum_partial_copy_nocheck(vaddr +
1790 frag->page_offset +
1791 offset - start, to,
1792 copy, 0);
1793 kunmap_skb_frag(vaddr);
1794 csum = csum_block_add(csum, csum2, pos);
1795 if (!(len -= copy))
1796 return csum;
1797 offset += copy;
1798 to += copy;
1799 pos += copy;
1801 start = end;
1804 skb_walk_frags(skb, frag_iter) {
1805 __wsum csum2;
1806 int end;
1808 WARN_ON(start > offset + len);
1810 end = start + frag_iter->len;
1811 if ((copy = end - offset) > 0) {
1812 if (copy > len)
1813 copy = len;
1814 csum2 = skb_copy_and_csum_bits(frag_iter,
1815 offset - start,
1816 to, copy, 0);
1817 csum = csum_block_add(csum, csum2, pos);
1818 if ((len -= copy) == 0)
1819 return csum;
1820 offset += copy;
1821 to += copy;
1822 pos += copy;
1824 start = end;
1826 BUG_ON(len);
1827 return csum;
1829 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1831 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1833 __wsum csum;
1834 long csstart;
1836 if (skb->ip_summed == CHECKSUM_PARTIAL)
1837 csstart = skb->csum_start - skb_headroom(skb);
1838 else
1839 csstart = skb_headlen(skb);
1841 BUG_ON(csstart > skb_headlen(skb));
1843 skb_copy_from_linear_data(skb, to, csstart);
1845 csum = 0;
1846 if (csstart != skb->len)
1847 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1848 skb->len - csstart, 0);
1850 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1851 long csstuff = csstart + skb->csum_offset;
1853 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1856 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1859 * skb_dequeue - remove from the head of the queue
1860 * @list: list to dequeue from
1862 * Remove the head of the list. The list lock is taken so the function
1863 * may be used safely with other locking list functions. The head item is
1864 * returned or %NULL if the list is empty.
1867 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1869 unsigned long flags;
1870 struct sk_buff *result;
1872 spin_lock_irqsave(&list->lock, flags);
1873 result = __skb_dequeue(list);
1874 spin_unlock_irqrestore(&list->lock, flags);
1875 return result;
1877 EXPORT_SYMBOL(skb_dequeue);
1880 * skb_dequeue_tail - remove from the tail of the queue
1881 * @list: list to dequeue from
1883 * Remove the tail of the list. The list lock is taken so the function
1884 * may be used safely with other locking list functions. The tail item is
1885 * returned or %NULL if the list is empty.
1887 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1889 unsigned long flags;
1890 struct sk_buff *result;
1892 spin_lock_irqsave(&list->lock, flags);
1893 result = __skb_dequeue_tail(list);
1894 spin_unlock_irqrestore(&list->lock, flags);
1895 return result;
1897 EXPORT_SYMBOL(skb_dequeue_tail);
1900 * skb_queue_purge - empty a list
1901 * @list: list to empty
1903 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1904 * the list and one reference dropped. This function takes the list
1905 * lock and is atomic with respect to other list locking functions.
1907 void skb_queue_purge(struct sk_buff_head *list)
1909 struct sk_buff *skb;
1910 while ((skb = skb_dequeue(list)) != NULL)
1911 kfree_skb(skb);
1913 EXPORT_SYMBOL(skb_queue_purge);
1916 * skb_queue_head - queue a buffer at the list head
1917 * @list: list to use
1918 * @newsk: buffer to queue
1920 * Queue a buffer at the start of the list. This function takes the
1921 * list lock and can be used safely with other locking &sk_buff functions
1922 * safely.
1924 * A buffer cannot be placed on two lists at the same time.
1926 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1928 unsigned long flags;
1930 spin_lock_irqsave(&list->lock, flags);
1931 __skb_queue_head(list, newsk);
1932 spin_unlock_irqrestore(&list->lock, flags);
1934 EXPORT_SYMBOL(skb_queue_head);
1937 * skb_queue_tail - queue a buffer at the list tail
1938 * @list: list to use
1939 * @newsk: buffer to queue
1941 * Queue a buffer at the tail of the list. This function takes the
1942 * list lock and can be used safely with other locking &sk_buff functions
1943 * safely.
1945 * A buffer cannot be placed on two lists at the same time.
1947 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1949 unsigned long flags;
1951 spin_lock_irqsave(&list->lock, flags);
1952 __skb_queue_tail(list, newsk);
1953 spin_unlock_irqrestore(&list->lock, flags);
1955 EXPORT_SYMBOL(skb_queue_tail);
1958 * skb_unlink - remove a buffer from a list
1959 * @skb: buffer to remove
1960 * @list: list to use
1962 * Remove a packet from a list. The list locks are taken and this
1963 * function is atomic with respect to other list locked calls
1965 * You must know what list the SKB is on.
1967 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1969 unsigned long flags;
1971 spin_lock_irqsave(&list->lock, flags);
1972 __skb_unlink(skb, list);
1973 spin_unlock_irqrestore(&list->lock, flags);
1975 EXPORT_SYMBOL(skb_unlink);
1978 * skb_append - append a buffer
1979 * @old: buffer to insert after
1980 * @newsk: buffer to insert
1981 * @list: list to use
1983 * Place a packet after a given packet in a list. The list locks are taken
1984 * and this function is atomic with respect to other list locked calls.
1985 * A buffer cannot be placed on two lists at the same time.
1987 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1989 unsigned long flags;
1991 spin_lock_irqsave(&list->lock, flags);
1992 __skb_queue_after(list, old, newsk);
1993 spin_unlock_irqrestore(&list->lock, flags);
1995 EXPORT_SYMBOL(skb_append);
1998 * skb_insert - insert a buffer
1999 * @old: buffer to insert before
2000 * @newsk: buffer to insert
2001 * @list: list to use
2003 * Place a packet before a given packet in a list. The list locks are
2004 * taken and this function is atomic with respect to other list locked
2005 * calls.
2007 * A buffer cannot be placed on two lists at the same time.
2009 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2011 unsigned long flags;
2013 spin_lock_irqsave(&list->lock, flags);
2014 __skb_insert(newsk, old->prev, old, list);
2015 spin_unlock_irqrestore(&list->lock, flags);
2017 EXPORT_SYMBOL(skb_insert);
2019 static inline void skb_split_inside_header(struct sk_buff *skb,
2020 struct sk_buff* skb1,
2021 const u32 len, const int pos)
2023 int i;
2025 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2026 pos - len);
2027 /* And move data appendix as is. */
2028 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2029 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2031 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2032 skb_shinfo(skb)->nr_frags = 0;
2033 skb1->data_len = skb->data_len;
2034 skb1->len += skb1->data_len;
2035 skb->data_len = 0;
2036 skb->len = len;
2037 skb_set_tail_pointer(skb, len);
2040 static inline void skb_split_no_header(struct sk_buff *skb,
2041 struct sk_buff* skb1,
2042 const u32 len, int pos)
2044 int i, k = 0;
2045 const int nfrags = skb_shinfo(skb)->nr_frags;
2047 skb_shinfo(skb)->nr_frags = 0;
2048 skb1->len = skb1->data_len = skb->len - len;
2049 skb->len = len;
2050 skb->data_len = len - pos;
2052 for (i = 0; i < nfrags; i++) {
2053 int size = skb_shinfo(skb)->frags[i].size;
2055 if (pos + size > len) {
2056 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2058 if (pos < len) {
2059 /* Split frag.
2060 * We have two variants in this case:
2061 * 1. Move all the frag to the second
2062 * part, if it is possible. F.e.
2063 * this approach is mandatory for TUX,
2064 * where splitting is expensive.
2065 * 2. Split is accurately. We make this.
2067 get_page(skb_shinfo(skb)->frags[i].page);
2068 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2069 skb_shinfo(skb1)->frags[0].size -= len - pos;
2070 skb_shinfo(skb)->frags[i].size = len - pos;
2071 skb_shinfo(skb)->nr_frags++;
2073 k++;
2074 } else
2075 skb_shinfo(skb)->nr_frags++;
2076 pos += size;
2078 skb_shinfo(skb1)->nr_frags = k;
2082 * skb_split - Split fragmented skb to two parts at length len.
2083 * @skb: the buffer to split
2084 * @skb1: the buffer to receive the second part
2085 * @len: new length for skb
2087 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2089 int pos = skb_headlen(skb);
2091 if (len < pos) /* Split line is inside header. */
2092 skb_split_inside_header(skb, skb1, len, pos);
2093 else /* Second chunk has no header, nothing to copy. */
2094 skb_split_no_header(skb, skb1, len, pos);
2096 EXPORT_SYMBOL(skb_split);
2098 /* Shifting from/to a cloned skb is a no-go.
2100 * Caller cannot keep skb_shinfo related pointers past calling here!
2102 static int skb_prepare_for_shift(struct sk_buff *skb)
2104 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2108 * skb_shift - Shifts paged data partially from skb to another
2109 * @tgt: buffer into which tail data gets added
2110 * @skb: buffer from which the paged data comes from
2111 * @shiftlen: shift up to this many bytes
2113 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2114 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2115 * It's up to caller to free skb if everything was shifted.
2117 * If @tgt runs out of frags, the whole operation is aborted.
2119 * Skb cannot include anything else but paged data while tgt is allowed
2120 * to have non-paged data as well.
2122 * TODO: full sized shift could be optimized but that would need
2123 * specialized skb free'er to handle frags without up-to-date nr_frags.
2125 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2127 int from, to, merge, todo;
2128 struct skb_frag_struct *fragfrom, *fragto;
2130 BUG_ON(shiftlen > skb->len);
2131 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2133 todo = shiftlen;
2134 from = 0;
2135 to = skb_shinfo(tgt)->nr_frags;
2136 fragfrom = &skb_shinfo(skb)->frags[from];
2138 /* Actual merge is delayed until the point when we know we can
2139 * commit all, so that we don't have to undo partial changes
2141 if (!to ||
2142 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2143 merge = -1;
2144 } else {
2145 merge = to - 1;
2147 todo -= fragfrom->size;
2148 if (todo < 0) {
2149 if (skb_prepare_for_shift(skb) ||
2150 skb_prepare_for_shift(tgt))
2151 return 0;
2153 /* All previous frag pointers might be stale! */
2154 fragfrom = &skb_shinfo(skb)->frags[from];
2155 fragto = &skb_shinfo(tgt)->frags[merge];
2157 fragto->size += shiftlen;
2158 fragfrom->size -= shiftlen;
2159 fragfrom->page_offset += shiftlen;
2161 goto onlymerged;
2164 from++;
2167 /* Skip full, not-fitting skb to avoid expensive operations */
2168 if ((shiftlen == skb->len) &&
2169 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2170 return 0;
2172 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2173 return 0;
2175 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2176 if (to == MAX_SKB_FRAGS)
2177 return 0;
2179 fragfrom = &skb_shinfo(skb)->frags[from];
2180 fragto = &skb_shinfo(tgt)->frags[to];
2182 if (todo >= fragfrom->size) {
2183 *fragto = *fragfrom;
2184 todo -= fragfrom->size;
2185 from++;
2186 to++;
2188 } else {
2189 get_page(fragfrom->page);
2190 fragto->page = fragfrom->page;
2191 fragto->page_offset = fragfrom->page_offset;
2192 fragto->size = todo;
2194 fragfrom->page_offset += todo;
2195 fragfrom->size -= todo;
2196 todo = 0;
2198 to++;
2199 break;
2203 /* Ready to "commit" this state change to tgt */
2204 skb_shinfo(tgt)->nr_frags = to;
2206 if (merge >= 0) {
2207 fragfrom = &skb_shinfo(skb)->frags[0];
2208 fragto = &skb_shinfo(tgt)->frags[merge];
2210 fragto->size += fragfrom->size;
2211 put_page(fragfrom->page);
2214 /* Reposition in the original skb */
2215 to = 0;
2216 while (from < skb_shinfo(skb)->nr_frags)
2217 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2218 skb_shinfo(skb)->nr_frags = to;
2220 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2222 onlymerged:
2223 /* Most likely the tgt won't ever need its checksum anymore, skb on
2224 * the other hand might need it if it needs to be resent
2226 tgt->ip_summed = CHECKSUM_PARTIAL;
2227 skb->ip_summed = CHECKSUM_PARTIAL;
2229 /* Yak, is it really working this way? Some helper please? */
2230 skb->len -= shiftlen;
2231 skb->data_len -= shiftlen;
2232 skb->truesize -= shiftlen;
2233 tgt->len += shiftlen;
2234 tgt->data_len += shiftlen;
2235 tgt->truesize += shiftlen;
2237 return shiftlen;
2241 * skb_prepare_seq_read - Prepare a sequential read of skb data
2242 * @skb: the buffer to read
2243 * @from: lower offset of data to be read
2244 * @to: upper offset of data to be read
2245 * @st: state variable
2247 * Initializes the specified state variable. Must be called before
2248 * invoking skb_seq_read() for the first time.
2250 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2251 unsigned int to, struct skb_seq_state *st)
2253 st->lower_offset = from;
2254 st->upper_offset = to;
2255 st->root_skb = st->cur_skb = skb;
2256 st->frag_idx = st->stepped_offset = 0;
2257 st->frag_data = NULL;
2259 EXPORT_SYMBOL(skb_prepare_seq_read);
2262 * skb_seq_read - Sequentially read skb data
2263 * @consumed: number of bytes consumed by the caller so far
2264 * @data: destination pointer for data to be returned
2265 * @st: state variable
2267 * Reads a block of skb data at &consumed relative to the
2268 * lower offset specified to skb_prepare_seq_read(). Assigns
2269 * the head of the data block to &data and returns the length
2270 * of the block or 0 if the end of the skb data or the upper
2271 * offset has been reached.
2273 * The caller is not required to consume all of the data
2274 * returned, i.e. &consumed is typically set to the number
2275 * of bytes already consumed and the next call to
2276 * skb_seq_read() will return the remaining part of the block.
2278 * Note 1: The size of each block of data returned can be arbitary,
2279 * this limitation is the cost for zerocopy seqeuental
2280 * reads of potentially non linear data.
2282 * Note 2: Fragment lists within fragments are not implemented
2283 * at the moment, state->root_skb could be replaced with
2284 * a stack for this purpose.
2286 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2287 struct skb_seq_state *st)
2289 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2290 skb_frag_t *frag;
2292 if (unlikely(abs_offset >= st->upper_offset))
2293 return 0;
2295 next_skb:
2296 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2298 if (abs_offset < block_limit && !st->frag_data) {
2299 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2300 return block_limit - abs_offset;
2303 if (st->frag_idx == 0 && !st->frag_data)
2304 st->stepped_offset += skb_headlen(st->cur_skb);
2306 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2307 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2308 block_limit = frag->size + st->stepped_offset;
2310 if (abs_offset < block_limit) {
2311 if (!st->frag_data)
2312 st->frag_data = kmap_skb_frag(frag);
2314 *data = (u8 *) st->frag_data + frag->page_offset +
2315 (abs_offset - st->stepped_offset);
2317 return block_limit - abs_offset;
2320 if (st->frag_data) {
2321 kunmap_skb_frag(st->frag_data);
2322 st->frag_data = NULL;
2325 st->frag_idx++;
2326 st->stepped_offset += frag->size;
2329 if (st->frag_data) {
2330 kunmap_skb_frag(st->frag_data);
2331 st->frag_data = NULL;
2334 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
2335 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2336 st->frag_idx = 0;
2337 goto next_skb;
2338 } else if (st->cur_skb->next) {
2339 st->cur_skb = st->cur_skb->next;
2340 st->frag_idx = 0;
2341 goto next_skb;
2344 return 0;
2346 EXPORT_SYMBOL(skb_seq_read);
2349 * skb_abort_seq_read - Abort a sequential read of skb data
2350 * @st: state variable
2352 * Must be called if skb_seq_read() was not called until it
2353 * returned 0.
2355 void skb_abort_seq_read(struct skb_seq_state *st)
2357 if (st->frag_data)
2358 kunmap_skb_frag(st->frag_data);
2360 EXPORT_SYMBOL(skb_abort_seq_read);
2362 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2364 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2365 struct ts_config *conf,
2366 struct ts_state *state)
2368 return skb_seq_read(offset, text, TS_SKB_CB(state));
2371 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2373 skb_abort_seq_read(TS_SKB_CB(state));
2377 * skb_find_text - Find a text pattern in skb data
2378 * @skb: the buffer to look in
2379 * @from: search offset
2380 * @to: search limit
2381 * @config: textsearch configuration
2382 * @state: uninitialized textsearch state variable
2384 * Finds a pattern in the skb data according to the specified
2385 * textsearch configuration. Use textsearch_next() to retrieve
2386 * subsequent occurrences of the pattern. Returns the offset
2387 * to the first occurrence or UINT_MAX if no match was found.
2389 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2390 unsigned int to, struct ts_config *config,
2391 struct ts_state *state)
2393 unsigned int ret;
2395 config->get_next_block = skb_ts_get_next_block;
2396 config->finish = skb_ts_finish;
2398 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2400 ret = textsearch_find(config, state);
2401 return (ret <= to - from ? ret : UINT_MAX);
2403 EXPORT_SYMBOL(skb_find_text);
2406 * skb_append_datato_frags: - append the user data to a skb
2407 * @sk: sock structure
2408 * @skb: skb structure to be appened with user data.
2409 * @getfrag: call back function to be used for getting the user data
2410 * @from: pointer to user message iov
2411 * @length: length of the iov message
2413 * Description: This procedure append the user data in the fragment part
2414 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2416 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2417 int (*getfrag)(void *from, char *to, int offset,
2418 int len, int odd, struct sk_buff *skb),
2419 void *from, int length)
2421 int frg_cnt = 0;
2422 skb_frag_t *frag = NULL;
2423 struct page *page = NULL;
2424 int copy, left;
2425 int offset = 0;
2426 int ret;
2428 do {
2429 /* Return error if we don't have space for new frag */
2430 frg_cnt = skb_shinfo(skb)->nr_frags;
2431 if (frg_cnt >= MAX_SKB_FRAGS)
2432 return -EFAULT;
2434 /* allocate a new page for next frag */
2435 page = alloc_pages(sk->sk_allocation, 0);
2437 /* If alloc_page fails just return failure and caller will
2438 * free previous allocated pages by doing kfree_skb()
2440 if (page == NULL)
2441 return -ENOMEM;
2443 /* initialize the next frag */
2444 sk->sk_sndmsg_page = page;
2445 sk->sk_sndmsg_off = 0;
2446 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2447 skb->truesize += PAGE_SIZE;
2448 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2450 /* get the new initialized frag */
2451 frg_cnt = skb_shinfo(skb)->nr_frags;
2452 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2454 /* copy the user data to page */
2455 left = PAGE_SIZE - frag->page_offset;
2456 copy = (length > left)? left : length;
2458 ret = getfrag(from, (page_address(frag->page) +
2459 frag->page_offset + frag->size),
2460 offset, copy, 0, skb);
2461 if (ret < 0)
2462 return -EFAULT;
2464 /* copy was successful so update the size parameters */
2465 sk->sk_sndmsg_off += copy;
2466 frag->size += copy;
2467 skb->len += copy;
2468 skb->data_len += copy;
2469 offset += copy;
2470 length -= copy;
2472 } while (length > 0);
2474 return 0;
2476 EXPORT_SYMBOL(skb_append_datato_frags);
2479 * skb_pull_rcsum - pull skb and update receive checksum
2480 * @skb: buffer to update
2481 * @len: length of data pulled
2483 * This function performs an skb_pull on the packet and updates
2484 * the CHECKSUM_COMPLETE checksum. It should be used on
2485 * receive path processing instead of skb_pull unless you know
2486 * that the checksum difference is zero (e.g., a valid IP header)
2487 * or you are setting ip_summed to CHECKSUM_NONE.
2489 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2491 BUG_ON(len > skb->len);
2492 skb->len -= len;
2493 BUG_ON(skb->len < skb->data_len);
2494 skb_postpull_rcsum(skb, skb->data, len);
2495 return skb->data += len;
2498 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2501 * skb_segment - Perform protocol segmentation on skb.
2502 * @skb: buffer to segment
2503 * @features: features for the output path (see dev->features)
2505 * This function performs segmentation on the given skb. It returns
2506 * a pointer to the first in a list of new skbs for the segments.
2507 * In case of error it returns ERR_PTR(err).
2509 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2511 struct sk_buff *segs = NULL;
2512 struct sk_buff *tail = NULL;
2513 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2514 unsigned int mss = skb_shinfo(skb)->gso_size;
2515 unsigned int doffset = skb->data - skb_mac_header(skb);
2516 unsigned int offset = doffset;
2517 unsigned int headroom;
2518 unsigned int len;
2519 int sg = features & NETIF_F_SG;
2520 int nfrags = skb_shinfo(skb)->nr_frags;
2521 int err = -ENOMEM;
2522 int i = 0;
2523 int pos;
2525 __skb_push(skb, doffset);
2526 headroom = skb_headroom(skb);
2527 pos = skb_headlen(skb);
2529 do {
2530 struct sk_buff *nskb;
2531 skb_frag_t *frag;
2532 int hsize;
2533 int size;
2535 len = skb->len - offset;
2536 if (len > mss)
2537 len = mss;
2539 hsize = skb_headlen(skb) - offset;
2540 if (hsize < 0)
2541 hsize = 0;
2542 if (hsize > len || !sg)
2543 hsize = len;
2545 if (!hsize && i >= nfrags) {
2546 BUG_ON(fskb->len != len);
2548 pos += len;
2549 nskb = skb_clone(fskb, GFP_ATOMIC);
2550 fskb = fskb->next;
2552 if (unlikely(!nskb))
2553 goto err;
2555 hsize = skb_end_pointer(nskb) - nskb->head;
2556 if (skb_cow_head(nskb, doffset + headroom)) {
2557 kfree_skb(nskb);
2558 goto err;
2561 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2562 hsize;
2563 skb_release_head_state(nskb);
2564 __skb_push(nskb, doffset);
2565 } else {
2566 nskb = alloc_skb(hsize + doffset + headroom,
2567 GFP_ATOMIC);
2569 if (unlikely(!nskb))
2570 goto err;
2572 skb_reserve(nskb, headroom);
2573 __skb_put(nskb, doffset);
2576 if (segs)
2577 tail->next = nskb;
2578 else
2579 segs = nskb;
2580 tail = nskb;
2582 __copy_skb_header(nskb, skb);
2583 nskb->mac_len = skb->mac_len;
2585 skb_reset_mac_header(nskb);
2586 skb_set_network_header(nskb, skb->mac_len);
2587 nskb->transport_header = (nskb->network_header +
2588 skb_network_header_len(skb));
2589 skb_copy_from_linear_data(skb, nskb->data, doffset);
2591 if (fskb != skb_shinfo(skb)->frag_list)
2592 continue;
2594 if (!sg) {
2595 nskb->ip_summed = CHECKSUM_NONE;
2596 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2597 skb_put(nskb, len),
2598 len, 0);
2599 continue;
2602 frag = skb_shinfo(nskb)->frags;
2604 skb_copy_from_linear_data_offset(skb, offset,
2605 skb_put(nskb, hsize), hsize);
2607 while (pos < offset + len && i < nfrags) {
2608 *frag = skb_shinfo(skb)->frags[i];
2609 get_page(frag->page);
2610 size = frag->size;
2612 if (pos < offset) {
2613 frag->page_offset += offset - pos;
2614 frag->size -= offset - pos;
2617 skb_shinfo(nskb)->nr_frags++;
2619 if (pos + size <= offset + len) {
2620 i++;
2621 pos += size;
2622 } else {
2623 frag->size -= pos + size - (offset + len);
2624 goto skip_fraglist;
2627 frag++;
2630 if (pos < offset + len) {
2631 struct sk_buff *fskb2 = fskb;
2633 BUG_ON(pos + fskb->len != offset + len);
2635 pos += fskb->len;
2636 fskb = fskb->next;
2638 if (fskb2->next) {
2639 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2640 if (!fskb2)
2641 goto err;
2642 } else
2643 skb_get(fskb2);
2645 SKB_FRAG_ASSERT(nskb);
2646 skb_shinfo(nskb)->frag_list = fskb2;
2649 skip_fraglist:
2650 nskb->data_len = len - hsize;
2651 nskb->len += nskb->data_len;
2652 nskb->truesize += nskb->data_len;
2653 } while ((offset += len) < skb->len);
2655 return segs;
2657 err:
2658 while ((skb = segs)) {
2659 segs = skb->next;
2660 kfree_skb(skb);
2662 return ERR_PTR(err);
2664 EXPORT_SYMBOL_GPL(skb_segment);
2666 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2668 struct sk_buff *p = *head;
2669 struct sk_buff *nskb;
2670 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2671 struct skb_shared_info *pinfo = skb_shinfo(p);
2672 unsigned int headroom;
2673 unsigned int len = skb_gro_len(skb);
2674 unsigned int offset = skb_gro_offset(skb);
2675 unsigned int headlen = skb_headlen(skb);
2677 if (p->len + len >= 65536)
2678 return -E2BIG;
2680 if (pinfo->frag_list)
2681 goto merge;
2682 else if (headlen <= offset) {
2683 skb_frag_t *frag;
2684 skb_frag_t *frag2;
2685 int i = skbinfo->nr_frags;
2686 int nr_frags = pinfo->nr_frags + i;
2688 offset -= headlen;
2690 if (nr_frags > MAX_SKB_FRAGS)
2691 return -E2BIG;
2693 pinfo->nr_frags = nr_frags;
2694 skbinfo->nr_frags = 0;
2696 frag = pinfo->frags + nr_frags;
2697 frag2 = skbinfo->frags + i;
2698 do {
2699 *--frag = *--frag2;
2700 } while (--i);
2702 frag->page_offset += offset;
2703 frag->size -= offset;
2705 skb->truesize -= skb->data_len;
2706 skb->len -= skb->data_len;
2707 skb->data_len = 0;
2709 NAPI_GRO_CB(skb)->free = 1;
2710 goto done;
2711 } else if (skb_gro_len(p) != pinfo->gso_size)
2712 return -E2BIG;
2714 headroom = skb_headroom(p);
2715 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2716 if (unlikely(!nskb))
2717 return -ENOMEM;
2719 __copy_skb_header(nskb, p);
2720 nskb->mac_len = p->mac_len;
2722 skb_reserve(nskb, headroom);
2723 __skb_put(nskb, skb_gro_offset(p));
2725 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2726 skb_set_network_header(nskb, skb_network_offset(p));
2727 skb_set_transport_header(nskb, skb_transport_offset(p));
2729 __skb_pull(p, skb_gro_offset(p));
2730 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2731 p->data - skb_mac_header(p));
2733 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2734 skb_shinfo(nskb)->frag_list = p;
2735 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2736 skb_header_release(p);
2737 nskb->prev = p;
2739 nskb->data_len += p->len;
2740 nskb->truesize += p->len;
2741 nskb->len += p->len;
2743 *head = nskb;
2744 nskb->next = p->next;
2745 p->next = NULL;
2747 p = nskb;
2749 merge:
2750 if (offset > headlen) {
2751 skbinfo->frags[0].page_offset += offset - headlen;
2752 skbinfo->frags[0].size -= offset - headlen;
2753 offset = headlen;
2756 __skb_pull(skb, offset);
2758 p->prev->next = skb;
2759 p->prev = skb;
2760 skb_header_release(skb);
2762 done:
2763 NAPI_GRO_CB(p)->count++;
2764 p->data_len += len;
2765 p->truesize += len;
2766 p->len += len;
2768 NAPI_GRO_CB(skb)->same_flow = 1;
2769 return 0;
2771 EXPORT_SYMBOL_GPL(skb_gro_receive);
2773 void __init skb_init(void)
2775 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2776 sizeof(struct sk_buff),
2778 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2779 NULL);
2780 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2781 (2*sizeof(struct sk_buff)) +
2782 sizeof(atomic_t),
2784 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2785 NULL);
2789 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2790 * @skb: Socket buffer containing the buffers to be mapped
2791 * @sg: The scatter-gather list to map into
2792 * @offset: The offset into the buffer's contents to start mapping
2793 * @len: Length of buffer space to be mapped
2795 * Fill the specified scatter-gather list with mappings/pointers into a
2796 * region of the buffer space attached to a socket buffer.
2798 static int
2799 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2801 int start = skb_headlen(skb);
2802 int i, copy = start - offset;
2803 struct sk_buff *frag_iter;
2804 int elt = 0;
2806 if (copy > 0) {
2807 if (copy > len)
2808 copy = len;
2809 sg_set_buf(sg, skb->data + offset, copy);
2810 elt++;
2811 if ((len -= copy) == 0)
2812 return elt;
2813 offset += copy;
2816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2817 int end;
2819 WARN_ON(start > offset + len);
2821 end = start + skb_shinfo(skb)->frags[i].size;
2822 if ((copy = end - offset) > 0) {
2823 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2825 if (copy > len)
2826 copy = len;
2827 sg_set_page(&sg[elt], frag->page, copy,
2828 frag->page_offset+offset-start);
2829 elt++;
2830 if (!(len -= copy))
2831 return elt;
2832 offset += copy;
2834 start = end;
2837 skb_walk_frags(skb, frag_iter) {
2838 int end;
2840 WARN_ON(start > offset + len);
2842 end = start + frag_iter->len;
2843 if ((copy = end - offset) > 0) {
2844 if (copy > len)
2845 copy = len;
2846 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2847 copy);
2848 if ((len -= copy) == 0)
2849 return elt;
2850 offset += copy;
2852 start = end;
2854 BUG_ON(len);
2855 return elt;
2858 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2860 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2862 sg_mark_end(&sg[nsg - 1]);
2864 return nsg;
2866 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2869 * skb_cow_data - Check that a socket buffer's data buffers are writable
2870 * @skb: The socket buffer to check.
2871 * @tailbits: Amount of trailing space to be added
2872 * @trailer: Returned pointer to the skb where the @tailbits space begins
2874 * Make sure that the data buffers attached to a socket buffer are
2875 * writable. If they are not, private copies are made of the data buffers
2876 * and the socket buffer is set to use these instead.
2878 * If @tailbits is given, make sure that there is space to write @tailbits
2879 * bytes of data beyond current end of socket buffer. @trailer will be
2880 * set to point to the skb in which this space begins.
2882 * The number of scatterlist elements required to completely map the
2883 * COW'd and extended socket buffer will be returned.
2885 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2887 int copyflag;
2888 int elt;
2889 struct sk_buff *skb1, **skb_p;
2891 /* If skb is cloned or its head is paged, reallocate
2892 * head pulling out all the pages (pages are considered not writable
2893 * at the moment even if they are anonymous).
2895 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2896 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2897 return -ENOMEM;
2899 /* Easy case. Most of packets will go this way. */
2900 if (!skb_has_frags(skb)) {
2901 /* A little of trouble, not enough of space for trailer.
2902 * This should not happen, when stack is tuned to generate
2903 * good frames. OK, on miss we reallocate and reserve even more
2904 * space, 128 bytes is fair. */
2906 if (skb_tailroom(skb) < tailbits &&
2907 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2908 return -ENOMEM;
2910 /* Voila! */
2911 *trailer = skb;
2912 return 1;
2915 /* Misery. We are in troubles, going to mincer fragments... */
2917 elt = 1;
2918 skb_p = &skb_shinfo(skb)->frag_list;
2919 copyflag = 0;
2921 while ((skb1 = *skb_p) != NULL) {
2922 int ntail = 0;
2924 /* The fragment is partially pulled by someone,
2925 * this can happen on input. Copy it and everything
2926 * after it. */
2928 if (skb_shared(skb1))
2929 copyflag = 1;
2931 /* If the skb is the last, worry about trailer. */
2933 if (skb1->next == NULL && tailbits) {
2934 if (skb_shinfo(skb1)->nr_frags ||
2935 skb_has_frags(skb1) ||
2936 skb_tailroom(skb1) < tailbits)
2937 ntail = tailbits + 128;
2940 if (copyflag ||
2941 skb_cloned(skb1) ||
2942 ntail ||
2943 skb_shinfo(skb1)->nr_frags ||
2944 skb_has_frags(skb1)) {
2945 struct sk_buff *skb2;
2947 /* Fuck, we are miserable poor guys... */
2948 if (ntail == 0)
2949 skb2 = skb_copy(skb1, GFP_ATOMIC);
2950 else
2951 skb2 = skb_copy_expand(skb1,
2952 skb_headroom(skb1),
2953 ntail,
2954 GFP_ATOMIC);
2955 if (unlikely(skb2 == NULL))
2956 return -ENOMEM;
2958 if (skb1->sk)
2959 skb_set_owner_w(skb2, skb1->sk);
2961 /* Looking around. Are we still alive?
2962 * OK, link new skb, drop old one */
2964 skb2->next = skb1->next;
2965 *skb_p = skb2;
2966 kfree_skb(skb1);
2967 skb1 = skb2;
2969 elt++;
2970 *trailer = skb1;
2971 skb_p = &skb1->next;
2974 return elt;
2976 EXPORT_SYMBOL_GPL(skb_cow_data);
2978 void skb_tstamp_tx(struct sk_buff *orig_skb,
2979 struct skb_shared_hwtstamps *hwtstamps)
2981 struct sock *sk = orig_skb->sk;
2982 struct sock_exterr_skb *serr;
2983 struct sk_buff *skb;
2984 int err;
2986 if (!sk)
2987 return;
2989 skb = skb_clone(orig_skb, GFP_ATOMIC);
2990 if (!skb)
2991 return;
2993 if (hwtstamps) {
2994 *skb_hwtstamps(skb) =
2995 *hwtstamps;
2996 } else {
2998 * no hardware time stamps available,
2999 * so keep the skb_shared_tx and only
3000 * store software time stamp
3002 skb->tstamp = ktime_get_real();
3005 serr = SKB_EXT_ERR(skb);
3006 memset(serr, 0, sizeof(*serr));
3007 serr->ee.ee_errno = ENOMSG;
3008 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3009 err = sock_queue_err_skb(sk, skb);
3010 if (err)
3011 kfree_skb(skb);
3013 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3017 * skb_partial_csum_set - set up and verify partial csum values for packet
3018 * @skb: the skb to set
3019 * @start: the number of bytes after skb->data to start checksumming.
3020 * @off: the offset from start to place the checksum.
3022 * For untrusted partially-checksummed packets, we need to make sure the values
3023 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3025 * This function checks and sets those values and skb->ip_summed: if this
3026 * returns false you should drop the packet.
3028 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3030 if (unlikely(start > skb_headlen(skb)) ||
3031 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3032 if (net_ratelimit())
3033 printk(KERN_WARNING
3034 "bad partial csum: csum=%u/%u len=%u\n",
3035 start, off, skb_headlen(skb));
3036 return false;
3038 skb->ip_summed = CHECKSUM_PARTIAL;
3039 skb->csum_start = skb_headroom(skb) + start;
3040 skb->csum_offset = off;
3041 return true;
3043 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3045 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3047 if (net_ratelimit())
3048 pr_warning("%s: received packets cannot be forwarded"
3049 " while LRO is enabled\n", skb->dev->name);
3051 EXPORT_SYMBOL(__skb_warn_lro_forwarding);