uml: tidy IRQ code
[linux-2.6/cjktty.git] / arch / um / os-Linux / signal.c
blob420ee86d0d1af37199440b851ac11e87d1cacb59
1 /*
2 * Copyright (C) 2004 PathScale, Inc
3 * Licensed under the GPL
4 */
6 #include <signal.h>
7 #include <stdio.h>
8 #include <unistd.h>
9 #include <stdlib.h>
10 #include <errno.h>
11 #include <stdarg.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include "user.h"
15 #include "signal_kern.h"
16 #include "sysdep/sigcontext.h"
17 #include "sysdep/barrier.h"
18 #include "sigcontext.h"
19 #include "mode.h"
20 #include "os.h"
22 /* These are the asynchronous signals. SIGVTALRM and SIGARLM are handled
23 * together under SIGVTALRM_BIT. SIGPROF is excluded because we want to
24 * be able to profile all of UML, not just the non-critical sections. If
25 * profiling is not thread-safe, then that is not my problem. We can disable
26 * profiling when SMP is enabled in that case.
28 #define SIGIO_BIT 0
29 #define SIGIO_MASK (1 << SIGIO_BIT)
31 #define SIGVTALRM_BIT 1
32 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
34 #define SIGALRM_BIT 2
35 #define SIGALRM_MASK (1 << SIGALRM_BIT)
37 /* These are used by both the signal handlers and
38 * block/unblock_signals. I don't want modifications cached in a
39 * register - they must go straight to memory.
41 static volatile int signals_enabled = 1;
42 static volatile int pending = 0;
44 void sig_handler(int sig, struct sigcontext *sc)
46 int enabled;
48 enabled = signals_enabled;
49 if(!enabled && (sig == SIGIO)){
50 pending |= SIGIO_MASK;
51 return;
54 block_signals();
56 CHOOSE_MODE_PROC(sig_handler_common_tt, sig_handler_common_skas,
57 sig, sc);
59 set_signals(enabled);
62 static void real_alarm_handler(int sig, struct sigcontext *sc)
64 union uml_pt_regs regs;
66 if(sig == SIGALRM)
67 switch_timers(0);
69 if(sc != NULL)
70 copy_sc(&regs, sc);
71 regs.skas.is_user = 0;
72 unblock_signals();
73 timer_handler(sig, &regs);
75 if(sig == SIGALRM)
76 switch_timers(1);
79 void alarm_handler(int sig, struct sigcontext *sc)
81 int enabled;
83 enabled = signals_enabled;
84 if(!signals_enabled){
85 if(sig == SIGVTALRM)
86 pending |= SIGVTALRM_MASK;
87 else pending |= SIGALRM_MASK;
89 return;
92 block_signals();
94 real_alarm_handler(sig, sc);
95 set_signals(enabled);
98 void set_sigstack(void *sig_stack, int size)
100 stack_t stack = ((stack_t) { .ss_flags = 0,
101 .ss_sp = (__ptr_t) sig_stack,
102 .ss_size = size - sizeof(void *) });
104 if(sigaltstack(&stack, NULL) != 0)
105 panic("enabling signal stack failed, errno = %d\n", errno);
108 void remove_sigstack(void)
110 stack_t stack = ((stack_t) { .ss_flags = SS_DISABLE,
111 .ss_sp = NULL,
112 .ss_size = 0 });
114 if(sigaltstack(&stack, NULL) != 0)
115 panic("disabling signal stack failed, errno = %d\n", errno);
118 void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
120 extern void hard_handler(int sig);
122 void set_handler(int sig, void (*handler)(int), int flags, ...)
124 struct sigaction action;
125 va_list ap;
126 sigset_t sig_mask;
127 int mask;
129 handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
130 action.sa_handler = hard_handler;
132 sigemptyset(&action.sa_mask);
134 va_start(ap, flags);
135 while((mask = va_arg(ap, int)) != -1)
136 sigaddset(&action.sa_mask, mask);
137 va_end(ap);
139 action.sa_flags = flags;
140 action.sa_restorer = NULL;
141 if(sigaction(sig, &action, NULL) < 0)
142 panic("sigaction failed - errno = %d\n", errno);
144 sigemptyset(&sig_mask);
145 sigaddset(&sig_mask, sig);
146 if(sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
147 panic("sigprocmask failed - errno = %d\n", errno);
150 int change_sig(int signal, int on)
152 sigset_t sigset, old;
154 sigemptyset(&sigset);
155 sigaddset(&sigset, signal);
156 sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old);
157 return(!sigismember(&old, signal));
160 void block_signals(void)
162 signals_enabled = 0;
163 /* This must return with signals disabled, so this barrier
164 * ensures that writes are flushed out before the return.
165 * This might matter if gcc figures out how to inline this and
166 * decides to shuffle this code into the caller.
168 mb();
171 void unblock_signals(void)
173 int save_pending;
175 if(signals_enabled == 1)
176 return;
178 /* We loop because the IRQ handler returns with interrupts off. So,
179 * interrupts may have arrived and we need to re-enable them and
180 * recheck pending.
182 while(1){
183 /* Save and reset save_pending after enabling signals. This
184 * way, pending won't be changed while we're reading it.
186 signals_enabled = 1;
188 /* Setting signals_enabled and reading pending must
189 * happen in this order.
191 mb();
193 save_pending = pending;
194 if(save_pending == 0){
195 /* This must return with signals enabled, so
196 * this barrier ensures that writes are
197 * flushed out before the return. This might
198 * matter if gcc figures out how to inline
199 * this (unlikely, given its size) and decides
200 * to shuffle this code into the caller.
202 mb();
203 return;
206 pending = 0;
208 /* We have pending interrupts, so disable signals, as the
209 * handlers expect them off when they are called. They will
210 * be enabled again above.
213 signals_enabled = 0;
215 /* Deal with SIGIO first because the alarm handler might
216 * schedule, leaving the pending SIGIO stranded until we come
217 * back here.
219 if(save_pending & SIGIO_MASK)
220 CHOOSE_MODE_PROC(sig_handler_common_tt,
221 sig_handler_common_skas, SIGIO, NULL);
223 if(save_pending & SIGALRM_MASK)
224 real_alarm_handler(SIGALRM, NULL);
226 if(save_pending & SIGVTALRM_MASK)
227 real_alarm_handler(SIGVTALRM, NULL);
231 int get_signals(void)
233 return signals_enabled;
236 int set_signals(int enable)
238 int ret;
239 if(signals_enabled == enable)
240 return enable;
242 ret = signals_enabled;
243 if(enable)
244 unblock_signals();
245 else block_signals();
247 return ret;