ARM: 6674/1: LPAE: use long long format when printing physical addresses and ptes
[linux-2.6/cjktty.git] / arch / arm / mm / mmu.c
blobf512ad97dafe02b9212a2183fef8ec53f8a1b640
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
31 #include "mm.h"
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
43 * The pmd table for the upper-most set of pages.
45 pmd_t *top_pmd;
47 #define CPOLICY_UNCACHED 0
48 #define CPOLICY_BUFFERED 1
49 #define CPOLICY_WRITETHROUGH 2
50 #define CPOLICY_WRITEBACK 3
51 #define CPOLICY_WRITEALLOC 4
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
61 struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 pteval_t pte;
68 static struct cachepolicy cache_policies[] __initdata = {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
73 .pte = L_PTE_MT_UNCACHED,
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
78 .pte = L_PTE_MT_BUFFERABLE,
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
83 .pte = L_PTE_MT_WRITETHROUGH,
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
88 .pte = L_PTE_MT_WRITEBACK,
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
93 .pte = L_PTE_MT_WRITEALLOC,
98 * These are useful for identifying cache coherency
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
103 static int __init early_cachepolicy(char *p)
105 int i;
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
114 break;
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
130 flush_cache_all();
131 set_cr(cr_alignment);
132 return 0;
134 early_param("cachepolicy", early_cachepolicy);
136 static int __init early_nocache(char *__unused)
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(p);
141 return 0;
143 early_param("nocache", early_nocache);
145 static int __init early_nowrite(char *__unused)
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 early_cachepolicy(p);
150 return 0;
152 early_param("nowb", early_nowrite);
154 static int __init early_ecc(char *p)
156 if (memcmp(p, "on", 2) == 0)
157 ecc_mask = PMD_PROTECTION;
158 else if (memcmp(p, "off", 3) == 0)
159 ecc_mask = 0;
160 return 0;
162 early_param("ecc", early_ecc);
164 static int __init noalign_setup(char *__unused)
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
171 __setup("noalign", noalign_setup);
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
176 unsigned long flags;
178 mask &= ~CR_A;
180 set &= mask;
182 local_irq_save(flags);
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
187 set_cr((get_cr() & ~mask) | set);
189 local_irq_restore(flags);
191 #endif
193 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
194 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196 static struct mem_type mem_types[] = {
197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
200 .prot_l1 = PMD_TYPE_TABLE,
201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
202 .domain = DOMAIN_IO,
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206 .prot_l1 = PMD_TYPE_TABLE,
207 .prot_sect = PROT_SECT_DEVICE,
208 .domain = DOMAIN_IO,
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
216 [MT_DEVICE_WC] = { /* ioremap_wc */
217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218 .prot_l1 = PMD_TYPE_TABLE,
219 .prot_sect = PROT_SECT_DEVICE,
220 .domain = DOMAIN_IO,
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
228 [MT_CACHECLEAN] = {
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_KERNEL,
232 [MT_MINICLEAN] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 .domain = DOMAIN_KERNEL,
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_RDONLY,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_RDONLY,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
248 [MT_MEMORY] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
250 .prot_l1 = PMD_TYPE_TABLE,
251 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
252 .domain = DOMAIN_KERNEL,
254 [MT_ROM] = {
255 .prot_sect = PMD_TYPE_SECT,
256 .domain = DOMAIN_KERNEL,
258 [MT_MEMORY_NONCACHED] = {
259 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
260 L_PTE_MT_BUFFERABLE,
261 .prot_l1 = PMD_TYPE_TABLE,
262 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
263 .domain = DOMAIN_KERNEL,
265 [MT_MEMORY_DTCM] = {
266 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267 L_PTE_XN,
268 .prot_l1 = PMD_TYPE_TABLE,
269 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
270 .domain = DOMAIN_KERNEL,
272 [MT_MEMORY_ITCM] = {
273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
274 .prot_l1 = PMD_TYPE_TABLE,
275 .domain = DOMAIN_KERNEL,
279 const struct mem_type *get_mem_type(unsigned int type)
281 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
283 EXPORT_SYMBOL(get_mem_type);
286 * Adjust the PMD section entries according to the CPU in use.
288 static void __init build_mem_type_table(void)
290 struct cachepolicy *cp;
291 unsigned int cr = get_cr();
292 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
293 int cpu_arch = cpu_architecture();
294 int i;
296 if (cpu_arch < CPU_ARCH_ARMv6) {
297 #if defined(CONFIG_CPU_DCACHE_DISABLE)
298 if (cachepolicy > CPOLICY_BUFFERED)
299 cachepolicy = CPOLICY_BUFFERED;
300 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
301 if (cachepolicy > CPOLICY_WRITETHROUGH)
302 cachepolicy = CPOLICY_WRITETHROUGH;
303 #endif
305 if (cpu_arch < CPU_ARCH_ARMv5) {
306 if (cachepolicy >= CPOLICY_WRITEALLOC)
307 cachepolicy = CPOLICY_WRITEBACK;
308 ecc_mask = 0;
310 if (is_smp())
311 cachepolicy = CPOLICY_WRITEALLOC;
314 * Strip out features not present on earlier architectures.
315 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
316 * without extended page tables don't have the 'Shared' bit.
318 if (cpu_arch < CPU_ARCH_ARMv5)
319 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
320 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
321 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
322 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
323 mem_types[i].prot_sect &= ~PMD_SECT_S;
326 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
327 * "update-able on write" bit on ARM610). However, Xscale and
328 * Xscale3 require this bit to be cleared.
330 if (cpu_is_xscale() || cpu_is_xsc3()) {
331 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
332 mem_types[i].prot_sect &= ~PMD_BIT4;
333 mem_types[i].prot_l1 &= ~PMD_BIT4;
335 } else if (cpu_arch < CPU_ARCH_ARMv6) {
336 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
337 if (mem_types[i].prot_l1)
338 mem_types[i].prot_l1 |= PMD_BIT4;
339 if (mem_types[i].prot_sect)
340 mem_types[i].prot_sect |= PMD_BIT4;
345 * Mark the device areas according to the CPU/architecture.
347 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
348 if (!cpu_is_xsc3()) {
350 * Mark device regions on ARMv6+ as execute-never
351 * to prevent speculative instruction fetches.
353 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
354 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
355 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
356 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
358 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
360 * For ARMv7 with TEX remapping,
361 * - shared device is SXCB=1100
362 * - nonshared device is SXCB=0100
363 * - write combine device mem is SXCB=0001
364 * (Uncached Normal memory)
366 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
367 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
368 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
369 } else if (cpu_is_xsc3()) {
371 * For Xscale3,
372 * - shared device is TEXCB=00101
373 * - nonshared device is TEXCB=01000
374 * - write combine device mem is TEXCB=00100
375 * (Inner/Outer Uncacheable in xsc3 parlance)
377 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
378 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
379 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
380 } else {
382 * For ARMv6 and ARMv7 without TEX remapping,
383 * - shared device is TEXCB=00001
384 * - nonshared device is TEXCB=01000
385 * - write combine device mem is TEXCB=00100
386 * (Uncached Normal in ARMv6 parlance).
388 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
389 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
390 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
392 } else {
394 * On others, write combining is "Uncached/Buffered"
396 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
400 * Now deal with the memory-type mappings
402 cp = &cache_policies[cachepolicy];
403 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
406 * Only use write-through for non-SMP systems
408 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
409 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
412 * Enable CPU-specific coherency if supported.
413 * (Only available on XSC3 at the moment.)
415 if (arch_is_coherent() && cpu_is_xsc3()) {
416 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
417 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
418 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
419 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
422 * ARMv6 and above have extended page tables.
424 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
426 * Mark cache clean areas and XIP ROM read only
427 * from SVC mode and no access from userspace.
429 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
430 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
431 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433 if (is_smp()) {
435 * Mark memory with the "shared" attribute
436 * for SMP systems
438 user_pgprot |= L_PTE_SHARED;
439 kern_pgprot |= L_PTE_SHARED;
440 vecs_pgprot |= L_PTE_SHARED;
441 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
442 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
443 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
444 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
445 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
446 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
447 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
448 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
453 * Non-cacheable Normal - intended for memory areas that must
454 * not cause dirty cache line writebacks when used
456 if (cpu_arch >= CPU_ARCH_ARMv6) {
457 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
458 /* Non-cacheable Normal is XCB = 001 */
459 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
460 PMD_SECT_BUFFERED;
461 } else {
462 /* For both ARMv6 and non-TEX-remapping ARMv7 */
463 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
464 PMD_SECT_TEX(1);
466 } else {
467 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
470 for (i = 0; i < 16; i++) {
471 unsigned long v = pgprot_val(protection_map[i]);
472 protection_map[i] = __pgprot(v | user_pgprot);
475 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
476 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
478 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
479 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
480 L_PTE_DIRTY | kern_pgprot);
482 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
483 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
484 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
485 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
486 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
487 mem_types[MT_ROM].prot_sect |= cp->pmd;
489 switch (cp->pmd) {
490 case PMD_SECT_WT:
491 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
492 break;
493 case PMD_SECT_WB:
494 case PMD_SECT_WBWA:
495 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
496 break;
498 printk("Memory policy: ECC %sabled, Data cache %s\n",
499 ecc_mask ? "en" : "dis", cp->policy);
501 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
502 struct mem_type *t = &mem_types[i];
503 if (t->prot_l1)
504 t->prot_l1 |= PMD_DOMAIN(t->domain);
505 if (t->prot_sect)
506 t->prot_sect |= PMD_DOMAIN(t->domain);
510 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
511 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
512 unsigned long size, pgprot_t vma_prot)
514 if (!pfn_valid(pfn))
515 return pgprot_noncached(vma_prot);
516 else if (file->f_flags & O_SYNC)
517 return pgprot_writecombine(vma_prot);
518 return vma_prot;
520 EXPORT_SYMBOL(phys_mem_access_prot);
521 #endif
523 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
525 static void __init *early_alloc(unsigned long sz)
527 void *ptr = __va(memblock_alloc(sz, sz));
528 memset(ptr, 0, sz);
529 return ptr;
532 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
534 if (pmd_none(*pmd)) {
535 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
536 __pmd_populate(pmd, __pa(pte), prot);
538 BUG_ON(pmd_bad(*pmd));
539 return pte_offset_kernel(pmd, addr);
542 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
543 unsigned long end, unsigned long pfn,
544 const struct mem_type *type)
546 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
547 do {
548 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
549 pfn++;
550 } while (pte++, addr += PAGE_SIZE, addr != end);
553 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
554 unsigned long end, phys_addr_t phys,
555 const struct mem_type *type)
557 pmd_t *pmd = pmd_offset(pgd, addr);
560 * Try a section mapping - end, addr and phys must all be aligned
561 * to a section boundary. Note that PMDs refer to the individual
562 * L1 entries, whereas PGDs refer to a group of L1 entries making
563 * up one logical pointer to an L2 table.
565 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
566 pmd_t *p = pmd;
568 if (addr & SECTION_SIZE)
569 pmd++;
571 do {
572 *pmd = __pmd(phys | type->prot_sect);
573 phys += SECTION_SIZE;
574 } while (pmd++, addr += SECTION_SIZE, addr != end);
576 flush_pmd_entry(p);
577 } else {
579 * No need to loop; pte's aren't interested in the
580 * individual L1 entries.
582 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
586 static void __init create_36bit_mapping(struct map_desc *md,
587 const struct mem_type *type)
589 unsigned long addr, length, end;
590 phys_addr_t phys;
591 pgd_t *pgd;
593 addr = md->virtual;
594 phys = (unsigned long)__pfn_to_phys(md->pfn);
595 length = PAGE_ALIGN(md->length);
597 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
598 printk(KERN_ERR "MM: CPU does not support supersection "
599 "mapping for 0x%08llx at 0x%08lx\n",
600 (long long)__pfn_to_phys((u64)md->pfn), addr);
601 return;
604 /* N.B. ARMv6 supersections are only defined to work with domain 0.
605 * Since domain assignments can in fact be arbitrary, the
606 * 'domain == 0' check below is required to insure that ARMv6
607 * supersections are only allocated for domain 0 regardless
608 * of the actual domain assignments in use.
610 if (type->domain) {
611 printk(KERN_ERR "MM: invalid domain in supersection "
612 "mapping for 0x%08llx at 0x%08lx\n",
613 (long long)__pfn_to_phys((u64)md->pfn), addr);
614 return;
617 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
618 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
619 " at 0x%08lx invalid alignment\n",
620 (long long)__pfn_to_phys((u64)md->pfn), addr);
621 return;
625 * Shift bits [35:32] of address into bits [23:20] of PMD
626 * (See ARMv6 spec).
628 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
630 pgd = pgd_offset_k(addr);
631 end = addr + length;
632 do {
633 pmd_t *pmd = pmd_offset(pgd, addr);
634 int i;
636 for (i = 0; i < 16; i++)
637 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
639 addr += SUPERSECTION_SIZE;
640 phys += SUPERSECTION_SIZE;
641 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
642 } while (addr != end);
646 * Create the page directory entries and any necessary
647 * page tables for the mapping specified by `md'. We
648 * are able to cope here with varying sizes and address
649 * offsets, and we take full advantage of sections and
650 * supersections.
652 static void __init create_mapping(struct map_desc *md)
654 unsigned long phys, addr, length, end;
655 const struct mem_type *type;
656 pgd_t *pgd;
658 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
659 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
660 " at 0x%08lx in user region\n",
661 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
662 return;
665 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
666 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
667 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
668 " at 0x%08lx overlaps vmalloc space\n",
669 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
672 type = &mem_types[md->type];
675 * Catch 36-bit addresses
677 if (md->pfn >= 0x100000) {
678 create_36bit_mapping(md, type);
679 return;
682 addr = md->virtual & PAGE_MASK;
683 phys = (unsigned long)__pfn_to_phys(md->pfn);
684 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
686 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
687 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
688 "be mapped using pages, ignoring.\n",
689 (long long)__pfn_to_phys(md->pfn), addr);
690 return;
693 pgd = pgd_offset_k(addr);
694 end = addr + length;
695 do {
696 unsigned long next = pgd_addr_end(addr, end);
698 alloc_init_section(pgd, addr, next, phys, type);
700 phys += next - addr;
701 addr = next;
702 } while (pgd++, addr != end);
706 * Create the architecture specific mappings
708 void __init iotable_init(struct map_desc *io_desc, int nr)
710 int i;
712 for (i = 0; i < nr; i++)
713 create_mapping(io_desc + i);
716 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
719 * vmalloc=size forces the vmalloc area to be exactly 'size'
720 * bytes. This can be used to increase (or decrease) the vmalloc
721 * area - the default is 128m.
723 static int __init early_vmalloc(char *arg)
725 unsigned long vmalloc_reserve = memparse(arg, NULL);
727 if (vmalloc_reserve < SZ_16M) {
728 vmalloc_reserve = SZ_16M;
729 printk(KERN_WARNING
730 "vmalloc area too small, limiting to %luMB\n",
731 vmalloc_reserve >> 20);
734 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
735 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
736 printk(KERN_WARNING
737 "vmalloc area is too big, limiting to %luMB\n",
738 vmalloc_reserve >> 20);
741 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
742 return 0;
744 early_param("vmalloc", early_vmalloc);
746 static phys_addr_t lowmem_limit __initdata = 0;
748 static void __init sanity_check_meminfo(void)
750 int i, j, highmem = 0;
752 lowmem_limit = __pa(vmalloc_min - 1) + 1;
753 memblock_set_current_limit(lowmem_limit);
755 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
756 struct membank *bank = &meminfo.bank[j];
757 *bank = meminfo.bank[i];
759 #ifdef CONFIG_HIGHMEM
760 if (__va(bank->start) > vmalloc_min ||
761 __va(bank->start) < (void *)PAGE_OFFSET)
762 highmem = 1;
764 bank->highmem = highmem;
767 * Split those memory banks which are partially overlapping
768 * the vmalloc area greatly simplifying things later.
770 if (__va(bank->start) < vmalloc_min &&
771 bank->size > vmalloc_min - __va(bank->start)) {
772 if (meminfo.nr_banks >= NR_BANKS) {
773 printk(KERN_CRIT "NR_BANKS too low, "
774 "ignoring high memory\n");
775 } else {
776 memmove(bank + 1, bank,
777 (meminfo.nr_banks - i) * sizeof(*bank));
778 meminfo.nr_banks++;
779 i++;
780 bank[1].size -= vmalloc_min - __va(bank->start);
781 bank[1].start = __pa(vmalloc_min - 1) + 1;
782 bank[1].highmem = highmem = 1;
783 j++;
785 bank->size = vmalloc_min - __va(bank->start);
787 #else
788 bank->highmem = highmem;
791 * Check whether this memory bank would entirely overlap
792 * the vmalloc area.
794 if (__va(bank->start) >= vmalloc_min ||
795 __va(bank->start) < (void *)PAGE_OFFSET) {
796 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
797 "(vmalloc region overlap).\n",
798 bank->start, bank->start + bank->size - 1);
799 continue;
803 * Check whether this memory bank would partially overlap
804 * the vmalloc area.
806 if (__va(bank->start + bank->size) > vmalloc_min ||
807 __va(bank->start + bank->size) < __va(bank->start)) {
808 unsigned long newsize = vmalloc_min - __va(bank->start);
809 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
810 "to -%.8lx (vmalloc region overlap).\n",
811 bank->start, bank->start + bank->size - 1,
812 bank->start + newsize - 1);
813 bank->size = newsize;
815 #endif
816 j++;
818 #ifdef CONFIG_HIGHMEM
819 if (highmem) {
820 const char *reason = NULL;
822 if (cache_is_vipt_aliasing()) {
824 * Interactions between kmap and other mappings
825 * make highmem support with aliasing VIPT caches
826 * rather difficult.
828 reason = "with VIPT aliasing cache";
829 } else if (is_smp() && tlb_ops_need_broadcast()) {
831 * kmap_high needs to occasionally flush TLB entries,
832 * however, if the TLB entries need to be broadcast
833 * we may deadlock:
834 * kmap_high(irqs off)->flush_all_zero_pkmaps->
835 * flush_tlb_kernel_range->smp_call_function_many
836 * (must not be called with irqs off)
838 reason = "without hardware TLB ops broadcasting";
840 if (reason) {
841 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
842 reason);
843 while (j > 0 && meminfo.bank[j - 1].highmem)
844 j--;
847 #endif
848 meminfo.nr_banks = j;
851 static inline void prepare_page_table(void)
853 unsigned long addr;
854 phys_addr_t end;
857 * Clear out all the mappings below the kernel image.
859 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
860 pmd_clear(pmd_off_k(addr));
862 #ifdef CONFIG_XIP_KERNEL
863 /* The XIP kernel is mapped in the module area -- skip over it */
864 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
865 #endif
866 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
867 pmd_clear(pmd_off_k(addr));
870 * Find the end of the first block of lowmem.
872 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
873 if (end >= lowmem_limit)
874 end = lowmem_limit;
877 * Clear out all the kernel space mappings, except for the first
878 * memory bank, up to the end of the vmalloc region.
880 for (addr = __phys_to_virt(end);
881 addr < VMALLOC_END; addr += PGDIR_SIZE)
882 pmd_clear(pmd_off_k(addr));
886 * Reserve the special regions of memory
888 void __init arm_mm_memblock_reserve(void)
891 * Reserve the page tables. These are already in use,
892 * and can only be in node 0.
894 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
896 #ifdef CONFIG_SA1111
898 * Because of the SA1111 DMA bug, we want to preserve our
899 * precious DMA-able memory...
901 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
902 #endif
906 * Set up device the mappings. Since we clear out the page tables for all
907 * mappings above VMALLOC_END, we will remove any debug device mappings.
908 * This means you have to be careful how you debug this function, or any
909 * called function. This means you can't use any function or debugging
910 * method which may touch any device, otherwise the kernel _will_ crash.
912 static void __init devicemaps_init(struct machine_desc *mdesc)
914 struct map_desc map;
915 unsigned long addr;
916 void *vectors;
919 * Allocate the vector page early.
921 vectors = early_alloc(PAGE_SIZE);
923 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
924 pmd_clear(pmd_off_k(addr));
927 * Map the kernel if it is XIP.
928 * It is always first in the modulearea.
930 #ifdef CONFIG_XIP_KERNEL
931 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
932 map.virtual = MODULES_VADDR;
933 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
934 map.type = MT_ROM;
935 create_mapping(&map);
936 #endif
939 * Map the cache flushing regions.
941 #ifdef FLUSH_BASE
942 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
943 map.virtual = FLUSH_BASE;
944 map.length = SZ_1M;
945 map.type = MT_CACHECLEAN;
946 create_mapping(&map);
947 #endif
948 #ifdef FLUSH_BASE_MINICACHE
949 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
950 map.virtual = FLUSH_BASE_MINICACHE;
951 map.length = SZ_1M;
952 map.type = MT_MINICLEAN;
953 create_mapping(&map);
954 #endif
957 * Create a mapping for the machine vectors at the high-vectors
958 * location (0xffff0000). If we aren't using high-vectors, also
959 * create a mapping at the low-vectors virtual address.
961 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
962 map.virtual = 0xffff0000;
963 map.length = PAGE_SIZE;
964 map.type = MT_HIGH_VECTORS;
965 create_mapping(&map);
967 if (!vectors_high()) {
968 map.virtual = 0;
969 map.type = MT_LOW_VECTORS;
970 create_mapping(&map);
974 * Ask the machine support to map in the statically mapped devices.
976 if (mdesc->map_io)
977 mdesc->map_io();
980 * Finally flush the caches and tlb to ensure that we're in a
981 * consistent state wrt the writebuffer. This also ensures that
982 * any write-allocated cache lines in the vector page are written
983 * back. After this point, we can start to touch devices again.
985 local_flush_tlb_all();
986 flush_cache_all();
989 static void __init kmap_init(void)
991 #ifdef CONFIG_HIGHMEM
992 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
993 PKMAP_BASE, _PAGE_KERNEL_TABLE);
994 #endif
997 static void __init map_lowmem(void)
999 struct memblock_region *reg;
1001 /* Map all the lowmem memory banks. */
1002 for_each_memblock(memory, reg) {
1003 phys_addr_t start = reg->base;
1004 phys_addr_t end = start + reg->size;
1005 struct map_desc map;
1007 if (end > lowmem_limit)
1008 end = lowmem_limit;
1009 if (start >= end)
1010 break;
1012 map.pfn = __phys_to_pfn(start);
1013 map.virtual = __phys_to_virt(start);
1014 map.length = end - start;
1015 map.type = MT_MEMORY;
1017 create_mapping(&map);
1022 * paging_init() sets up the page tables, initialises the zone memory
1023 * maps, and sets up the zero page, bad page and bad page tables.
1025 void __init paging_init(struct machine_desc *mdesc)
1027 void *zero_page;
1029 build_mem_type_table();
1030 sanity_check_meminfo();
1031 prepare_page_table();
1032 map_lowmem();
1033 devicemaps_init(mdesc);
1034 kmap_init();
1036 top_pmd = pmd_off_k(0xffff0000);
1038 /* allocate the zero page. */
1039 zero_page = early_alloc(PAGE_SIZE);
1041 bootmem_init();
1043 empty_zero_page = virt_to_page(zero_page);
1044 __flush_dcache_page(NULL, empty_zero_page);