2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
40 #include <asm/atomic.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is possible to drop the "ep->mtx" and to use the global
74 * mutex "epmutex" (together with "ep->lock") to have it working,
75 * but having "ep->mtx" will make the interface more scalable.
76 * Events that require holding "epmutex" are very rare, while for
77 * normal operations the epoll private "ep->mtx" will guarantee
78 * a better scalability.
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
89 #define EP_UNACTIVE_PTR ((void *) -1L)
91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
99 * Structure used to track possible nested calls, for too deep recursions
102 struct nested_call_node
{
103 struct list_head llink
;
109 * This structure is used as collector for nested calls, to check for
110 * maximum recursion dept and loop cycles.
112 struct nested_calls
{
113 struct list_head tasks_call_list
;
118 * Each file descriptor added to the eventpoll interface will
119 * have an entry of this type linked to the "rbr" RB tree.
122 /* RB tree node used to link this structure to the eventpoll RB tree */
125 /* List header used to link this structure to the eventpoll ready list */
126 struct list_head rdllink
;
129 * Works together "struct eventpoll"->ovflist in keeping the
130 * single linked chain of items.
134 /* The file descriptor information this item refers to */
135 struct epoll_filefd ffd
;
137 /* Number of active wait queue attached to poll operations */
140 /* List containing poll wait queues */
141 struct list_head pwqlist
;
143 /* The "container" of this item */
144 struct eventpoll
*ep
;
146 /* List header used to link this item to the "struct file" items list */
147 struct list_head fllink
;
149 /* The structure that describe the interested events and the source fd */
150 struct epoll_event event
;
154 * This structure is stored inside the "private_data" member of the file
155 * structure and rapresent the main data sructure for the eventpoll
159 /* Protect the this structure access */
163 * This mutex is used to ensure that files are not removed
164 * while epoll is using them. This is held during the event
165 * collection loop, the file cleanup path, the epoll file exit
166 * code and the ctl operations.
170 /* Wait queue used by sys_epoll_wait() */
171 wait_queue_head_t wq
;
173 /* Wait queue used by file->poll() */
174 wait_queue_head_t poll_wait
;
176 /* List of ready file descriptors */
177 struct list_head rdllist
;
179 /* RB tree root used to store monitored fd structs */
183 * This is a single linked list that chains all the "struct epitem" that
184 * happened while transfering ready events to userspace w/out
187 struct epitem
*ovflist
;
189 /* The user that created the eventpoll descriptor */
190 struct user_struct
*user
;
193 /* Wait structure used by the poll hooks */
194 struct eppoll_entry
{
195 /* List header used to link this structure to the "struct epitem" */
196 struct list_head llink
;
198 /* The "base" pointer is set to the container "struct epitem" */
202 * Wait queue item that will be linked to the target file wait
207 /* The wait queue head that linked the "wait" wait queue item */
208 wait_queue_head_t
*whead
;
211 /* Wrapper struct used by poll queueing */
217 /* Used by the ep_send_events() function as callback private data */
218 struct ep_send_events_data
{
220 struct epoll_event __user
*events
;
224 * Configuration options available inside /proc/sys/fs/epoll/
226 /* Maximum number of epoll watched descriptors, per user */
227 static long max_user_watches __read_mostly
;
230 * This mutex is used to serialize ep_free() and eventpoll_release_file().
232 static DEFINE_MUTEX(epmutex
);
234 /* Used to check for epoll file descriptor inclusion loops */
235 static struct nested_calls poll_loop_ncalls
;
237 /* Used for safe wake up implementation */
238 static struct nested_calls poll_safewake_ncalls
;
240 /* Used to call file's f_op->poll() under the nested calls boundaries */
241 static struct nested_calls poll_readywalk_ncalls
;
243 /* Slab cache used to allocate "struct epitem" */
244 static struct kmem_cache
*epi_cache __read_mostly
;
246 /* Slab cache used to allocate "struct eppoll_entry" */
247 static struct kmem_cache
*pwq_cache __read_mostly
;
251 #include <linux/sysctl.h>
254 static long long_max
= LONG_MAX
;
256 ctl_table epoll_table
[] = {
258 .procname
= "max_user_watches",
259 .data
= &max_user_watches
,
260 .maxlen
= sizeof(max_user_watches
),
262 .proc_handler
= proc_doulongvec_minmax
,
268 #endif /* CONFIG_SYSCTL */
271 /* Setup the structure that is used as key for the RB tree */
272 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
273 struct file
*file
, int fd
)
279 /* Compare RB tree keys */
280 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
281 struct epoll_filefd
*p2
)
283 return (p1
->file
> p2
->file
? +1:
284 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
287 /* Tells us if the item is currently linked */
288 static inline int ep_is_linked(struct list_head
*p
)
290 return !list_empty(p
);
293 /* Get the "struct epitem" from a wait queue pointer */
294 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
296 return container_of(p
, struct eppoll_entry
, wait
)->base
;
299 /* Get the "struct epitem" from an epoll queue wrapper */
300 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
302 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
305 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
306 static inline int ep_op_has_event(int op
)
308 return op
!= EPOLL_CTL_DEL
;
311 /* Initialize the poll safe wake up structure */
312 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
314 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
315 spin_lock_init(&ncalls
->lock
);
319 * ep_call_nested - Perform a bound (possibly) nested call, by checking
320 * that the recursion limit is not exceeded, and that
321 * the same nested call (by the meaning of same cookie) is
324 * @ncalls: Pointer to the nested_calls structure to be used for this call.
325 * @max_nests: Maximum number of allowed nesting calls.
326 * @nproc: Nested call core function pointer.
327 * @priv: Opaque data to be passed to the @nproc callback.
328 * @cookie: Cookie to be used to identify this nested call.
329 * @ctx: This instance context.
331 * Returns: Returns the code returned by the @nproc callback, or -1 if
332 * the maximum recursion limit has been exceeded.
334 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
335 int (*nproc
)(void *, void *, int), void *priv
,
336 void *cookie
, void *ctx
)
338 int error
, call_nests
= 0;
340 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
341 struct nested_call_node
*tncur
;
342 struct nested_call_node tnode
;
344 spin_lock_irqsave(&ncalls
->lock
, flags
);
347 * Try to see if the current task is already inside this wakeup call.
348 * We use a list here, since the population inside this set is always
351 list_for_each_entry(tncur
, lsthead
, llink
) {
352 if (tncur
->ctx
== ctx
&&
353 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
355 * Ops ... loop detected or maximum nest level reached.
356 * We abort this wake by breaking the cycle itself.
363 /* Add the current task and cookie to the list */
365 tnode
.cookie
= cookie
;
366 list_add(&tnode
.llink
, lsthead
);
368 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
370 /* Call the nested function */
371 error
= (*nproc
)(priv
, cookie
, call_nests
);
373 /* Remove the current task from the list */
374 spin_lock_irqsave(&ncalls
->lock
, flags
);
375 list_del(&tnode
.llink
);
377 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
382 #ifdef CONFIG_DEBUG_LOCK_ALLOC
383 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
384 unsigned long events
, int subclass
)
388 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
389 wake_up_locked_poll(wqueue
, events
);
390 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
393 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
394 unsigned long events
, int subclass
)
396 wake_up_poll(wqueue
, events
);
400 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
402 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
408 * Perform a safe wake up of the poll wait list. The problem is that
409 * with the new callback'd wake up system, it is possible that the
410 * poll callback is reentered from inside the call to wake_up() done
411 * on the poll wait queue head. The rule is that we cannot reenter the
412 * wake up code from the same task more than EP_MAX_NESTS times,
413 * and we cannot reenter the same wait queue head at all. This will
414 * enable to have a hierarchy of epoll file descriptor of no more than
417 static void ep_poll_safewake(wait_queue_head_t
*wq
)
419 int this_cpu
= get_cpu();
421 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
422 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
428 * This function unregisters poll callbacks from the associated file
429 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
432 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
434 struct list_head
*lsthead
= &epi
->pwqlist
;
435 struct eppoll_entry
*pwq
;
437 while (!list_empty(lsthead
)) {
438 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
440 list_del(&pwq
->llink
);
441 remove_wait_queue(pwq
->whead
, &pwq
->wait
);
442 kmem_cache_free(pwq_cache
, pwq
);
447 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
448 * the scan code, to call f_op->poll(). Also allows for
449 * O(NumReady) performance.
451 * @ep: Pointer to the epoll private data structure.
452 * @sproc: Pointer to the scan callback.
453 * @priv: Private opaque data passed to the @sproc callback.
455 * Returns: The same integer error code returned by the @sproc callback.
457 static int ep_scan_ready_list(struct eventpoll
*ep
,
458 int (*sproc
)(struct eventpoll
*,
459 struct list_head
*, void *),
462 int error
, pwake
= 0;
464 struct epitem
*epi
, *nepi
;
468 * We need to lock this because we could be hit by
469 * eventpoll_release_file() and epoll_ctl().
471 mutex_lock(&ep
->mtx
);
474 * Steal the ready list, and re-init the original one to the
475 * empty list. Also, set ep->ovflist to NULL so that events
476 * happening while looping w/out locks, are not lost. We cannot
477 * have the poll callback to queue directly on ep->rdllist,
478 * because we want the "sproc" callback to be able to do it
481 spin_lock_irqsave(&ep
->lock
, flags
);
482 list_splice_init(&ep
->rdllist
, &txlist
);
484 spin_unlock_irqrestore(&ep
->lock
, flags
);
487 * Now call the callback function.
489 error
= (*sproc
)(ep
, &txlist
, priv
);
491 spin_lock_irqsave(&ep
->lock
, flags
);
493 * During the time we spent inside the "sproc" callback, some
494 * other events might have been queued by the poll callback.
495 * We re-insert them inside the main ready-list here.
497 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
498 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
500 * We need to check if the item is already in the list.
501 * During the "sproc" callback execution time, items are
502 * queued into ->ovflist but the "txlist" might already
503 * contain them, and the list_splice() below takes care of them.
505 if (!ep_is_linked(&epi
->rdllink
))
506 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
509 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
510 * releasing the lock, events will be queued in the normal way inside
513 ep
->ovflist
= EP_UNACTIVE_PTR
;
516 * Quickly re-inject items left on "txlist".
518 list_splice(&txlist
, &ep
->rdllist
);
520 if (!list_empty(&ep
->rdllist
)) {
522 * Wake up (if active) both the eventpoll wait list and
523 * the ->poll() wait list (delayed after we release the lock).
525 if (waitqueue_active(&ep
->wq
))
526 wake_up_locked(&ep
->wq
);
527 if (waitqueue_active(&ep
->poll_wait
))
530 spin_unlock_irqrestore(&ep
->lock
, flags
);
532 mutex_unlock(&ep
->mtx
);
534 /* We have to call this outside the lock */
536 ep_poll_safewake(&ep
->poll_wait
);
542 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
543 * all the associated resources. Must be called with "mtx" held.
545 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
548 struct file
*file
= epi
->ffd
.file
;
551 * Removes poll wait queue hooks. We _have_ to do this without holding
552 * the "ep->lock" otherwise a deadlock might occur. This because of the
553 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
554 * queue head lock when unregistering the wait queue. The wakeup callback
555 * will run by holding the wait queue head lock and will call our callback
556 * that will try to get "ep->lock".
558 ep_unregister_pollwait(ep
, epi
);
560 /* Remove the current item from the list of epoll hooks */
561 spin_lock(&file
->f_lock
);
562 if (ep_is_linked(&epi
->fllink
))
563 list_del_init(&epi
->fllink
);
564 spin_unlock(&file
->f_lock
);
566 rb_erase(&epi
->rbn
, &ep
->rbr
);
568 spin_lock_irqsave(&ep
->lock
, flags
);
569 if (ep_is_linked(&epi
->rdllink
))
570 list_del_init(&epi
->rdllink
);
571 spin_unlock_irqrestore(&ep
->lock
, flags
);
573 /* At this point it is safe to free the eventpoll item */
574 kmem_cache_free(epi_cache
, epi
);
576 atomic_long_dec(&ep
->user
->epoll_watches
);
581 static void ep_free(struct eventpoll
*ep
)
586 /* We need to release all tasks waiting for these file */
587 if (waitqueue_active(&ep
->poll_wait
))
588 ep_poll_safewake(&ep
->poll_wait
);
591 * We need to lock this because we could be hit by
592 * eventpoll_release_file() while we're freeing the "struct eventpoll".
593 * We do not need to hold "ep->mtx" here because the epoll file
594 * is on the way to be removed and no one has references to it
595 * anymore. The only hit might come from eventpoll_release_file() but
596 * holding "epmutex" is sufficent here.
598 mutex_lock(&epmutex
);
601 * Walks through the whole tree by unregistering poll callbacks.
603 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
604 epi
= rb_entry(rbp
, struct epitem
, rbn
);
606 ep_unregister_pollwait(ep
, epi
);
610 * Walks through the whole tree by freeing each "struct epitem". At this
611 * point we are sure no poll callbacks will be lingering around, and also by
612 * holding "epmutex" we can be sure that no file cleanup code will hit
613 * us during this operation. So we can avoid the lock on "ep->lock".
615 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
616 epi
= rb_entry(rbp
, struct epitem
, rbn
);
620 mutex_unlock(&epmutex
);
621 mutex_destroy(&ep
->mtx
);
626 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
628 struct eventpoll
*ep
= file
->private_data
;
636 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
639 struct epitem
*epi
, *tmp
;
641 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
642 if (epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
644 return POLLIN
| POLLRDNORM
;
647 * Item has been dropped into the ready list by the poll
648 * callback, but it's not actually ready, as far as
649 * caller requested events goes. We can remove it here.
651 list_del_init(&epi
->rdllink
);
658 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
660 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
);
663 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
666 struct eventpoll
*ep
= file
->private_data
;
668 /* Insert inside our poll wait queue */
669 poll_wait(file
, &ep
->poll_wait
, wait
);
672 * Proceed to find out if wanted events are really available inside
673 * the ready list. This need to be done under ep_call_nested()
674 * supervision, since the call to f_op->poll() done on listed files
675 * could re-enter here.
677 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
678 ep_poll_readyevents_proc
, ep
, ep
, current
);
680 return pollflags
!= -1 ? pollflags
: 0;
683 /* File callbacks that implement the eventpoll file behaviour */
684 static const struct file_operations eventpoll_fops
= {
685 .release
= ep_eventpoll_release
,
686 .poll
= ep_eventpoll_poll
,
687 .llseek
= noop_llseek
,
690 /* Fast test to see if the file is an evenpoll file */
691 static inline int is_file_epoll(struct file
*f
)
693 return f
->f_op
== &eventpoll_fops
;
697 * This is called from eventpoll_release() to unlink files from the eventpoll
698 * interface. We need to have this facility to cleanup correctly files that are
699 * closed without being removed from the eventpoll interface.
701 void eventpoll_release_file(struct file
*file
)
703 struct list_head
*lsthead
= &file
->f_ep_links
;
704 struct eventpoll
*ep
;
708 * We don't want to get "file->f_lock" because it is not
709 * necessary. It is not necessary because we're in the "struct file"
710 * cleanup path, and this means that noone is using this file anymore.
711 * So, for example, epoll_ctl() cannot hit here since if we reach this
712 * point, the file counter already went to zero and fget() would fail.
713 * The only hit might come from ep_free() but by holding the mutex
714 * will correctly serialize the operation. We do need to acquire
715 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
716 * from anywhere but ep_free().
718 * Besides, ep_remove() acquires the lock, so we can't hold it here.
720 mutex_lock(&epmutex
);
722 while (!list_empty(lsthead
)) {
723 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
726 list_del_init(&epi
->fllink
);
727 mutex_lock(&ep
->mtx
);
729 mutex_unlock(&ep
->mtx
);
732 mutex_unlock(&epmutex
);
735 static int ep_alloc(struct eventpoll
**pep
)
738 struct user_struct
*user
;
739 struct eventpoll
*ep
;
741 user
= get_current_user();
743 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
747 spin_lock_init(&ep
->lock
);
748 mutex_init(&ep
->mtx
);
749 init_waitqueue_head(&ep
->wq
);
750 init_waitqueue_head(&ep
->poll_wait
);
751 INIT_LIST_HEAD(&ep
->rdllist
);
753 ep
->ovflist
= EP_UNACTIVE_PTR
;
766 * Search the file inside the eventpoll tree. The RB tree operations
767 * are protected by the "mtx" mutex, and ep_find() must be called with
770 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
774 struct epitem
*epi
, *epir
= NULL
;
775 struct epoll_filefd ffd
;
777 ep_set_ffd(&ffd
, file
, fd
);
778 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
779 epi
= rb_entry(rbp
, struct epitem
, rbn
);
780 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
795 * This is the callback that is passed to the wait queue wakeup
796 * machanism. It is called by the stored file descriptors when they
797 * have events to report.
799 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
803 struct epitem
*epi
= ep_item_from_wait(wait
);
804 struct eventpoll
*ep
= epi
->ep
;
806 spin_lock_irqsave(&ep
->lock
, flags
);
809 * If the event mask does not contain any poll(2) event, we consider the
810 * descriptor to be disabled. This condition is likely the effect of the
811 * EPOLLONESHOT bit that disables the descriptor when an event is received,
812 * until the next EPOLL_CTL_MOD will be issued.
814 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
818 * Check the events coming with the callback. At this stage, not
819 * every device reports the events in the "key" parameter of the
820 * callback. We need to be able to handle both cases here, hence the
821 * test for "key" != NULL before the event match test.
823 if (key
&& !((unsigned long) key
& epi
->event
.events
))
827 * If we are trasfering events to userspace, we can hold no locks
828 * (because we're accessing user memory, and because of linux f_op->poll()
829 * semantics). All the events that happens during that period of time are
830 * chained in ep->ovflist and requeued later on.
832 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
833 if (epi
->next
== EP_UNACTIVE_PTR
) {
834 epi
->next
= ep
->ovflist
;
840 /* If this file is already in the ready list we exit soon */
841 if (!ep_is_linked(&epi
->rdllink
))
842 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
845 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
848 if (waitqueue_active(&ep
->wq
))
849 wake_up_locked(&ep
->wq
);
850 if (waitqueue_active(&ep
->poll_wait
))
854 spin_unlock_irqrestore(&ep
->lock
, flags
);
856 /* We have to call this outside the lock */
858 ep_poll_safewake(&ep
->poll_wait
);
864 * This is the callback that is used to add our wait queue to the
865 * target file wakeup lists.
867 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
870 struct epitem
*epi
= ep_item_from_epqueue(pt
);
871 struct eppoll_entry
*pwq
;
873 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
874 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
877 add_wait_queue(whead
, &pwq
->wait
);
878 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
881 /* We have to signal that an error occurred */
886 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
889 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
894 epic
= rb_entry(parent
, struct epitem
, rbn
);
895 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
897 p
= &parent
->rb_right
;
899 p
= &parent
->rb_left
;
901 rb_link_node(&epi
->rbn
, parent
, p
);
902 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
906 * Must be called with "mtx" held.
908 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
909 struct file
*tfile
, int fd
)
911 int error
, revents
, pwake
= 0;
915 struct ep_pqueue epq
;
917 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
918 if (unlikely(user_watches
>= max_user_watches
))
920 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
923 /* Item initialization follow here ... */
924 INIT_LIST_HEAD(&epi
->rdllink
);
925 INIT_LIST_HEAD(&epi
->fllink
);
926 INIT_LIST_HEAD(&epi
->pwqlist
);
928 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
931 epi
->next
= EP_UNACTIVE_PTR
;
933 /* Initialize the poll table using the queue callback */
935 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
938 * Attach the item to the poll hooks and get current event bits.
939 * We can safely use the file* here because its usage count has
940 * been increased by the caller of this function. Note that after
941 * this operation completes, the poll callback can start hitting
944 revents
= tfile
->f_op
->poll(tfile
, &epq
.pt
);
947 * We have to check if something went wrong during the poll wait queue
948 * install process. Namely an allocation for a wait queue failed due
949 * high memory pressure.
953 goto error_unregister
;
955 /* Add the current item to the list of active epoll hook for this file */
956 spin_lock(&tfile
->f_lock
);
957 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
958 spin_unlock(&tfile
->f_lock
);
961 * Add the current item to the RB tree. All RB tree operations are
962 * protected by "mtx", and ep_insert() is called with "mtx" held.
964 ep_rbtree_insert(ep
, epi
);
966 /* We have to drop the new item inside our item list to keep track of it */
967 spin_lock_irqsave(&ep
->lock
, flags
);
969 /* If the file is already "ready" we drop it inside the ready list */
970 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
971 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
973 /* Notify waiting tasks that events are available */
974 if (waitqueue_active(&ep
->wq
))
975 wake_up_locked(&ep
->wq
);
976 if (waitqueue_active(&ep
->poll_wait
))
980 spin_unlock_irqrestore(&ep
->lock
, flags
);
982 atomic_long_inc(&ep
->user
->epoll_watches
);
984 /* We have to call this outside the lock */
986 ep_poll_safewake(&ep
->poll_wait
);
991 ep_unregister_pollwait(ep
, epi
);
994 * We need to do this because an event could have been arrived on some
995 * allocated wait queue. Note that we don't care about the ep->ovflist
996 * list, since that is used/cleaned only inside a section bound by "mtx".
997 * And ep_insert() is called with "mtx" held.
999 spin_lock_irqsave(&ep
->lock
, flags
);
1000 if (ep_is_linked(&epi
->rdllink
))
1001 list_del_init(&epi
->rdllink
);
1002 spin_unlock_irqrestore(&ep
->lock
, flags
);
1004 kmem_cache_free(epi_cache
, epi
);
1010 * Modify the interest event mask by dropping an event if the new mask
1011 * has a match in the current file status. Must be called with "mtx" held.
1013 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1016 unsigned int revents
;
1019 * Set the new event interest mask before calling f_op->poll();
1020 * otherwise we might miss an event that happens between the
1021 * f_op->poll() call and the new event set registering.
1023 epi
->event
.events
= event
->events
;
1024 epi
->event
.data
= event
->data
; /* protected by mtx */
1027 * Get current event bits. We can safely use the file* here because
1028 * its usage count has been increased by the caller of this function.
1030 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
);
1033 * If the item is "hot" and it is not registered inside the ready
1034 * list, push it inside.
1036 if (revents
& event
->events
) {
1037 spin_lock_irq(&ep
->lock
);
1038 if (!ep_is_linked(&epi
->rdllink
)) {
1039 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1041 /* Notify waiting tasks that events are available */
1042 if (waitqueue_active(&ep
->wq
))
1043 wake_up_locked(&ep
->wq
);
1044 if (waitqueue_active(&ep
->poll_wait
))
1047 spin_unlock_irq(&ep
->lock
);
1050 /* We have to call this outside the lock */
1052 ep_poll_safewake(&ep
->poll_wait
);
1057 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1060 struct ep_send_events_data
*esed
= priv
;
1062 unsigned int revents
;
1064 struct epoll_event __user
*uevent
;
1067 * We can loop without lock because we are passed a task private list.
1068 * Items cannot vanish during the loop because ep_scan_ready_list() is
1069 * holding "mtx" during this call.
1071 for (eventcnt
= 0, uevent
= esed
->events
;
1072 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1073 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1075 list_del_init(&epi
->rdllink
);
1077 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, NULL
) &
1081 * If the event mask intersect the caller-requested one,
1082 * deliver the event to userspace. Again, ep_scan_ready_list()
1083 * is holding "mtx", so no operations coming from userspace
1084 * can change the item.
1087 if (__put_user(revents
, &uevent
->events
) ||
1088 __put_user(epi
->event
.data
, &uevent
->data
)) {
1089 list_add(&epi
->rdllink
, head
);
1090 return eventcnt
? eventcnt
: -EFAULT
;
1094 if (epi
->event
.events
& EPOLLONESHOT
)
1095 epi
->event
.events
&= EP_PRIVATE_BITS
;
1096 else if (!(epi
->event
.events
& EPOLLET
)) {
1098 * If this file has been added with Level
1099 * Trigger mode, we need to insert back inside
1100 * the ready list, so that the next call to
1101 * epoll_wait() will check again the events
1102 * availability. At this point, noone can insert
1103 * into ep->rdllist besides us. The epoll_ctl()
1104 * callers are locked out by
1105 * ep_scan_ready_list() holding "mtx" and the
1106 * poll callback will queue them in ep->ovflist.
1108 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1116 static int ep_send_events(struct eventpoll
*ep
,
1117 struct epoll_event __user
*events
, int maxevents
)
1119 struct ep_send_events_data esed
;
1121 esed
.maxevents
= maxevents
;
1122 esed
.events
= events
;
1124 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
);
1127 static inline struct timespec
ep_set_mstimeout(long ms
)
1129 struct timespec now
, ts
= {
1130 .tv_sec
= ms
/ MSEC_PER_SEC
,
1131 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1135 return timespec_add_safe(now
, ts
);
1138 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1139 int maxevents
, long timeout
)
1141 int res
, eavail
, timed_out
= 0;
1142 unsigned long flags
;
1145 ktime_t expires
, *to
= NULL
;
1148 struct timespec end_time
= ep_set_mstimeout(timeout
);
1150 slack
= select_estimate_accuracy(&end_time
);
1152 *to
= timespec_to_ktime(end_time
);
1153 } else if (timeout
== 0) {
1158 spin_lock_irqsave(&ep
->lock
, flags
);
1161 if (list_empty(&ep
->rdllist
)) {
1163 * We don't have any available event to return to the caller.
1164 * We need to sleep here, and we will be wake up by
1165 * ep_poll_callback() when events will become available.
1167 init_waitqueue_entry(&wait
, current
);
1168 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1172 * We don't want to sleep if the ep_poll_callback() sends us
1173 * a wakeup in between. That's why we set the task state
1174 * to TASK_INTERRUPTIBLE before doing the checks.
1176 set_current_state(TASK_INTERRUPTIBLE
);
1177 if (!list_empty(&ep
->rdllist
) || timed_out
)
1179 if (signal_pending(current
)) {
1184 spin_unlock_irqrestore(&ep
->lock
, flags
);
1185 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1188 spin_lock_irqsave(&ep
->lock
, flags
);
1190 __remove_wait_queue(&ep
->wq
, &wait
);
1192 set_current_state(TASK_RUNNING
);
1194 /* Is it worth to try to dig for events ? */
1195 eavail
= !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
1197 spin_unlock_irqrestore(&ep
->lock
, flags
);
1200 * Try to transfer events to user space. In case we get 0 events and
1201 * there's still timeout left over, we go trying again in search of
1204 if (!res
&& eavail
&&
1205 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1212 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1213 * API, to verify that adding an epoll file inside another
1214 * epoll structure, does not violate the constraints, in
1215 * terms of closed loops, or too deep chains (which can
1216 * result in excessive stack usage).
1218 * @priv: Pointer to the epoll file to be currently checked.
1219 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1220 * data structure pointer.
1221 * @call_nests: Current dept of the @ep_call_nested() call stack.
1223 * Returns: Returns zero if adding the epoll @file inside current epoll
1224 * structure @ep does not violate the constraints, or -1 otherwise.
1226 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1229 struct file
*file
= priv
;
1230 struct eventpoll
*ep
= file
->private_data
;
1231 struct rb_node
*rbp
;
1234 mutex_lock(&ep
->mtx
);
1235 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1236 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1237 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1238 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1239 ep_loop_check_proc
, epi
->ffd
.file
,
1240 epi
->ffd
.file
->private_data
, current
);
1245 mutex_unlock(&ep
->mtx
);
1251 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1252 * another epoll file (represented by @ep) does not create
1253 * closed loops or too deep chains.
1255 * @ep: Pointer to the epoll private data structure.
1256 * @file: Pointer to the epoll file to be checked.
1258 * Returns: Returns zero if adding the epoll @file inside current epoll
1259 * structure @ep does not violate the constraints, or -1 otherwise.
1261 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1263 return ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1264 ep_loop_check_proc
, file
, ep
, current
);
1268 * Open an eventpoll file descriptor.
1270 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1273 struct eventpoll
*ep
= NULL
;
1275 /* Check the EPOLL_* constant for consistency. */
1276 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1278 if (flags
& ~EPOLL_CLOEXEC
)
1281 * Create the internal data structure ("struct eventpoll").
1283 error
= ep_alloc(&ep
);
1287 * Creates all the items needed to setup an eventpoll file. That is,
1288 * a file structure and a free file descriptor.
1290 error
= anon_inode_getfd("[eventpoll]", &eventpoll_fops
, ep
,
1291 O_RDWR
| (flags
& O_CLOEXEC
));
1298 SYSCALL_DEFINE1(epoll_create
, int, size
)
1303 return sys_epoll_create1(0);
1307 * The following function implements the controller interface for
1308 * the eventpoll file that enables the insertion/removal/change of
1309 * file descriptors inside the interest set.
1311 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1312 struct epoll_event __user
*, event
)
1315 int did_lock_epmutex
= 0;
1316 struct file
*file
, *tfile
;
1317 struct eventpoll
*ep
;
1319 struct epoll_event epds
;
1322 if (ep_op_has_event(op
) &&
1323 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1326 /* Get the "struct file *" for the eventpoll file */
1332 /* Get the "struct file *" for the target file */
1337 /* The target file descriptor must support poll */
1339 if (!tfile
->f_op
|| !tfile
->f_op
->poll
)
1340 goto error_tgt_fput
;
1343 * We have to check that the file structure underneath the file descriptor
1344 * the user passed to us _is_ an eventpoll file. And also we do not permit
1345 * adding an epoll file descriptor inside itself.
1348 if (file
== tfile
|| !is_file_epoll(file
))
1349 goto error_tgt_fput
;
1352 * At this point it is safe to assume that the "private_data" contains
1353 * our own data structure.
1355 ep
= file
->private_data
;
1358 * When we insert an epoll file descriptor, inside another epoll file
1359 * descriptor, there is the change of creating closed loops, which are
1360 * better be handled here, than in more critical paths.
1362 * We hold epmutex across the loop check and the insert in this case, in
1363 * order to prevent two separate inserts from racing and each doing the
1364 * insert "at the same time" such that ep_loop_check passes on both
1365 * before either one does the insert, thereby creating a cycle.
1367 if (unlikely(is_file_epoll(tfile
) && op
== EPOLL_CTL_ADD
)) {
1368 mutex_lock(&epmutex
);
1369 did_lock_epmutex
= 1;
1371 if (ep_loop_check(ep
, tfile
) != 0)
1372 goto error_tgt_fput
;
1376 mutex_lock(&ep
->mtx
);
1379 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1380 * above, we can be sure to be able to use the item looked up by
1381 * ep_find() till we release the mutex.
1383 epi
= ep_find(ep
, tfile
, fd
);
1389 epds
.events
|= POLLERR
| POLLHUP
;
1390 error
= ep_insert(ep
, &epds
, tfile
, fd
);
1396 error
= ep_remove(ep
, epi
);
1402 epds
.events
|= POLLERR
| POLLHUP
;
1403 error
= ep_modify(ep
, epi
, &epds
);
1408 mutex_unlock(&ep
->mtx
);
1411 if (unlikely(did_lock_epmutex
))
1412 mutex_unlock(&epmutex
);
1423 * Implement the event wait interface for the eventpoll file. It is the kernel
1424 * part of the user space epoll_wait(2).
1426 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1427 int, maxevents
, int, timeout
)
1431 struct eventpoll
*ep
;
1433 /* The maximum number of event must be greater than zero */
1434 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1437 /* Verify that the area passed by the user is writeable */
1438 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
))) {
1443 /* Get the "struct file *" for the eventpoll file */
1450 * We have to check that the file structure underneath the fd
1451 * the user passed to us _is_ an eventpoll file.
1454 if (!is_file_epoll(file
))
1458 * At this point it is safe to assume that the "private_data" contains
1459 * our own data structure.
1461 ep
= file
->private_data
;
1463 /* Time to fish for events ... */
1464 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1473 #ifdef HAVE_SET_RESTORE_SIGMASK
1476 * Implement the event wait interface for the eventpoll file. It is the kernel
1477 * part of the user space epoll_pwait(2).
1479 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1480 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1484 sigset_t ksigmask
, sigsaved
;
1487 * If the caller wants a certain signal mask to be set during the wait,
1491 if (sigsetsize
!= sizeof(sigset_t
))
1493 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1495 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1496 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1499 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1502 * If we changed the signal mask, we need to restore the original one.
1503 * In case we've got a signal while waiting, we do not restore the
1504 * signal mask yet, and we allow do_signal() to deliver the signal on
1505 * the way back to userspace, before the signal mask is restored.
1508 if (error
== -EINTR
) {
1509 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1511 set_restore_sigmask();
1513 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1519 #endif /* HAVE_SET_RESTORE_SIGMASK */
1521 static int __init
eventpoll_init(void)
1527 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1529 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
1531 BUG_ON(max_user_watches
< 0);
1534 * Initialize the structure used to perform epoll file descriptor
1535 * inclusion loops checks.
1537 ep_nested_calls_init(&poll_loop_ncalls
);
1539 /* Initialize the structure used to perform safe poll wait head wake ups */
1540 ep_nested_calls_init(&poll_safewake_ncalls
);
1542 /* Initialize the structure used to perform file's f_op->poll() calls */
1543 ep_nested_calls_init(&poll_readywalk_ncalls
);
1545 /* Allocates slab cache used to allocate "struct epitem" items */
1546 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
1547 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1549 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1550 pwq_cache
= kmem_cache_create("eventpoll_pwq",
1551 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
1555 fs_initcall(eventpoll_init
);