2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
60 static char *io_tlb_start
, *io_tlb_end
;
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
66 static unsigned long io_tlb_nslabs
;
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
71 static unsigned long io_tlb_overflow
= 32*1024;
73 static void *io_tlb_overflow_buffer
;
76 * This is a free list describing the number of free entries available from
79 static unsigned int *io_tlb_list
;
80 static unsigned int io_tlb_index
;
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
86 static phys_addr_t
*io_tlb_orig_addr
;
89 * Protect the above data structures in the map and unmap calls
91 static DEFINE_SPINLOCK(io_tlb_lock
);
93 static int late_alloc
;
96 setup_io_tlb_npages(char *str
)
99 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
105 if (!strcmp(str
, "force"))
110 __setup("swiotlb=", setup_io_tlb_npages
);
111 /* make io_tlb_overflow tunable too? */
113 unsigned long swiotlb_nr_tbl(void)
115 return io_tlb_nslabs
;
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
118 /* Note that this doesn't work with highmem page */
119 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
120 volatile void *address
)
122 return phys_to_dma(hwdev
, virt_to_phys(address
));
125 void swiotlb_print_info(void)
127 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
128 phys_addr_t pstart
, pend
;
130 pstart
= virt_to_phys(io_tlb_start
);
131 pend
= virt_to_phys(io_tlb_end
);
133 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
134 (unsigned long long)pstart
, (unsigned long long)pend
- 1,
135 bytes
>> 20, io_tlb_start
, io_tlb_end
- 1);
138 void __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
140 unsigned long i
, bytes
;
142 bytes
= nslabs
<< IO_TLB_SHIFT
;
144 io_tlb_nslabs
= nslabs
;
146 io_tlb_end
= io_tlb_start
+ bytes
;
149 * Allocate and initialize the free list array. This array is used
150 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
151 * between io_tlb_start and io_tlb_end.
153 io_tlb_list
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
154 for (i
= 0; i
< io_tlb_nslabs
; i
++)
155 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
157 io_tlb_orig_addr
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
160 * Get the overflow emergency buffer
162 io_tlb_overflow_buffer
= alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow
));
163 if (!io_tlb_overflow_buffer
)
164 panic("Cannot allocate SWIOTLB overflow buffer!\n");
166 swiotlb_print_info();
170 * Statically reserve bounce buffer space and initialize bounce buffer data
171 * structures for the software IO TLB used to implement the DMA API.
174 swiotlb_init_with_default_size(size_t default_size
, int verbose
)
178 if (!io_tlb_nslabs
) {
179 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
180 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
183 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
186 * Get IO TLB memory from the low pages
188 io_tlb_start
= alloc_bootmem_low_pages(PAGE_ALIGN(bytes
));
190 panic("Cannot allocate SWIOTLB buffer");
192 swiotlb_init_with_tbl(io_tlb_start
, io_tlb_nslabs
, verbose
);
196 swiotlb_init(int verbose
)
198 swiotlb_init_with_default_size(64 * (1<<20), verbose
); /* default to 64MB */
202 * Systems with larger DMA zones (those that don't support ISA) can
203 * initialize the swiotlb later using the slab allocator if needed.
204 * This should be just like above, but with some error catching.
207 swiotlb_late_init_with_default_size(size_t default_size
)
209 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
213 if (!io_tlb_nslabs
) {
214 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
215 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
219 * Get IO TLB memory from the low pages
221 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
222 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
223 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
225 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
226 io_tlb_start
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
234 io_tlb_nslabs
= req_nslabs
;
237 if (order
!= get_order(bytes
)) {
238 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
239 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
240 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
242 rc
= swiotlb_late_init_with_tbl(io_tlb_start
, io_tlb_nslabs
);
244 free_pages((unsigned long)io_tlb_start
, order
);
249 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
251 unsigned long i
, bytes
;
253 bytes
= nslabs
<< IO_TLB_SHIFT
;
255 io_tlb_nslabs
= nslabs
;
257 io_tlb_end
= io_tlb_start
+ bytes
;
259 memset(io_tlb_start
, 0, bytes
);
262 * Allocate and initialize the free list array. This array is used
263 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
264 * between io_tlb_start and io_tlb_end.
266 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
267 get_order(io_tlb_nslabs
* sizeof(int)));
271 for (i
= 0; i
< io_tlb_nslabs
; i
++)
272 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
275 io_tlb_orig_addr
= (phys_addr_t
*)
276 __get_free_pages(GFP_KERNEL
,
277 get_order(io_tlb_nslabs
*
278 sizeof(phys_addr_t
)));
279 if (!io_tlb_orig_addr
)
282 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
285 * Get the overflow emergency buffer
287 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
288 get_order(io_tlb_overflow
));
289 if (!io_tlb_overflow_buffer
)
292 swiotlb_print_info();
299 free_pages((unsigned long)io_tlb_orig_addr
,
300 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
301 io_tlb_orig_addr
= NULL
;
303 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
313 void __init
swiotlb_free(void)
315 if (!io_tlb_overflow_buffer
)
319 free_pages((unsigned long)io_tlb_overflow_buffer
,
320 get_order(io_tlb_overflow
));
321 free_pages((unsigned long)io_tlb_orig_addr
,
322 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
323 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
325 free_pages((unsigned long)io_tlb_start
,
326 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
328 free_bootmem_late(__pa(io_tlb_overflow_buffer
),
329 PAGE_ALIGN(io_tlb_overflow
));
330 free_bootmem_late(__pa(io_tlb_orig_addr
),
331 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
332 free_bootmem_late(__pa(io_tlb_list
),
333 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
334 free_bootmem_late(__pa(io_tlb_start
),
335 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
340 static int is_swiotlb_buffer(phys_addr_t paddr
)
342 return paddr
>= virt_to_phys(io_tlb_start
) &&
343 paddr
< virt_to_phys(io_tlb_end
);
347 * Bounce: copy the swiotlb buffer back to the original dma location
349 void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
350 enum dma_data_direction dir
)
352 unsigned long pfn
= PFN_DOWN(phys
);
354 if (PageHighMem(pfn_to_page(pfn
))) {
355 /* The buffer does not have a mapping. Map it in and copy */
356 unsigned int offset
= phys
& ~PAGE_MASK
;
362 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
364 local_irq_save(flags
);
365 buffer
= kmap_atomic(pfn_to_page(pfn
));
366 if (dir
== DMA_TO_DEVICE
)
367 memcpy(dma_addr
, buffer
+ offset
, sz
);
369 memcpy(buffer
+ offset
, dma_addr
, sz
);
370 kunmap_atomic(buffer
);
371 local_irq_restore(flags
);
379 if (dir
== DMA_TO_DEVICE
)
380 memcpy(dma_addr
, phys_to_virt(phys
), size
);
382 memcpy(phys_to_virt(phys
), dma_addr
, size
);
385 EXPORT_SYMBOL_GPL(swiotlb_bounce
);
387 void *swiotlb_tbl_map_single(struct device
*hwdev
, dma_addr_t tbl_dma_addr
,
388 phys_addr_t phys
, size_t size
,
389 enum dma_data_direction dir
)
393 unsigned int nslots
, stride
, index
, wrap
;
396 unsigned long offset_slots
;
397 unsigned long max_slots
;
399 mask
= dma_get_seg_boundary(hwdev
);
401 tbl_dma_addr
&= mask
;
403 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
406 * Carefully handle integer overflow which can occur when mask == ~0UL.
409 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
410 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
413 * For mappings greater than a page, we limit the stride (and
414 * hence alignment) to a page size.
416 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
417 if (size
> PAGE_SIZE
)
418 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
425 * Find suitable number of IO TLB entries size that will fit this
426 * request and allocate a buffer from that IO TLB pool.
428 spin_lock_irqsave(&io_tlb_lock
, flags
);
429 index
= ALIGN(io_tlb_index
, stride
);
430 if (index
>= io_tlb_nslabs
)
435 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
438 if (index
>= io_tlb_nslabs
)
445 * If we find a slot that indicates we have 'nslots' number of
446 * contiguous buffers, we allocate the buffers from that slot
447 * and mark the entries as '0' indicating unavailable.
449 if (io_tlb_list
[index
] >= nslots
) {
452 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
454 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
455 io_tlb_list
[i
] = ++count
;
456 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
459 * Update the indices to avoid searching in the next
462 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
463 ? (index
+ nslots
) : 0);
468 if (index
>= io_tlb_nslabs
)
470 } while (index
!= wrap
);
473 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
476 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
479 * Save away the mapping from the original address to the DMA address.
480 * This is needed when we sync the memory. Then we sync the buffer if
483 for (i
= 0; i
< nslots
; i
++)
484 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
485 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
486 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
490 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
493 * Allocates bounce buffer and returns its kernel virtual address.
497 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
498 enum dma_data_direction dir
)
500 dma_addr_t start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
);
502 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
506 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
509 swiotlb_tbl_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
510 enum dma_data_direction dir
)
513 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
514 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
515 phys_addr_t phys
= io_tlb_orig_addr
[index
];
518 * First, sync the memory before unmapping the entry
520 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
521 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
524 * Return the buffer to the free list by setting the corresponding
525 * entries to indicate the number of contiguous entries available.
526 * While returning the entries to the free list, we merge the entries
527 * with slots below and above the pool being returned.
529 spin_lock_irqsave(&io_tlb_lock
, flags
);
531 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
532 io_tlb_list
[index
+ nslots
] : 0);
534 * Step 1: return the slots to the free list, merging the
535 * slots with superceeding slots
537 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
538 io_tlb_list
[i
] = ++count
;
540 * Step 2: merge the returned slots with the preceding slots,
541 * if available (non zero)
543 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
544 io_tlb_list
[i
] = ++count
;
546 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
548 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
551 swiotlb_tbl_sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
552 enum dma_data_direction dir
,
553 enum dma_sync_target target
)
555 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
556 phys_addr_t phys
= io_tlb_orig_addr
[index
];
558 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
562 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
563 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
565 BUG_ON(dir
!= DMA_TO_DEVICE
);
567 case SYNC_FOR_DEVICE
:
568 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
569 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
571 BUG_ON(dir
!= DMA_FROM_DEVICE
);
577 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
580 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
581 dma_addr_t
*dma_handle
, gfp_t flags
)
585 int order
= get_order(size
);
586 u64 dma_mask
= DMA_BIT_MASK(32);
588 if (hwdev
&& hwdev
->coherent_dma_mask
)
589 dma_mask
= hwdev
->coherent_dma_mask
;
591 ret
= (void *)__get_free_pages(flags
, order
);
592 if (ret
&& swiotlb_virt_to_bus(hwdev
, ret
) + size
- 1 > dma_mask
) {
594 * The allocated memory isn't reachable by the device.
596 free_pages((unsigned long) ret
, order
);
601 * We are either out of memory or the device can't DMA to
602 * GFP_DMA memory; fall back on map_single(), which
603 * will grab memory from the lowest available address range.
605 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
610 memset(ret
, 0, size
);
611 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
613 /* Confirm address can be DMA'd by device */
614 if (dev_addr
+ size
- 1 > dma_mask
) {
615 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
616 (unsigned long long)dma_mask
,
617 (unsigned long long)dev_addr
);
619 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
620 swiotlb_tbl_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
623 *dma_handle
= dev_addr
;
626 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
629 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
632 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
634 WARN_ON(irqs_disabled());
635 if (!is_swiotlb_buffer(paddr
))
636 free_pages((unsigned long)vaddr
, get_order(size
));
638 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
639 swiotlb_tbl_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
641 EXPORT_SYMBOL(swiotlb_free_coherent
);
644 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
648 * Ran out of IOMMU space for this operation. This is very bad.
649 * Unfortunately the drivers cannot handle this operation properly.
650 * unless they check for dma_mapping_error (most don't)
651 * When the mapping is small enough return a static buffer to limit
652 * the damage, or panic when the transfer is too big.
654 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
655 "device %s\n", size
, dev
? dev_name(dev
) : "?");
657 if (size
<= io_tlb_overflow
|| !do_panic
)
660 if (dir
== DMA_BIDIRECTIONAL
)
661 panic("DMA: Random memory could be DMA accessed\n");
662 if (dir
== DMA_FROM_DEVICE
)
663 panic("DMA: Random memory could be DMA written\n");
664 if (dir
== DMA_TO_DEVICE
)
665 panic("DMA: Random memory could be DMA read\n");
669 * Map a single buffer of the indicated size for DMA in streaming mode. The
670 * physical address to use is returned.
672 * Once the device is given the dma address, the device owns this memory until
673 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
675 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
676 unsigned long offset
, size_t size
,
677 enum dma_data_direction dir
,
678 struct dma_attrs
*attrs
)
680 phys_addr_t phys
= page_to_phys(page
) + offset
;
681 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
684 BUG_ON(dir
== DMA_NONE
);
686 * If the address happens to be in the device's DMA window,
687 * we can safely return the device addr and not worry about bounce
690 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
694 * Oh well, have to allocate and map a bounce buffer.
696 map
= map_single(dev
, phys
, size
, dir
);
698 swiotlb_full(dev
, size
, dir
, 1);
699 map
= io_tlb_overflow_buffer
;
702 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
705 * Ensure that the address returned is DMA'ble
707 if (!dma_capable(dev
, dev_addr
, size
)) {
708 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
709 dev_addr
= swiotlb_virt_to_bus(dev
, io_tlb_overflow_buffer
);
714 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
717 * Unmap a single streaming mode DMA translation. The dma_addr and size must
718 * match what was provided for in a previous swiotlb_map_page call. All
719 * other usages are undefined.
721 * After this call, reads by the cpu to the buffer are guaranteed to see
722 * whatever the device wrote there.
724 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
725 size_t size
, enum dma_data_direction dir
)
727 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
729 BUG_ON(dir
== DMA_NONE
);
731 if (is_swiotlb_buffer(paddr
)) {
732 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
736 if (dir
!= DMA_FROM_DEVICE
)
740 * phys_to_virt doesn't work with hihgmem page but we could
741 * call dma_mark_clean() with hihgmem page here. However, we
742 * are fine since dma_mark_clean() is null on POWERPC. We can
743 * make dma_mark_clean() take a physical address if necessary.
745 dma_mark_clean(phys_to_virt(paddr
), size
);
748 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
749 size_t size
, enum dma_data_direction dir
,
750 struct dma_attrs
*attrs
)
752 unmap_single(hwdev
, dev_addr
, size
, dir
);
754 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
757 * Make physical memory consistent for a single streaming mode DMA translation
760 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
761 * using the cpu, yet do not wish to teardown the dma mapping, you must
762 * call this function before doing so. At the next point you give the dma
763 * address back to the card, you must first perform a
764 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
767 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
768 size_t size
, enum dma_data_direction dir
,
769 enum dma_sync_target target
)
771 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
773 BUG_ON(dir
== DMA_NONE
);
775 if (is_swiotlb_buffer(paddr
)) {
776 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
781 if (dir
!= DMA_FROM_DEVICE
)
784 dma_mark_clean(phys_to_virt(paddr
), size
);
788 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
789 size_t size
, enum dma_data_direction dir
)
791 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
793 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
796 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
797 size_t size
, enum dma_data_direction dir
)
799 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
801 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
804 * Map a set of buffers described by scatterlist in streaming mode for DMA.
805 * This is the scatter-gather version of the above swiotlb_map_page
806 * interface. Here the scatter gather list elements are each tagged with the
807 * appropriate dma address and length. They are obtained via
808 * sg_dma_{address,length}(SG).
810 * NOTE: An implementation may be able to use a smaller number of
811 * DMA address/length pairs than there are SG table elements.
812 * (for example via virtual mapping capabilities)
813 * The routine returns the number of addr/length pairs actually
814 * used, at most nents.
816 * Device ownership issues as mentioned above for swiotlb_map_page are the
820 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
821 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
823 struct scatterlist
*sg
;
826 BUG_ON(dir
== DMA_NONE
);
828 for_each_sg(sgl
, sg
, nelems
, i
) {
829 phys_addr_t paddr
= sg_phys(sg
);
830 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
833 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
834 void *map
= map_single(hwdev
, sg_phys(sg
),
837 /* Don't panic here, we expect map_sg users
838 to do proper error handling. */
839 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
840 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
842 sgl
[0].dma_length
= 0;
845 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
847 sg
->dma_address
= dev_addr
;
848 sg
->dma_length
= sg
->length
;
852 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
855 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
856 enum dma_data_direction dir
)
858 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
860 EXPORT_SYMBOL(swiotlb_map_sg
);
863 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
864 * concerning calls here are the same as for swiotlb_unmap_page() above.
867 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
868 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
870 struct scatterlist
*sg
;
873 BUG_ON(dir
== DMA_NONE
);
875 for_each_sg(sgl
, sg
, nelems
, i
)
876 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
879 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
882 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
883 enum dma_data_direction dir
)
885 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
887 EXPORT_SYMBOL(swiotlb_unmap_sg
);
890 * Make physical memory consistent for a set of streaming mode DMA translations
893 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
897 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
898 int nelems
, enum dma_data_direction dir
,
899 enum dma_sync_target target
)
901 struct scatterlist
*sg
;
904 for_each_sg(sgl
, sg
, nelems
, i
)
905 swiotlb_sync_single(hwdev
, sg
->dma_address
,
906 sg
->dma_length
, dir
, target
);
910 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
911 int nelems
, enum dma_data_direction dir
)
913 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
915 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
918 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
919 int nelems
, enum dma_data_direction dir
)
921 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
923 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
926 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
928 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
930 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
933 * Return whether the given device DMA address mask can be supported
934 * properly. For example, if your device can only drive the low 24-bits
935 * during bus mastering, then you would pass 0x00ffffff as the mask to
939 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
941 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
943 EXPORT_SYMBOL(swiotlb_dma_supported
);