4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
30 static DEFINE_IDA(mnt_id_ida
);
31 static DEFINE_IDA(mnt_group_ida
);
32 static DEFINE_SPINLOCK(mnt_id_lock
);
33 static int mnt_id_start
= 0;
34 static int mnt_group_start
= 1;
36 static struct list_head
*mount_hashtable __read_mostly
;
37 static struct kmem_cache
*mnt_cache __read_mostly
;
38 static struct rw_semaphore namespace_sem
;
41 struct kobject
*fs_kobj
;
42 EXPORT_SYMBOL_GPL(fs_kobj
);
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
52 DEFINE_BRLOCK(vfsmount_lock
);
54 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
56 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
57 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
58 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
59 return tmp
& (HASH_SIZE
- 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
68 static int mnt_alloc_id(struct mount
*mnt
)
73 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
74 spin_lock(&mnt_id_lock
);
75 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
77 mnt_id_start
= mnt
->mnt_id
+ 1;
78 spin_unlock(&mnt_id_lock
);
85 static void mnt_free_id(struct mount
*mnt
)
88 spin_lock(&mnt_id_lock
);
89 ida_remove(&mnt_id_ida
, id
);
90 if (mnt_id_start
> id
)
92 spin_unlock(&mnt_id_lock
);
96 * Allocate a new peer group ID
98 * mnt_group_ida is protected by namespace_sem
100 static int mnt_alloc_group_id(struct mount
*mnt
)
104 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
107 res
= ida_get_new_above(&mnt_group_ida
,
111 mnt_group_start
= mnt
->mnt_group_id
+ 1;
117 * Release a peer group ID
119 void mnt_release_group_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_group_id
;
122 ida_remove(&mnt_group_ida
, id
);
123 if (mnt_group_start
> id
)
124 mnt_group_start
= id
;
125 mnt
->mnt_group_id
= 0;
129 * vfsmount lock must be held for read
131 static inline void mnt_add_count(struct mount
*mnt
, int n
)
134 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
143 * vfsmount lock must be held for write
145 unsigned int mnt_get_count(struct mount
*mnt
)
148 unsigned int count
= 0;
151 for_each_possible_cpu(cpu
) {
152 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
157 return mnt
->mnt_count
;
161 static struct mount
*alloc_vfsmnt(const char *name
)
163 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
167 err
= mnt_alloc_id(mnt
);
172 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
173 if (!mnt
->mnt_devname
)
178 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
180 goto out_free_devname
;
182 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
185 mnt
->mnt_writers
= 0;
188 INIT_LIST_HEAD(&mnt
->mnt_hash
);
189 INIT_LIST_HEAD(&mnt
->mnt_child
);
190 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
191 INIT_LIST_HEAD(&mnt
->mnt_list
);
192 INIT_LIST_HEAD(&mnt
->mnt_expire
);
193 INIT_LIST_HEAD(&mnt
->mnt_share
);
194 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
195 INIT_LIST_HEAD(&mnt
->mnt_slave
);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
204 kfree(mnt
->mnt_devname
);
209 kmem_cache_free(mnt_cache
, mnt
);
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
232 int __mnt_is_readonly(struct vfsmount
*mnt
)
234 if (mnt
->mnt_flags
& MNT_READONLY
)
236 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
242 static inline void mnt_inc_writers(struct mount
*mnt
)
245 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
251 static inline void mnt_dec_writers(struct mount
*mnt
)
254 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
260 static unsigned int mnt_get_writers(struct mount
*mnt
)
263 unsigned int count
= 0;
266 for_each_possible_cpu(cpu
) {
267 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
272 return mnt
->mnt_writers
;
276 static int mnt_is_readonly(struct vfsmount
*mnt
)
278 if (mnt
->mnt_sb
->s_readonly_remount
)
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
282 return __mnt_is_readonly(mnt
);
286 * Most r/o & frozen checks on a fs are for operations that take discrete
287 * amounts of time, like a write() or unlink(). We must keep track of when
288 * those operations start (for permission checks) and when they end, so that we
289 * can determine when writes are able to occur to a filesystem.
292 * __mnt_want_write - get write access to a mount without freeze protection
293 * @m: the mount on which to take a write
295 * This tells the low-level filesystem that a write is about to be performed to
296 * it, and makes sure that writes are allowed (mnt it read-write) before
297 * returning success. This operation does not protect against filesystem being
298 * frozen. When the write operation is finished, __mnt_drop_write() must be
299 * called. This is effectively a refcount.
301 int __mnt_want_write(struct vfsmount
*m
)
303 struct mount
*mnt
= real_mount(m
);
307 mnt_inc_writers(mnt
);
309 * The store to mnt_inc_writers must be visible before we pass
310 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
311 * incremented count after it has set MNT_WRITE_HOLD.
314 while (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
317 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
318 * be set to match its requirements. So we must not load that until
319 * MNT_WRITE_HOLD is cleared.
322 if (mnt_is_readonly(m
)) {
323 mnt_dec_writers(mnt
);
332 * mnt_want_write - get write access to a mount
333 * @m: the mount on which to take a write
335 * This tells the low-level filesystem that a write is about to be performed to
336 * it, and makes sure that writes are allowed (mount is read-write, filesystem
337 * is not frozen) before returning success. When the write operation is
338 * finished, mnt_drop_write() must be called. This is effectively a refcount.
340 int mnt_want_write(struct vfsmount
*m
)
344 sb_start_write(m
->mnt_sb
);
345 ret
= __mnt_want_write(m
);
347 sb_end_write(m
->mnt_sb
);
350 EXPORT_SYMBOL_GPL(mnt_want_write
);
353 * mnt_clone_write - get write access to a mount
354 * @mnt: the mount on which to take a write
356 * This is effectively like mnt_want_write, except
357 * it must only be used to take an extra write reference
358 * on a mountpoint that we already know has a write reference
359 * on it. This allows some optimisation.
361 * After finished, mnt_drop_write must be called as usual to
362 * drop the reference.
364 int mnt_clone_write(struct vfsmount
*mnt
)
366 /* superblock may be r/o */
367 if (__mnt_is_readonly(mnt
))
370 mnt_inc_writers(real_mount(mnt
));
374 EXPORT_SYMBOL_GPL(mnt_clone_write
);
377 * __mnt_want_write_file - get write access to a file's mount
378 * @file: the file who's mount on which to take a write
380 * This is like __mnt_want_write, but it takes a file and can
381 * do some optimisations if the file is open for write already
383 int __mnt_want_write_file(struct file
*file
)
385 struct inode
*inode
= file
->f_dentry
->d_inode
;
387 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
388 return __mnt_want_write(file
->f_path
.mnt
);
390 return mnt_clone_write(file
->f_path
.mnt
);
394 * mnt_want_write_file - get write access to a file's mount
395 * @file: the file who's mount on which to take a write
397 * This is like mnt_want_write, but it takes a file and can
398 * do some optimisations if the file is open for write already
400 int mnt_want_write_file(struct file
*file
)
404 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
405 ret
= __mnt_want_write_file(file
);
407 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
410 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
413 * __mnt_drop_write - give up write access to a mount
414 * @mnt: the mount on which to give up write access
416 * Tells the low-level filesystem that we are done
417 * performing writes to it. Must be matched with
418 * __mnt_want_write() call above.
420 void __mnt_drop_write(struct vfsmount
*mnt
)
423 mnt_dec_writers(real_mount(mnt
));
428 * mnt_drop_write - give up write access to a mount
429 * @mnt: the mount on which to give up write access
431 * Tells the low-level filesystem that we are done performing writes to it and
432 * also allows filesystem to be frozen again. Must be matched with
433 * mnt_want_write() call above.
435 void mnt_drop_write(struct vfsmount
*mnt
)
437 __mnt_drop_write(mnt
);
438 sb_end_write(mnt
->mnt_sb
);
440 EXPORT_SYMBOL_GPL(mnt_drop_write
);
442 void __mnt_drop_write_file(struct file
*file
)
444 __mnt_drop_write(file
->f_path
.mnt
);
447 void mnt_drop_write_file(struct file
*file
)
449 mnt_drop_write(file
->f_path
.mnt
);
451 EXPORT_SYMBOL(mnt_drop_write_file
);
453 static int mnt_make_readonly(struct mount
*mnt
)
457 br_write_lock(&vfsmount_lock
);
458 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
460 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
461 * should be visible before we do.
466 * With writers on hold, if this value is zero, then there are
467 * definitely no active writers (although held writers may subsequently
468 * increment the count, they'll have to wait, and decrement it after
469 * seeing MNT_READONLY).
471 * It is OK to have counter incremented on one CPU and decremented on
472 * another: the sum will add up correctly. The danger would be when we
473 * sum up each counter, if we read a counter before it is incremented,
474 * but then read another CPU's count which it has been subsequently
475 * decremented from -- we would see more decrements than we should.
476 * MNT_WRITE_HOLD protects against this scenario, because
477 * mnt_want_write first increments count, then smp_mb, then spins on
478 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
479 * we're counting up here.
481 if (mnt_get_writers(mnt
) > 0)
484 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
486 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
487 * that become unheld will see MNT_READONLY.
490 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
491 br_write_unlock(&vfsmount_lock
);
495 static void __mnt_unmake_readonly(struct mount
*mnt
)
497 br_write_lock(&vfsmount_lock
);
498 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
499 br_write_unlock(&vfsmount_lock
);
502 int sb_prepare_remount_readonly(struct super_block
*sb
)
507 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
508 if (atomic_long_read(&sb
->s_remove_count
))
511 br_write_lock(&vfsmount_lock
);
512 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
513 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
514 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
516 if (mnt_get_writers(mnt
) > 0) {
522 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
526 sb
->s_readonly_remount
= 1;
529 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
530 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
531 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
533 br_write_unlock(&vfsmount_lock
);
538 static void free_vfsmnt(struct mount
*mnt
)
540 kfree(mnt
->mnt_devname
);
543 free_percpu(mnt
->mnt_pcp
);
545 kmem_cache_free(mnt_cache
, mnt
);
549 * find the first or last mount at @dentry on vfsmount @mnt depending on
550 * @dir. If @dir is set return the first mount else return the last mount.
551 * vfsmount_lock must be held for read or write.
553 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
556 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
557 struct list_head
*tmp
= head
;
558 struct mount
*p
, *found
= NULL
;
561 tmp
= dir
? tmp
->next
: tmp
->prev
;
565 p
= list_entry(tmp
, struct mount
, mnt_hash
);
566 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
) {
575 * lookup_mnt - Return the first child mount mounted at path
577 * "First" means first mounted chronologically. If you create the
580 * mount /dev/sda1 /mnt
581 * mount /dev/sda2 /mnt
582 * mount /dev/sda3 /mnt
584 * Then lookup_mnt() on the base /mnt dentry in the root mount will
585 * return successively the root dentry and vfsmount of /dev/sda1, then
586 * /dev/sda2, then /dev/sda3, then NULL.
588 * lookup_mnt takes a reference to the found vfsmount.
590 struct vfsmount
*lookup_mnt(struct path
*path
)
592 struct mount
*child_mnt
;
594 br_read_lock(&vfsmount_lock
);
595 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1);
597 mnt_add_count(child_mnt
, 1);
598 br_read_unlock(&vfsmount_lock
);
599 return &child_mnt
->mnt
;
601 br_read_unlock(&vfsmount_lock
);
606 static inline int check_mnt(struct mount
*mnt
)
608 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
612 * vfsmount lock must be held for write
614 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
618 wake_up_interruptible(&ns
->poll
);
623 * vfsmount lock must be held for write
625 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
627 if (ns
&& ns
->event
!= event
) {
629 wake_up_interruptible(&ns
->poll
);
634 * Clear dentry's mounted state if it has no remaining mounts.
635 * vfsmount_lock must be held for write.
637 static void dentry_reset_mounted(struct dentry
*dentry
)
641 for (u
= 0; u
< HASH_SIZE
; u
++) {
644 list_for_each_entry(p
, &mount_hashtable
[u
], mnt_hash
) {
645 if (p
->mnt_mountpoint
== dentry
)
649 spin_lock(&dentry
->d_lock
);
650 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
651 spin_unlock(&dentry
->d_lock
);
655 * vfsmount lock must be held for write
657 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
659 old_path
->dentry
= mnt
->mnt_mountpoint
;
660 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
661 mnt
->mnt_parent
= mnt
;
662 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
663 list_del_init(&mnt
->mnt_child
);
664 list_del_init(&mnt
->mnt_hash
);
665 dentry_reset_mounted(old_path
->dentry
);
669 * vfsmount lock must be held for write
671 void mnt_set_mountpoint(struct mount
*mnt
, struct dentry
*dentry
,
672 struct mount
*child_mnt
)
674 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
675 child_mnt
->mnt_mountpoint
= dget(dentry
);
676 child_mnt
->mnt_parent
= mnt
;
677 spin_lock(&dentry
->d_lock
);
678 dentry
->d_flags
|= DCACHE_MOUNTED
;
679 spin_unlock(&dentry
->d_lock
);
683 * vfsmount lock must be held for write
685 static void attach_mnt(struct mount
*mnt
, struct path
*path
)
687 mnt_set_mountpoint(real_mount(path
->mnt
), path
->dentry
, mnt
);
688 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
689 hash(path
->mnt
, path
->dentry
));
690 list_add_tail(&mnt
->mnt_child
, &real_mount(path
->mnt
)->mnt_mounts
);
694 * vfsmount lock must be held for write
696 static void commit_tree(struct mount
*mnt
)
698 struct mount
*parent
= mnt
->mnt_parent
;
701 struct mnt_namespace
*n
= parent
->mnt_ns
;
703 BUG_ON(parent
== mnt
);
705 list_add_tail(&head
, &mnt
->mnt_list
);
706 list_for_each_entry(m
, &head
, mnt_list
)
709 list_splice(&head
, n
->list
.prev
);
711 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
712 hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
713 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
714 touch_mnt_namespace(n
);
717 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
719 struct list_head
*next
= p
->mnt_mounts
.next
;
720 if (next
== &p
->mnt_mounts
) {
724 next
= p
->mnt_child
.next
;
725 if (next
!= &p
->mnt_parent
->mnt_mounts
)
730 return list_entry(next
, struct mount
, mnt_child
);
733 static struct mount
*skip_mnt_tree(struct mount
*p
)
735 struct list_head
*prev
= p
->mnt_mounts
.prev
;
736 while (prev
!= &p
->mnt_mounts
) {
737 p
= list_entry(prev
, struct mount
, mnt_child
);
738 prev
= p
->mnt_mounts
.prev
;
744 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
750 return ERR_PTR(-ENODEV
);
752 mnt
= alloc_vfsmnt(name
);
754 return ERR_PTR(-ENOMEM
);
756 if (flags
& MS_KERNMOUNT
)
757 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
759 root
= mount_fs(type
, flags
, name
, data
);
762 return ERR_CAST(root
);
765 mnt
->mnt
.mnt_root
= root
;
766 mnt
->mnt
.mnt_sb
= root
->d_sb
;
767 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
768 mnt
->mnt_parent
= mnt
;
769 br_write_lock(&vfsmount_lock
);
770 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
771 br_write_unlock(&vfsmount_lock
);
774 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
776 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
779 struct super_block
*sb
= old
->mnt
.mnt_sb
;
783 mnt
= alloc_vfsmnt(old
->mnt_devname
);
785 return ERR_PTR(-ENOMEM
);
787 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
788 mnt
->mnt_group_id
= 0; /* not a peer of original */
790 mnt
->mnt_group_id
= old
->mnt_group_id
;
792 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
793 err
= mnt_alloc_group_id(mnt
);
798 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~MNT_WRITE_HOLD
;
799 atomic_inc(&sb
->s_active
);
800 mnt
->mnt
.mnt_sb
= sb
;
801 mnt
->mnt
.mnt_root
= dget(root
);
802 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
803 mnt
->mnt_parent
= mnt
;
804 br_write_lock(&vfsmount_lock
);
805 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
806 br_write_unlock(&vfsmount_lock
);
808 if (flag
& CL_SLAVE
) {
809 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
810 mnt
->mnt_master
= old
;
811 CLEAR_MNT_SHARED(mnt
);
812 } else if (!(flag
& CL_PRIVATE
)) {
813 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
814 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
815 if (IS_MNT_SLAVE(old
))
816 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
817 mnt
->mnt_master
= old
->mnt_master
;
819 if (flag
& CL_MAKE_SHARED
)
822 /* stick the duplicate mount on the same expiry list
823 * as the original if that was on one */
824 if (flag
& CL_EXPIRE
) {
825 if (!list_empty(&old
->mnt_expire
))
826 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
836 static inline void mntfree(struct mount
*mnt
)
838 struct vfsmount
*m
= &mnt
->mnt
;
839 struct super_block
*sb
= m
->mnt_sb
;
842 * This probably indicates that somebody messed
843 * up a mnt_want/drop_write() pair. If this
844 * happens, the filesystem was probably unable
845 * to make r/w->r/o transitions.
848 * The locking used to deal with mnt_count decrement provides barriers,
849 * so mnt_get_writers() below is safe.
851 WARN_ON(mnt_get_writers(mnt
));
852 fsnotify_vfsmount_delete(m
);
855 deactivate_super(sb
);
858 static void mntput_no_expire(struct mount
*mnt
)
862 br_read_lock(&vfsmount_lock
);
863 if (likely(mnt
->mnt_ns
)) {
864 /* shouldn't be the last one */
865 mnt_add_count(mnt
, -1);
866 br_read_unlock(&vfsmount_lock
);
869 br_read_unlock(&vfsmount_lock
);
871 br_write_lock(&vfsmount_lock
);
872 mnt_add_count(mnt
, -1);
873 if (mnt_get_count(mnt
)) {
874 br_write_unlock(&vfsmount_lock
);
878 mnt_add_count(mnt
, -1);
879 if (likely(mnt_get_count(mnt
)))
881 br_write_lock(&vfsmount_lock
);
883 if (unlikely(mnt
->mnt_pinned
)) {
884 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
886 br_write_unlock(&vfsmount_lock
);
887 acct_auto_close_mnt(&mnt
->mnt
);
891 list_del(&mnt
->mnt_instance
);
892 br_write_unlock(&vfsmount_lock
);
896 void mntput(struct vfsmount
*mnt
)
899 struct mount
*m
= real_mount(mnt
);
900 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
901 if (unlikely(m
->mnt_expiry_mark
))
902 m
->mnt_expiry_mark
= 0;
906 EXPORT_SYMBOL(mntput
);
908 struct vfsmount
*mntget(struct vfsmount
*mnt
)
911 mnt_add_count(real_mount(mnt
), 1);
914 EXPORT_SYMBOL(mntget
);
916 void mnt_pin(struct vfsmount
*mnt
)
918 br_write_lock(&vfsmount_lock
);
919 real_mount(mnt
)->mnt_pinned
++;
920 br_write_unlock(&vfsmount_lock
);
922 EXPORT_SYMBOL(mnt_pin
);
924 void mnt_unpin(struct vfsmount
*m
)
926 struct mount
*mnt
= real_mount(m
);
927 br_write_lock(&vfsmount_lock
);
928 if (mnt
->mnt_pinned
) {
929 mnt_add_count(mnt
, 1);
932 br_write_unlock(&vfsmount_lock
);
934 EXPORT_SYMBOL(mnt_unpin
);
936 static inline void mangle(struct seq_file
*m
, const char *s
)
938 seq_escape(m
, s
, " \t\n\\");
942 * Simple .show_options callback for filesystems which don't want to
943 * implement more complex mount option showing.
945 * See also save_mount_options().
947 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
952 options
= rcu_dereference(root
->d_sb
->s_options
);
954 if (options
!= NULL
&& options
[0]) {
962 EXPORT_SYMBOL(generic_show_options
);
965 * If filesystem uses generic_show_options(), this function should be
966 * called from the fill_super() callback.
968 * The .remount_fs callback usually needs to be handled in a special
969 * way, to make sure, that previous options are not overwritten if the
972 * Also note, that if the filesystem's .remount_fs function doesn't
973 * reset all options to their default value, but changes only newly
974 * given options, then the displayed options will not reflect reality
977 void save_mount_options(struct super_block
*sb
, char *options
)
979 BUG_ON(sb
->s_options
);
980 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
982 EXPORT_SYMBOL(save_mount_options
);
984 void replace_mount_options(struct super_block
*sb
, char *options
)
986 char *old
= sb
->s_options
;
987 rcu_assign_pointer(sb
->s_options
, options
);
993 EXPORT_SYMBOL(replace_mount_options
);
995 #ifdef CONFIG_PROC_FS
996 /* iterator; we want it to have access to namespace_sem, thus here... */
997 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
999 struct proc_mounts
*p
= proc_mounts(m
);
1001 down_read(&namespace_sem
);
1002 return seq_list_start(&p
->ns
->list
, *pos
);
1005 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1007 struct proc_mounts
*p
= proc_mounts(m
);
1009 return seq_list_next(v
, &p
->ns
->list
, pos
);
1012 static void m_stop(struct seq_file
*m
, void *v
)
1014 up_read(&namespace_sem
);
1017 static int m_show(struct seq_file
*m
, void *v
)
1019 struct proc_mounts
*p
= proc_mounts(m
);
1020 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1021 return p
->show(m
, &r
->mnt
);
1024 const struct seq_operations mounts_op
= {
1030 #endif /* CONFIG_PROC_FS */
1033 * may_umount_tree - check if a mount tree is busy
1034 * @mnt: root of mount tree
1036 * This is called to check if a tree of mounts has any
1037 * open files, pwds, chroots or sub mounts that are
1040 int may_umount_tree(struct vfsmount
*m
)
1042 struct mount
*mnt
= real_mount(m
);
1043 int actual_refs
= 0;
1044 int minimum_refs
= 0;
1048 /* write lock needed for mnt_get_count */
1049 br_write_lock(&vfsmount_lock
);
1050 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1051 actual_refs
+= mnt_get_count(p
);
1054 br_write_unlock(&vfsmount_lock
);
1056 if (actual_refs
> minimum_refs
)
1062 EXPORT_SYMBOL(may_umount_tree
);
1065 * may_umount - check if a mount point is busy
1066 * @mnt: root of mount
1068 * This is called to check if a mount point has any
1069 * open files, pwds, chroots or sub mounts. If the
1070 * mount has sub mounts this will return busy
1071 * regardless of whether the sub mounts are busy.
1073 * Doesn't take quota and stuff into account. IOW, in some cases it will
1074 * give false negatives. The main reason why it's here is that we need
1075 * a non-destructive way to look for easily umountable filesystems.
1077 int may_umount(struct vfsmount
*mnt
)
1080 down_read(&namespace_sem
);
1081 br_write_lock(&vfsmount_lock
);
1082 if (propagate_mount_busy(real_mount(mnt
), 2))
1084 br_write_unlock(&vfsmount_lock
);
1085 up_read(&namespace_sem
);
1089 EXPORT_SYMBOL(may_umount
);
1091 void release_mounts(struct list_head
*head
)
1094 while (!list_empty(head
)) {
1095 mnt
= list_first_entry(head
, struct mount
, mnt_hash
);
1096 list_del_init(&mnt
->mnt_hash
);
1097 if (mnt_has_parent(mnt
)) {
1098 struct dentry
*dentry
;
1101 br_write_lock(&vfsmount_lock
);
1102 dentry
= mnt
->mnt_mountpoint
;
1103 m
= mnt
->mnt_parent
;
1104 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1105 mnt
->mnt_parent
= mnt
;
1107 br_write_unlock(&vfsmount_lock
);
1116 * vfsmount lock must be held for write
1117 * namespace_sem must be held for write
1119 void umount_tree(struct mount
*mnt
, int propagate
, struct list_head
*kill
)
1121 LIST_HEAD(tmp_list
);
1124 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1125 list_move(&p
->mnt_hash
, &tmp_list
);
1128 propagate_umount(&tmp_list
);
1130 list_for_each_entry(p
, &tmp_list
, mnt_hash
) {
1131 list_del_init(&p
->mnt_expire
);
1132 list_del_init(&p
->mnt_list
);
1133 __touch_mnt_namespace(p
->mnt_ns
);
1135 list_del_init(&p
->mnt_child
);
1136 if (mnt_has_parent(p
)) {
1137 p
->mnt_parent
->mnt_ghosts
++;
1138 dentry_reset_mounted(p
->mnt_mountpoint
);
1140 change_mnt_propagation(p
, MS_PRIVATE
);
1142 list_splice(&tmp_list
, kill
);
1145 static void shrink_submounts(struct mount
*mnt
, struct list_head
*umounts
);
1147 static int do_umount(struct mount
*mnt
, int flags
)
1149 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1151 LIST_HEAD(umount_list
);
1153 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1158 * Allow userspace to request a mountpoint be expired rather than
1159 * unmounting unconditionally. Unmount only happens if:
1160 * (1) the mark is already set (the mark is cleared by mntput())
1161 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1163 if (flags
& MNT_EXPIRE
) {
1164 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1165 flags
& (MNT_FORCE
| MNT_DETACH
))
1169 * probably don't strictly need the lock here if we examined
1170 * all race cases, but it's a slowpath.
1172 br_write_lock(&vfsmount_lock
);
1173 if (mnt_get_count(mnt
) != 2) {
1174 br_write_unlock(&vfsmount_lock
);
1177 br_write_unlock(&vfsmount_lock
);
1179 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1184 * If we may have to abort operations to get out of this
1185 * mount, and they will themselves hold resources we must
1186 * allow the fs to do things. In the Unix tradition of
1187 * 'Gee thats tricky lets do it in userspace' the umount_begin
1188 * might fail to complete on the first run through as other tasks
1189 * must return, and the like. Thats for the mount program to worry
1190 * about for the moment.
1193 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1194 sb
->s_op
->umount_begin(sb
);
1198 * No sense to grab the lock for this test, but test itself looks
1199 * somewhat bogus. Suggestions for better replacement?
1200 * Ho-hum... In principle, we might treat that as umount + switch
1201 * to rootfs. GC would eventually take care of the old vfsmount.
1202 * Actually it makes sense, especially if rootfs would contain a
1203 * /reboot - static binary that would close all descriptors and
1204 * call reboot(9). Then init(8) could umount root and exec /reboot.
1206 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1208 * Special case for "unmounting" root ...
1209 * we just try to remount it readonly.
1211 down_write(&sb
->s_umount
);
1212 if (!(sb
->s_flags
& MS_RDONLY
))
1213 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1214 up_write(&sb
->s_umount
);
1218 down_write(&namespace_sem
);
1219 br_write_lock(&vfsmount_lock
);
1222 if (!(flags
& MNT_DETACH
))
1223 shrink_submounts(mnt
, &umount_list
);
1226 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1227 if (!list_empty(&mnt
->mnt_list
))
1228 umount_tree(mnt
, 1, &umount_list
);
1231 br_write_unlock(&vfsmount_lock
);
1232 up_write(&namespace_sem
);
1233 release_mounts(&umount_list
);
1238 * Now umount can handle mount points as well as block devices.
1239 * This is important for filesystems which use unnamed block devices.
1241 * We now support a flag for forced unmount like the other 'big iron'
1242 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1245 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1250 int lookup_flags
= 0;
1252 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1255 if (!(flags
& UMOUNT_NOFOLLOW
))
1256 lookup_flags
|= LOOKUP_FOLLOW
;
1258 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1261 mnt
= real_mount(path
.mnt
);
1263 if (path
.dentry
!= path
.mnt
->mnt_root
)
1265 if (!check_mnt(mnt
))
1269 if (!capable(CAP_SYS_ADMIN
))
1272 retval
= do_umount(mnt
, flags
);
1274 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1276 mntput_no_expire(mnt
);
1281 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1284 * The 2.0 compatible umount. No flags.
1286 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1288 return sys_umount(name
, 0);
1293 static int mount_is_safe(struct path
*path
)
1295 if (capable(CAP_SYS_ADMIN
))
1299 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1301 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1302 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1305 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1311 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1314 struct mount
*res
, *p
, *q
, *r
;
1317 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1318 return ERR_PTR(-EINVAL
);
1320 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1324 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1327 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1329 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1332 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1333 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1334 s
= skip_mnt_tree(s
);
1337 while (p
!= s
->mnt_parent
) {
1343 path
.dentry
= p
->mnt_mountpoint
;
1344 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1347 br_write_lock(&vfsmount_lock
);
1348 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1349 attach_mnt(q
, &path
);
1350 br_write_unlock(&vfsmount_lock
);
1356 LIST_HEAD(umount_list
);
1357 br_write_lock(&vfsmount_lock
);
1358 umount_tree(res
, 0, &umount_list
);
1359 br_write_unlock(&vfsmount_lock
);
1360 release_mounts(&umount_list
);
1365 /* Caller should check returned pointer for errors */
1367 struct vfsmount
*collect_mounts(struct path
*path
)
1370 down_write(&namespace_sem
);
1371 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1372 CL_COPY_ALL
| CL_PRIVATE
);
1373 up_write(&namespace_sem
);
1379 void drop_collected_mounts(struct vfsmount
*mnt
)
1381 LIST_HEAD(umount_list
);
1382 down_write(&namespace_sem
);
1383 br_write_lock(&vfsmount_lock
);
1384 umount_tree(real_mount(mnt
), 0, &umount_list
);
1385 br_write_unlock(&vfsmount_lock
);
1386 up_write(&namespace_sem
);
1387 release_mounts(&umount_list
);
1390 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1391 struct vfsmount
*root
)
1394 int res
= f(root
, arg
);
1397 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1398 res
= f(&mnt
->mnt
, arg
);
1405 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1409 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1410 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1411 mnt_release_group_id(p
);
1415 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1419 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1420 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1421 int err
= mnt_alloc_group_id(p
);
1423 cleanup_group_ids(mnt
, p
);
1433 * @source_mnt : mount tree to be attached
1434 * @nd : place the mount tree @source_mnt is attached
1435 * @parent_nd : if non-null, detach the source_mnt from its parent and
1436 * store the parent mount and mountpoint dentry.
1437 * (done when source_mnt is moved)
1439 * NOTE: in the table below explains the semantics when a source mount
1440 * of a given type is attached to a destination mount of a given type.
1441 * ---------------------------------------------------------------------------
1442 * | BIND MOUNT OPERATION |
1443 * |**************************************************************************
1444 * | source-->| shared | private | slave | unbindable |
1448 * |**************************************************************************
1449 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1451 * |non-shared| shared (+) | private | slave (*) | invalid |
1452 * ***************************************************************************
1453 * A bind operation clones the source mount and mounts the clone on the
1454 * destination mount.
1456 * (++) the cloned mount is propagated to all the mounts in the propagation
1457 * tree of the destination mount and the cloned mount is added to
1458 * the peer group of the source mount.
1459 * (+) the cloned mount is created under the destination mount and is marked
1460 * as shared. The cloned mount is added to the peer group of the source
1462 * (+++) the mount is propagated to all the mounts in the propagation tree
1463 * of the destination mount and the cloned mount is made slave
1464 * of the same master as that of the source mount. The cloned mount
1465 * is marked as 'shared and slave'.
1466 * (*) the cloned mount is made a slave of the same master as that of the
1469 * ---------------------------------------------------------------------------
1470 * | MOVE MOUNT OPERATION |
1471 * |**************************************************************************
1472 * | source-->| shared | private | slave | unbindable |
1476 * |**************************************************************************
1477 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1479 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1480 * ***************************************************************************
1482 * (+) the mount is moved to the destination. And is then propagated to
1483 * all the mounts in the propagation tree of the destination mount.
1484 * (+*) the mount is moved to the destination.
1485 * (+++) the mount is moved to the destination and is then propagated to
1486 * all the mounts belonging to the destination mount's propagation tree.
1487 * the mount is marked as 'shared and slave'.
1488 * (*) the mount continues to be a slave at the new location.
1490 * if the source mount is a tree, the operations explained above is
1491 * applied to each mount in the tree.
1492 * Must be called without spinlocks held, since this function can sleep
1495 static int attach_recursive_mnt(struct mount
*source_mnt
,
1496 struct path
*path
, struct path
*parent_path
)
1498 LIST_HEAD(tree_list
);
1499 struct mount
*dest_mnt
= real_mount(path
->mnt
);
1500 struct dentry
*dest_dentry
= path
->dentry
;
1501 struct mount
*child
, *p
;
1504 if (IS_MNT_SHARED(dest_mnt
)) {
1505 err
= invent_group_ids(source_mnt
, true);
1509 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1511 goto out_cleanup_ids
;
1513 br_write_lock(&vfsmount_lock
);
1515 if (IS_MNT_SHARED(dest_mnt
)) {
1516 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1520 detach_mnt(source_mnt
, parent_path
);
1521 attach_mnt(source_mnt
, path
);
1522 touch_mnt_namespace(source_mnt
->mnt_ns
);
1524 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1525 commit_tree(source_mnt
);
1528 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1529 list_del_init(&child
->mnt_hash
);
1532 br_write_unlock(&vfsmount_lock
);
1537 if (IS_MNT_SHARED(dest_mnt
))
1538 cleanup_group_ids(source_mnt
, NULL
);
1543 static int lock_mount(struct path
*path
)
1545 struct vfsmount
*mnt
;
1547 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1548 if (unlikely(cant_mount(path
->dentry
))) {
1549 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1552 down_write(&namespace_sem
);
1553 mnt
= lookup_mnt(path
);
1556 up_write(&namespace_sem
);
1557 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1560 path
->dentry
= dget(mnt
->mnt_root
);
1564 static void unlock_mount(struct path
*path
)
1566 up_write(&namespace_sem
);
1567 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1570 static int graft_tree(struct mount
*mnt
, struct path
*path
)
1572 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
1575 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1576 S_ISDIR(mnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1579 if (d_unlinked(path
->dentry
))
1582 return attach_recursive_mnt(mnt
, path
, NULL
);
1586 * Sanity check the flags to change_mnt_propagation.
1589 static int flags_to_propagation_type(int flags
)
1591 int type
= flags
& ~(MS_REC
| MS_SILENT
);
1593 /* Fail if any non-propagation flags are set */
1594 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1596 /* Only one propagation flag should be set */
1597 if (!is_power_of_2(type
))
1603 * recursively change the type of the mountpoint.
1605 static int do_change_type(struct path
*path
, int flag
)
1608 struct mount
*mnt
= real_mount(path
->mnt
);
1609 int recurse
= flag
& MS_REC
;
1613 if (!capable(CAP_SYS_ADMIN
))
1616 if (path
->dentry
!= path
->mnt
->mnt_root
)
1619 type
= flags_to_propagation_type(flag
);
1623 down_write(&namespace_sem
);
1624 if (type
== MS_SHARED
) {
1625 err
= invent_group_ids(mnt
, recurse
);
1630 br_write_lock(&vfsmount_lock
);
1631 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1632 change_mnt_propagation(m
, type
);
1633 br_write_unlock(&vfsmount_lock
);
1636 up_write(&namespace_sem
);
1641 * do loopback mount.
1643 static int do_loopback(struct path
*path
, const char *old_name
,
1646 LIST_HEAD(umount_list
);
1647 struct path old_path
;
1648 struct mount
*mnt
= NULL
, *old
;
1649 int err
= mount_is_safe(path
);
1652 if (!old_name
|| !*old_name
)
1654 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
1658 err
= lock_mount(path
);
1662 old
= real_mount(old_path
.mnt
);
1665 if (IS_MNT_UNBINDABLE(old
))
1668 if (!check_mnt(real_mount(path
->mnt
)) || !check_mnt(old
))
1672 mnt
= copy_tree(old
, old_path
.dentry
, 0);
1674 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
1681 err
= graft_tree(mnt
, path
);
1683 br_write_lock(&vfsmount_lock
);
1684 umount_tree(mnt
, 0, &umount_list
);
1685 br_write_unlock(&vfsmount_lock
);
1689 release_mounts(&umount_list
);
1691 path_put(&old_path
);
1695 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1698 int readonly_request
= 0;
1700 if (ms_flags
& MS_RDONLY
)
1701 readonly_request
= 1;
1702 if (readonly_request
== __mnt_is_readonly(mnt
))
1705 if (readonly_request
)
1706 error
= mnt_make_readonly(real_mount(mnt
));
1708 __mnt_unmake_readonly(real_mount(mnt
));
1713 * change filesystem flags. dir should be a physical root of filesystem.
1714 * If you've mounted a non-root directory somewhere and want to do remount
1715 * on it - tough luck.
1717 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1721 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1722 struct mount
*mnt
= real_mount(path
->mnt
);
1724 if (!capable(CAP_SYS_ADMIN
))
1727 if (!check_mnt(mnt
))
1730 if (path
->dentry
!= path
->mnt
->mnt_root
)
1733 err
= security_sb_remount(sb
, data
);
1737 down_write(&sb
->s_umount
);
1738 if (flags
& MS_BIND
)
1739 err
= change_mount_flags(path
->mnt
, flags
);
1741 err
= do_remount_sb(sb
, flags
, data
, 0);
1743 br_write_lock(&vfsmount_lock
);
1744 mnt_flags
|= mnt
->mnt
.mnt_flags
& MNT_PROPAGATION_MASK
;
1745 mnt
->mnt
.mnt_flags
= mnt_flags
;
1746 br_write_unlock(&vfsmount_lock
);
1748 up_write(&sb
->s_umount
);
1750 br_write_lock(&vfsmount_lock
);
1751 touch_mnt_namespace(mnt
->mnt_ns
);
1752 br_write_unlock(&vfsmount_lock
);
1757 static inline int tree_contains_unbindable(struct mount
*mnt
)
1760 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1761 if (IS_MNT_UNBINDABLE(p
))
1767 static int do_move_mount(struct path
*path
, const char *old_name
)
1769 struct path old_path
, parent_path
;
1773 if (!capable(CAP_SYS_ADMIN
))
1775 if (!old_name
|| !*old_name
)
1777 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1781 err
= lock_mount(path
);
1785 old
= real_mount(old_path
.mnt
);
1786 p
= real_mount(path
->mnt
);
1789 if (!check_mnt(p
) || !check_mnt(old
))
1792 if (d_unlinked(path
->dentry
))
1796 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1799 if (!mnt_has_parent(old
))
1802 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1803 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1806 * Don't move a mount residing in a shared parent.
1808 if (IS_MNT_SHARED(old
->mnt_parent
))
1811 * Don't move a mount tree containing unbindable mounts to a destination
1812 * mount which is shared.
1814 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
1817 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
1821 err
= attach_recursive_mnt(old
, path
, &parent_path
);
1825 /* if the mount is moved, it should no longer be expire
1827 list_del_init(&old
->mnt_expire
);
1832 path_put(&parent_path
);
1833 path_put(&old_path
);
1837 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
1840 const char *subtype
= strchr(fstype
, '.');
1849 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
1851 if (!mnt
->mnt_sb
->s_subtype
)
1857 return ERR_PTR(err
);
1860 static struct vfsmount
*
1861 do_kern_mount(const char *fstype
, int flags
, const char *name
, void *data
)
1863 struct file_system_type
*type
= get_fs_type(fstype
);
1864 struct vfsmount
*mnt
;
1866 return ERR_PTR(-ENODEV
);
1867 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
1868 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
1869 !mnt
->mnt_sb
->s_subtype
)
1870 mnt
= fs_set_subtype(mnt
, fstype
);
1871 put_filesystem(type
);
1876 * add a mount into a namespace's mount tree
1878 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
1882 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1884 err
= lock_mount(path
);
1889 if (unlikely(!check_mnt(real_mount(path
->mnt
)))) {
1890 /* that's acceptable only for automounts done in private ns */
1891 if (!(mnt_flags
& MNT_SHRINKABLE
))
1893 /* ... and for those we'd better have mountpoint still alive */
1894 if (!real_mount(path
->mnt
)->mnt_ns
)
1898 /* Refuse the same filesystem on the same mount point */
1900 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
1901 path
->mnt
->mnt_root
== path
->dentry
)
1905 if (S_ISLNK(newmnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1908 newmnt
->mnt
.mnt_flags
= mnt_flags
;
1909 err
= graft_tree(newmnt
, path
);
1917 * create a new mount for userspace and request it to be added into the
1920 static int do_new_mount(struct path
*path
, const char *type
, int flags
,
1921 int mnt_flags
, const char *name
, void *data
)
1923 struct vfsmount
*mnt
;
1929 /* we need capabilities... */
1930 if (!capable(CAP_SYS_ADMIN
))
1933 mnt
= do_kern_mount(type
, flags
, name
, data
);
1935 return PTR_ERR(mnt
);
1937 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
1943 int finish_automount(struct vfsmount
*m
, struct path
*path
)
1945 struct mount
*mnt
= real_mount(m
);
1947 /* The new mount record should have at least 2 refs to prevent it being
1948 * expired before we get a chance to add it
1950 BUG_ON(mnt_get_count(mnt
) < 2);
1952 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
1953 m
->mnt_root
== path
->dentry
) {
1958 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
1962 /* remove m from any expiration list it may be on */
1963 if (!list_empty(&mnt
->mnt_expire
)) {
1964 down_write(&namespace_sem
);
1965 br_write_lock(&vfsmount_lock
);
1966 list_del_init(&mnt
->mnt_expire
);
1967 br_write_unlock(&vfsmount_lock
);
1968 up_write(&namespace_sem
);
1976 * mnt_set_expiry - Put a mount on an expiration list
1977 * @mnt: The mount to list.
1978 * @expiry_list: The list to add the mount to.
1980 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
1982 down_write(&namespace_sem
);
1983 br_write_lock(&vfsmount_lock
);
1985 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
1987 br_write_unlock(&vfsmount_lock
);
1988 up_write(&namespace_sem
);
1990 EXPORT_SYMBOL(mnt_set_expiry
);
1993 * process a list of expirable mountpoints with the intent of discarding any
1994 * mountpoints that aren't in use and haven't been touched since last we came
1997 void mark_mounts_for_expiry(struct list_head
*mounts
)
1999 struct mount
*mnt
, *next
;
2000 LIST_HEAD(graveyard
);
2003 if (list_empty(mounts
))
2006 down_write(&namespace_sem
);
2007 br_write_lock(&vfsmount_lock
);
2009 /* extract from the expiration list every vfsmount that matches the
2010 * following criteria:
2011 * - only referenced by its parent vfsmount
2012 * - still marked for expiry (marked on the last call here; marks are
2013 * cleared by mntput())
2015 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2016 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2017 propagate_mount_busy(mnt
, 1))
2019 list_move(&mnt
->mnt_expire
, &graveyard
);
2021 while (!list_empty(&graveyard
)) {
2022 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2023 touch_mnt_namespace(mnt
->mnt_ns
);
2024 umount_tree(mnt
, 1, &umounts
);
2026 br_write_unlock(&vfsmount_lock
);
2027 up_write(&namespace_sem
);
2029 release_mounts(&umounts
);
2032 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2035 * Ripoff of 'select_parent()'
2037 * search the list of submounts for a given mountpoint, and move any
2038 * shrinkable submounts to the 'graveyard' list.
2040 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2042 struct mount
*this_parent
= parent
;
2043 struct list_head
*next
;
2047 next
= this_parent
->mnt_mounts
.next
;
2049 while (next
!= &this_parent
->mnt_mounts
) {
2050 struct list_head
*tmp
= next
;
2051 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2054 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2057 * Descend a level if the d_mounts list is non-empty.
2059 if (!list_empty(&mnt
->mnt_mounts
)) {
2064 if (!propagate_mount_busy(mnt
, 1)) {
2065 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2070 * All done at this level ... ascend and resume the search
2072 if (this_parent
!= parent
) {
2073 next
= this_parent
->mnt_child
.next
;
2074 this_parent
= this_parent
->mnt_parent
;
2081 * process a list of expirable mountpoints with the intent of discarding any
2082 * submounts of a specific parent mountpoint
2084 * vfsmount_lock must be held for write
2086 static void shrink_submounts(struct mount
*mnt
, struct list_head
*umounts
)
2088 LIST_HEAD(graveyard
);
2091 /* extract submounts of 'mountpoint' from the expiration list */
2092 while (select_submounts(mnt
, &graveyard
)) {
2093 while (!list_empty(&graveyard
)) {
2094 m
= list_first_entry(&graveyard
, struct mount
,
2096 touch_mnt_namespace(m
->mnt_ns
);
2097 umount_tree(m
, 1, umounts
);
2103 * Some copy_from_user() implementations do not return the exact number of
2104 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2105 * Note that this function differs from copy_from_user() in that it will oops
2106 * on bad values of `to', rather than returning a short copy.
2108 static long exact_copy_from_user(void *to
, const void __user
* from
,
2112 const char __user
*f
= from
;
2115 if (!access_ok(VERIFY_READ
, from
, n
))
2119 if (__get_user(c
, f
)) {
2130 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2140 if (!(page
= __get_free_page(GFP_KERNEL
)))
2143 /* We only care that *some* data at the address the user
2144 * gave us is valid. Just in case, we'll zero
2145 * the remainder of the page.
2147 /* copy_from_user cannot cross TASK_SIZE ! */
2148 size
= TASK_SIZE
- (unsigned long)data
;
2149 if (size
> PAGE_SIZE
)
2152 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2158 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2163 int copy_mount_string(const void __user
*data
, char **where
)
2172 tmp
= strndup_user(data
, PAGE_SIZE
);
2174 return PTR_ERR(tmp
);
2181 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2182 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2184 * data is a (void *) that can point to any structure up to
2185 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2186 * information (or be NULL).
2188 * Pre-0.97 versions of mount() didn't have a flags word.
2189 * When the flags word was introduced its top half was required
2190 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2191 * Therefore, if this magic number is present, it carries no information
2192 * and must be discarded.
2194 long do_mount(const char *dev_name
, const char *dir_name
,
2195 const char *type_page
, unsigned long flags
, void *data_page
)
2202 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2203 flags
&= ~MS_MGC_MSK
;
2205 /* Basic sanity checks */
2207 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2211 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2213 /* ... and get the mountpoint */
2214 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2218 retval
= security_sb_mount(dev_name
, &path
,
2219 type_page
, flags
, data_page
);
2223 /* Default to relatime unless overriden */
2224 if (!(flags
& MS_NOATIME
))
2225 mnt_flags
|= MNT_RELATIME
;
2227 /* Separate the per-mountpoint flags */
2228 if (flags
& MS_NOSUID
)
2229 mnt_flags
|= MNT_NOSUID
;
2230 if (flags
& MS_NODEV
)
2231 mnt_flags
|= MNT_NODEV
;
2232 if (flags
& MS_NOEXEC
)
2233 mnt_flags
|= MNT_NOEXEC
;
2234 if (flags
& MS_NOATIME
)
2235 mnt_flags
|= MNT_NOATIME
;
2236 if (flags
& MS_NODIRATIME
)
2237 mnt_flags
|= MNT_NODIRATIME
;
2238 if (flags
& MS_STRICTATIME
)
2239 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2240 if (flags
& MS_RDONLY
)
2241 mnt_flags
|= MNT_READONLY
;
2243 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2244 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2247 if (flags
& MS_REMOUNT
)
2248 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2250 else if (flags
& MS_BIND
)
2251 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2252 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2253 retval
= do_change_type(&path
, flags
);
2254 else if (flags
& MS_MOVE
)
2255 retval
= do_move_mount(&path
, dev_name
);
2257 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2258 dev_name
, data_page
);
2264 static struct mnt_namespace
*alloc_mnt_ns(void)
2266 struct mnt_namespace
*new_ns
;
2268 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2270 return ERR_PTR(-ENOMEM
);
2271 atomic_set(&new_ns
->count
, 1);
2272 new_ns
->root
= NULL
;
2273 INIT_LIST_HEAD(&new_ns
->list
);
2274 init_waitqueue_head(&new_ns
->poll
);
2280 * Allocate a new namespace structure and populate it with contents
2281 * copied from the namespace of the passed in task structure.
2283 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2284 struct fs_struct
*fs
)
2286 struct mnt_namespace
*new_ns
;
2287 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2288 struct mount
*p
, *q
;
2289 struct mount
*old
= mnt_ns
->root
;
2292 new_ns
= alloc_mnt_ns();
2296 down_write(&namespace_sem
);
2297 /* First pass: copy the tree topology */
2298 new = copy_tree(old
, old
->mnt
.mnt_root
, CL_COPY_ALL
| CL_EXPIRE
);
2300 up_write(&namespace_sem
);
2302 return ERR_CAST(new);
2305 br_write_lock(&vfsmount_lock
);
2306 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2307 br_write_unlock(&vfsmount_lock
);
2310 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2311 * as belonging to new namespace. We have already acquired a private
2312 * fs_struct, so tsk->fs->lock is not needed.
2319 if (&p
->mnt
== fs
->root
.mnt
) {
2320 fs
->root
.mnt
= mntget(&q
->mnt
);
2323 if (&p
->mnt
== fs
->pwd
.mnt
) {
2324 fs
->pwd
.mnt
= mntget(&q
->mnt
);
2328 p
= next_mnt(p
, old
);
2329 q
= next_mnt(q
, new);
2331 up_write(&namespace_sem
);
2341 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2342 struct fs_struct
*new_fs
)
2344 struct mnt_namespace
*new_ns
;
2349 if (!(flags
& CLONE_NEWNS
))
2352 new_ns
= dup_mnt_ns(ns
, new_fs
);
2359 * create_mnt_ns - creates a private namespace and adds a root filesystem
2360 * @mnt: pointer to the new root filesystem mountpoint
2362 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2364 struct mnt_namespace
*new_ns
= alloc_mnt_ns();
2365 if (!IS_ERR(new_ns
)) {
2366 struct mount
*mnt
= real_mount(m
);
2367 mnt
->mnt_ns
= new_ns
;
2369 list_add(&new_ns
->list
, &mnt
->mnt_list
);
2376 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2378 struct mnt_namespace
*ns
;
2379 struct super_block
*s
;
2383 ns
= create_mnt_ns(mnt
);
2385 return ERR_CAST(ns
);
2387 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2388 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2393 return ERR_PTR(err
);
2395 /* trade a vfsmount reference for active sb one */
2396 s
= path
.mnt
->mnt_sb
;
2397 atomic_inc(&s
->s_active
);
2399 /* lock the sucker */
2400 down_write(&s
->s_umount
);
2401 /* ... and return the root of (sub)tree on it */
2404 EXPORT_SYMBOL(mount_subtree
);
2406 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2407 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2411 struct filename
*kernel_dir
;
2413 unsigned long data_page
;
2415 ret
= copy_mount_string(type
, &kernel_type
);
2419 kernel_dir
= getname(dir_name
);
2420 if (IS_ERR(kernel_dir
)) {
2421 ret
= PTR_ERR(kernel_dir
);
2425 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2429 ret
= copy_mount_options(data
, &data_page
);
2433 ret
= do_mount(kernel_dev
, kernel_dir
->name
, kernel_type
, flags
,
2434 (void *) data_page
);
2436 free_page(data_page
);
2440 putname(kernel_dir
);
2448 * Return true if path is reachable from root
2450 * namespace_sem or vfsmount_lock is held
2452 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2453 const struct path
*root
)
2455 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2456 dentry
= mnt
->mnt_mountpoint
;
2457 mnt
= mnt
->mnt_parent
;
2459 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2462 int path_is_under(struct path
*path1
, struct path
*path2
)
2465 br_read_lock(&vfsmount_lock
);
2466 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2467 br_read_unlock(&vfsmount_lock
);
2470 EXPORT_SYMBOL(path_is_under
);
2473 * pivot_root Semantics:
2474 * Moves the root file system of the current process to the directory put_old,
2475 * makes new_root as the new root file system of the current process, and sets
2476 * root/cwd of all processes which had them on the current root to new_root.
2479 * The new_root and put_old must be directories, and must not be on the
2480 * same file system as the current process root. The put_old must be
2481 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2482 * pointed to by put_old must yield the same directory as new_root. No other
2483 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2485 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2486 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2487 * in this situation.
2490 * - we don't move root/cwd if they are not at the root (reason: if something
2491 * cared enough to change them, it's probably wrong to force them elsewhere)
2492 * - it's okay to pick a root that isn't the root of a file system, e.g.
2493 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2494 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2497 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2498 const char __user
*, put_old
)
2500 struct path
new, old
, parent_path
, root_parent
, root
;
2501 struct mount
*new_mnt
, *root_mnt
;
2504 if (!capable(CAP_SYS_ADMIN
))
2507 error
= user_path_dir(new_root
, &new);
2511 error
= user_path_dir(put_old
, &old
);
2515 error
= security_sb_pivotroot(&old
, &new);
2519 get_fs_root(current
->fs
, &root
);
2520 error
= lock_mount(&old
);
2525 new_mnt
= real_mount(new.mnt
);
2526 root_mnt
= real_mount(root
.mnt
);
2527 if (IS_MNT_SHARED(real_mount(old
.mnt
)) ||
2528 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
2529 IS_MNT_SHARED(root_mnt
->mnt_parent
))
2531 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
2534 if (d_unlinked(new.dentry
))
2536 if (d_unlinked(old
.dentry
))
2539 if (new.mnt
== root
.mnt
||
2540 old
.mnt
== root
.mnt
)
2541 goto out4
; /* loop, on the same file system */
2543 if (root
.mnt
->mnt_root
!= root
.dentry
)
2544 goto out4
; /* not a mountpoint */
2545 if (!mnt_has_parent(root_mnt
))
2546 goto out4
; /* not attached */
2547 if (new.mnt
->mnt_root
!= new.dentry
)
2548 goto out4
; /* not a mountpoint */
2549 if (!mnt_has_parent(new_mnt
))
2550 goto out4
; /* not attached */
2551 /* make sure we can reach put_old from new_root */
2552 if (!is_path_reachable(real_mount(old
.mnt
), old
.dentry
, &new))
2554 br_write_lock(&vfsmount_lock
);
2555 detach_mnt(new_mnt
, &parent_path
);
2556 detach_mnt(root_mnt
, &root_parent
);
2557 /* mount old root on put_old */
2558 attach_mnt(root_mnt
, &old
);
2559 /* mount new_root on / */
2560 attach_mnt(new_mnt
, &root_parent
);
2561 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2562 br_write_unlock(&vfsmount_lock
);
2563 chroot_fs_refs(&root
, &new);
2568 path_put(&root_parent
);
2569 path_put(&parent_path
);
2581 static void __init
init_mount_tree(void)
2583 struct vfsmount
*mnt
;
2584 struct mnt_namespace
*ns
;
2587 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2589 panic("Can't create rootfs");
2591 ns
= create_mnt_ns(mnt
);
2593 panic("Can't allocate initial namespace");
2595 init_task
.nsproxy
->mnt_ns
= ns
;
2599 root
.dentry
= mnt
->mnt_root
;
2601 set_fs_pwd(current
->fs
, &root
);
2602 set_fs_root(current
->fs
, &root
);
2605 void __init
mnt_init(void)
2610 init_rwsem(&namespace_sem
);
2612 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
2613 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2615 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2617 if (!mount_hashtable
)
2618 panic("Failed to allocate mount hash table\n");
2620 printk(KERN_INFO
"Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2622 for (u
= 0; u
< HASH_SIZE
; u
++)
2623 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2625 br_lock_init(&vfsmount_lock
);
2629 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2631 fs_kobj
= kobject_create_and_add("fs", NULL
);
2633 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2638 void put_mnt_ns(struct mnt_namespace
*ns
)
2640 LIST_HEAD(umount_list
);
2642 if (!atomic_dec_and_test(&ns
->count
))
2644 down_write(&namespace_sem
);
2645 br_write_lock(&vfsmount_lock
);
2646 umount_tree(ns
->root
, 0, &umount_list
);
2647 br_write_unlock(&vfsmount_lock
);
2648 up_write(&namespace_sem
);
2649 release_mounts(&umount_list
);
2653 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
2655 struct vfsmount
*mnt
;
2656 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
2659 * it is a longterm mount, don't release mnt until
2660 * we unmount before file sys is unregistered
2662 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
2666 EXPORT_SYMBOL_GPL(kern_mount_data
);
2668 void kern_unmount(struct vfsmount
*mnt
)
2670 /* release long term mount so mount point can be released */
2671 if (!IS_ERR_OR_NULL(mnt
)) {
2672 br_write_lock(&vfsmount_lock
);
2673 real_mount(mnt
)->mnt_ns
= NULL
;
2674 br_write_unlock(&vfsmount_lock
);
2678 EXPORT_SYMBOL(kern_unmount
);
2680 bool our_mnt(struct vfsmount
*mnt
)
2682 return check_mnt(real_mount(mnt
));