4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy
)
126 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
131 static inline int task_has_rt_policy(struct task_struct
*p
)
133 return rt_policy(p
->policy
);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array
{
140 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
141 struct list_head queue
[MAX_RT_PRIO
];
144 struct rt_bandwidth
{
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock
;
149 struct hrtimer rt_period_timer
;
152 static struct rt_bandwidth def_rt_bandwidth
;
154 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
156 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
158 struct rt_bandwidth
*rt_b
=
159 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
165 now
= hrtimer_cb_get_time(timer
);
166 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
171 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
174 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
178 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
180 rt_b
->rt_period
= ns_to_ktime(period
);
181 rt_b
->rt_runtime
= runtime
;
183 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
185 hrtimer_init(&rt_b
->rt_period_timer
,
186 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
187 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime
>= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
199 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
202 if (hrtimer_active(&rt_b
->rt_period_timer
))
205 raw_spin_lock(&rt_b
->rt_runtime_lock
);
210 if (hrtimer_active(&rt_b
->rt_period_timer
))
213 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
214 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
216 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
217 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
218 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
219 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
220 HRTIMER_MODE_ABS_PINNED
, 0);
222 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
228 hrtimer_cancel(&rt_b
->rt_period_timer
);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex
);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups
);
246 /* task group related information */
248 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity
**se
;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq
**cfs_rq
;
255 unsigned long shares
;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity
**rt_se
;
260 struct rt_rq
**rt_rq
;
262 struct rt_bandwidth rt_bandwidth
;
266 struct list_head list
;
268 struct task_group
*parent
;
269 struct list_head siblings
;
270 struct list_head children
;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock
);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group
.children
);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group
;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load
;
315 unsigned long nr_running
;
320 struct rb_root tasks_timeline
;
321 struct rb_node
*rb_leftmost
;
323 struct list_head tasks
;
324 struct list_head
*balance_iterator
;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity
*curr
, *next
, *last
;
332 unsigned int nr_spread_over
;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list
;
346 struct task_group
*tg
; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight
;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load
;
363 * this cpu's part of tg->shares
365 unsigned long shares
;
368 * load.weight at the time we set shares
370 unsigned long rq_weight
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
430 struct cpupri cpupri
;
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
438 static struct root_domain def_root_domain
;
443 * This is the main, per-CPU runqueue data structure.
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
457 unsigned long nr_running
;
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
462 unsigned char in_nohz_recently
;
464 unsigned int skip_clock_update
;
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load
;
468 unsigned long nr_load_updates
;
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list
;
478 #ifdef CONFIG_RT_GROUP_SCHED
479 struct list_head leaf_rt_rq_list
;
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
488 unsigned long nr_uninterruptible
;
490 struct task_struct
*curr
, *idle
;
491 unsigned long next_balance
;
492 struct mm_struct
*prev_mm
;
499 struct root_domain
*rd
;
500 struct sched_domain
*sd
;
502 unsigned long cpu_power
;
504 unsigned char idle_at_tick
;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work
;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task
;
522 /* calc_load related fields */
523 unsigned long calc_load_update
;
524 long calc_load_active
;
526 #ifdef CONFIG_SCHED_HRTICK
528 int hrtick_csd_pending
;
529 struct call_single_data hrtick_csd
;
531 struct hrtimer hrtick_timer
;
534 #ifdef CONFIG_SCHEDSTATS
536 struct sched_info rq_sched_info
;
537 unsigned long long rq_cpu_time
;
538 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
540 /* sys_sched_yield() stats */
541 unsigned int yld_count
;
543 /* schedule() stats */
544 unsigned int sched_switch
;
545 unsigned int sched_count
;
546 unsigned int sched_goidle
;
548 /* try_to_wake_up() stats */
549 unsigned int ttwu_count
;
550 unsigned int ttwu_local
;
553 unsigned int bkl_count
;
557 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
560 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
562 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
565 * A queue event has occurred, and we're going to schedule. In
566 * this case, we can save a useless back to back clock update.
568 if (test_tsk_need_resched(p
))
569 rq
->skip_clock_update
= 1;
572 static inline int cpu_of(struct rq
*rq
)
581 #define rcu_dereference_check_sched_domain(p) \
582 rcu_dereference_check((p), \
583 rcu_read_lock_sched_held() || \
584 lockdep_is_held(&sched_domains_mutex))
587 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
588 * See detach_destroy_domains: synchronize_sched for details.
590 * The domain tree of any CPU may only be accessed from within
591 * preempt-disabled sections.
593 #define for_each_domain(cpu, __sd) \
594 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
597 #define this_rq() (&__get_cpu_var(runqueues))
598 #define task_rq(p) cpu_rq(task_cpu(p))
599 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
600 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602 #ifdef CONFIG_CGROUP_SCHED
605 * Return the group to which this tasks belongs.
607 * We use task_subsys_state_check() and extend the RCU verification
608 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
609 * holds that lock for each task it moves into the cgroup. Therefore
610 * by holding that lock, we pin the task to the current cgroup.
612 static inline struct task_group
*task_group(struct task_struct
*p
)
614 struct cgroup_subsys_state
*css
;
616 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
617 lockdep_is_held(&task_rq(p
)->lock
));
618 return container_of(css
, struct task_group
, css
);
621 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
622 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
624 #ifdef CONFIG_FAIR_GROUP_SCHED
625 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
626 p
->se
.parent
= task_group(p
)->se
[cpu
];
629 #ifdef CONFIG_RT_GROUP_SCHED
630 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
631 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
635 #else /* CONFIG_CGROUP_SCHED */
637 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
638 static inline struct task_group
*task_group(struct task_struct
*p
)
643 #endif /* CONFIG_CGROUP_SCHED */
645 inline void update_rq_clock(struct rq
*rq
)
647 if (!rq
->skip_clock_update
)
648 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
657 # define const_debug static const
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu
)
670 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
681 #include "sched_features.h"
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug
unsigned int sysctl_sched_features
=
690 #include "sched_features.h"
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
699 static __read_mostly
char *sched_feat_names
[] = {
700 #include "sched_features.h"
706 static int sched_feat_show(struct seq_file
*m
, void *v
)
710 for (i
= 0; sched_feat_names
[i
]; i
++) {
711 if (!(sysctl_sched_features
& (1UL << i
)))
713 seq_printf(m
, "%s ", sched_feat_names
[i
]);
721 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
722 size_t cnt
, loff_t
*ppos
)
732 if (copy_from_user(&buf
, ubuf
, cnt
))
737 if (strncmp(buf
, "NO_", 3) == 0) {
742 for (i
= 0; sched_feat_names
[i
]; i
++) {
743 int len
= strlen(sched_feat_names
[i
]);
745 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
747 sysctl_sched_features
&= ~(1UL << i
);
749 sysctl_sched_features
|= (1UL << i
);
754 if (!sched_feat_names
[i
])
762 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
764 return single_open(filp
, sched_feat_show
, NULL
);
767 static const struct file_operations sched_feat_fops
= {
768 .open
= sched_feat_open
,
769 .write
= sched_feat_write
,
772 .release
= single_release
,
775 static __init
int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
782 late_initcall(sched_init_debug
);
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
795 * ratelimit for updating the group shares.
798 unsigned int sysctl_sched_shares_ratelimit
= 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
806 unsigned int sysctl_sched_shares_thresh
= 4;
809 * period over which we average the RT time consumption, measured
814 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
817 * period over which we measure -rt task cpu usage in us.
820 unsigned int sysctl_sched_rt_period
= 1000000;
822 static __read_mostly
int scheduler_running
;
825 * part of the period that we allow rt tasks to run in us.
828 int sysctl_sched_rt_runtime
= 950000;
830 static inline u64
global_rt_period(void)
832 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
835 static inline u64
global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime
< 0)
840 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
850 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
852 return rq
->curr
== p
;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
858 return task_current(rq
, p
);
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq
->lock
.owner
= current
;
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
876 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
878 raw_spin_unlock_irq(&rq
->lock
);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
887 return task_current(rq
, p
);
891 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq
->lock
);
904 raw_spin_unlock(&rq
->lock
);
908 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 static inline int task_is_waking(struct task_struct
*p
)
931 return unlikely(p
->state
== TASK_WAKING
);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
963 local_irq_save(*flags
);
965 raw_spin_lock(&rq
->lock
);
966 if (likely(rq
== task_rq(p
)))
968 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
978 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
981 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq
*this_rq_lock(void)
994 raw_spin_lock(&rq
->lock
);
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq
*rq
)
1018 if (!sched_feat(HRTICK
))
1020 if (!cpu_active(cpu_of(rq
)))
1022 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1025 static void hrtick_clear(struct rq
*rq
)
1027 if (hrtimer_active(&rq
->hrtick_timer
))
1028 hrtimer_cancel(&rq
->hrtick_timer
);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1037 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1039 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1041 raw_spin_lock(&rq
->lock
);
1042 update_rq_clock(rq
);
1043 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1044 raw_spin_unlock(&rq
->lock
);
1046 return HRTIMER_NORESTART
;
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg
)
1055 struct rq
*rq
= arg
;
1057 raw_spin_lock(&rq
->lock
);
1058 hrtimer_restart(&rq
->hrtick_timer
);
1059 rq
->hrtick_csd_pending
= 0;
1060 raw_spin_unlock(&rq
->lock
);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq
*rq
, u64 delay
)
1070 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1071 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1073 hrtimer_set_expires(timer
, time
);
1075 if (rq
== this_rq()) {
1076 hrtimer_restart(timer
);
1077 } else if (!rq
->hrtick_csd_pending
) {
1078 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1079 rq
->hrtick_csd_pending
= 1;
1084 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1086 int cpu
= (int)(long)hcpu
;
1089 case CPU_UP_CANCELED
:
1090 case CPU_UP_CANCELED_FROZEN
:
1091 case CPU_DOWN_PREPARE
:
1092 case CPU_DOWN_PREPARE_FROZEN
:
1094 case CPU_DEAD_FROZEN
:
1095 hrtick_clear(cpu_rq(cpu
));
1102 static __init
void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick
, 0);
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq
*rq
, u64 delay
)
1114 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1115 HRTIMER_MODE_REL_PINNED
, 0);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq
*rq
)
1126 rq
->hrtick_csd_pending
= 0;
1128 rq
->hrtick_csd
.flags
= 0;
1129 rq
->hrtick_csd
.func
= __hrtick_start
;
1130 rq
->hrtick_csd
.info
= rq
;
1133 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1134 rq
->hrtick_timer
.function
= hrtick
;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq
*rq
)
1141 static inline void init_rq_hrtick(struct rq
*rq
)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163 static void resched_task(struct task_struct
*p
)
1167 assert_raw_spin_locked(&task_rq(p
)->lock
);
1169 if (test_tsk_need_resched(p
))
1172 set_tsk_need_resched(p
);
1175 if (cpu
== smp_processor_id())
1178 /* NEED_RESCHED must be visible before we test polling */
1180 if (!tsk_is_polling(p
))
1181 smp_send_reschedule(cpu
);
1184 static void resched_cpu(int cpu
)
1186 struct rq
*rq
= cpu_rq(cpu
);
1187 unsigned long flags
;
1189 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1191 resched_task(cpu_curr(cpu
));
1192 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1206 void wake_up_idle_cpu(int cpu
)
1208 struct rq
*rq
= cpu_rq(cpu
);
1210 if (cpu
== smp_processor_id())
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1220 if (rq
->curr
!= rq
->idle
)
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1228 set_tsk_need_resched(rq
->idle
);
1230 /* NEED_RESCHED must be visible before we test polling */
1232 if (!tsk_is_polling(rq
->idle
))
1233 smp_send_reschedule(cpu
);
1236 int nohz_ratelimit(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1239 u64 diff
= rq
->clock
- rq
->nohz_stamp
;
1241 rq
->nohz_stamp
= rq
->clock
;
1243 return diff
< (NSEC_PER_SEC
/ HZ
) >> 1;
1246 #endif /* CONFIG_NO_HZ */
1248 static u64
sched_avg_period(void)
1250 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1253 static void sched_avg_update(struct rq
*rq
)
1255 s64 period
= sched_avg_period();
1257 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1258 rq
->age_stamp
+= period
;
1263 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1265 rq
->rt_avg
+= rt_delta
;
1266 sched_avg_update(rq
);
1269 #else /* !CONFIG_SMP */
1270 static void resched_task(struct task_struct
*p
)
1272 assert_raw_spin_locked(&task_rq(p
)->lock
);
1273 set_tsk_need_resched(p
);
1276 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1279 #endif /* CONFIG_SMP */
1281 #if BITS_PER_LONG == 32
1282 # define WMULT_CONST (~0UL)
1284 # define WMULT_CONST (1UL << 32)
1287 #define WMULT_SHIFT 32
1290 * Shift right and round:
1292 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295 * delta *= weight / lw
1297 static unsigned long
1298 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1299 struct load_weight
*lw
)
1303 if (!lw
->inv_weight
) {
1304 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1307 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1311 tmp
= (u64
)delta_exec
* weight
;
1313 * Check whether we'd overflow the 64-bit multiplication:
1315 if (unlikely(tmp
> WMULT_CONST
))
1316 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1319 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1321 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1324 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1330 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 * scaled version of the new time slice allocation that they receive on time
1345 #define WEIGHT_IDLEPRIO 3
1346 #define WMULT_IDLEPRIO 1431655765
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
1360 static const int prio_to_weight
[40] = {
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1378 static const u32 prio_to_wmult
[40] = {
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 /* Time spent by the tasks of the cpu accounting group executing in ... */
1390 enum cpuacct_stat_index
{
1391 CPUACCT_STAT_USER
, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1394 CPUACCT_STAT_NSTATS
,
1397 #ifdef CONFIG_CGROUP_CPUACCT
1398 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1399 static void cpuacct_update_stats(struct task_struct
*tsk
,
1400 enum cpuacct_stat_index idx
, cputime_t val
);
1402 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1403 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1404 enum cpuacct_stat_index idx
, cputime_t val
) {}
1407 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1409 update_load_add(&rq
->load
, load
);
1412 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1414 update_load_sub(&rq
->load
, load
);
1417 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1418 typedef int (*tg_visitor
)(struct task_group
*, void *);
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1424 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1426 struct task_group
*parent
, *child
;
1430 parent
= &root_task_group
;
1432 ret
= (*down
)(parent
, data
);
1435 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1442 ret
= (*up
)(parent
, data
);
1447 parent
= parent
->parent
;
1456 static int tg_nop(struct task_group
*tg
, void *data
)
1463 /* Used instead of source_load when we know the type == 0 */
1464 static unsigned long weighted_cpuload(const int cpu
)
1466 return cpu_rq(cpu
)->load
.weight
;
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1476 static unsigned long source_load(int cpu
, int type
)
1478 struct rq
*rq
= cpu_rq(cpu
);
1479 unsigned long total
= weighted_cpuload(cpu
);
1481 if (type
== 0 || !sched_feat(LB_BIAS
))
1484 return min(rq
->cpu_load
[type
-1], total
);
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 static unsigned long target_load(int cpu
, int type
)
1493 struct rq
*rq
= cpu_rq(cpu
);
1494 unsigned long total
= weighted_cpuload(cpu
);
1496 if (type
== 0 || !sched_feat(LB_BIAS
))
1499 return max(rq
->cpu_load
[type
-1], total
);
1502 static unsigned long power_of(int cpu
)
1504 return cpu_rq(cpu
)->cpu_power
;
1507 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1509 static unsigned long cpu_avg_load_per_task(int cpu
)
1511 struct rq
*rq
= cpu_rq(cpu
);
1512 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1515 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1517 rq
->avg_load_per_task
= 0;
1519 return rq
->avg_load_per_task
;
1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1524 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1526 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1529 * Calculate and set the cpu's group shares.
1531 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1532 unsigned long sd_shares
,
1533 unsigned long sd_rq_weight
,
1534 unsigned long *usd_rq_weight
)
1536 unsigned long shares
, rq_weight
;
1539 rq_weight
= usd_rq_weight
[cpu
];
1542 rq_weight
= NICE_0_LOAD
;
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
1550 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1551 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1553 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1554 sysctl_sched_shares_thresh
) {
1555 struct rq
*rq
= cpu_rq(cpu
);
1556 unsigned long flags
;
1558 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1559 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1560 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1561 __set_se_shares(tg
->se
[cpu
], shares
);
1562 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
1571 static int tg_shares_up(struct task_group
*tg
, void *data
)
1573 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1574 unsigned long *usd_rq_weight
;
1575 struct sched_domain
*sd
= data
;
1576 unsigned long flags
;
1582 local_irq_save(flags
);
1583 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1585 for_each_cpu(i
, sched_domain_span(sd
)) {
1586 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1587 usd_rq_weight
[i
] = weight
;
1589 rq_weight
+= weight
;
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1596 weight
= NICE_0_LOAD
;
1598 sum_weight
+= weight
;
1599 shares
+= tg
->cfs_rq
[i
]->shares
;
1603 rq_weight
= sum_weight
;
1605 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1606 shares
= tg
->shares
;
1608 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1609 shares
= tg
->shares
;
1611 for_each_cpu(i
, sched_domain_span(sd
))
1612 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1614 local_irq_restore(flags
);
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
1624 static int tg_load_down(struct task_group
*tg
, void *data
)
1627 long cpu
= (long)data
;
1630 load
= cpu_rq(cpu
)->load
.weight
;
1632 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1633 load
*= tg
->cfs_rq
[cpu
]->shares
;
1634 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1637 tg
->cfs_rq
[cpu
]->h_load
= load
;
1642 static void update_shares(struct sched_domain
*sd
)
1647 if (root_task_group_empty())
1650 now
= local_clock();
1651 elapsed
= now
- sd
->last_update
;
1653 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1654 sd
->last_update
= now
;
1655 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1659 static void update_h_load(long cpu
)
1661 if (root_task_group_empty())
1664 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1669 static inline void update_shares(struct sched_domain
*sd
)
1675 #ifdef CONFIG_PREEMPT
1677 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
1687 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1688 __releases(this_rq
->lock
)
1689 __acquires(busiest
->lock
)
1690 __acquires(this_rq
->lock
)
1692 raw_spin_unlock(&this_rq
->lock
);
1693 double_rq_lock(this_rq
, busiest
);
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1706 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1707 __releases(this_rq
->lock
)
1708 __acquires(busiest
->lock
)
1709 __acquires(this_rq
->lock
)
1713 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1714 if (busiest
< this_rq
) {
1715 raw_spin_unlock(&this_rq
->lock
);
1716 raw_spin_lock(&busiest
->lock
);
1717 raw_spin_lock_nested(&this_rq
->lock
,
1718 SINGLE_DEPTH_NESTING
);
1721 raw_spin_lock_nested(&busiest
->lock
,
1722 SINGLE_DEPTH_NESTING
);
1727 #endif /* CONFIG_PREEMPT */
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq
->lock
);
1740 return _double_lock_balance(this_rq
, busiest
);
1743 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1744 __releases(busiest
->lock
)
1746 raw_spin_unlock(&busiest
->lock
);
1747 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1751 * double_rq_lock - safely lock two runqueues
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1756 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1757 __acquires(rq1
->lock
)
1758 __acquires(rq2
->lock
)
1760 BUG_ON(!irqs_disabled());
1762 raw_spin_lock(&rq1
->lock
);
1763 __acquire(rq2
->lock
); /* Fake it out ;) */
1766 raw_spin_lock(&rq1
->lock
);
1767 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1769 raw_spin_lock(&rq2
->lock
);
1770 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1776 * double_rq_unlock - safely unlock two runqueues
1778 * Note this does not restore interrupts like task_rq_unlock,
1779 * you need to do so manually after calling.
1781 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1782 __releases(rq1
->lock
)
1783 __releases(rq2
->lock
)
1785 raw_spin_unlock(&rq1
->lock
);
1787 raw_spin_unlock(&rq2
->lock
);
1789 __release(rq2
->lock
);
1794 #ifdef CONFIG_FAIR_GROUP_SCHED
1795 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1798 cfs_rq
->shares
= shares
;
1803 static void calc_load_account_idle(struct rq
*this_rq
);
1804 static void update_sysctl(void);
1805 static int get_update_sysctl_factor(void);
1807 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1809 set_task_rq(p
, cpu
);
1812 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1813 * successfuly executed on another CPU. We must ensure that updates of
1814 * per-task data have been completed by this moment.
1817 task_thread_info(p
)->cpu
= cpu
;
1821 static const struct sched_class rt_sched_class
;
1823 #define sched_class_highest (&rt_sched_class)
1824 #define for_each_class(class) \
1825 for (class = sched_class_highest; class; class = class->next)
1827 #include "sched_stats.h"
1829 static void inc_nr_running(struct rq
*rq
)
1834 static void dec_nr_running(struct rq
*rq
)
1839 static void set_load_weight(struct task_struct
*p
)
1841 if (task_has_rt_policy(p
)) {
1842 p
->se
.load
.weight
= 0;
1843 p
->se
.load
.inv_weight
= WMULT_CONST
;
1848 * SCHED_IDLE tasks get minimal weight:
1850 if (p
->policy
== SCHED_IDLE
) {
1851 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1852 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1856 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1857 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1860 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1862 update_rq_clock(rq
);
1863 sched_info_queued(p
);
1864 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1868 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1870 update_rq_clock(rq
);
1871 sched_info_dequeued(p
);
1872 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1877 * activate_task - move a task to the runqueue.
1879 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1881 if (task_contributes_to_load(p
))
1882 rq
->nr_uninterruptible
--;
1884 enqueue_task(rq
, p
, flags
);
1889 * deactivate_task - remove a task from the runqueue.
1891 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1893 if (task_contributes_to_load(p
))
1894 rq
->nr_uninterruptible
++;
1896 dequeue_task(rq
, p
, flags
);
1900 #include "sched_idletask.c"
1901 #include "sched_fair.c"
1902 #include "sched_rt.c"
1903 #ifdef CONFIG_SCHED_DEBUG
1904 # include "sched_debug.c"
1908 * __normal_prio - return the priority that is based on the static prio
1910 static inline int __normal_prio(struct task_struct
*p
)
1912 return p
->static_prio
;
1916 * Calculate the expected normal priority: i.e. priority
1917 * without taking RT-inheritance into account. Might be
1918 * boosted by interactivity modifiers. Changes upon fork,
1919 * setprio syscalls, and whenever the interactivity
1920 * estimator recalculates.
1922 static inline int normal_prio(struct task_struct
*p
)
1926 if (task_has_rt_policy(p
))
1927 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1929 prio
= __normal_prio(p
);
1934 * Calculate the current priority, i.e. the priority
1935 * taken into account by the scheduler. This value might
1936 * be boosted by RT tasks, or might be boosted by
1937 * interactivity modifiers. Will be RT if the task got
1938 * RT-boosted. If not then it returns p->normal_prio.
1940 static int effective_prio(struct task_struct
*p
)
1942 p
->normal_prio
= normal_prio(p
);
1944 * If we are RT tasks or we were boosted to RT priority,
1945 * keep the priority unchanged. Otherwise, update priority
1946 * to the normal priority:
1948 if (!rt_prio(p
->prio
))
1949 return p
->normal_prio
;
1954 * task_curr - is this task currently executing on a CPU?
1955 * @p: the task in question.
1957 inline int task_curr(const struct task_struct
*p
)
1959 return cpu_curr(task_cpu(p
)) == p
;
1962 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1963 const struct sched_class
*prev_class
,
1964 int oldprio
, int running
)
1966 if (prev_class
!= p
->sched_class
) {
1967 if (prev_class
->switched_from
)
1968 prev_class
->switched_from(rq
, p
, running
);
1969 p
->sched_class
->switched_to(rq
, p
, running
);
1971 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1976 * Is this task likely cache-hot:
1979 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1983 if (p
->sched_class
!= &fair_sched_class
)
1987 * Buddy candidates are cache hot:
1989 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
1990 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1991 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1994 if (sysctl_sched_migration_cost
== -1)
1996 if (sysctl_sched_migration_cost
== 0)
1999 delta
= now
- p
->se
.exec_start
;
2001 return delta
< (s64
)sysctl_sched_migration_cost
;
2004 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2006 #ifdef CONFIG_SCHED_DEBUG
2008 * We should never call set_task_cpu() on a blocked task,
2009 * ttwu() will sort out the placement.
2011 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2012 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2015 trace_sched_migrate_task(p
, new_cpu
);
2017 if (task_cpu(p
) != new_cpu
) {
2018 p
->se
.nr_migrations
++;
2019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2022 __set_task_cpu(p
, new_cpu
);
2025 struct migration_arg
{
2026 struct task_struct
*task
;
2030 static int migration_cpu_stop(void *data
);
2033 * The task's runqueue lock must be held.
2034 * Returns true if you have to wait for migration thread.
2036 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2038 struct rq
*rq
= task_rq(p
);
2041 * If the task is not on a runqueue (and not running), then
2042 * the next wake-up will properly place the task.
2044 return p
->se
.on_rq
|| task_running(rq
, p
);
2048 * wait_task_inactive - wait for a thread to unschedule.
2050 * If @match_state is nonzero, it's the @p->state value just checked and
2051 * not expected to change. If it changes, i.e. @p might have woken up,
2052 * then return zero. When we succeed in waiting for @p to be off its CPU,
2053 * we return a positive number (its total switch count). If a second call
2054 * a short while later returns the same number, the caller can be sure that
2055 * @p has remained unscheduled the whole time.
2057 * The caller must ensure that the task *will* unschedule sometime soon,
2058 * else this function might spin for a *long* time. This function can't
2059 * be called with interrupts off, or it may introduce deadlock with
2060 * smp_call_function() if an IPI is sent by the same process we are
2061 * waiting to become inactive.
2063 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2065 unsigned long flags
;
2072 * We do the initial early heuristics without holding
2073 * any task-queue locks at all. We'll only try to get
2074 * the runqueue lock when things look like they will
2080 * If the task is actively running on another CPU
2081 * still, just relax and busy-wait without holding
2084 * NOTE! Since we don't hold any locks, it's not
2085 * even sure that "rq" stays as the right runqueue!
2086 * But we don't care, since "task_running()" will
2087 * return false if the runqueue has changed and p
2088 * is actually now running somewhere else!
2090 while (task_running(rq
, p
)) {
2091 if (match_state
&& unlikely(p
->state
!= match_state
))
2097 * Ok, time to look more closely! We need the rq
2098 * lock now, to be *sure*. If we're wrong, we'll
2099 * just go back and repeat.
2101 rq
= task_rq_lock(p
, &flags
);
2102 trace_sched_wait_task(p
);
2103 running
= task_running(rq
, p
);
2104 on_rq
= p
->se
.on_rq
;
2106 if (!match_state
|| p
->state
== match_state
)
2107 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2108 task_rq_unlock(rq
, &flags
);
2111 * If it changed from the expected state, bail out now.
2113 if (unlikely(!ncsw
))
2117 * Was it really running after all now that we
2118 * checked with the proper locks actually held?
2120 * Oops. Go back and try again..
2122 if (unlikely(running
)) {
2128 * It's not enough that it's not actively running,
2129 * it must be off the runqueue _entirely_, and not
2132 * So if it was still runnable (but just not actively
2133 * running right now), it's preempted, and we should
2134 * yield - it could be a while.
2136 if (unlikely(on_rq
)) {
2137 schedule_timeout_uninterruptible(1);
2142 * Ahh, all good. It wasn't running, and it wasn't
2143 * runnable, which means that it will never become
2144 * running in the future either. We're all done!
2153 * kick_process - kick a running thread to enter/exit the kernel
2154 * @p: the to-be-kicked thread
2156 * Cause a process which is running on another CPU to enter
2157 * kernel-mode, without any delay. (to get signals handled.)
2159 * NOTE: this function doesnt have to take the runqueue lock,
2160 * because all it wants to ensure is that the remote task enters
2161 * the kernel. If the IPI races and the task has been migrated
2162 * to another CPU then no harm is done and the purpose has been
2165 void kick_process(struct task_struct
*p
)
2171 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2172 smp_send_reschedule(cpu
);
2175 EXPORT_SYMBOL_GPL(kick_process
);
2176 #endif /* CONFIG_SMP */
2179 * task_oncpu_function_call - call a function on the cpu on which a task runs
2180 * @p: the task to evaluate
2181 * @func: the function to be called
2182 * @info: the function call argument
2184 * Calls the function @func when the task is currently running. This might
2185 * be on the current CPU, which just calls the function directly
2187 void task_oncpu_function_call(struct task_struct
*p
,
2188 void (*func
) (void *info
), void *info
)
2195 smp_call_function_single(cpu
, func
, info
, 1);
2201 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2203 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2206 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2208 /* Look for allowed, online CPU in same node. */
2209 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2210 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2213 /* Any allowed, online CPU? */
2214 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2215 if (dest_cpu
< nr_cpu_ids
)
2218 /* No more Mr. Nice Guy. */
2219 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2220 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2222 * Don't tell them about moving exiting tasks or
2223 * kernel threads (both mm NULL), since they never
2226 if (p
->mm
&& printk_ratelimit()) {
2227 printk(KERN_INFO
"process %d (%s) no "
2228 "longer affine to cpu%d\n",
2229 task_pid_nr(p
), p
->comm
, cpu
);
2237 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2240 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2242 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2245 * In order not to call set_task_cpu() on a blocking task we need
2246 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * Since this is common to all placement strategies, this lives here.
2251 * [ this allows ->select_task() to simply return task_cpu(p) and
2252 * not worry about this generic constraint ]
2254 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2256 cpu
= select_fallback_rq(task_cpu(p
), p
);
2261 static void update_avg(u64
*avg
, u64 sample
)
2263 s64 diff
= sample
- *avg
;
2268 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2269 bool is_sync
, bool is_migrate
, bool is_local
,
2270 unsigned long en_flags
)
2272 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2274 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2276 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2278 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2280 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2282 activate_task(rq
, p
, en_flags
);
2285 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2286 int wake_flags
, bool success
)
2288 trace_sched_wakeup(p
, success
);
2289 check_preempt_curr(rq
, p
, wake_flags
);
2291 p
->state
= TASK_RUNNING
;
2293 if (p
->sched_class
->task_woken
)
2294 p
->sched_class
->task_woken(rq
, p
);
2296 if (unlikely(rq
->idle_stamp
)) {
2297 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2298 u64 max
= 2*sysctl_sched_migration_cost
;
2303 update_avg(&rq
->avg_idle
, delta
);
2307 /* if a worker is waking up, notify workqueue */
2308 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2309 wq_worker_waking_up(p
, cpu_of(rq
));
2313 * try_to_wake_up - wake up a thread
2314 * @p: the thread to be awakened
2315 * @state: the mask of task states that can be woken
2316 * @wake_flags: wake modifier flags (WF_*)
2318 * Put it on the run-queue if it's not already there. The "current"
2319 * thread is always on the run-queue (except when the actual
2320 * re-schedule is in progress), and as such you're allowed to do
2321 * the simpler "current->state = TASK_RUNNING" to mark yourself
2322 * runnable without the overhead of this.
2324 * Returns %true if @p was woken up, %false if it was already running
2325 * or @state didn't match @p's state.
2327 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2330 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2331 unsigned long flags
;
2332 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2335 this_cpu
= get_cpu();
2338 rq
= task_rq_lock(p
, &flags
);
2339 if (!(p
->state
& state
))
2349 if (unlikely(task_running(rq
, p
)))
2353 * In order to handle concurrent wakeups and release the rq->lock
2354 * we put the task in TASK_WAKING state.
2356 * First fix up the nr_uninterruptible count:
2358 if (task_contributes_to_load(p
)) {
2359 if (likely(cpu_online(orig_cpu
)))
2360 rq
->nr_uninterruptible
--;
2362 this_rq()->nr_uninterruptible
--;
2364 p
->state
= TASK_WAKING
;
2366 if (p
->sched_class
->task_waking
) {
2367 p
->sched_class
->task_waking(rq
, p
);
2368 en_flags
|= ENQUEUE_WAKING
;
2371 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2372 if (cpu
!= orig_cpu
)
2373 set_task_cpu(p
, cpu
);
2374 __task_rq_unlock(rq
);
2377 raw_spin_lock(&rq
->lock
);
2380 * We migrated the task without holding either rq->lock, however
2381 * since the task is not on the task list itself, nobody else
2382 * will try and migrate the task, hence the rq should match the
2383 * cpu we just moved it to.
2385 WARN_ON(task_cpu(p
) != cpu
);
2386 WARN_ON(p
->state
!= TASK_WAKING
);
2388 #ifdef CONFIG_SCHEDSTATS
2389 schedstat_inc(rq
, ttwu_count
);
2390 if (cpu
== this_cpu
)
2391 schedstat_inc(rq
, ttwu_local
);
2393 struct sched_domain
*sd
;
2394 for_each_domain(this_cpu
, sd
) {
2395 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2396 schedstat_inc(sd
, ttwu_wake_remote
);
2401 #endif /* CONFIG_SCHEDSTATS */
2404 #endif /* CONFIG_SMP */
2405 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2406 cpu
== this_cpu
, en_flags
);
2409 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2411 task_rq_unlock(rq
, &flags
);
2418 * try_to_wake_up_local - try to wake up a local task with rq lock held
2419 * @p: the thread to be awakened
2421 * Put @p on the run-queue if it's not alredy there. The caller must
2422 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2423 * the current task. this_rq() stays locked over invocation.
2425 static void try_to_wake_up_local(struct task_struct
*p
)
2427 struct rq
*rq
= task_rq(p
);
2428 bool success
= false;
2430 BUG_ON(rq
!= this_rq());
2431 BUG_ON(p
== current
);
2432 lockdep_assert_held(&rq
->lock
);
2434 if (!(p
->state
& TASK_NORMAL
))
2438 if (likely(!task_running(rq
, p
))) {
2439 schedstat_inc(rq
, ttwu_count
);
2440 schedstat_inc(rq
, ttwu_local
);
2442 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2445 ttwu_post_activation(p
, rq
, 0, success
);
2449 * wake_up_process - Wake up a specific process
2450 * @p: The process to be woken up.
2452 * Attempt to wake up the nominated process and move it to the set of runnable
2453 * processes. Returns 1 if the process was woken up, 0 if it was already
2456 * It may be assumed that this function implies a write memory barrier before
2457 * changing the task state if and only if any tasks are woken up.
2459 int wake_up_process(struct task_struct
*p
)
2461 return try_to_wake_up(p
, TASK_ALL
, 0);
2463 EXPORT_SYMBOL(wake_up_process
);
2465 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2467 return try_to_wake_up(p
, state
, 0);
2471 * Perform scheduler related setup for a newly forked process p.
2472 * p is forked by current.
2474 * __sched_fork() is basic setup used by init_idle() too:
2476 static void __sched_fork(struct task_struct
*p
)
2478 p
->se
.exec_start
= 0;
2479 p
->se
.sum_exec_runtime
= 0;
2480 p
->se
.prev_sum_exec_runtime
= 0;
2481 p
->se
.nr_migrations
= 0;
2483 #ifdef CONFIG_SCHEDSTATS
2484 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2487 INIT_LIST_HEAD(&p
->rt
.run_list
);
2489 INIT_LIST_HEAD(&p
->se
.group_node
);
2491 #ifdef CONFIG_PREEMPT_NOTIFIERS
2492 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2497 * fork()/clone()-time setup:
2499 void sched_fork(struct task_struct
*p
, int clone_flags
)
2501 int cpu
= get_cpu();
2505 * We mark the process as running here. This guarantees that
2506 * nobody will actually run it, and a signal or other external
2507 * event cannot wake it up and insert it on the runqueue either.
2509 p
->state
= TASK_RUNNING
;
2512 * Revert to default priority/policy on fork if requested.
2514 if (unlikely(p
->sched_reset_on_fork
)) {
2515 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2516 p
->policy
= SCHED_NORMAL
;
2517 p
->normal_prio
= p
->static_prio
;
2520 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2521 p
->static_prio
= NICE_TO_PRIO(0);
2522 p
->normal_prio
= p
->static_prio
;
2527 * We don't need the reset flag anymore after the fork. It has
2528 * fulfilled its duty:
2530 p
->sched_reset_on_fork
= 0;
2534 * Make sure we do not leak PI boosting priority to the child.
2536 p
->prio
= current
->normal_prio
;
2538 if (!rt_prio(p
->prio
))
2539 p
->sched_class
= &fair_sched_class
;
2541 if (p
->sched_class
->task_fork
)
2542 p
->sched_class
->task_fork(p
);
2544 set_task_cpu(p
, cpu
);
2546 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2547 if (likely(sched_info_on()))
2548 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2550 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2553 #ifdef CONFIG_PREEMPT
2554 /* Want to start with kernel preemption disabled. */
2555 task_thread_info(p
)->preempt_count
= 1;
2557 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2563 * wake_up_new_task - wake up a newly created task for the first time.
2565 * This function will do some initial scheduler statistics housekeeping
2566 * that must be done for every newly created context, then puts the task
2567 * on the runqueue and wakes it.
2569 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2571 unsigned long flags
;
2573 int cpu __maybe_unused
= get_cpu();
2576 rq
= task_rq_lock(p
, &flags
);
2577 p
->state
= TASK_WAKING
;
2580 * Fork balancing, do it here and not earlier because:
2581 * - cpus_allowed can change in the fork path
2582 * - any previously selected cpu might disappear through hotplug
2584 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2585 * without people poking at ->cpus_allowed.
2587 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2588 set_task_cpu(p
, cpu
);
2590 p
->state
= TASK_RUNNING
;
2591 task_rq_unlock(rq
, &flags
);
2594 rq
= task_rq_lock(p
, &flags
);
2595 activate_task(rq
, p
, 0);
2596 trace_sched_wakeup_new(p
, 1);
2597 check_preempt_curr(rq
, p
, WF_FORK
);
2599 if (p
->sched_class
->task_woken
)
2600 p
->sched_class
->task_woken(rq
, p
);
2602 task_rq_unlock(rq
, &flags
);
2606 #ifdef CONFIG_PREEMPT_NOTIFIERS
2609 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2610 * @notifier: notifier struct to register
2612 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2614 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2616 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2619 * preempt_notifier_unregister - no longer interested in preemption notifications
2620 * @notifier: notifier struct to unregister
2622 * This is safe to call from within a preemption notifier.
2624 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2626 hlist_del(¬ifier
->link
);
2628 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2630 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2632 struct preempt_notifier
*notifier
;
2633 struct hlist_node
*node
;
2635 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2636 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2640 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2641 struct task_struct
*next
)
2643 struct preempt_notifier
*notifier
;
2644 struct hlist_node
*node
;
2646 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2647 notifier
->ops
->sched_out(notifier
, next
);
2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2652 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2657 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2658 struct task_struct
*next
)
2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2665 * prepare_task_switch - prepare to switch tasks
2666 * @rq: the runqueue preparing to switch
2667 * @prev: the current task that is being switched out
2668 * @next: the task we are going to switch to.
2670 * This is called with the rq lock held and interrupts off. It must
2671 * be paired with a subsequent finish_task_switch after the context
2674 * prepare_task_switch sets up locking and calls architecture specific
2678 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2679 struct task_struct
*next
)
2681 fire_sched_out_preempt_notifiers(prev
, next
);
2682 prepare_lock_switch(rq
, next
);
2683 prepare_arch_switch(next
);
2687 * finish_task_switch - clean up after a task-switch
2688 * @rq: runqueue associated with task-switch
2689 * @prev: the thread we just switched away from.
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
2696 * Note that we may have delayed dropping an mm in context_switch(). If
2697 * so, we finish that here outside of the runqueue lock. (Doing it
2698 * with the lock held can cause deadlocks; see schedule() for
2701 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2702 __releases(rq
->lock
)
2704 struct mm_struct
*mm
= rq
->prev_mm
;
2710 * A task struct has one reference for the use as "current".
2711 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2712 * schedule one last time. The schedule call will never return, and
2713 * the scheduled task must drop that reference.
2714 * The test for TASK_DEAD must occur while the runqueue locks are
2715 * still held, otherwise prev could be scheduled on another cpu, die
2716 * there before we look at prev->state, and then the reference would
2718 * Manfred Spraul <manfred@colorfullife.com>
2720 prev_state
= prev
->state
;
2721 finish_arch_switch(prev
);
2722 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2723 local_irq_disable();
2724 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2725 perf_event_task_sched_in(current
);
2726 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2728 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2729 finish_lock_switch(rq
, prev
);
2731 fire_sched_in_preempt_notifiers(current
);
2734 if (unlikely(prev_state
== TASK_DEAD
)) {
2736 * Remove function-return probe instances associated with this
2737 * task and put them back on the free list.
2739 kprobe_flush_task(prev
);
2740 put_task_struct(prev
);
2746 /* assumes rq->lock is held */
2747 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2749 if (prev
->sched_class
->pre_schedule
)
2750 prev
->sched_class
->pre_schedule(rq
, prev
);
2753 /* rq->lock is NOT held, but preemption is disabled */
2754 static inline void post_schedule(struct rq
*rq
)
2756 if (rq
->post_schedule
) {
2757 unsigned long flags
;
2759 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2760 if (rq
->curr
->sched_class
->post_schedule
)
2761 rq
->curr
->sched_class
->post_schedule(rq
);
2762 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2764 rq
->post_schedule
= 0;
2770 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2774 static inline void post_schedule(struct rq
*rq
)
2781 * schedule_tail - first thing a freshly forked thread must call.
2782 * @prev: the thread we just switched away from.
2784 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2785 __releases(rq
->lock
)
2787 struct rq
*rq
= this_rq();
2789 finish_task_switch(rq
, prev
);
2792 * FIXME: do we need to worry about rq being invalidated by the
2797 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2798 /* In this case, finish_task_switch does not reenable preemption */
2801 if (current
->set_child_tid
)
2802 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2806 * context_switch - switch to the new MM and the new
2807 * thread's register state.
2810 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2811 struct task_struct
*next
)
2813 struct mm_struct
*mm
, *oldmm
;
2815 prepare_task_switch(rq
, prev
, next
);
2816 trace_sched_switch(prev
, next
);
2818 oldmm
= prev
->active_mm
;
2820 * For paravirt, this is coupled with an exit in switch_to to
2821 * combine the page table reload and the switch backend into
2824 arch_start_context_switch(prev
);
2827 next
->active_mm
= oldmm
;
2828 atomic_inc(&oldmm
->mm_count
);
2829 enter_lazy_tlb(oldmm
, next
);
2831 switch_mm(oldmm
, mm
, next
);
2833 if (likely(!prev
->mm
)) {
2834 prev
->active_mm
= NULL
;
2835 rq
->prev_mm
= oldmm
;
2838 * Since the runqueue lock will be released by the next
2839 * task (which is an invalid locking op but in the case
2840 * of the scheduler it's an obvious special-case), so we
2841 * do an early lockdep release here:
2843 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2844 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2847 /* Here we just switch the register state and the stack. */
2848 switch_to(prev
, next
, prev
);
2852 * this_rq must be evaluated again because prev may have moved
2853 * CPUs since it called schedule(), thus the 'rq' on its stack
2854 * frame will be invalid.
2856 finish_task_switch(this_rq(), prev
);
2860 * nr_running, nr_uninterruptible and nr_context_switches:
2862 * externally visible scheduler statistics: current number of runnable
2863 * threads, current number of uninterruptible-sleeping threads, total
2864 * number of context switches performed since bootup.
2866 unsigned long nr_running(void)
2868 unsigned long i
, sum
= 0;
2870 for_each_online_cpu(i
)
2871 sum
+= cpu_rq(i
)->nr_running
;
2876 unsigned long nr_uninterruptible(void)
2878 unsigned long i
, sum
= 0;
2880 for_each_possible_cpu(i
)
2881 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2884 * Since we read the counters lockless, it might be slightly
2885 * inaccurate. Do not allow it to go below zero though:
2887 if (unlikely((long)sum
< 0))
2893 unsigned long long nr_context_switches(void)
2896 unsigned long long sum
= 0;
2898 for_each_possible_cpu(i
)
2899 sum
+= cpu_rq(i
)->nr_switches
;
2904 unsigned long nr_iowait(void)
2906 unsigned long i
, sum
= 0;
2908 for_each_possible_cpu(i
)
2909 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2914 unsigned long nr_iowait_cpu(void)
2916 struct rq
*this = this_rq();
2917 return atomic_read(&this->nr_iowait
);
2920 unsigned long this_cpu_load(void)
2922 struct rq
*this = this_rq();
2923 return this->cpu_load
[0];
2927 /* Variables and functions for calc_load */
2928 static atomic_long_t calc_load_tasks
;
2929 static unsigned long calc_load_update
;
2930 unsigned long avenrun
[3];
2931 EXPORT_SYMBOL(avenrun
);
2933 static long calc_load_fold_active(struct rq
*this_rq
)
2935 long nr_active
, delta
= 0;
2937 nr_active
= this_rq
->nr_running
;
2938 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2940 if (nr_active
!= this_rq
->calc_load_active
) {
2941 delta
= nr_active
- this_rq
->calc_load_active
;
2942 this_rq
->calc_load_active
= nr_active
;
2950 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2952 * When making the ILB scale, we should try to pull this in as well.
2954 static atomic_long_t calc_load_tasks_idle
;
2956 static void calc_load_account_idle(struct rq
*this_rq
)
2960 delta
= calc_load_fold_active(this_rq
);
2962 atomic_long_add(delta
, &calc_load_tasks_idle
);
2965 static long calc_load_fold_idle(void)
2970 * Its got a race, we don't care...
2972 if (atomic_long_read(&calc_load_tasks_idle
))
2973 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
2978 static void calc_load_account_idle(struct rq
*this_rq
)
2982 static inline long calc_load_fold_idle(void)
2989 * get_avenrun - get the load average array
2990 * @loads: pointer to dest load array
2991 * @offset: offset to add
2992 * @shift: shift count to shift the result left
2994 * These values are estimates at best, so no need for locking.
2996 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2998 loads
[0] = (avenrun
[0] + offset
) << shift
;
2999 loads
[1] = (avenrun
[1] + offset
) << shift
;
3000 loads
[2] = (avenrun
[2] + offset
) << shift
;
3003 static unsigned long
3004 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3007 load
+= active
* (FIXED_1
- exp
);
3008 return load
>> FSHIFT
;
3012 * calc_load - update the avenrun load estimates 10 ticks after the
3013 * CPUs have updated calc_load_tasks.
3015 void calc_global_load(void)
3017 unsigned long upd
= calc_load_update
+ 10;
3020 if (time_before(jiffies
, upd
))
3023 active
= atomic_long_read(&calc_load_tasks
);
3024 active
= active
> 0 ? active
* FIXED_1
: 0;
3026 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3027 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3028 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3030 calc_load_update
+= LOAD_FREQ
;
3034 * Called from update_cpu_load() to periodically update this CPU's
3037 static void calc_load_account_active(struct rq
*this_rq
)
3041 if (time_before(jiffies
, this_rq
->calc_load_update
))
3044 delta
= calc_load_fold_active(this_rq
);
3045 delta
+= calc_load_fold_idle();
3047 atomic_long_add(delta
, &calc_load_tasks
);
3049 this_rq
->calc_load_update
+= LOAD_FREQ
;
3053 * Update rq->cpu_load[] statistics. This function is usually called every
3054 * scheduler tick (TICK_NSEC).
3056 static void update_cpu_load(struct rq
*this_rq
)
3058 unsigned long this_load
= this_rq
->load
.weight
;
3061 this_rq
->nr_load_updates
++;
3063 /* Update our load: */
3064 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3065 unsigned long old_load
, new_load
;
3067 /* scale is effectively 1 << i now, and >> i divides by scale */
3069 old_load
= this_rq
->cpu_load
[i
];
3070 new_load
= this_load
;
3072 * Round up the averaging division if load is increasing. This
3073 * prevents us from getting stuck on 9 if the load is 10, for
3076 if (new_load
> old_load
)
3077 new_load
+= scale
-1;
3078 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3081 calc_load_account_active(this_rq
);
3087 * sched_exec - execve() is a valuable balancing opportunity, because at
3088 * this point the task has the smallest effective memory and cache footprint.
3090 void sched_exec(void)
3092 struct task_struct
*p
= current
;
3093 unsigned long flags
;
3097 rq
= task_rq_lock(p
, &flags
);
3098 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3099 if (dest_cpu
== smp_processor_id())
3103 * select_task_rq() can race against ->cpus_allowed
3105 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3106 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3107 struct migration_arg arg
= { p
, dest_cpu
};
3109 task_rq_unlock(rq
, &flags
);
3110 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3114 task_rq_unlock(rq
, &flags
);
3119 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3121 EXPORT_PER_CPU_SYMBOL(kstat
);
3124 * Return any ns on the sched_clock that have not yet been accounted in
3125 * @p in case that task is currently running.
3127 * Called with task_rq_lock() held on @rq.
3129 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3133 if (task_current(rq
, p
)) {
3134 update_rq_clock(rq
);
3135 ns
= rq
->clock
- p
->se
.exec_start
;
3143 unsigned long long task_delta_exec(struct task_struct
*p
)
3145 unsigned long flags
;
3149 rq
= task_rq_lock(p
, &flags
);
3150 ns
= do_task_delta_exec(p
, rq
);
3151 task_rq_unlock(rq
, &flags
);
3157 * Return accounted runtime for the task.
3158 * In case the task is currently running, return the runtime plus current's
3159 * pending runtime that have not been accounted yet.
3161 unsigned long long task_sched_runtime(struct task_struct
*p
)
3163 unsigned long flags
;
3167 rq
= task_rq_lock(p
, &flags
);
3168 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3169 task_rq_unlock(rq
, &flags
);
3175 * Return sum_exec_runtime for the thread group.
3176 * In case the task is currently running, return the sum plus current's
3177 * pending runtime that have not been accounted yet.
3179 * Note that the thread group might have other running tasks as well,
3180 * so the return value not includes other pending runtime that other
3181 * running tasks might have.
3183 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3185 struct task_cputime totals
;
3186 unsigned long flags
;
3190 rq
= task_rq_lock(p
, &flags
);
3191 thread_group_cputime(p
, &totals
);
3192 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3193 task_rq_unlock(rq
, &flags
);
3199 * Account user cpu time to a process.
3200 * @p: the process that the cpu time gets accounted to
3201 * @cputime: the cpu time spent in user space since the last update
3202 * @cputime_scaled: cputime scaled by cpu frequency
3204 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3205 cputime_t cputime_scaled
)
3207 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3210 /* Add user time to process. */
3211 p
->utime
= cputime_add(p
->utime
, cputime
);
3212 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3213 account_group_user_time(p
, cputime
);
3215 /* Add user time to cpustat. */
3216 tmp
= cputime_to_cputime64(cputime
);
3217 if (TASK_NICE(p
) > 0)
3218 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3220 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3222 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3223 /* Account for user time used */
3224 acct_update_integrals(p
);
3228 * Account guest cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @cputime: the cpu time spent in virtual machine since the last update
3231 * @cputime_scaled: cputime scaled by cpu frequency
3233 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3234 cputime_t cputime_scaled
)
3237 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3239 tmp
= cputime_to_cputime64(cputime
);
3241 /* Add guest time to process. */
3242 p
->utime
= cputime_add(p
->utime
, cputime
);
3243 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3244 account_group_user_time(p
, cputime
);
3245 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3247 /* Add guest time to cpustat. */
3248 if (TASK_NICE(p
) > 0) {
3249 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3250 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3252 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3253 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3258 * Account system cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @hardirq_offset: the offset to subtract from hardirq_count()
3261 * @cputime: the cpu time spent in kernel space since the last update
3262 * @cputime_scaled: cputime scaled by cpu frequency
3264 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3265 cputime_t cputime
, cputime_t cputime_scaled
)
3267 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3270 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3271 account_guest_time(p
, cputime
, cputime_scaled
);
3275 /* Add system time to process. */
3276 p
->stime
= cputime_add(p
->stime
, cputime
);
3277 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3278 account_group_system_time(p
, cputime
);
3280 /* Add system time to cpustat. */
3281 tmp
= cputime_to_cputime64(cputime
);
3282 if (hardirq_count() - hardirq_offset
)
3283 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3284 else if (softirq_count())
3285 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3287 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3289 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3291 /* Account for system time used */
3292 acct_update_integrals(p
);
3296 * Account for involuntary wait time.
3297 * @steal: the cpu time spent in involuntary wait
3299 void account_steal_time(cputime_t cputime
)
3301 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3302 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3304 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3308 * Account for idle time.
3309 * @cputime: the cpu time spent in idle wait
3311 void account_idle_time(cputime_t cputime
)
3313 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3314 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3315 struct rq
*rq
= this_rq();
3317 if (atomic_read(&rq
->nr_iowait
) > 0)
3318 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3320 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3323 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3326 * Account a single tick of cpu time.
3327 * @p: the process that the cpu time gets accounted to
3328 * @user_tick: indicates if the tick is a user or a system tick
3330 void account_process_tick(struct task_struct
*p
, int user_tick
)
3332 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3333 struct rq
*rq
= this_rq();
3336 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3337 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3338 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3341 account_idle_time(cputime_one_jiffy
);
3345 * Account multiple ticks of steal time.
3346 * @p: the process from which the cpu time has been stolen
3347 * @ticks: number of stolen ticks
3349 void account_steal_ticks(unsigned long ticks
)
3351 account_steal_time(jiffies_to_cputime(ticks
));
3355 * Account multiple ticks of idle time.
3356 * @ticks: number of stolen ticks
3358 void account_idle_ticks(unsigned long ticks
)
3360 account_idle_time(jiffies_to_cputime(ticks
));
3366 * Use precise platform statistics if available:
3368 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3369 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3375 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3377 struct task_cputime cputime
;
3379 thread_group_cputime(p
, &cputime
);
3381 *ut
= cputime
.utime
;
3382 *st
= cputime
.stime
;
3386 #ifndef nsecs_to_cputime
3387 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3390 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3392 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3395 * Use CFS's precise accounting:
3397 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3402 temp
= (u64
)(rtime
* utime
);
3403 do_div(temp
, total
);
3404 utime
= (cputime_t
)temp
;
3409 * Compare with previous values, to keep monotonicity:
3411 p
->prev_utime
= max(p
->prev_utime
, utime
);
3412 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3414 *ut
= p
->prev_utime
;
3415 *st
= p
->prev_stime
;
3419 * Must be called with siglock held.
3421 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3423 struct signal_struct
*sig
= p
->signal
;
3424 struct task_cputime cputime
;
3425 cputime_t rtime
, utime
, total
;
3427 thread_group_cputime(p
, &cputime
);
3429 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3430 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3435 temp
= (u64
)(rtime
* cputime
.utime
);
3436 do_div(temp
, total
);
3437 utime
= (cputime_t
)temp
;
3441 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3442 sig
->prev_stime
= max(sig
->prev_stime
,
3443 cputime_sub(rtime
, sig
->prev_utime
));
3445 *ut
= sig
->prev_utime
;
3446 *st
= sig
->prev_stime
;
3451 * This function gets called by the timer code, with HZ frequency.
3452 * We call it with interrupts disabled.
3454 * It also gets called by the fork code, when changing the parent's
3457 void scheduler_tick(void)
3459 int cpu
= smp_processor_id();
3460 struct rq
*rq
= cpu_rq(cpu
);
3461 struct task_struct
*curr
= rq
->curr
;
3465 raw_spin_lock(&rq
->lock
);
3466 update_rq_clock(rq
);
3467 update_cpu_load(rq
);
3468 curr
->sched_class
->task_tick(rq
, curr
, 0);
3469 raw_spin_unlock(&rq
->lock
);
3471 perf_event_task_tick(curr
);
3474 rq
->idle_at_tick
= idle_cpu(cpu
);
3475 trigger_load_balance(rq
, cpu
);
3479 notrace
unsigned long get_parent_ip(unsigned long addr
)
3481 if (in_lock_functions(addr
)) {
3482 addr
= CALLER_ADDR2
;
3483 if (in_lock_functions(addr
))
3484 addr
= CALLER_ADDR3
;
3489 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3490 defined(CONFIG_PREEMPT_TRACER))
3492 void __kprobes
add_preempt_count(int val
)
3494 #ifdef CONFIG_DEBUG_PREEMPT
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3501 preempt_count() += val
;
3502 #ifdef CONFIG_DEBUG_PREEMPT
3504 * Spinlock count overflowing soon?
3506 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3509 if (preempt_count() == val
)
3510 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3512 EXPORT_SYMBOL(add_preempt_count
);
3514 void __kprobes
sub_preempt_count(int val
)
3516 #ifdef CONFIG_DEBUG_PREEMPT
3520 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3523 * Is the spinlock portion underflowing?
3525 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3526 !(preempt_count() & PREEMPT_MASK
)))
3530 if (preempt_count() == val
)
3531 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3532 preempt_count() -= val
;
3534 EXPORT_SYMBOL(sub_preempt_count
);
3539 * Print scheduling while atomic bug:
3541 static noinline
void __schedule_bug(struct task_struct
*prev
)
3543 struct pt_regs
*regs
= get_irq_regs();
3545 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3546 prev
->comm
, prev
->pid
, preempt_count());
3548 debug_show_held_locks(prev
);
3550 if (irqs_disabled())
3551 print_irqtrace_events(prev
);
3560 * Various schedule()-time debugging checks and statistics:
3562 static inline void schedule_debug(struct task_struct
*prev
)
3565 * Test if we are atomic. Since do_exit() needs to call into
3566 * schedule() atomically, we ignore that path for now.
3567 * Otherwise, whine if we are scheduling when we should not be.
3569 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3570 __schedule_bug(prev
);
3572 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3574 schedstat_inc(this_rq(), sched_count
);
3575 #ifdef CONFIG_SCHEDSTATS
3576 if (unlikely(prev
->lock_depth
>= 0)) {
3577 schedstat_inc(this_rq(), bkl_count
);
3578 schedstat_inc(prev
, sched_info
.bkl_count
);
3583 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3586 update_rq_clock(rq
);
3587 rq
->skip_clock_update
= 0;
3588 prev
->sched_class
->put_prev_task(rq
, prev
);
3592 * Pick up the highest-prio task:
3594 static inline struct task_struct
*
3595 pick_next_task(struct rq
*rq
)
3597 const struct sched_class
*class;
3598 struct task_struct
*p
;
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
3604 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3605 p
= fair_sched_class
.pick_next_task(rq
);
3610 class = sched_class_highest
;
3612 p
= class->pick_next_task(rq
);
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3619 class = class->next
;
3624 * schedule() is the main scheduler function.
3626 asmlinkage
void __sched
schedule(void)
3628 struct task_struct
*prev
, *next
;
3629 unsigned long *switch_count
;
3635 cpu
= smp_processor_id();
3637 rcu_note_context_switch(cpu
);
3640 release_kernel_lock(prev
);
3641 need_resched_nonpreemptible
:
3643 schedule_debug(prev
);
3645 if (sched_feat(HRTICK
))
3648 raw_spin_lock_irq(&rq
->lock
);
3649 clear_tsk_need_resched(prev
);
3651 switch_count
= &prev
->nivcsw
;
3652 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3653 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3654 prev
->state
= TASK_RUNNING
;
3657 * If a worker is going to sleep, notify and
3658 * ask workqueue whether it wants to wake up a
3659 * task to maintain concurrency. If so, wake
3662 if (prev
->flags
& PF_WQ_WORKER
) {
3663 struct task_struct
*to_wakeup
;
3665 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3667 try_to_wake_up_local(to_wakeup
);
3669 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3671 switch_count
= &prev
->nvcsw
;
3674 pre_schedule(rq
, prev
);
3676 if (unlikely(!rq
->nr_running
))
3677 idle_balance(cpu
, rq
);
3679 put_prev_task(rq
, prev
);
3680 next
= pick_next_task(rq
);
3682 if (likely(prev
!= next
)) {
3683 sched_info_switch(prev
, next
);
3684 perf_event_task_sched_out(prev
, next
);
3690 context_switch(rq
, prev
, next
); /* unlocks the rq */
3692 * The context switch have flipped the stack from under us
3693 * and restored the local variables which were saved when
3694 * this task called schedule() in the past. prev == current
3695 * is still correct, but it can be moved to another cpu/rq.
3697 cpu
= smp_processor_id();
3700 raw_spin_unlock_irq(&rq
->lock
);
3704 if (unlikely(reacquire_kernel_lock(prev
)))
3705 goto need_resched_nonpreemptible
;
3707 preempt_enable_no_resched();
3711 EXPORT_SYMBOL(schedule
);
3713 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3715 * Look out! "owner" is an entirely speculative pointer
3716 * access and not reliable.
3718 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3723 if (!sched_feat(OWNER_SPIN
))
3726 #ifdef CONFIG_DEBUG_PAGEALLOC
3728 * Need to access the cpu field knowing that
3729 * DEBUG_PAGEALLOC could have unmapped it if
3730 * the mutex owner just released it and exited.
3732 if (probe_kernel_address(&owner
->cpu
, cpu
))
3739 * Even if the access succeeded (likely case),
3740 * the cpu field may no longer be valid.
3742 if (cpu
>= nr_cpumask_bits
)
3746 * We need to validate that we can do a
3747 * get_cpu() and that we have the percpu area.
3749 if (!cpu_online(cpu
))
3756 * Owner changed, break to re-assess state.
3758 if (lock
->owner
!= owner
)
3762 * Is that owner really running on that cpu?
3764 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3774 #ifdef CONFIG_PREEMPT
3776 * this is the entry point to schedule() from in-kernel preemption
3777 * off of preempt_enable. Kernel preemptions off return from interrupt
3778 * occur there and call schedule directly.
3780 asmlinkage
void __sched
preempt_schedule(void)
3782 struct thread_info
*ti
= current_thread_info();
3785 * If there is a non-zero preempt_count or interrupts are disabled,
3786 * we do not want to preempt the current task. Just return..
3788 if (likely(ti
->preempt_count
|| irqs_disabled()))
3792 add_preempt_count(PREEMPT_ACTIVE
);
3794 sub_preempt_count(PREEMPT_ACTIVE
);
3797 * Check again in case we missed a preemption opportunity
3798 * between schedule and now.
3801 } while (need_resched());
3803 EXPORT_SYMBOL(preempt_schedule
);
3806 * this is the entry point to schedule() from kernel preemption
3807 * off of irq context.
3808 * Note, that this is called and return with irqs disabled. This will
3809 * protect us against recursive calling from irq.
3811 asmlinkage
void __sched
preempt_schedule_irq(void)
3813 struct thread_info
*ti
= current_thread_info();
3815 /* Catch callers which need to be fixed */
3816 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3819 add_preempt_count(PREEMPT_ACTIVE
);
3822 local_irq_disable();
3823 sub_preempt_count(PREEMPT_ACTIVE
);
3826 * Check again in case we missed a preemption opportunity
3827 * between schedule and now.
3830 } while (need_resched());
3833 #endif /* CONFIG_PREEMPT */
3835 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3838 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3840 EXPORT_SYMBOL(default_wake_function
);
3843 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3844 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3845 * number) then we wake all the non-exclusive tasks and one exclusive task.
3847 * There are circumstances in which we can try to wake a task which has already
3848 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3849 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3851 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3852 int nr_exclusive
, int wake_flags
, void *key
)
3854 wait_queue_t
*curr
, *next
;
3856 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3857 unsigned flags
= curr
->flags
;
3859 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3860 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3866 * __wake_up - wake up threads blocked on a waitqueue.
3868 * @mode: which threads
3869 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3870 * @key: is directly passed to the wakeup function
3872 * It may be assumed that this function implies a write memory barrier before
3873 * changing the task state if and only if any tasks are woken up.
3875 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3876 int nr_exclusive
, void *key
)
3878 unsigned long flags
;
3880 spin_lock_irqsave(&q
->lock
, flags
);
3881 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3882 spin_unlock_irqrestore(&q
->lock
, flags
);
3884 EXPORT_SYMBOL(__wake_up
);
3887 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3889 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3891 __wake_up_common(q
, mode
, 1, 0, NULL
);
3893 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3895 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3897 __wake_up_common(q
, mode
, 1, 0, key
);
3901 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3903 * @mode: which threads
3904 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3905 * @key: opaque value to be passed to wakeup targets
3907 * The sync wakeup differs that the waker knows that it will schedule
3908 * away soon, so while the target thread will be woken up, it will not
3909 * be migrated to another CPU - ie. the two threads are 'synchronized'
3910 * with each other. This can prevent needless bouncing between CPUs.
3912 * On UP it can prevent extra preemption.
3914 * It may be assumed that this function implies a write memory barrier before
3915 * changing the task state if and only if any tasks are woken up.
3917 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3918 int nr_exclusive
, void *key
)
3920 unsigned long flags
;
3921 int wake_flags
= WF_SYNC
;
3926 if (unlikely(!nr_exclusive
))
3929 spin_lock_irqsave(&q
->lock
, flags
);
3930 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3931 spin_unlock_irqrestore(&q
->lock
, flags
);
3933 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3936 * __wake_up_sync - see __wake_up_sync_key()
3938 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3940 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3942 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3945 * complete: - signals a single thread waiting on this completion
3946 * @x: holds the state of this particular completion
3948 * This will wake up a single thread waiting on this completion. Threads will be
3949 * awakened in the same order in which they were queued.
3951 * See also complete_all(), wait_for_completion() and related routines.
3953 * It may be assumed that this function implies a write memory barrier before
3954 * changing the task state if and only if any tasks are woken up.
3956 void complete(struct completion
*x
)
3958 unsigned long flags
;
3960 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3962 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3963 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3965 EXPORT_SYMBOL(complete
);
3968 * complete_all: - signals all threads waiting on this completion
3969 * @x: holds the state of this particular completion
3971 * This will wake up all threads waiting on this particular completion event.
3973 * It may be assumed that this function implies a write memory barrier before
3974 * changing the task state if and only if any tasks are woken up.
3976 void complete_all(struct completion
*x
)
3978 unsigned long flags
;
3980 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3981 x
->done
+= UINT_MAX
/2;
3982 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3983 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3985 EXPORT_SYMBOL(complete_all
);
3987 static inline long __sched
3988 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3991 DECLARE_WAITQUEUE(wait
, current
);
3993 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
3995 if (signal_pending_state(state
, current
)) {
3996 timeout
= -ERESTARTSYS
;
3999 __set_current_state(state
);
4000 spin_unlock_irq(&x
->wait
.lock
);
4001 timeout
= schedule_timeout(timeout
);
4002 spin_lock_irq(&x
->wait
.lock
);
4003 } while (!x
->done
&& timeout
);
4004 __remove_wait_queue(&x
->wait
, &wait
);
4009 return timeout
?: 1;
4013 wait_for_common(struct completion
*x
, long timeout
, int state
)
4017 spin_lock_irq(&x
->wait
.lock
);
4018 timeout
= do_wait_for_common(x
, timeout
, state
);
4019 spin_unlock_irq(&x
->wait
.lock
);
4024 * wait_for_completion: - waits for completion of a task
4025 * @x: holds the state of this particular completion
4027 * This waits to be signaled for completion of a specific task. It is NOT
4028 * interruptible and there is no timeout.
4030 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4031 * and interrupt capability. Also see complete().
4033 void __sched
wait_for_completion(struct completion
*x
)
4035 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4037 EXPORT_SYMBOL(wait_for_completion
);
4040 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4041 * @x: holds the state of this particular completion
4042 * @timeout: timeout value in jiffies
4044 * This waits for either a completion of a specific task to be signaled or for a
4045 * specified timeout to expire. The timeout is in jiffies. It is not
4048 unsigned long __sched
4049 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4051 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4053 EXPORT_SYMBOL(wait_for_completion_timeout
);
4056 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4057 * @x: holds the state of this particular completion
4059 * This waits for completion of a specific task to be signaled. It is
4062 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4064 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4065 if (t
== -ERESTARTSYS
)
4069 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4072 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4073 * @x: holds the state of this particular completion
4074 * @timeout: timeout value in jiffies
4076 * This waits for either a completion of a specific task to be signaled or for a
4077 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4079 unsigned long __sched
4080 wait_for_completion_interruptible_timeout(struct completion
*x
,
4081 unsigned long timeout
)
4083 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4085 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4088 * wait_for_completion_killable: - waits for completion of a task (killable)
4089 * @x: holds the state of this particular completion
4091 * This waits to be signaled for completion of a specific task. It can be
4092 * interrupted by a kill signal.
4094 int __sched
wait_for_completion_killable(struct completion
*x
)
4096 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4097 if (t
== -ERESTARTSYS
)
4101 EXPORT_SYMBOL(wait_for_completion_killable
);
4104 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4105 * @x: holds the state of this particular completion
4106 * @timeout: timeout value in jiffies
4108 * This waits for either a completion of a specific task to be
4109 * signaled or for a specified timeout to expire. It can be
4110 * interrupted by a kill signal. The timeout is in jiffies.
4112 unsigned long __sched
4113 wait_for_completion_killable_timeout(struct completion
*x
,
4114 unsigned long timeout
)
4116 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4118 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4121 * try_wait_for_completion - try to decrement a completion without blocking
4122 * @x: completion structure
4124 * Returns: 0 if a decrement cannot be done without blocking
4125 * 1 if a decrement succeeded.
4127 * If a completion is being used as a counting completion,
4128 * attempt to decrement the counter without blocking. This
4129 * enables us to avoid waiting if the resource the completion
4130 * is protecting is not available.
4132 bool try_wait_for_completion(struct completion
*x
)
4134 unsigned long flags
;
4137 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4142 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4145 EXPORT_SYMBOL(try_wait_for_completion
);
4148 * completion_done - Test to see if a completion has any waiters
4149 * @x: completion structure
4151 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4152 * 1 if there are no waiters.
4155 bool completion_done(struct completion
*x
)
4157 unsigned long flags
;
4160 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4163 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4166 EXPORT_SYMBOL(completion_done
);
4169 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4171 unsigned long flags
;
4174 init_waitqueue_entry(&wait
, current
);
4176 __set_current_state(state
);
4178 spin_lock_irqsave(&q
->lock
, flags
);
4179 __add_wait_queue(q
, &wait
);
4180 spin_unlock(&q
->lock
);
4181 timeout
= schedule_timeout(timeout
);
4182 spin_lock_irq(&q
->lock
);
4183 __remove_wait_queue(q
, &wait
);
4184 spin_unlock_irqrestore(&q
->lock
, flags
);
4189 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4191 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4193 EXPORT_SYMBOL(interruptible_sleep_on
);
4196 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4198 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4200 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4202 void __sched
sleep_on(wait_queue_head_t
*q
)
4204 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4206 EXPORT_SYMBOL(sleep_on
);
4208 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4210 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4212 EXPORT_SYMBOL(sleep_on_timeout
);
4214 #ifdef CONFIG_RT_MUTEXES
4217 * rt_mutex_setprio - set the current priority of a task
4219 * @prio: prio value (kernel-internal form)
4221 * This function changes the 'effective' priority of a task. It does
4222 * not touch ->normal_prio like __setscheduler().
4224 * Used by the rt_mutex code to implement priority inheritance logic.
4226 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4228 unsigned long flags
;
4229 int oldprio
, on_rq
, running
;
4231 const struct sched_class
*prev_class
;
4233 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4235 rq
= task_rq_lock(p
, &flags
);
4238 prev_class
= p
->sched_class
;
4239 on_rq
= p
->se
.on_rq
;
4240 running
= task_current(rq
, p
);
4242 dequeue_task(rq
, p
, 0);
4244 p
->sched_class
->put_prev_task(rq
, p
);
4247 p
->sched_class
= &rt_sched_class
;
4249 p
->sched_class
= &fair_sched_class
;
4254 p
->sched_class
->set_curr_task(rq
);
4256 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4258 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4260 task_rq_unlock(rq
, &flags
);
4265 void set_user_nice(struct task_struct
*p
, long nice
)
4267 int old_prio
, delta
, on_rq
;
4268 unsigned long flags
;
4271 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4274 * We have to be careful, if called from sys_setpriority(),
4275 * the task might be in the middle of scheduling on another CPU.
4277 rq
= task_rq_lock(p
, &flags
);
4279 * The RT priorities are set via sched_setscheduler(), but we still
4280 * allow the 'normal' nice value to be set - but as expected
4281 * it wont have any effect on scheduling until the task is
4282 * SCHED_FIFO/SCHED_RR:
4284 if (task_has_rt_policy(p
)) {
4285 p
->static_prio
= NICE_TO_PRIO(nice
);
4288 on_rq
= p
->se
.on_rq
;
4290 dequeue_task(rq
, p
, 0);
4292 p
->static_prio
= NICE_TO_PRIO(nice
);
4295 p
->prio
= effective_prio(p
);
4296 delta
= p
->prio
- old_prio
;
4299 enqueue_task(rq
, p
, 0);
4301 * If the task increased its priority or is running and
4302 * lowered its priority, then reschedule its CPU:
4304 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4305 resched_task(rq
->curr
);
4308 task_rq_unlock(rq
, &flags
);
4310 EXPORT_SYMBOL(set_user_nice
);
4313 * can_nice - check if a task can reduce its nice value
4317 int can_nice(const struct task_struct
*p
, const int nice
)
4319 /* convert nice value [19,-20] to rlimit style value [1,40] */
4320 int nice_rlim
= 20 - nice
;
4322 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4323 capable(CAP_SYS_NICE
));
4326 #ifdef __ARCH_WANT_SYS_NICE
4329 * sys_nice - change the priority of the current process.
4330 * @increment: priority increment
4332 * sys_setpriority is a more generic, but much slower function that
4333 * does similar things.
4335 SYSCALL_DEFINE1(nice
, int, increment
)
4340 * Setpriority might change our priority at the same moment.
4341 * We don't have to worry. Conceptually one call occurs first
4342 * and we have a single winner.
4344 if (increment
< -40)
4349 nice
= TASK_NICE(current
) + increment
;
4355 if (increment
< 0 && !can_nice(current
, nice
))
4358 retval
= security_task_setnice(current
, nice
);
4362 set_user_nice(current
, nice
);
4369 * task_prio - return the priority value of a given task.
4370 * @p: the task in question.
4372 * This is the priority value as seen by users in /proc.
4373 * RT tasks are offset by -200. Normal tasks are centered
4374 * around 0, value goes from -16 to +15.
4376 int task_prio(const struct task_struct
*p
)
4378 return p
->prio
- MAX_RT_PRIO
;
4382 * task_nice - return the nice value of a given task.
4383 * @p: the task in question.
4385 int task_nice(const struct task_struct
*p
)
4387 return TASK_NICE(p
);
4389 EXPORT_SYMBOL(task_nice
);
4392 * idle_cpu - is a given cpu idle currently?
4393 * @cpu: the processor in question.
4395 int idle_cpu(int cpu
)
4397 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4401 * idle_task - return the idle task for a given cpu.
4402 * @cpu: the processor in question.
4404 struct task_struct
*idle_task(int cpu
)
4406 return cpu_rq(cpu
)->idle
;
4410 * find_process_by_pid - find a process with a matching PID value.
4411 * @pid: the pid in question.
4413 static struct task_struct
*find_process_by_pid(pid_t pid
)
4415 return pid
? find_task_by_vpid(pid
) : current
;
4418 /* Actually do priority change: must hold rq lock. */
4420 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4422 BUG_ON(p
->se
.on_rq
);
4425 p
->rt_priority
= prio
;
4426 p
->normal_prio
= normal_prio(p
);
4427 /* we are holding p->pi_lock already */
4428 p
->prio
= rt_mutex_getprio(p
);
4429 if (rt_prio(p
->prio
))
4430 p
->sched_class
= &rt_sched_class
;
4432 p
->sched_class
= &fair_sched_class
;
4437 * check the target process has a UID that matches the current process's
4439 static bool check_same_owner(struct task_struct
*p
)
4441 const struct cred
*cred
= current_cred(), *pcred
;
4445 pcred
= __task_cred(p
);
4446 match
= (cred
->euid
== pcred
->euid
||
4447 cred
->euid
== pcred
->uid
);
4452 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4453 struct sched_param
*param
, bool user
)
4455 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4456 unsigned long flags
;
4457 const struct sched_class
*prev_class
;
4461 /* may grab non-irq protected spin_locks */
4462 BUG_ON(in_interrupt());
4464 /* double check policy once rq lock held */
4466 reset_on_fork
= p
->sched_reset_on_fork
;
4467 policy
= oldpolicy
= p
->policy
;
4469 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4470 policy
&= ~SCHED_RESET_ON_FORK
;
4472 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4473 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4474 policy
!= SCHED_IDLE
)
4479 * Valid priorities for SCHED_FIFO and SCHED_RR are
4480 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4481 * SCHED_BATCH and SCHED_IDLE is 0.
4483 if (param
->sched_priority
< 0 ||
4484 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4485 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4487 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4491 * Allow unprivileged RT tasks to decrease priority:
4493 if (user
&& !capable(CAP_SYS_NICE
)) {
4494 if (rt_policy(policy
)) {
4495 unsigned long rlim_rtprio
;
4497 if (!lock_task_sighand(p
, &flags
))
4499 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4500 unlock_task_sighand(p
, &flags
);
4502 /* can't set/change the rt policy */
4503 if (policy
!= p
->policy
&& !rlim_rtprio
)
4506 /* can't increase priority */
4507 if (param
->sched_priority
> p
->rt_priority
&&
4508 param
->sched_priority
> rlim_rtprio
)
4512 * Like positive nice levels, dont allow tasks to
4513 * move out of SCHED_IDLE either:
4515 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4518 /* can't change other user's priorities */
4519 if (!check_same_owner(p
))
4522 /* Normal users shall not reset the sched_reset_on_fork flag */
4523 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4528 retval
= security_task_setscheduler(p
, policy
, param
);
4534 * make sure no PI-waiters arrive (or leave) while we are
4535 * changing the priority of the task:
4537 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4539 * To be able to change p->policy safely, the apropriate
4540 * runqueue lock must be held.
4542 rq
= __task_rq_lock(p
);
4544 #ifdef CONFIG_RT_GROUP_SCHED
4547 * Do not allow realtime tasks into groups that have no runtime
4550 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4551 task_group(p
)->rt_bandwidth
.rt_runtime
== 0) {
4552 __task_rq_unlock(rq
);
4553 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4559 /* recheck policy now with rq lock held */
4560 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4561 policy
= oldpolicy
= -1;
4562 __task_rq_unlock(rq
);
4563 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4566 on_rq
= p
->se
.on_rq
;
4567 running
= task_current(rq
, p
);
4569 deactivate_task(rq
, p
, 0);
4571 p
->sched_class
->put_prev_task(rq
, p
);
4573 p
->sched_reset_on_fork
= reset_on_fork
;
4576 prev_class
= p
->sched_class
;
4577 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4580 p
->sched_class
->set_curr_task(rq
);
4582 activate_task(rq
, p
, 0);
4584 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4586 __task_rq_unlock(rq
);
4587 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4589 rt_mutex_adjust_pi(p
);
4595 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4596 * @p: the task in question.
4597 * @policy: new policy.
4598 * @param: structure containing the new RT priority.
4600 * NOTE that the task may be already dead.
4602 int sched_setscheduler(struct task_struct
*p
, int policy
,
4603 struct sched_param
*param
)
4605 return __sched_setscheduler(p
, policy
, param
, true);
4607 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4610 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4611 * @p: the task in question.
4612 * @policy: new policy.
4613 * @param: structure containing the new RT priority.
4615 * Just like sched_setscheduler, only don't bother checking if the
4616 * current context has permission. For example, this is needed in
4617 * stop_machine(): we create temporary high priority worker threads,
4618 * but our caller might not have that capability.
4620 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4621 struct sched_param
*param
)
4623 return __sched_setscheduler(p
, policy
, param
, false);
4627 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4629 struct sched_param lparam
;
4630 struct task_struct
*p
;
4633 if (!param
|| pid
< 0)
4635 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4640 p
= find_process_by_pid(pid
);
4642 retval
= sched_setscheduler(p
, policy
, &lparam
);
4649 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4650 * @pid: the pid in question.
4651 * @policy: new policy.
4652 * @param: structure containing the new RT priority.
4654 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4655 struct sched_param __user
*, param
)
4657 /* negative values for policy are not valid */
4661 return do_sched_setscheduler(pid
, policy
, param
);
4665 * sys_sched_setparam - set/change the RT priority of a thread
4666 * @pid: the pid in question.
4667 * @param: structure containing the new RT priority.
4669 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4671 return do_sched_setscheduler(pid
, -1, param
);
4675 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4676 * @pid: the pid in question.
4678 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4680 struct task_struct
*p
;
4688 p
= find_process_by_pid(pid
);
4690 retval
= security_task_getscheduler(p
);
4693 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4700 * sys_sched_getparam - get the RT priority of a thread
4701 * @pid: the pid in question.
4702 * @param: structure containing the RT priority.
4704 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4706 struct sched_param lp
;
4707 struct task_struct
*p
;
4710 if (!param
|| pid
< 0)
4714 p
= find_process_by_pid(pid
);
4719 retval
= security_task_getscheduler(p
);
4723 lp
.sched_priority
= p
->rt_priority
;
4727 * This one might sleep, we cannot do it with a spinlock held ...
4729 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4738 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4740 cpumask_var_t cpus_allowed
, new_mask
;
4741 struct task_struct
*p
;
4747 p
= find_process_by_pid(pid
);
4754 /* Prevent p going away */
4758 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4762 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4764 goto out_free_cpus_allowed
;
4767 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4770 retval
= security_task_setscheduler(p
, 0, NULL
);
4774 cpuset_cpus_allowed(p
, cpus_allowed
);
4775 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4777 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4780 cpuset_cpus_allowed(p
, cpus_allowed
);
4781 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4783 * We must have raced with a concurrent cpuset
4784 * update. Just reset the cpus_allowed to the
4785 * cpuset's cpus_allowed
4787 cpumask_copy(new_mask
, cpus_allowed
);
4792 free_cpumask_var(new_mask
);
4793 out_free_cpus_allowed
:
4794 free_cpumask_var(cpus_allowed
);
4801 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4802 struct cpumask
*new_mask
)
4804 if (len
< cpumask_size())
4805 cpumask_clear(new_mask
);
4806 else if (len
> cpumask_size())
4807 len
= cpumask_size();
4809 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4813 * sys_sched_setaffinity - set the cpu affinity of a process
4814 * @pid: pid of the process
4815 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4816 * @user_mask_ptr: user-space pointer to the new cpu mask
4818 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4819 unsigned long __user
*, user_mask_ptr
)
4821 cpumask_var_t new_mask
;
4824 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4827 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4829 retval
= sched_setaffinity(pid
, new_mask
);
4830 free_cpumask_var(new_mask
);
4834 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4836 struct task_struct
*p
;
4837 unsigned long flags
;
4845 p
= find_process_by_pid(pid
);
4849 retval
= security_task_getscheduler(p
);
4853 rq
= task_rq_lock(p
, &flags
);
4854 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4855 task_rq_unlock(rq
, &flags
);
4865 * sys_sched_getaffinity - get the cpu affinity of a process
4866 * @pid: pid of the process
4867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4870 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4871 unsigned long __user
*, user_mask_ptr
)
4876 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4878 if (len
& (sizeof(unsigned long)-1))
4881 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4884 ret
= sched_getaffinity(pid
, mask
);
4886 size_t retlen
= min_t(size_t, len
, cpumask_size());
4888 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4893 free_cpumask_var(mask
);
4899 * sys_sched_yield - yield the current processor to other threads.
4901 * This function yields the current CPU to other tasks. If there are no
4902 * other threads running on this CPU then this function will return.
4904 SYSCALL_DEFINE0(sched_yield
)
4906 struct rq
*rq
= this_rq_lock();
4908 schedstat_inc(rq
, yld_count
);
4909 current
->sched_class
->yield_task(rq
);
4912 * Since we are going to call schedule() anyway, there's
4913 * no need to preempt or enable interrupts:
4915 __release(rq
->lock
);
4916 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4917 do_raw_spin_unlock(&rq
->lock
);
4918 preempt_enable_no_resched();
4925 static inline int should_resched(void)
4927 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4930 static void __cond_resched(void)
4932 add_preempt_count(PREEMPT_ACTIVE
);
4934 sub_preempt_count(PREEMPT_ACTIVE
);
4937 int __sched
_cond_resched(void)
4939 if (should_resched()) {
4945 EXPORT_SYMBOL(_cond_resched
);
4948 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4949 * call schedule, and on return reacquire the lock.
4951 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4952 * operations here to prevent schedule() from being called twice (once via
4953 * spin_unlock(), once by hand).
4955 int __cond_resched_lock(spinlock_t
*lock
)
4957 int resched
= should_resched();
4960 lockdep_assert_held(lock
);
4962 if (spin_needbreak(lock
) || resched
) {
4973 EXPORT_SYMBOL(__cond_resched_lock
);
4975 int __sched
__cond_resched_softirq(void)
4977 BUG_ON(!in_softirq());
4979 if (should_resched()) {
4987 EXPORT_SYMBOL(__cond_resched_softirq
);
4990 * yield - yield the current processor to other threads.
4992 * This is a shortcut for kernel-space yielding - it marks the
4993 * thread runnable and calls sys_sched_yield().
4995 void __sched
yield(void)
4997 set_current_state(TASK_RUNNING
);
5000 EXPORT_SYMBOL(yield
);
5003 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5004 * that process accounting knows that this is a task in IO wait state.
5006 void __sched
io_schedule(void)
5008 struct rq
*rq
= raw_rq();
5010 delayacct_blkio_start();
5011 atomic_inc(&rq
->nr_iowait
);
5012 current
->in_iowait
= 1;
5014 current
->in_iowait
= 0;
5015 atomic_dec(&rq
->nr_iowait
);
5016 delayacct_blkio_end();
5018 EXPORT_SYMBOL(io_schedule
);
5020 long __sched
io_schedule_timeout(long timeout
)
5022 struct rq
*rq
= raw_rq();
5025 delayacct_blkio_start();
5026 atomic_inc(&rq
->nr_iowait
);
5027 current
->in_iowait
= 1;
5028 ret
= schedule_timeout(timeout
);
5029 current
->in_iowait
= 0;
5030 atomic_dec(&rq
->nr_iowait
);
5031 delayacct_blkio_end();
5036 * sys_sched_get_priority_max - return maximum RT priority.
5037 * @policy: scheduling class.
5039 * this syscall returns the maximum rt_priority that can be used
5040 * by a given scheduling class.
5042 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5049 ret
= MAX_USER_RT_PRIO
-1;
5061 * sys_sched_get_priority_min - return minimum RT priority.
5062 * @policy: scheduling class.
5064 * this syscall returns the minimum rt_priority that can be used
5065 * by a given scheduling class.
5067 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5085 * sys_sched_rr_get_interval - return the default timeslice of a process.
5086 * @pid: pid of the process.
5087 * @interval: userspace pointer to the timeslice value.
5089 * this syscall writes the default timeslice value of a given process
5090 * into the user-space timespec buffer. A value of '0' means infinity.
5092 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5093 struct timespec __user
*, interval
)
5095 struct task_struct
*p
;
5096 unsigned int time_slice
;
5097 unsigned long flags
;
5107 p
= find_process_by_pid(pid
);
5111 retval
= security_task_getscheduler(p
);
5115 rq
= task_rq_lock(p
, &flags
);
5116 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5117 task_rq_unlock(rq
, &flags
);
5120 jiffies_to_timespec(time_slice
, &t
);
5121 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5129 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5131 void sched_show_task(struct task_struct
*p
)
5133 unsigned long free
= 0;
5136 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5137 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5138 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5139 #if BITS_PER_LONG == 32
5140 if (state
== TASK_RUNNING
)
5141 printk(KERN_CONT
" running ");
5143 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5145 if (state
== TASK_RUNNING
)
5146 printk(KERN_CONT
" running task ");
5148 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5150 #ifdef CONFIG_DEBUG_STACK_USAGE
5151 free
= stack_not_used(p
);
5153 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5154 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5155 (unsigned long)task_thread_info(p
)->flags
);
5157 show_stack(p
, NULL
);
5160 void show_state_filter(unsigned long state_filter
)
5162 struct task_struct
*g
, *p
;
5164 #if BITS_PER_LONG == 32
5166 " task PC stack pid father\n");
5169 " task PC stack pid father\n");
5171 read_lock(&tasklist_lock
);
5172 do_each_thread(g
, p
) {
5174 * reset the NMI-timeout, listing all files on a slow
5175 * console might take alot of time:
5177 touch_nmi_watchdog();
5178 if (!state_filter
|| (p
->state
& state_filter
))
5180 } while_each_thread(g
, p
);
5182 touch_all_softlockup_watchdogs();
5184 #ifdef CONFIG_SCHED_DEBUG
5185 sysrq_sched_debug_show();
5187 read_unlock(&tasklist_lock
);
5189 * Only show locks if all tasks are dumped:
5192 debug_show_all_locks();
5195 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5197 idle
->sched_class
= &idle_sched_class
;
5201 * init_idle - set up an idle thread for a given CPU
5202 * @idle: task in question
5203 * @cpu: cpu the idle task belongs to
5205 * NOTE: this function does not set the idle thread's NEED_RESCHED
5206 * flag, to make booting more robust.
5208 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5210 struct rq
*rq
= cpu_rq(cpu
);
5211 unsigned long flags
;
5213 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5216 idle
->state
= TASK_RUNNING
;
5217 idle
->se
.exec_start
= sched_clock();
5219 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5220 __set_task_cpu(idle
, cpu
);
5222 rq
->curr
= rq
->idle
= idle
;
5223 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5226 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5228 /* Set the preempt count _outside_ the spinlocks! */
5229 #if defined(CONFIG_PREEMPT)
5230 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5232 task_thread_info(idle
)->preempt_count
= 0;
5235 * The idle tasks have their own, simple scheduling class:
5237 idle
->sched_class
= &idle_sched_class
;
5238 ftrace_graph_init_task(idle
);
5242 * In a system that switches off the HZ timer nohz_cpu_mask
5243 * indicates which cpus entered this state. This is used
5244 * in the rcu update to wait only for active cpus. For system
5245 * which do not switch off the HZ timer nohz_cpu_mask should
5246 * always be CPU_BITS_NONE.
5248 cpumask_var_t nohz_cpu_mask
;
5251 * Increase the granularity value when there are more CPUs,
5252 * because with more CPUs the 'effective latency' as visible
5253 * to users decreases. But the relationship is not linear,
5254 * so pick a second-best guess by going with the log2 of the
5257 * This idea comes from the SD scheduler of Con Kolivas:
5259 static int get_update_sysctl_factor(void)
5261 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5262 unsigned int factor
;
5264 switch (sysctl_sched_tunable_scaling
) {
5265 case SCHED_TUNABLESCALING_NONE
:
5268 case SCHED_TUNABLESCALING_LINEAR
:
5271 case SCHED_TUNABLESCALING_LOG
:
5273 factor
= 1 + ilog2(cpus
);
5280 static void update_sysctl(void)
5282 unsigned int factor
= get_update_sysctl_factor();
5284 #define SET_SYSCTL(name) \
5285 (sysctl_##name = (factor) * normalized_sysctl_##name)
5286 SET_SYSCTL(sched_min_granularity
);
5287 SET_SYSCTL(sched_latency
);
5288 SET_SYSCTL(sched_wakeup_granularity
);
5289 SET_SYSCTL(sched_shares_ratelimit
);
5293 static inline void sched_init_granularity(void)
5300 * This is how migration works:
5302 * 1) we invoke migration_cpu_stop() on the target CPU using
5304 * 2) stopper starts to run (implicitly forcing the migrated thread
5306 * 3) it checks whether the migrated task is still in the wrong runqueue.
5307 * 4) if it's in the wrong runqueue then the migration thread removes
5308 * it and puts it into the right queue.
5309 * 5) stopper completes and stop_one_cpu() returns and the migration
5314 * Change a given task's CPU affinity. Migrate the thread to a
5315 * proper CPU and schedule it away if the CPU it's executing on
5316 * is removed from the allowed bitmask.
5318 * NOTE: the caller must have a valid reference to the task, the
5319 * task must not exit() & deallocate itself prematurely. The
5320 * call is not atomic; no spinlocks may be held.
5322 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5324 unsigned long flags
;
5326 unsigned int dest_cpu
;
5330 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5331 * drop the rq->lock and still rely on ->cpus_allowed.
5334 while (task_is_waking(p
))
5336 rq
= task_rq_lock(p
, &flags
);
5337 if (task_is_waking(p
)) {
5338 task_rq_unlock(rq
, &flags
);
5342 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5347 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5348 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5353 if (p
->sched_class
->set_cpus_allowed
)
5354 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5356 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5357 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5360 /* Can the task run on the task's current CPU? If so, we're done */
5361 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5364 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5365 if (migrate_task(p
, dest_cpu
)) {
5366 struct migration_arg arg
= { p
, dest_cpu
};
5367 /* Need help from migration thread: drop lock and wait. */
5368 task_rq_unlock(rq
, &flags
);
5369 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5370 tlb_migrate_finish(p
->mm
);
5374 task_rq_unlock(rq
, &flags
);
5378 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5381 * Move (not current) task off this cpu, onto dest cpu. We're doing
5382 * this because either it can't run here any more (set_cpus_allowed()
5383 * away from this CPU, or CPU going down), or because we're
5384 * attempting to rebalance this task on exec (sched_exec).
5386 * So we race with normal scheduler movements, but that's OK, as long
5387 * as the task is no longer on this CPU.
5389 * Returns non-zero if task was successfully migrated.
5391 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5393 struct rq
*rq_dest
, *rq_src
;
5396 if (unlikely(!cpu_active(dest_cpu
)))
5399 rq_src
= cpu_rq(src_cpu
);
5400 rq_dest
= cpu_rq(dest_cpu
);
5402 double_rq_lock(rq_src
, rq_dest
);
5403 /* Already moved. */
5404 if (task_cpu(p
) != src_cpu
)
5406 /* Affinity changed (again). */
5407 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5411 * If we're not on a rq, the next wake-up will ensure we're
5415 deactivate_task(rq_src
, p
, 0);
5416 set_task_cpu(p
, dest_cpu
);
5417 activate_task(rq_dest
, p
, 0);
5418 check_preempt_curr(rq_dest
, p
, 0);
5423 double_rq_unlock(rq_src
, rq_dest
);
5428 * migration_cpu_stop - this will be executed by a highprio stopper thread
5429 * and performs thread migration by bumping thread off CPU then
5430 * 'pushing' onto another runqueue.
5432 static int migration_cpu_stop(void *data
)
5434 struct migration_arg
*arg
= data
;
5437 * The original target cpu might have gone down and we might
5438 * be on another cpu but it doesn't matter.
5440 local_irq_disable();
5441 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5446 #ifdef CONFIG_HOTPLUG_CPU
5448 * Figure out where task on dead CPU should go, use force if necessary.
5450 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5452 struct rq
*rq
= cpu_rq(dead_cpu
);
5453 int needs_cpu
, uninitialized_var(dest_cpu
);
5454 unsigned long flags
;
5456 local_irq_save(flags
);
5458 raw_spin_lock(&rq
->lock
);
5459 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5461 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5462 raw_spin_unlock(&rq
->lock
);
5464 * It can only fail if we race with set_cpus_allowed(),
5465 * in the racer should migrate the task anyway.
5468 __migrate_task(p
, dead_cpu
, dest_cpu
);
5469 local_irq_restore(flags
);
5473 * While a dead CPU has no uninterruptible tasks queued at this point,
5474 * it might still have a nonzero ->nr_uninterruptible counter, because
5475 * for performance reasons the counter is not stricly tracking tasks to
5476 * their home CPUs. So we just add the counter to another CPU's counter,
5477 * to keep the global sum constant after CPU-down:
5479 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5481 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5482 unsigned long flags
;
5484 local_irq_save(flags
);
5485 double_rq_lock(rq_src
, rq_dest
);
5486 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5487 rq_src
->nr_uninterruptible
= 0;
5488 double_rq_unlock(rq_src
, rq_dest
);
5489 local_irq_restore(flags
);
5492 /* Run through task list and migrate tasks from the dead cpu. */
5493 static void migrate_live_tasks(int src_cpu
)
5495 struct task_struct
*p
, *t
;
5497 read_lock(&tasklist_lock
);
5499 do_each_thread(t
, p
) {
5503 if (task_cpu(p
) == src_cpu
)
5504 move_task_off_dead_cpu(src_cpu
, p
);
5505 } while_each_thread(t
, p
);
5507 read_unlock(&tasklist_lock
);
5511 * Schedules idle task to be the next runnable task on current CPU.
5512 * It does so by boosting its priority to highest possible.
5513 * Used by CPU offline code.
5515 void sched_idle_next(void)
5517 int this_cpu
= smp_processor_id();
5518 struct rq
*rq
= cpu_rq(this_cpu
);
5519 struct task_struct
*p
= rq
->idle
;
5520 unsigned long flags
;
5522 /* cpu has to be offline */
5523 BUG_ON(cpu_online(this_cpu
));
5526 * Strictly not necessary since rest of the CPUs are stopped by now
5527 * and interrupts disabled on the current cpu.
5529 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5531 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5533 activate_task(rq
, p
, 0);
5535 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5539 * Ensures that the idle task is using init_mm right before its cpu goes
5542 void idle_task_exit(void)
5544 struct mm_struct
*mm
= current
->active_mm
;
5546 BUG_ON(cpu_online(smp_processor_id()));
5549 switch_mm(mm
, &init_mm
, current
);
5553 /* called under rq->lock with disabled interrupts */
5554 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5556 struct rq
*rq
= cpu_rq(dead_cpu
);
5558 /* Must be exiting, otherwise would be on tasklist. */
5559 BUG_ON(!p
->exit_state
);
5561 /* Cannot have done final schedule yet: would have vanished. */
5562 BUG_ON(p
->state
== TASK_DEAD
);
5567 * Drop lock around migration; if someone else moves it,
5568 * that's OK. No task can be added to this CPU, so iteration is
5571 raw_spin_unlock_irq(&rq
->lock
);
5572 move_task_off_dead_cpu(dead_cpu
, p
);
5573 raw_spin_lock_irq(&rq
->lock
);
5578 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5579 static void migrate_dead_tasks(unsigned int dead_cpu
)
5581 struct rq
*rq
= cpu_rq(dead_cpu
);
5582 struct task_struct
*next
;
5585 if (!rq
->nr_running
)
5587 next
= pick_next_task(rq
);
5590 next
->sched_class
->put_prev_task(rq
, next
);
5591 migrate_dead(dead_cpu
, next
);
5597 * remove the tasks which were accounted by rq from calc_load_tasks.
5599 static void calc_global_load_remove(struct rq
*rq
)
5601 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5602 rq
->calc_load_active
= 0;
5604 #endif /* CONFIG_HOTPLUG_CPU */
5606 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5608 static struct ctl_table sd_ctl_dir
[] = {
5610 .procname
= "sched_domain",
5616 static struct ctl_table sd_ctl_root
[] = {
5618 .procname
= "kernel",
5620 .child
= sd_ctl_dir
,
5625 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5627 struct ctl_table
*entry
=
5628 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5633 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5635 struct ctl_table
*entry
;
5638 * In the intermediate directories, both the child directory and
5639 * procname are dynamically allocated and could fail but the mode
5640 * will always be set. In the lowest directory the names are
5641 * static strings and all have proc handlers.
5643 for (entry
= *tablep
; entry
->mode
; entry
++) {
5645 sd_free_ctl_entry(&entry
->child
);
5646 if (entry
->proc_handler
== NULL
)
5647 kfree(entry
->procname
);
5655 set_table_entry(struct ctl_table
*entry
,
5656 const char *procname
, void *data
, int maxlen
,
5657 mode_t mode
, proc_handler
*proc_handler
)
5659 entry
->procname
= procname
;
5661 entry
->maxlen
= maxlen
;
5663 entry
->proc_handler
= proc_handler
;
5666 static struct ctl_table
*
5667 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5669 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5674 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5675 sizeof(long), 0644, proc_doulongvec_minmax
);
5676 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5677 sizeof(long), 0644, proc_doulongvec_minmax
);
5678 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5679 sizeof(int), 0644, proc_dointvec_minmax
);
5680 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5681 sizeof(int), 0644, proc_dointvec_minmax
);
5682 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5683 sizeof(int), 0644, proc_dointvec_minmax
);
5684 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5685 sizeof(int), 0644, proc_dointvec_minmax
);
5686 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5687 sizeof(int), 0644, proc_dointvec_minmax
);
5688 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5689 sizeof(int), 0644, proc_dointvec_minmax
);
5690 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5691 sizeof(int), 0644, proc_dointvec_minmax
);
5692 set_table_entry(&table
[9], "cache_nice_tries",
5693 &sd
->cache_nice_tries
,
5694 sizeof(int), 0644, proc_dointvec_minmax
);
5695 set_table_entry(&table
[10], "flags", &sd
->flags
,
5696 sizeof(int), 0644, proc_dointvec_minmax
);
5697 set_table_entry(&table
[11], "name", sd
->name
,
5698 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5699 /* &table[12] is terminator */
5704 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5706 struct ctl_table
*entry
, *table
;
5707 struct sched_domain
*sd
;
5708 int domain_num
= 0, i
;
5711 for_each_domain(cpu
, sd
)
5713 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5718 for_each_domain(cpu
, sd
) {
5719 snprintf(buf
, 32, "domain%d", i
);
5720 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5722 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5729 static struct ctl_table_header
*sd_sysctl_header
;
5730 static void register_sched_domain_sysctl(void)
5732 int i
, cpu_num
= num_possible_cpus();
5733 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5736 WARN_ON(sd_ctl_dir
[0].child
);
5737 sd_ctl_dir
[0].child
= entry
;
5742 for_each_possible_cpu(i
) {
5743 snprintf(buf
, 32, "cpu%d", i
);
5744 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5746 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5750 WARN_ON(sd_sysctl_header
);
5751 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5754 /* may be called multiple times per register */
5755 static void unregister_sched_domain_sysctl(void)
5757 if (sd_sysctl_header
)
5758 unregister_sysctl_table(sd_sysctl_header
);
5759 sd_sysctl_header
= NULL
;
5760 if (sd_ctl_dir
[0].child
)
5761 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5764 static void register_sched_domain_sysctl(void)
5767 static void unregister_sched_domain_sysctl(void)
5772 static void set_rq_online(struct rq
*rq
)
5775 const struct sched_class
*class;
5777 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5780 for_each_class(class) {
5781 if (class->rq_online
)
5782 class->rq_online(rq
);
5787 static void set_rq_offline(struct rq
*rq
)
5790 const struct sched_class
*class;
5792 for_each_class(class) {
5793 if (class->rq_offline
)
5794 class->rq_offline(rq
);
5797 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5803 * migration_call - callback that gets triggered when a CPU is added.
5804 * Here we can start up the necessary migration thread for the new CPU.
5806 static int __cpuinit
5807 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5809 int cpu
= (long)hcpu
;
5810 unsigned long flags
;
5811 struct rq
*rq
= cpu_rq(cpu
);
5815 case CPU_UP_PREPARE
:
5816 case CPU_UP_PREPARE_FROZEN
:
5817 rq
->calc_load_update
= calc_load_update
;
5821 case CPU_ONLINE_FROZEN
:
5822 /* Update our root-domain */
5823 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5825 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5829 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5832 #ifdef CONFIG_HOTPLUG_CPU
5834 case CPU_DEAD_FROZEN
:
5835 migrate_live_tasks(cpu
);
5836 /* Idle task back to normal (off runqueue, low prio) */
5837 raw_spin_lock_irq(&rq
->lock
);
5838 deactivate_task(rq
, rq
->idle
, 0);
5839 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5840 rq
->idle
->sched_class
= &idle_sched_class
;
5841 migrate_dead_tasks(cpu
);
5842 raw_spin_unlock_irq(&rq
->lock
);
5843 migrate_nr_uninterruptible(rq
);
5844 BUG_ON(rq
->nr_running
!= 0);
5845 calc_global_load_remove(rq
);
5849 case CPU_DYING_FROZEN
:
5850 /* Update our root-domain */
5851 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5853 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5856 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5864 * Register at high priority so that task migration (migrate_all_tasks)
5865 * happens before everything else. This has to be lower priority than
5866 * the notifier in the perf_event subsystem, though.
5868 static struct notifier_block __cpuinitdata migration_notifier
= {
5869 .notifier_call
= migration_call
,
5870 .priority
= CPU_PRI_MIGRATION
,
5873 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
5874 unsigned long action
, void *hcpu
)
5876 switch (action
& ~CPU_TASKS_FROZEN
) {
5878 case CPU_DOWN_FAILED
:
5879 set_cpu_active((long)hcpu
, true);
5886 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
5887 unsigned long action
, void *hcpu
)
5889 switch (action
& ~CPU_TASKS_FROZEN
) {
5890 case CPU_DOWN_PREPARE
:
5891 set_cpu_active((long)hcpu
, false);
5898 static int __init
migration_init(void)
5900 void *cpu
= (void *)(long)smp_processor_id();
5903 /* Initialize migration for the boot CPU */
5904 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5905 BUG_ON(err
== NOTIFY_BAD
);
5906 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5907 register_cpu_notifier(&migration_notifier
);
5909 /* Register cpu active notifiers */
5910 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5911 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5915 early_initcall(migration_init
);
5920 #ifdef CONFIG_SCHED_DEBUG
5922 static __read_mostly
int sched_domain_debug_enabled
;
5924 static int __init
sched_domain_debug_setup(char *str
)
5926 sched_domain_debug_enabled
= 1;
5930 early_param("sched_debug", sched_domain_debug_setup
);
5932 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5933 struct cpumask
*groupmask
)
5935 struct sched_group
*group
= sd
->groups
;
5938 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5939 cpumask_clear(groupmask
);
5941 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5943 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5944 printk("does not load-balance\n");
5946 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5951 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5953 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5954 printk(KERN_ERR
"ERROR: domain->span does not contain "
5957 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5958 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5962 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5966 printk(KERN_ERR
"ERROR: group is NULL\n");
5970 if (!group
->cpu_power
) {
5971 printk(KERN_CONT
"\n");
5972 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5977 if (!cpumask_weight(sched_group_cpus(group
))) {
5978 printk(KERN_CONT
"\n");
5979 printk(KERN_ERR
"ERROR: empty group\n");
5983 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5984 printk(KERN_CONT
"\n");
5985 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5989 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5991 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5993 printk(KERN_CONT
" %s", str
);
5994 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
5995 printk(KERN_CONT
" (cpu_power = %d)",
5999 group
= group
->next
;
6000 } while (group
!= sd
->groups
);
6001 printk(KERN_CONT
"\n");
6003 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6004 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6007 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6008 printk(KERN_ERR
"ERROR: parent span is not a superset "
6009 "of domain->span\n");
6013 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6015 cpumask_var_t groupmask
;
6018 if (!sched_domain_debug_enabled
)
6022 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6026 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6028 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6029 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6034 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6041 free_cpumask_var(groupmask
);
6043 #else /* !CONFIG_SCHED_DEBUG */
6044 # define sched_domain_debug(sd, cpu) do { } while (0)
6045 #endif /* CONFIG_SCHED_DEBUG */
6047 static int sd_degenerate(struct sched_domain
*sd
)
6049 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6052 /* Following flags need at least 2 groups */
6053 if (sd
->flags
& (SD_LOAD_BALANCE
|
6054 SD_BALANCE_NEWIDLE
|
6058 SD_SHARE_PKG_RESOURCES
)) {
6059 if (sd
->groups
!= sd
->groups
->next
)
6063 /* Following flags don't use groups */
6064 if (sd
->flags
& (SD_WAKE_AFFINE
))
6071 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6073 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6075 if (sd_degenerate(parent
))
6078 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6081 /* Flags needing groups don't count if only 1 group in parent */
6082 if (parent
->groups
== parent
->groups
->next
) {
6083 pflags
&= ~(SD_LOAD_BALANCE
|
6084 SD_BALANCE_NEWIDLE
|
6088 SD_SHARE_PKG_RESOURCES
);
6089 if (nr_node_ids
== 1)
6090 pflags
&= ~SD_SERIALIZE
;
6092 if (~cflags
& pflags
)
6098 static void free_rootdomain(struct root_domain
*rd
)
6100 synchronize_sched();
6102 cpupri_cleanup(&rd
->cpupri
);
6104 free_cpumask_var(rd
->rto_mask
);
6105 free_cpumask_var(rd
->online
);
6106 free_cpumask_var(rd
->span
);
6110 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6112 struct root_domain
*old_rd
= NULL
;
6113 unsigned long flags
;
6115 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6120 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6123 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6126 * If we dont want to free the old_rt yet then
6127 * set old_rd to NULL to skip the freeing later
6130 if (!atomic_dec_and_test(&old_rd
->refcount
))
6134 atomic_inc(&rd
->refcount
);
6137 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6138 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6141 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6144 free_rootdomain(old_rd
);
6147 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6149 gfp_t gfp
= GFP_KERNEL
;
6151 memset(rd
, 0, sizeof(*rd
));
6156 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6158 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6160 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6163 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6168 free_cpumask_var(rd
->rto_mask
);
6170 free_cpumask_var(rd
->online
);
6172 free_cpumask_var(rd
->span
);
6177 static void init_defrootdomain(void)
6179 init_rootdomain(&def_root_domain
, true);
6181 atomic_set(&def_root_domain
.refcount
, 1);
6184 static struct root_domain
*alloc_rootdomain(void)
6186 struct root_domain
*rd
;
6188 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6192 if (init_rootdomain(rd
, false) != 0) {
6201 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6202 * hold the hotplug lock.
6205 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6207 struct rq
*rq
= cpu_rq(cpu
);
6208 struct sched_domain
*tmp
;
6210 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6211 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6213 /* Remove the sched domains which do not contribute to scheduling. */
6214 for (tmp
= sd
; tmp
; ) {
6215 struct sched_domain
*parent
= tmp
->parent
;
6219 if (sd_parent_degenerate(tmp
, parent
)) {
6220 tmp
->parent
= parent
->parent
;
6222 parent
->parent
->child
= tmp
;
6227 if (sd
&& sd_degenerate(sd
)) {
6233 sched_domain_debug(sd
, cpu
);
6235 rq_attach_root(rq
, rd
);
6236 rcu_assign_pointer(rq
->sd
, sd
);
6239 /* cpus with isolated domains */
6240 static cpumask_var_t cpu_isolated_map
;
6242 /* Setup the mask of cpus configured for isolated domains */
6243 static int __init
isolated_cpu_setup(char *str
)
6245 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6246 cpulist_parse(str
, cpu_isolated_map
);
6250 __setup("isolcpus=", isolated_cpu_setup
);
6253 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6254 * to a function which identifies what group(along with sched group) a CPU
6255 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6256 * (due to the fact that we keep track of groups covered with a struct cpumask).
6258 * init_sched_build_groups will build a circular linked list of the groups
6259 * covered by the given span, and will set each group's ->cpumask correctly,
6260 * and ->cpu_power to 0.
6263 init_sched_build_groups(const struct cpumask
*span
,
6264 const struct cpumask
*cpu_map
,
6265 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6266 struct sched_group
**sg
,
6267 struct cpumask
*tmpmask
),
6268 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6270 struct sched_group
*first
= NULL
, *last
= NULL
;
6273 cpumask_clear(covered
);
6275 for_each_cpu(i
, span
) {
6276 struct sched_group
*sg
;
6277 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6280 if (cpumask_test_cpu(i
, covered
))
6283 cpumask_clear(sched_group_cpus(sg
));
6286 for_each_cpu(j
, span
) {
6287 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6290 cpumask_set_cpu(j
, covered
);
6291 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6302 #define SD_NODES_PER_DOMAIN 16
6307 * find_next_best_node - find the next node to include in a sched_domain
6308 * @node: node whose sched_domain we're building
6309 * @used_nodes: nodes already in the sched_domain
6311 * Find the next node to include in a given scheduling domain. Simply
6312 * finds the closest node not already in the @used_nodes map.
6314 * Should use nodemask_t.
6316 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6318 int i
, n
, val
, min_val
, best_node
= 0;
6322 for (i
= 0; i
< nr_node_ids
; i
++) {
6323 /* Start at @node */
6324 n
= (node
+ i
) % nr_node_ids
;
6326 if (!nr_cpus_node(n
))
6329 /* Skip already used nodes */
6330 if (node_isset(n
, *used_nodes
))
6333 /* Simple min distance search */
6334 val
= node_distance(node
, n
);
6336 if (val
< min_val
) {
6342 node_set(best_node
, *used_nodes
);
6347 * sched_domain_node_span - get a cpumask for a node's sched_domain
6348 * @node: node whose cpumask we're constructing
6349 * @span: resulting cpumask
6351 * Given a node, construct a good cpumask for its sched_domain to span. It
6352 * should be one that prevents unnecessary balancing, but also spreads tasks
6355 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6357 nodemask_t used_nodes
;
6360 cpumask_clear(span
);
6361 nodes_clear(used_nodes
);
6363 cpumask_or(span
, span
, cpumask_of_node(node
));
6364 node_set(node
, used_nodes
);
6366 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6367 int next_node
= find_next_best_node(node
, &used_nodes
);
6369 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6372 #endif /* CONFIG_NUMA */
6374 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6377 * The cpus mask in sched_group and sched_domain hangs off the end.
6379 * ( See the the comments in include/linux/sched.h:struct sched_group
6380 * and struct sched_domain. )
6382 struct static_sched_group
{
6383 struct sched_group sg
;
6384 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6387 struct static_sched_domain
{
6388 struct sched_domain sd
;
6389 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6395 cpumask_var_t domainspan
;
6396 cpumask_var_t covered
;
6397 cpumask_var_t notcovered
;
6399 cpumask_var_t nodemask
;
6400 cpumask_var_t this_sibling_map
;
6401 cpumask_var_t this_core_map
;
6402 cpumask_var_t send_covered
;
6403 cpumask_var_t tmpmask
;
6404 struct sched_group
**sched_group_nodes
;
6405 struct root_domain
*rd
;
6409 sa_sched_groups
= 0,
6414 sa_this_sibling_map
,
6416 sa_sched_group_nodes
,
6426 * SMT sched-domains:
6428 #ifdef CONFIG_SCHED_SMT
6429 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6430 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6433 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6434 struct sched_group
**sg
, struct cpumask
*unused
)
6437 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6440 #endif /* CONFIG_SCHED_SMT */
6443 * multi-core sched-domains:
6445 #ifdef CONFIG_SCHED_MC
6446 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6447 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6448 #endif /* CONFIG_SCHED_MC */
6450 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6452 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6453 struct sched_group
**sg
, struct cpumask
*mask
)
6457 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6458 group
= cpumask_first(mask
);
6460 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6463 #elif defined(CONFIG_SCHED_MC)
6465 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6466 struct sched_group
**sg
, struct cpumask
*unused
)
6469 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6474 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6475 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6478 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6479 struct sched_group
**sg
, struct cpumask
*mask
)
6482 #ifdef CONFIG_SCHED_MC
6483 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6484 group
= cpumask_first(mask
);
6485 #elif defined(CONFIG_SCHED_SMT)
6486 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6487 group
= cpumask_first(mask
);
6492 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6498 * The init_sched_build_groups can't handle what we want to do with node
6499 * groups, so roll our own. Now each node has its own list of groups which
6500 * gets dynamically allocated.
6502 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6503 static struct sched_group
***sched_group_nodes_bycpu
;
6505 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6506 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6508 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6509 struct sched_group
**sg
,
6510 struct cpumask
*nodemask
)
6514 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6515 group
= cpumask_first(nodemask
);
6518 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6522 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6524 struct sched_group
*sg
= group_head
;
6530 for_each_cpu(j
, sched_group_cpus(sg
)) {
6531 struct sched_domain
*sd
;
6533 sd
= &per_cpu(phys_domains
, j
).sd
;
6534 if (j
!= group_first_cpu(sd
->groups
)) {
6536 * Only add "power" once for each
6542 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6545 } while (sg
!= group_head
);
6548 static int build_numa_sched_groups(struct s_data
*d
,
6549 const struct cpumask
*cpu_map
, int num
)
6551 struct sched_domain
*sd
;
6552 struct sched_group
*sg
, *prev
;
6555 cpumask_clear(d
->covered
);
6556 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6557 if (cpumask_empty(d
->nodemask
)) {
6558 d
->sched_group_nodes
[num
] = NULL
;
6562 sched_domain_node_span(num
, d
->domainspan
);
6563 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6565 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6568 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6572 d
->sched_group_nodes
[num
] = sg
;
6574 for_each_cpu(j
, d
->nodemask
) {
6575 sd
= &per_cpu(node_domains
, j
).sd
;
6580 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6582 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6585 for (j
= 0; j
< nr_node_ids
; j
++) {
6586 n
= (num
+ j
) % nr_node_ids
;
6587 cpumask_complement(d
->notcovered
, d
->covered
);
6588 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6589 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6590 if (cpumask_empty(d
->tmpmask
))
6592 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6593 if (cpumask_empty(d
->tmpmask
))
6595 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6599 "Can not alloc domain group for node %d\n", j
);
6603 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6604 sg
->next
= prev
->next
;
6605 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6612 #endif /* CONFIG_NUMA */
6615 /* Free memory allocated for various sched_group structures */
6616 static void free_sched_groups(const struct cpumask
*cpu_map
,
6617 struct cpumask
*nodemask
)
6621 for_each_cpu(cpu
, cpu_map
) {
6622 struct sched_group
**sched_group_nodes
6623 = sched_group_nodes_bycpu
[cpu
];
6625 if (!sched_group_nodes
)
6628 for (i
= 0; i
< nr_node_ids
; i
++) {
6629 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6631 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6632 if (cpumask_empty(nodemask
))
6642 if (oldsg
!= sched_group_nodes
[i
])
6645 kfree(sched_group_nodes
);
6646 sched_group_nodes_bycpu
[cpu
] = NULL
;
6649 #else /* !CONFIG_NUMA */
6650 static void free_sched_groups(const struct cpumask
*cpu_map
,
6651 struct cpumask
*nodemask
)
6654 #endif /* CONFIG_NUMA */
6657 * Initialize sched groups cpu_power.
6659 * cpu_power indicates the capacity of sched group, which is used while
6660 * distributing the load between different sched groups in a sched domain.
6661 * Typically cpu_power for all the groups in a sched domain will be same unless
6662 * there are asymmetries in the topology. If there are asymmetries, group
6663 * having more cpu_power will pickup more load compared to the group having
6666 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6668 struct sched_domain
*child
;
6669 struct sched_group
*group
;
6673 WARN_ON(!sd
|| !sd
->groups
);
6675 if (cpu
!= group_first_cpu(sd
->groups
))
6680 sd
->groups
->cpu_power
= 0;
6683 power
= SCHED_LOAD_SCALE
;
6684 weight
= cpumask_weight(sched_domain_span(sd
));
6686 * SMT siblings share the power of a single core.
6687 * Usually multiple threads get a better yield out of
6688 * that one core than a single thread would have,
6689 * reflect that in sd->smt_gain.
6691 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6692 power
*= sd
->smt_gain
;
6694 power
>>= SCHED_LOAD_SHIFT
;
6696 sd
->groups
->cpu_power
+= power
;
6701 * Add cpu_power of each child group to this groups cpu_power.
6703 group
= child
->groups
;
6705 sd
->groups
->cpu_power
+= group
->cpu_power
;
6706 group
= group
->next
;
6707 } while (group
!= child
->groups
);
6711 * Initializers for schedule domains
6712 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6715 #ifdef CONFIG_SCHED_DEBUG
6716 # define SD_INIT_NAME(sd, type) sd->name = #type
6718 # define SD_INIT_NAME(sd, type) do { } while (0)
6721 #define SD_INIT(sd, type) sd_init_##type(sd)
6723 #define SD_INIT_FUNC(type) \
6724 static noinline void sd_init_##type(struct sched_domain *sd) \
6726 memset(sd, 0, sizeof(*sd)); \
6727 *sd = SD_##type##_INIT; \
6728 sd->level = SD_LV_##type; \
6729 SD_INIT_NAME(sd, type); \
6734 SD_INIT_FUNC(ALLNODES
)
6737 #ifdef CONFIG_SCHED_SMT
6738 SD_INIT_FUNC(SIBLING
)
6740 #ifdef CONFIG_SCHED_MC
6744 static int default_relax_domain_level
= -1;
6746 static int __init
setup_relax_domain_level(char *str
)
6750 val
= simple_strtoul(str
, NULL
, 0);
6751 if (val
< SD_LV_MAX
)
6752 default_relax_domain_level
= val
;
6756 __setup("relax_domain_level=", setup_relax_domain_level
);
6758 static void set_domain_attribute(struct sched_domain
*sd
,
6759 struct sched_domain_attr
*attr
)
6763 if (!attr
|| attr
->relax_domain_level
< 0) {
6764 if (default_relax_domain_level
< 0)
6767 request
= default_relax_domain_level
;
6769 request
= attr
->relax_domain_level
;
6770 if (request
< sd
->level
) {
6771 /* turn off idle balance on this domain */
6772 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6774 /* turn on idle balance on this domain */
6775 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6779 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6780 const struct cpumask
*cpu_map
)
6783 case sa_sched_groups
:
6784 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6785 d
->sched_group_nodes
= NULL
;
6787 free_rootdomain(d
->rd
); /* fall through */
6789 free_cpumask_var(d
->tmpmask
); /* fall through */
6790 case sa_send_covered
:
6791 free_cpumask_var(d
->send_covered
); /* fall through */
6792 case sa_this_core_map
:
6793 free_cpumask_var(d
->this_core_map
); /* fall through */
6794 case sa_this_sibling_map
:
6795 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6797 free_cpumask_var(d
->nodemask
); /* fall through */
6798 case sa_sched_group_nodes
:
6800 kfree(d
->sched_group_nodes
); /* fall through */
6802 free_cpumask_var(d
->notcovered
); /* fall through */
6804 free_cpumask_var(d
->covered
); /* fall through */
6806 free_cpumask_var(d
->domainspan
); /* fall through */
6813 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6814 const struct cpumask
*cpu_map
)
6817 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6819 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6820 return sa_domainspan
;
6821 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6823 /* Allocate the per-node list of sched groups */
6824 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6825 sizeof(struct sched_group
*), GFP_KERNEL
);
6826 if (!d
->sched_group_nodes
) {
6827 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6828 return sa_notcovered
;
6830 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6832 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6833 return sa_sched_group_nodes
;
6834 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6836 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6837 return sa_this_sibling_map
;
6838 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6839 return sa_this_core_map
;
6840 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6841 return sa_send_covered
;
6842 d
->rd
= alloc_rootdomain();
6844 printk(KERN_WARNING
"Cannot alloc root domain\n");
6847 return sa_rootdomain
;
6850 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6851 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6853 struct sched_domain
*sd
= NULL
;
6855 struct sched_domain
*parent
;
6858 if (cpumask_weight(cpu_map
) >
6859 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6860 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6861 SD_INIT(sd
, ALLNODES
);
6862 set_domain_attribute(sd
, attr
);
6863 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6864 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6869 sd
= &per_cpu(node_domains
, i
).sd
;
6871 set_domain_attribute(sd
, attr
);
6872 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6873 sd
->parent
= parent
;
6876 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6881 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6882 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6883 struct sched_domain
*parent
, int i
)
6885 struct sched_domain
*sd
;
6886 sd
= &per_cpu(phys_domains
, i
).sd
;
6888 set_domain_attribute(sd
, attr
);
6889 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6890 sd
->parent
= parent
;
6893 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6897 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6898 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6899 struct sched_domain
*parent
, int i
)
6901 struct sched_domain
*sd
= parent
;
6902 #ifdef CONFIG_SCHED_MC
6903 sd
= &per_cpu(core_domains
, i
).sd
;
6905 set_domain_attribute(sd
, attr
);
6906 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
6907 sd
->parent
= parent
;
6909 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6914 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
6915 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6916 struct sched_domain
*parent
, int i
)
6918 struct sched_domain
*sd
= parent
;
6919 #ifdef CONFIG_SCHED_SMT
6920 sd
= &per_cpu(cpu_domains
, i
).sd
;
6921 SD_INIT(sd
, SIBLING
);
6922 set_domain_attribute(sd
, attr
);
6923 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
6924 sd
->parent
= parent
;
6926 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6931 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
6932 const struct cpumask
*cpu_map
, int cpu
)
6935 #ifdef CONFIG_SCHED_SMT
6936 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
6937 cpumask_and(d
->this_sibling_map
, cpu_map
,
6938 topology_thread_cpumask(cpu
));
6939 if (cpu
== cpumask_first(d
->this_sibling_map
))
6940 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
6942 d
->send_covered
, d
->tmpmask
);
6945 #ifdef CONFIG_SCHED_MC
6946 case SD_LV_MC
: /* set up multi-core groups */
6947 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
6948 if (cpu
== cpumask_first(d
->this_core_map
))
6949 init_sched_build_groups(d
->this_core_map
, cpu_map
,
6951 d
->send_covered
, d
->tmpmask
);
6954 case SD_LV_CPU
: /* set up physical groups */
6955 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
6956 if (!cpumask_empty(d
->nodemask
))
6957 init_sched_build_groups(d
->nodemask
, cpu_map
,
6959 d
->send_covered
, d
->tmpmask
);
6962 case SD_LV_ALLNODES
:
6963 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
6964 d
->send_covered
, d
->tmpmask
);
6973 * Build sched domains for a given set of cpus and attach the sched domains
6974 * to the individual cpus
6976 static int __build_sched_domains(const struct cpumask
*cpu_map
,
6977 struct sched_domain_attr
*attr
)
6979 enum s_alloc alloc_state
= sa_none
;
6981 struct sched_domain
*sd
;
6987 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6988 if (alloc_state
!= sa_rootdomain
)
6990 alloc_state
= sa_sched_groups
;
6993 * Set up domains for cpus specified by the cpu_map.
6995 for_each_cpu(i
, cpu_map
) {
6996 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
6999 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7000 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7001 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7002 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7005 for_each_cpu(i
, cpu_map
) {
7006 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7007 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7010 /* Set up physical groups */
7011 for (i
= 0; i
< nr_node_ids
; i
++)
7012 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7015 /* Set up node groups */
7017 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7019 for (i
= 0; i
< nr_node_ids
; i
++)
7020 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7024 /* Calculate CPU power for physical packages and nodes */
7025 #ifdef CONFIG_SCHED_SMT
7026 for_each_cpu(i
, cpu_map
) {
7027 sd
= &per_cpu(cpu_domains
, i
).sd
;
7028 init_sched_groups_power(i
, sd
);
7031 #ifdef CONFIG_SCHED_MC
7032 for_each_cpu(i
, cpu_map
) {
7033 sd
= &per_cpu(core_domains
, i
).sd
;
7034 init_sched_groups_power(i
, sd
);
7038 for_each_cpu(i
, cpu_map
) {
7039 sd
= &per_cpu(phys_domains
, i
).sd
;
7040 init_sched_groups_power(i
, sd
);
7044 for (i
= 0; i
< nr_node_ids
; i
++)
7045 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7047 if (d
.sd_allnodes
) {
7048 struct sched_group
*sg
;
7050 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7052 init_numa_sched_groups_power(sg
);
7056 /* Attach the domains */
7057 for_each_cpu(i
, cpu_map
) {
7058 #ifdef CONFIG_SCHED_SMT
7059 sd
= &per_cpu(cpu_domains
, i
).sd
;
7060 #elif defined(CONFIG_SCHED_MC)
7061 sd
= &per_cpu(core_domains
, i
).sd
;
7063 sd
= &per_cpu(phys_domains
, i
).sd
;
7065 cpu_attach_domain(sd
, d
.rd
, i
);
7068 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7069 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7073 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7077 static int build_sched_domains(const struct cpumask
*cpu_map
)
7079 return __build_sched_domains(cpu_map
, NULL
);
7082 static cpumask_var_t
*doms_cur
; /* current sched domains */
7083 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7084 static struct sched_domain_attr
*dattr_cur
;
7085 /* attribues of custom domains in 'doms_cur' */
7088 * Special case: If a kmalloc of a doms_cur partition (array of
7089 * cpumask) fails, then fallback to a single sched domain,
7090 * as determined by the single cpumask fallback_doms.
7092 static cpumask_var_t fallback_doms
;
7095 * arch_update_cpu_topology lets virtualized architectures update the
7096 * cpu core maps. It is supposed to return 1 if the topology changed
7097 * or 0 if it stayed the same.
7099 int __attribute__((weak
)) arch_update_cpu_topology(void)
7104 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7107 cpumask_var_t
*doms
;
7109 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7112 for (i
= 0; i
< ndoms
; i
++) {
7113 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7114 free_sched_domains(doms
, i
);
7121 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7124 for (i
= 0; i
< ndoms
; i
++)
7125 free_cpumask_var(doms
[i
]);
7130 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7131 * For now this just excludes isolated cpus, but could be used to
7132 * exclude other special cases in the future.
7134 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7138 arch_update_cpu_topology();
7140 doms_cur
= alloc_sched_domains(ndoms_cur
);
7142 doms_cur
= &fallback_doms
;
7143 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7145 err
= build_sched_domains(doms_cur
[0]);
7146 register_sched_domain_sysctl();
7151 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7152 struct cpumask
*tmpmask
)
7154 free_sched_groups(cpu_map
, tmpmask
);
7158 * Detach sched domains from a group of cpus specified in cpu_map
7159 * These cpus will now be attached to the NULL domain
7161 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7163 /* Save because hotplug lock held. */
7164 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7167 for_each_cpu(i
, cpu_map
)
7168 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7169 synchronize_sched();
7170 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7173 /* handle null as "default" */
7174 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7175 struct sched_domain_attr
*new, int idx_new
)
7177 struct sched_domain_attr tmp
;
7184 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7185 new ? (new + idx_new
) : &tmp
,
7186 sizeof(struct sched_domain_attr
));
7190 * Partition sched domains as specified by the 'ndoms_new'
7191 * cpumasks in the array doms_new[] of cpumasks. This compares
7192 * doms_new[] to the current sched domain partitioning, doms_cur[].
7193 * It destroys each deleted domain and builds each new domain.
7195 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7196 * The masks don't intersect (don't overlap.) We should setup one
7197 * sched domain for each mask. CPUs not in any of the cpumasks will
7198 * not be load balanced. If the same cpumask appears both in the
7199 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7202 * The passed in 'doms_new' should be allocated using
7203 * alloc_sched_domains. This routine takes ownership of it and will
7204 * free_sched_domains it when done with it. If the caller failed the
7205 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7206 * and partition_sched_domains() will fallback to the single partition
7207 * 'fallback_doms', it also forces the domains to be rebuilt.
7209 * If doms_new == NULL it will be replaced with cpu_online_mask.
7210 * ndoms_new == 0 is a special case for destroying existing domains,
7211 * and it will not create the default domain.
7213 * Call with hotplug lock held
7215 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7216 struct sched_domain_attr
*dattr_new
)
7221 mutex_lock(&sched_domains_mutex
);
7223 /* always unregister in case we don't destroy any domains */
7224 unregister_sched_domain_sysctl();
7226 /* Let architecture update cpu core mappings. */
7227 new_topology
= arch_update_cpu_topology();
7229 n
= doms_new
? ndoms_new
: 0;
7231 /* Destroy deleted domains */
7232 for (i
= 0; i
< ndoms_cur
; i
++) {
7233 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7234 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7235 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7238 /* no match - a current sched domain not in new doms_new[] */
7239 detach_destroy_domains(doms_cur
[i
]);
7244 if (doms_new
== NULL
) {
7246 doms_new
= &fallback_doms
;
7247 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7248 WARN_ON_ONCE(dattr_new
);
7251 /* Build new domains */
7252 for (i
= 0; i
< ndoms_new
; i
++) {
7253 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7254 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7255 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7258 /* no match - add a new doms_new */
7259 __build_sched_domains(doms_new
[i
],
7260 dattr_new
? dattr_new
+ i
: NULL
);
7265 /* Remember the new sched domains */
7266 if (doms_cur
!= &fallback_doms
)
7267 free_sched_domains(doms_cur
, ndoms_cur
);
7268 kfree(dattr_cur
); /* kfree(NULL) is safe */
7269 doms_cur
= doms_new
;
7270 dattr_cur
= dattr_new
;
7271 ndoms_cur
= ndoms_new
;
7273 register_sched_domain_sysctl();
7275 mutex_unlock(&sched_domains_mutex
);
7278 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7279 static void arch_reinit_sched_domains(void)
7283 /* Destroy domains first to force the rebuild */
7284 partition_sched_domains(0, NULL
, NULL
);
7286 rebuild_sched_domains();
7290 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7292 unsigned int level
= 0;
7294 if (sscanf(buf
, "%u", &level
) != 1)
7298 * level is always be positive so don't check for
7299 * level < POWERSAVINGS_BALANCE_NONE which is 0
7300 * What happens on 0 or 1 byte write,
7301 * need to check for count as well?
7304 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7308 sched_smt_power_savings
= level
;
7310 sched_mc_power_savings
= level
;
7312 arch_reinit_sched_domains();
7317 #ifdef CONFIG_SCHED_MC
7318 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7319 struct sysdev_class_attribute
*attr
,
7322 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7324 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7325 struct sysdev_class_attribute
*attr
,
7326 const char *buf
, size_t count
)
7328 return sched_power_savings_store(buf
, count
, 0);
7330 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7331 sched_mc_power_savings_show
,
7332 sched_mc_power_savings_store
);
7335 #ifdef CONFIG_SCHED_SMT
7336 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7337 struct sysdev_class_attribute
*attr
,
7340 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7342 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7343 struct sysdev_class_attribute
*attr
,
7344 const char *buf
, size_t count
)
7346 return sched_power_savings_store(buf
, count
, 1);
7348 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7349 sched_smt_power_savings_show
,
7350 sched_smt_power_savings_store
);
7353 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7357 #ifdef CONFIG_SCHED_SMT
7359 err
= sysfs_create_file(&cls
->kset
.kobj
,
7360 &attr_sched_smt_power_savings
.attr
);
7362 #ifdef CONFIG_SCHED_MC
7363 if (!err
&& mc_capable())
7364 err
= sysfs_create_file(&cls
->kset
.kobj
,
7365 &attr_sched_mc_power_savings
.attr
);
7369 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7372 * Update cpusets according to cpu_active mask. If cpusets are
7373 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7374 * around partition_sched_domains().
7376 static int __cpuexit
cpuset_cpu_active(struct notifier_block
*nfb
,
7377 unsigned long action
, void *hcpu
)
7379 switch (action
& ~CPU_TASKS_FROZEN
) {
7381 case CPU_DOWN_FAILED
:
7382 cpuset_update_active_cpus();
7389 static int __cpuexit
cpuset_cpu_inactive(struct notifier_block
*nfb
,
7390 unsigned long action
, void *hcpu
)
7392 switch (action
& ~CPU_TASKS_FROZEN
) {
7393 case CPU_DOWN_PREPARE
:
7394 cpuset_update_active_cpus();
7401 static int update_runtime(struct notifier_block
*nfb
,
7402 unsigned long action
, void *hcpu
)
7404 int cpu
= (int)(long)hcpu
;
7407 case CPU_DOWN_PREPARE
:
7408 case CPU_DOWN_PREPARE_FROZEN
:
7409 disable_runtime(cpu_rq(cpu
));
7412 case CPU_DOWN_FAILED
:
7413 case CPU_DOWN_FAILED_FROZEN
:
7415 case CPU_ONLINE_FROZEN
:
7416 enable_runtime(cpu_rq(cpu
));
7424 void __init
sched_init_smp(void)
7426 cpumask_var_t non_isolated_cpus
;
7428 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7429 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7431 #if defined(CONFIG_NUMA)
7432 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7434 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7437 mutex_lock(&sched_domains_mutex
);
7438 arch_init_sched_domains(cpu_active_mask
);
7439 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7440 if (cpumask_empty(non_isolated_cpus
))
7441 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7442 mutex_unlock(&sched_domains_mutex
);
7445 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7446 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7448 /* RT runtime code needs to handle some hotplug events */
7449 hotcpu_notifier(update_runtime
, 0);
7453 /* Move init over to a non-isolated CPU */
7454 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7456 sched_init_granularity();
7457 free_cpumask_var(non_isolated_cpus
);
7459 init_sched_rt_class();
7462 void __init
sched_init_smp(void)
7464 sched_init_granularity();
7466 #endif /* CONFIG_SMP */
7468 const_debug
unsigned int sysctl_timer_migration
= 1;
7470 int in_sched_functions(unsigned long addr
)
7472 return in_lock_functions(addr
) ||
7473 (addr
>= (unsigned long)__sched_text_start
7474 && addr
< (unsigned long)__sched_text_end
);
7477 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7479 cfs_rq
->tasks_timeline
= RB_ROOT
;
7480 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7481 #ifdef CONFIG_FAIR_GROUP_SCHED
7484 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7487 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7489 struct rt_prio_array
*array
;
7492 array
= &rt_rq
->active
;
7493 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7494 INIT_LIST_HEAD(array
->queue
+ i
);
7495 __clear_bit(i
, array
->bitmap
);
7497 /* delimiter for bitsearch: */
7498 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7500 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7501 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7503 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7507 rt_rq
->rt_nr_migratory
= 0;
7508 rt_rq
->overloaded
= 0;
7509 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7513 rt_rq
->rt_throttled
= 0;
7514 rt_rq
->rt_runtime
= 0;
7515 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7517 #ifdef CONFIG_RT_GROUP_SCHED
7518 rt_rq
->rt_nr_boosted
= 0;
7523 #ifdef CONFIG_FAIR_GROUP_SCHED
7524 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7525 struct sched_entity
*se
, int cpu
, int add
,
7526 struct sched_entity
*parent
)
7528 struct rq
*rq
= cpu_rq(cpu
);
7529 tg
->cfs_rq
[cpu
] = cfs_rq
;
7530 init_cfs_rq(cfs_rq
, rq
);
7533 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7536 /* se could be NULL for init_task_group */
7541 se
->cfs_rq
= &rq
->cfs
;
7543 se
->cfs_rq
= parent
->my_q
;
7546 se
->load
.weight
= tg
->shares
;
7547 se
->load
.inv_weight
= 0;
7548 se
->parent
= parent
;
7552 #ifdef CONFIG_RT_GROUP_SCHED
7553 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7554 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7555 struct sched_rt_entity
*parent
)
7557 struct rq
*rq
= cpu_rq(cpu
);
7559 tg
->rt_rq
[cpu
] = rt_rq
;
7560 init_rt_rq(rt_rq
, rq
);
7562 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7564 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7566 tg
->rt_se
[cpu
] = rt_se
;
7571 rt_se
->rt_rq
= &rq
->rt
;
7573 rt_se
->rt_rq
= parent
->my_q
;
7575 rt_se
->my_q
= rt_rq
;
7576 rt_se
->parent
= parent
;
7577 INIT_LIST_HEAD(&rt_se
->run_list
);
7581 void __init
sched_init(void)
7584 unsigned long alloc_size
= 0, ptr
;
7586 #ifdef CONFIG_FAIR_GROUP_SCHED
7587 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7589 #ifdef CONFIG_RT_GROUP_SCHED
7590 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7592 #ifdef CONFIG_CPUMASK_OFFSTACK
7593 alloc_size
+= num_possible_cpus() * cpumask_size();
7596 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7598 #ifdef CONFIG_FAIR_GROUP_SCHED
7599 init_task_group
.se
= (struct sched_entity
**)ptr
;
7600 ptr
+= nr_cpu_ids
* sizeof(void **);
7602 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7603 ptr
+= nr_cpu_ids
* sizeof(void **);
7605 #endif /* CONFIG_FAIR_GROUP_SCHED */
7606 #ifdef CONFIG_RT_GROUP_SCHED
7607 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7608 ptr
+= nr_cpu_ids
* sizeof(void **);
7610 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7611 ptr
+= nr_cpu_ids
* sizeof(void **);
7613 #endif /* CONFIG_RT_GROUP_SCHED */
7614 #ifdef CONFIG_CPUMASK_OFFSTACK
7615 for_each_possible_cpu(i
) {
7616 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7617 ptr
+= cpumask_size();
7619 #endif /* CONFIG_CPUMASK_OFFSTACK */
7623 init_defrootdomain();
7626 init_rt_bandwidth(&def_rt_bandwidth
,
7627 global_rt_period(), global_rt_runtime());
7629 #ifdef CONFIG_RT_GROUP_SCHED
7630 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7631 global_rt_period(), global_rt_runtime());
7632 #endif /* CONFIG_RT_GROUP_SCHED */
7634 #ifdef CONFIG_CGROUP_SCHED
7635 list_add(&init_task_group
.list
, &task_groups
);
7636 INIT_LIST_HEAD(&init_task_group
.children
);
7638 #endif /* CONFIG_CGROUP_SCHED */
7640 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7641 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7642 __alignof__(unsigned long));
7644 for_each_possible_cpu(i
) {
7648 raw_spin_lock_init(&rq
->lock
);
7650 rq
->calc_load_active
= 0;
7651 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7652 init_cfs_rq(&rq
->cfs
, rq
);
7653 init_rt_rq(&rq
->rt
, rq
);
7654 #ifdef CONFIG_FAIR_GROUP_SCHED
7655 init_task_group
.shares
= init_task_group_load
;
7656 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7657 #ifdef CONFIG_CGROUP_SCHED
7659 * How much cpu bandwidth does init_task_group get?
7661 * In case of task-groups formed thr' the cgroup filesystem, it
7662 * gets 100% of the cpu resources in the system. This overall
7663 * system cpu resource is divided among the tasks of
7664 * init_task_group and its child task-groups in a fair manner,
7665 * based on each entity's (task or task-group's) weight
7666 * (se->load.weight).
7668 * In other words, if init_task_group has 10 tasks of weight
7669 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7670 * then A0's share of the cpu resource is:
7672 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7674 * We achieve this by letting init_task_group's tasks sit
7675 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7677 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7679 #endif /* CONFIG_FAIR_GROUP_SCHED */
7681 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7682 #ifdef CONFIG_RT_GROUP_SCHED
7683 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7684 #ifdef CONFIG_CGROUP_SCHED
7685 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7689 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7690 rq
->cpu_load
[j
] = 0;
7694 rq
->cpu_power
= SCHED_LOAD_SCALE
;
7695 rq
->post_schedule
= 0;
7696 rq
->active_balance
= 0;
7697 rq
->next_balance
= jiffies
;
7702 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7703 rq_attach_root(rq
, &def_root_domain
);
7706 atomic_set(&rq
->nr_iowait
, 0);
7709 set_load_weight(&init_task
);
7711 #ifdef CONFIG_PREEMPT_NOTIFIERS
7712 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7716 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7719 #ifdef CONFIG_RT_MUTEXES
7720 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7724 * The boot idle thread does lazy MMU switching as well:
7726 atomic_inc(&init_mm
.mm_count
);
7727 enter_lazy_tlb(&init_mm
, current
);
7730 * Make us the idle thread. Technically, schedule() should not be
7731 * called from this thread, however somewhere below it might be,
7732 * but because we are the idle thread, we just pick up running again
7733 * when this runqueue becomes "idle".
7735 init_idle(current
, smp_processor_id());
7737 calc_load_update
= jiffies
+ LOAD_FREQ
;
7740 * During early bootup we pretend to be a normal task:
7742 current
->sched_class
= &fair_sched_class
;
7744 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7745 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7748 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7749 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7751 /* May be allocated at isolcpus cmdline parse time */
7752 if (cpu_isolated_map
== NULL
)
7753 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7758 scheduler_running
= 1;
7761 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7762 static inline int preempt_count_equals(int preempt_offset
)
7764 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7766 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7769 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7772 static unsigned long prev_jiffy
; /* ratelimiting */
7774 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7775 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7777 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7779 prev_jiffy
= jiffies
;
7782 "BUG: sleeping function called from invalid context at %s:%d\n",
7785 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7786 in_atomic(), irqs_disabled(),
7787 current
->pid
, current
->comm
);
7789 debug_show_held_locks(current
);
7790 if (irqs_disabled())
7791 print_irqtrace_events(current
);
7795 EXPORT_SYMBOL(__might_sleep
);
7798 #ifdef CONFIG_MAGIC_SYSRQ
7799 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7803 on_rq
= p
->se
.on_rq
;
7805 deactivate_task(rq
, p
, 0);
7806 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7808 activate_task(rq
, p
, 0);
7809 resched_task(rq
->curr
);
7813 void normalize_rt_tasks(void)
7815 struct task_struct
*g
, *p
;
7816 unsigned long flags
;
7819 read_lock_irqsave(&tasklist_lock
, flags
);
7820 do_each_thread(g
, p
) {
7822 * Only normalize user tasks:
7827 p
->se
.exec_start
= 0;
7828 #ifdef CONFIG_SCHEDSTATS
7829 p
->se
.statistics
.wait_start
= 0;
7830 p
->se
.statistics
.sleep_start
= 0;
7831 p
->se
.statistics
.block_start
= 0;
7836 * Renice negative nice level userspace
7839 if (TASK_NICE(p
) < 0 && p
->mm
)
7840 set_user_nice(p
, 0);
7844 raw_spin_lock(&p
->pi_lock
);
7845 rq
= __task_rq_lock(p
);
7847 normalize_task(rq
, p
);
7849 __task_rq_unlock(rq
);
7850 raw_spin_unlock(&p
->pi_lock
);
7851 } while_each_thread(g
, p
);
7853 read_unlock_irqrestore(&tasklist_lock
, flags
);
7856 #endif /* CONFIG_MAGIC_SYSRQ */
7858 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7860 * These functions are only useful for the IA64 MCA handling, or kdb.
7862 * They can only be called when the whole system has been
7863 * stopped - every CPU needs to be quiescent, and no scheduling
7864 * activity can take place. Using them for anything else would
7865 * be a serious bug, and as a result, they aren't even visible
7866 * under any other configuration.
7870 * curr_task - return the current task for a given cpu.
7871 * @cpu: the processor in question.
7873 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7875 struct task_struct
*curr_task(int cpu
)
7877 return cpu_curr(cpu
);
7880 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7884 * set_curr_task - set the current task for a given cpu.
7885 * @cpu: the processor in question.
7886 * @p: the task pointer to set.
7888 * Description: This function must only be used when non-maskable interrupts
7889 * are serviced on a separate stack. It allows the architecture to switch the
7890 * notion of the current task on a cpu in a non-blocking manner. This function
7891 * must be called with all CPU's synchronized, and interrupts disabled, the
7892 * and caller must save the original value of the current task (see
7893 * curr_task() above) and restore that value before reenabling interrupts and
7894 * re-starting the system.
7896 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7898 void set_curr_task(int cpu
, struct task_struct
*p
)
7905 #ifdef CONFIG_FAIR_GROUP_SCHED
7906 static void free_fair_sched_group(struct task_group
*tg
)
7910 for_each_possible_cpu(i
) {
7912 kfree(tg
->cfs_rq
[i
]);
7922 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7924 struct cfs_rq
*cfs_rq
;
7925 struct sched_entity
*se
;
7929 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7932 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7936 tg
->shares
= NICE_0_LOAD
;
7938 for_each_possible_cpu(i
) {
7941 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
7942 GFP_KERNEL
, cpu_to_node(i
));
7946 se
= kzalloc_node(sizeof(struct sched_entity
),
7947 GFP_KERNEL
, cpu_to_node(i
));
7951 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
7962 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7964 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7965 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7968 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7970 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7972 #else /* !CONFG_FAIR_GROUP_SCHED */
7973 static inline void free_fair_sched_group(struct task_group
*tg
)
7978 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7983 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7987 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7990 #endif /* CONFIG_FAIR_GROUP_SCHED */
7992 #ifdef CONFIG_RT_GROUP_SCHED
7993 static void free_rt_sched_group(struct task_group
*tg
)
7997 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
7999 for_each_possible_cpu(i
) {
8001 kfree(tg
->rt_rq
[i
]);
8003 kfree(tg
->rt_se
[i
]);
8011 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8013 struct rt_rq
*rt_rq
;
8014 struct sched_rt_entity
*rt_se
;
8018 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8021 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8025 init_rt_bandwidth(&tg
->rt_bandwidth
,
8026 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8028 for_each_possible_cpu(i
) {
8031 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8032 GFP_KERNEL
, cpu_to_node(i
));
8036 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8037 GFP_KERNEL
, cpu_to_node(i
));
8041 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8052 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8054 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8055 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8058 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8060 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8062 #else /* !CONFIG_RT_GROUP_SCHED */
8063 static inline void free_rt_sched_group(struct task_group
*tg
)
8068 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8073 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8077 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8080 #endif /* CONFIG_RT_GROUP_SCHED */
8082 #ifdef CONFIG_CGROUP_SCHED
8083 static void free_sched_group(struct task_group
*tg
)
8085 free_fair_sched_group(tg
);
8086 free_rt_sched_group(tg
);
8090 /* allocate runqueue etc for a new task group */
8091 struct task_group
*sched_create_group(struct task_group
*parent
)
8093 struct task_group
*tg
;
8094 unsigned long flags
;
8097 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8099 return ERR_PTR(-ENOMEM
);
8101 if (!alloc_fair_sched_group(tg
, parent
))
8104 if (!alloc_rt_sched_group(tg
, parent
))
8107 spin_lock_irqsave(&task_group_lock
, flags
);
8108 for_each_possible_cpu(i
) {
8109 register_fair_sched_group(tg
, i
);
8110 register_rt_sched_group(tg
, i
);
8112 list_add_rcu(&tg
->list
, &task_groups
);
8114 WARN_ON(!parent
); /* root should already exist */
8116 tg
->parent
= parent
;
8117 INIT_LIST_HEAD(&tg
->children
);
8118 list_add_rcu(&tg
->siblings
, &parent
->children
);
8119 spin_unlock_irqrestore(&task_group_lock
, flags
);
8124 free_sched_group(tg
);
8125 return ERR_PTR(-ENOMEM
);
8128 /* rcu callback to free various structures associated with a task group */
8129 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8131 /* now it should be safe to free those cfs_rqs */
8132 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8135 /* Destroy runqueue etc associated with a task group */
8136 void sched_destroy_group(struct task_group
*tg
)
8138 unsigned long flags
;
8141 spin_lock_irqsave(&task_group_lock
, flags
);
8142 for_each_possible_cpu(i
) {
8143 unregister_fair_sched_group(tg
, i
);
8144 unregister_rt_sched_group(tg
, i
);
8146 list_del_rcu(&tg
->list
);
8147 list_del_rcu(&tg
->siblings
);
8148 spin_unlock_irqrestore(&task_group_lock
, flags
);
8150 /* wait for possible concurrent references to cfs_rqs complete */
8151 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8154 /* change task's runqueue when it moves between groups.
8155 * The caller of this function should have put the task in its new group
8156 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8157 * reflect its new group.
8159 void sched_move_task(struct task_struct
*tsk
)
8162 unsigned long flags
;
8165 rq
= task_rq_lock(tsk
, &flags
);
8167 running
= task_current(rq
, tsk
);
8168 on_rq
= tsk
->se
.on_rq
;
8171 dequeue_task(rq
, tsk
, 0);
8172 if (unlikely(running
))
8173 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8175 set_task_rq(tsk
, task_cpu(tsk
));
8177 #ifdef CONFIG_FAIR_GROUP_SCHED
8178 if (tsk
->sched_class
->moved_group
)
8179 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8182 if (unlikely(running
))
8183 tsk
->sched_class
->set_curr_task(rq
);
8185 enqueue_task(rq
, tsk
, 0);
8187 task_rq_unlock(rq
, &flags
);
8189 #endif /* CONFIG_CGROUP_SCHED */
8191 #ifdef CONFIG_FAIR_GROUP_SCHED
8192 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8194 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8199 dequeue_entity(cfs_rq
, se
, 0);
8201 se
->load
.weight
= shares
;
8202 se
->load
.inv_weight
= 0;
8205 enqueue_entity(cfs_rq
, se
, 0);
8208 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8210 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8211 struct rq
*rq
= cfs_rq
->rq
;
8212 unsigned long flags
;
8214 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8215 __set_se_shares(se
, shares
);
8216 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8219 static DEFINE_MUTEX(shares_mutex
);
8221 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8224 unsigned long flags
;
8227 * We can't change the weight of the root cgroup.
8232 if (shares
< MIN_SHARES
)
8233 shares
= MIN_SHARES
;
8234 else if (shares
> MAX_SHARES
)
8235 shares
= MAX_SHARES
;
8237 mutex_lock(&shares_mutex
);
8238 if (tg
->shares
== shares
)
8241 spin_lock_irqsave(&task_group_lock
, flags
);
8242 for_each_possible_cpu(i
)
8243 unregister_fair_sched_group(tg
, i
);
8244 list_del_rcu(&tg
->siblings
);
8245 spin_unlock_irqrestore(&task_group_lock
, flags
);
8247 /* wait for any ongoing reference to this group to finish */
8248 synchronize_sched();
8251 * Now we are free to modify the group's share on each cpu
8252 * w/o tripping rebalance_share or load_balance_fair.
8254 tg
->shares
= shares
;
8255 for_each_possible_cpu(i
) {
8259 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8260 set_se_shares(tg
->se
[i
], shares
);
8264 * Enable load balance activity on this group, by inserting it back on
8265 * each cpu's rq->leaf_cfs_rq_list.
8267 spin_lock_irqsave(&task_group_lock
, flags
);
8268 for_each_possible_cpu(i
)
8269 register_fair_sched_group(tg
, i
);
8270 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8271 spin_unlock_irqrestore(&task_group_lock
, flags
);
8273 mutex_unlock(&shares_mutex
);
8277 unsigned long sched_group_shares(struct task_group
*tg
)
8283 #ifdef CONFIG_RT_GROUP_SCHED
8285 * Ensure that the real time constraints are schedulable.
8287 static DEFINE_MUTEX(rt_constraints_mutex
);
8289 static unsigned long to_ratio(u64 period
, u64 runtime
)
8291 if (runtime
== RUNTIME_INF
)
8294 return div64_u64(runtime
<< 20, period
);
8297 /* Must be called with tasklist_lock held */
8298 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8300 struct task_struct
*g
, *p
;
8302 do_each_thread(g
, p
) {
8303 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8305 } while_each_thread(g
, p
);
8310 struct rt_schedulable_data
{
8311 struct task_group
*tg
;
8316 static int tg_schedulable(struct task_group
*tg
, void *data
)
8318 struct rt_schedulable_data
*d
= data
;
8319 struct task_group
*child
;
8320 unsigned long total
, sum
= 0;
8321 u64 period
, runtime
;
8323 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8324 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8327 period
= d
->rt_period
;
8328 runtime
= d
->rt_runtime
;
8332 * Cannot have more runtime than the period.
8334 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8338 * Ensure we don't starve existing RT tasks.
8340 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8343 total
= to_ratio(period
, runtime
);
8346 * Nobody can have more than the global setting allows.
8348 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8352 * The sum of our children's runtime should not exceed our own.
8354 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8355 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8356 runtime
= child
->rt_bandwidth
.rt_runtime
;
8358 if (child
== d
->tg
) {
8359 period
= d
->rt_period
;
8360 runtime
= d
->rt_runtime
;
8363 sum
+= to_ratio(period
, runtime
);
8372 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8374 struct rt_schedulable_data data
= {
8376 .rt_period
= period
,
8377 .rt_runtime
= runtime
,
8380 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8383 static int tg_set_bandwidth(struct task_group
*tg
,
8384 u64 rt_period
, u64 rt_runtime
)
8388 mutex_lock(&rt_constraints_mutex
);
8389 read_lock(&tasklist_lock
);
8390 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8394 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8395 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8396 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8398 for_each_possible_cpu(i
) {
8399 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8401 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8402 rt_rq
->rt_runtime
= rt_runtime
;
8403 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8405 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8407 read_unlock(&tasklist_lock
);
8408 mutex_unlock(&rt_constraints_mutex
);
8413 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8415 u64 rt_runtime
, rt_period
;
8417 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8418 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8419 if (rt_runtime_us
< 0)
8420 rt_runtime
= RUNTIME_INF
;
8422 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8425 long sched_group_rt_runtime(struct task_group
*tg
)
8429 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8432 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8433 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8434 return rt_runtime_us
;
8437 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8439 u64 rt_runtime
, rt_period
;
8441 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8442 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8447 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8450 long sched_group_rt_period(struct task_group
*tg
)
8454 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8455 do_div(rt_period_us
, NSEC_PER_USEC
);
8456 return rt_period_us
;
8459 static int sched_rt_global_constraints(void)
8461 u64 runtime
, period
;
8464 if (sysctl_sched_rt_period
<= 0)
8467 runtime
= global_rt_runtime();
8468 period
= global_rt_period();
8471 * Sanity check on the sysctl variables.
8473 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8476 mutex_lock(&rt_constraints_mutex
);
8477 read_lock(&tasklist_lock
);
8478 ret
= __rt_schedulable(NULL
, 0, 0);
8479 read_unlock(&tasklist_lock
);
8480 mutex_unlock(&rt_constraints_mutex
);
8485 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8487 /* Don't accept realtime tasks when there is no way for them to run */
8488 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8494 #else /* !CONFIG_RT_GROUP_SCHED */
8495 static int sched_rt_global_constraints(void)
8497 unsigned long flags
;
8500 if (sysctl_sched_rt_period
<= 0)
8504 * There's always some RT tasks in the root group
8505 * -- migration, kstopmachine etc..
8507 if (sysctl_sched_rt_runtime
== 0)
8510 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8511 for_each_possible_cpu(i
) {
8512 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8514 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8515 rt_rq
->rt_runtime
= global_rt_runtime();
8516 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8518 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8522 #endif /* CONFIG_RT_GROUP_SCHED */
8524 int sched_rt_handler(struct ctl_table
*table
, int write
,
8525 void __user
*buffer
, size_t *lenp
,
8529 int old_period
, old_runtime
;
8530 static DEFINE_MUTEX(mutex
);
8533 old_period
= sysctl_sched_rt_period
;
8534 old_runtime
= sysctl_sched_rt_runtime
;
8536 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8538 if (!ret
&& write
) {
8539 ret
= sched_rt_global_constraints();
8541 sysctl_sched_rt_period
= old_period
;
8542 sysctl_sched_rt_runtime
= old_runtime
;
8544 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8545 def_rt_bandwidth
.rt_period
=
8546 ns_to_ktime(global_rt_period());
8549 mutex_unlock(&mutex
);
8554 #ifdef CONFIG_CGROUP_SCHED
8556 /* return corresponding task_group object of a cgroup */
8557 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8559 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8560 struct task_group
, css
);
8563 static struct cgroup_subsys_state
*
8564 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8566 struct task_group
*tg
, *parent
;
8568 if (!cgrp
->parent
) {
8569 /* This is early initialization for the top cgroup */
8570 return &init_task_group
.css
;
8573 parent
= cgroup_tg(cgrp
->parent
);
8574 tg
= sched_create_group(parent
);
8576 return ERR_PTR(-ENOMEM
);
8582 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8584 struct task_group
*tg
= cgroup_tg(cgrp
);
8586 sched_destroy_group(tg
);
8590 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8592 #ifdef CONFIG_RT_GROUP_SCHED
8593 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8596 /* We don't support RT-tasks being in separate groups */
8597 if (tsk
->sched_class
!= &fair_sched_class
)
8604 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8605 struct task_struct
*tsk
, bool threadgroup
)
8607 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8611 struct task_struct
*c
;
8613 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8614 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8626 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8627 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8630 sched_move_task(tsk
);
8632 struct task_struct
*c
;
8634 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8641 #ifdef CONFIG_FAIR_GROUP_SCHED
8642 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8645 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8648 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8650 struct task_group
*tg
= cgroup_tg(cgrp
);
8652 return (u64
) tg
->shares
;
8654 #endif /* CONFIG_FAIR_GROUP_SCHED */
8656 #ifdef CONFIG_RT_GROUP_SCHED
8657 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8660 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8663 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8665 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8668 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8671 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8674 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8676 return sched_group_rt_period(cgroup_tg(cgrp
));
8678 #endif /* CONFIG_RT_GROUP_SCHED */
8680 static struct cftype cpu_files
[] = {
8681 #ifdef CONFIG_FAIR_GROUP_SCHED
8684 .read_u64
= cpu_shares_read_u64
,
8685 .write_u64
= cpu_shares_write_u64
,
8688 #ifdef CONFIG_RT_GROUP_SCHED
8690 .name
= "rt_runtime_us",
8691 .read_s64
= cpu_rt_runtime_read
,
8692 .write_s64
= cpu_rt_runtime_write
,
8695 .name
= "rt_period_us",
8696 .read_u64
= cpu_rt_period_read_uint
,
8697 .write_u64
= cpu_rt_period_write_uint
,
8702 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8704 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8707 struct cgroup_subsys cpu_cgroup_subsys
= {
8709 .create
= cpu_cgroup_create
,
8710 .destroy
= cpu_cgroup_destroy
,
8711 .can_attach
= cpu_cgroup_can_attach
,
8712 .attach
= cpu_cgroup_attach
,
8713 .populate
= cpu_cgroup_populate
,
8714 .subsys_id
= cpu_cgroup_subsys_id
,
8718 #endif /* CONFIG_CGROUP_SCHED */
8720 #ifdef CONFIG_CGROUP_CPUACCT
8723 * CPU accounting code for task groups.
8725 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8726 * (balbir@in.ibm.com).
8729 /* track cpu usage of a group of tasks and its child groups */
8731 struct cgroup_subsys_state css
;
8732 /* cpuusage holds pointer to a u64-type object on every cpu */
8733 u64 __percpu
*cpuusage
;
8734 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8735 struct cpuacct
*parent
;
8738 struct cgroup_subsys cpuacct_subsys
;
8740 /* return cpu accounting group corresponding to this container */
8741 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8743 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8744 struct cpuacct
, css
);
8747 /* return cpu accounting group to which this task belongs */
8748 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8750 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8751 struct cpuacct
, css
);
8754 /* create a new cpu accounting group */
8755 static struct cgroup_subsys_state
*cpuacct_create(
8756 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8758 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8764 ca
->cpuusage
= alloc_percpu(u64
);
8768 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8769 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8770 goto out_free_counters
;
8773 ca
->parent
= cgroup_ca(cgrp
->parent
);
8779 percpu_counter_destroy(&ca
->cpustat
[i
]);
8780 free_percpu(ca
->cpuusage
);
8784 return ERR_PTR(-ENOMEM
);
8787 /* destroy an existing cpu accounting group */
8789 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8791 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8794 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8795 percpu_counter_destroy(&ca
->cpustat
[i
]);
8796 free_percpu(ca
->cpuusage
);
8800 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8802 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8805 #ifndef CONFIG_64BIT
8807 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8809 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8811 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8819 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8821 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8823 #ifndef CONFIG_64BIT
8825 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8827 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8829 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8835 /* return total cpu usage (in nanoseconds) of a group */
8836 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8838 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8839 u64 totalcpuusage
= 0;
8842 for_each_present_cpu(i
)
8843 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8845 return totalcpuusage
;
8848 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8851 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8860 for_each_present_cpu(i
)
8861 cpuacct_cpuusage_write(ca
, i
, 0);
8867 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8870 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8874 for_each_present_cpu(i
) {
8875 percpu
= cpuacct_cpuusage_read(ca
, i
);
8876 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8878 seq_printf(m
, "\n");
8882 static const char *cpuacct_stat_desc
[] = {
8883 [CPUACCT_STAT_USER
] = "user",
8884 [CPUACCT_STAT_SYSTEM
] = "system",
8887 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8888 struct cgroup_map_cb
*cb
)
8890 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8893 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8894 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8895 val
= cputime64_to_clock_t(val
);
8896 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
8901 static struct cftype files
[] = {
8904 .read_u64
= cpuusage_read
,
8905 .write_u64
= cpuusage_write
,
8908 .name
= "usage_percpu",
8909 .read_seq_string
= cpuacct_percpu_seq_read
,
8913 .read_map
= cpuacct_stats_show
,
8917 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8919 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8923 * charge this task's execution time to its accounting group.
8925 * called with rq->lock held.
8927 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8932 if (unlikely(!cpuacct_subsys
.active
))
8935 cpu
= task_cpu(tsk
);
8941 for (; ca
; ca
= ca
->parent
) {
8942 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8943 *cpuusage
+= cputime
;
8950 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8951 * in cputime_t units. As a result, cpuacct_update_stats calls
8952 * percpu_counter_add with values large enough to always overflow the
8953 * per cpu batch limit causing bad SMP scalability.
8955 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8956 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8957 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8960 #define CPUACCT_BATCH \
8961 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8963 #define CPUACCT_BATCH 0
8967 * Charge the system/user time to the task's accounting group.
8969 static void cpuacct_update_stats(struct task_struct
*tsk
,
8970 enum cpuacct_stat_index idx
, cputime_t val
)
8973 int batch
= CPUACCT_BATCH
;
8975 if (unlikely(!cpuacct_subsys
.active
))
8982 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
8988 struct cgroup_subsys cpuacct_subsys
= {
8990 .create
= cpuacct_create
,
8991 .destroy
= cpuacct_destroy
,
8992 .populate
= cpuacct_populate
,
8993 .subsys_id
= cpuacct_subsys_id
,
8995 #endif /* CONFIG_CGROUP_CPUACCT */
8999 void synchronize_sched_expedited(void)
9003 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9005 #else /* #ifndef CONFIG_SMP */
9007 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
9009 static int synchronize_sched_expedited_cpu_stop(void *data
)
9012 * There must be a full memory barrier on each affected CPU
9013 * between the time that try_stop_cpus() is called and the
9014 * time that it returns.
9016 * In the current initial implementation of cpu_stop, the
9017 * above condition is already met when the control reaches
9018 * this point and the following smp_mb() is not strictly
9019 * necessary. Do smp_mb() anyway for documentation and
9020 * robustness against future implementation changes.
9022 smp_mb(); /* See above comment block. */
9027 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9028 * approach to force grace period to end quickly. This consumes
9029 * significant time on all CPUs, and is thus not recommended for
9030 * any sort of common-case code.
9032 * Note that it is illegal to call this function while holding any
9033 * lock that is acquired by a CPU-hotplug notifier. Failing to
9034 * observe this restriction will result in deadlock.
9036 void synchronize_sched_expedited(void)
9038 int snap
, trycount
= 0;
9040 smp_mb(); /* ensure prior mod happens before capturing snap. */
9041 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
9043 while (try_stop_cpus(cpu_online_mask
,
9044 synchronize_sched_expedited_cpu_stop
,
9047 if (trycount
++ < 10)
9048 udelay(trycount
* num_online_cpus());
9050 synchronize_sched();
9053 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
9054 smp_mb(); /* ensure test happens before caller kfree */
9059 atomic_inc(&synchronize_sched_expedited_count
);
9060 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9063 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9065 #endif /* #else #ifndef CONFIG_SMP */