sched: Simplify the reacquire_kernel_lock() logic
[linux-2.6/cjktty.git] / kernel / sched.c
blobf37a9618fac38e6c23679efa51168f9800390886
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 if (!overrun)
169 break;
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 ktime_t now;
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
230 #endif
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
242 struct cfs_rq;
244 static LIST_HEAD(task_groups);
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
263 #endif
265 struct rcu_head rcu;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
287 #endif
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
317 u64 exec_clock;
318 u64 min_vruntime;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
348 #ifdef CONFIG_SMP
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
371 #endif
372 #endif
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
408 #ifdef CONFIG_SMP
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 #ifdef CONFIG_SMP
430 struct cpupri cpupri;
431 #endif
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
438 static struct root_domain def_root_domain;
440 #endif
443 * This is the main, per-CPU runqueue data structure.
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
449 struct rq {
450 /* runqueue lock: */
451 raw_spinlock_t lock;
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
457 unsigned long nr_running;
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
460 #ifdef CONFIG_NO_HZ
461 u64 nohz_stamp;
462 unsigned char in_nohz_recently;
463 #endif
464 unsigned int skip_clock_update;
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
468 unsigned long nr_load_updates;
469 u64 nr_switches;
471 struct cfs_rq cfs;
472 struct rt_rq rt;
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
477 #endif
478 #ifdef CONFIG_RT_GROUP_SCHED
479 struct list_head leaf_rt_rq_list;
480 #endif
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
488 unsigned long nr_uninterruptible;
490 struct task_struct *curr, *idle;
491 unsigned long next_balance;
492 struct mm_struct *prev_mm;
494 u64 clock;
496 atomic_t nr_iowait;
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
514 unsigned long avg_load_per_task;
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
522 /* calc_load related fields */
523 unsigned long calc_load_update;
524 long calc_load_active;
526 #ifdef CONFIG_SCHED_HRTICK
527 #ifdef CONFIG_SMP
528 int hrtick_csd_pending;
529 struct call_single_data hrtick_csd;
530 #endif
531 struct hrtimer hrtick_timer;
532 #endif
534 #ifdef CONFIG_SCHEDSTATS
535 /* latency stats */
536 struct sched_info rq_sched_info;
537 unsigned long long rq_cpu_time;
538 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
540 /* sys_sched_yield() stats */
541 unsigned int yld_count;
543 /* schedule() stats */
544 unsigned int sched_switch;
545 unsigned int sched_count;
546 unsigned int sched_goidle;
548 /* try_to_wake_up() stats */
549 unsigned int ttwu_count;
550 unsigned int ttwu_local;
552 /* BKL stats */
553 unsigned int bkl_count;
554 #endif
557 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559 static inline
560 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
562 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
565 * A queue event has occurred, and we're going to schedule. In
566 * this case, we can save a useless back to back clock update.
568 if (test_tsk_need_resched(p))
569 rq->skip_clock_update = 1;
572 static inline int cpu_of(struct rq *rq)
574 #ifdef CONFIG_SMP
575 return rq->cpu;
576 #else
577 return 0;
578 #endif
581 #define rcu_dereference_check_sched_domain(p) \
582 rcu_dereference_check((p), \
583 rcu_read_lock_sched_held() || \
584 lockdep_is_held(&sched_domains_mutex))
587 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
588 * See detach_destroy_domains: synchronize_sched for details.
590 * The domain tree of any CPU may only be accessed from within
591 * preempt-disabled sections.
593 #define for_each_domain(cpu, __sd) \
594 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
597 #define this_rq() (&__get_cpu_var(runqueues))
598 #define task_rq(p) cpu_rq(task_cpu(p))
599 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
600 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602 #ifdef CONFIG_CGROUP_SCHED
605 * Return the group to which this tasks belongs.
607 * We use task_subsys_state_check() and extend the RCU verification
608 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
609 * holds that lock for each task it moves into the cgroup. Therefore
610 * by holding that lock, we pin the task to the current cgroup.
612 static inline struct task_group *task_group(struct task_struct *p)
614 struct cgroup_subsys_state *css;
616 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
617 lockdep_is_held(&task_rq(p)->lock));
618 return container_of(css, struct task_group, css);
621 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
622 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624 #ifdef CONFIG_FAIR_GROUP_SCHED
625 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
626 p->se.parent = task_group(p)->se[cpu];
627 #endif
629 #ifdef CONFIG_RT_GROUP_SCHED
630 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
631 p->rt.parent = task_group(p)->rt_se[cpu];
632 #endif
635 #else /* CONFIG_CGROUP_SCHED */
637 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
638 static inline struct task_group *task_group(struct task_struct *p)
640 return NULL;
643 #endif /* CONFIG_CGROUP_SCHED */
645 inline void update_rq_clock(struct rq *rq)
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
656 #else
657 # define const_debug static const
658 #endif
661 * runqueue_is_locked
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu)
670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_show(struct seq_file *m, void *v)
708 int i;
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
715 seq_puts(m, "\n");
717 return 0;
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
729 if (cnt > 63)
730 cnt = 63;
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
735 buf[cnt] = 0;
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
754 if (!sched_feat_names[i])
755 return -EINVAL;
757 *ppos += cnt;
759 return cnt;
762 static int sched_feat_open(struct inode *inode, struct file *filp)
764 return single_open(filp, sched_feat_show, NULL);
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
775 static __init int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
780 return 0;
782 late_initcall(sched_init_debug);
784 #endif
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
806 unsigned int sysctl_sched_shares_thresh = 4;
809 * period over which we average the RT time consumption, measured
810 * in ms.
812 * default: 1s
814 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
820 unsigned int sysctl_sched_rt_period = 1000000;
822 static __read_mostly int scheduler_running;
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
828 int sysctl_sched_rt_runtime = 950000;
830 static inline u64 global_rt_period(void)
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 static inline u64 global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime < 0)
838 return RUNTIME_INF;
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
850 static inline int task_current(struct rq *rq, struct task_struct *p)
852 return rq->curr == p;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
858 return task_current(rq, p);
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878 raw_spin_unlock_irq(&rq->lock);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 #ifdef CONFIG_SMP
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq->lock);
903 #else
904 raw_spin_unlock(&rq->lock);
905 #endif
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 #ifdef CONFIG_SMP
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
929 static inline int task_is_waking(struct task_struct *p)
931 return unlikely(p->state == TASK_WAKING);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
941 struct rq *rq;
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
975 raw_spin_unlock(&rq->lock);
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
990 struct rq *rq;
992 local_irq_disable();
993 rq = this_rq();
994 raw_spin_lock(&rq->lock);
996 return rq;
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq *rq)
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 static void hrtick_clear(struct rq *rq)
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041 raw_spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 raw_spin_unlock(&rq->lock);
1046 return HRTIMER_NORESTART;
1049 #ifdef CONFIG_SMP
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg)
1055 struct rq *rq = arg;
1057 raw_spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 raw_spin_unlock(&rq->lock);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq *rq, u64 delay)
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073 hrtimer_set_expires(timer, time);
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1079 rq->hrtick_csd_pending = 1;
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086 int cpu = (int)(long)hcpu;
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1099 return NOTIFY_DONE;
1102 static __init void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick, 0);
1106 #else
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq *rq, u64 delay)
1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1115 HRTIMER_MODE_REL_PINNED, 0);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq *rq)
1125 #ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131 #endif
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1141 static inline void init_rq_hrtick(struct rq *rq)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1157 #ifdef CONFIG_SMP
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1163 static void resched_task(struct task_struct *p)
1165 int cpu;
1167 assert_raw_spin_locked(&task_rq(p)->lock);
1169 if (test_tsk_need_resched(p))
1170 return;
1172 set_tsk_need_resched(p);
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1184 static void resched_cpu(int cpu)
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
1195 #ifdef CONFIG_NO_HZ
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1206 void wake_up_idle_cpu(int cpu)
1208 struct rq *rq = cpu_rq(cpu);
1210 if (cpu == smp_processor_id())
1211 return;
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1220 if (rq->curr != rq->idle)
1221 return;
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1228 set_tsk_need_resched(rq->idle);
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1236 int nohz_ratelimit(int cpu)
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1241 rq->nohz_stamp = rq->clock;
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1246 #endif /* CONFIG_NO_HZ */
1248 static u64 sched_avg_period(void)
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 static void sched_avg_update(struct rq *rq)
1255 s64 period = sched_avg_period();
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 rq->age_stamp += period;
1259 rq->rt_avg /= 2;
1263 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265 rq->rt_avg += rt_delta;
1266 sched_avg_update(rq);
1269 #else /* !CONFIG_SMP */
1270 static void resched_task(struct task_struct *p)
1272 assert_raw_spin_locked(&task_rq(p)->lock);
1273 set_tsk_need_resched(p);
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 #endif /* CONFIG_SMP */
1281 #if BITS_PER_LONG == 32
1282 # define WMULT_CONST (~0UL)
1283 #else
1284 # define WMULT_CONST (1UL << 32)
1285 #endif
1287 #define WMULT_SHIFT 32
1290 * Shift right and round:
1292 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295 * delta *= weight / lw
1297 static unsigned long
1298 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1299 struct load_weight *lw)
1301 u64 tmp;
1303 if (!lw->inv_weight) {
1304 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1;
1306 else
1307 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1308 / (lw->weight+1);
1311 tmp = (u64)delta_exec * weight;
1313 * Check whether we'd overflow the 64-bit multiplication:
1315 if (unlikely(tmp > WMULT_CONST))
1316 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1317 WMULT_SHIFT/2);
1318 else
1319 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 lw->weight += inc;
1327 lw->inv_weight = 0;
1330 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 lw->weight -= dec;
1333 lw->inv_weight = 0;
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 * scaled version of the new time slice allocation that they receive on time
1342 * slice expiry etc.
1345 #define WEIGHT_IDLEPRIO 3
1346 #define WMULT_IDLEPRIO 1431655765
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
1360 static const int prio_to_weight[40] = {
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1378 static const u32 prio_to_wmult[40] = {
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 /* Time spent by the tasks of the cpu accounting group executing in ... */
1390 enum cpuacct_stat_index {
1391 CPUACCT_STAT_USER, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1394 CPUACCT_STAT_NSTATS,
1397 #ifdef CONFIG_CGROUP_CPUACCT
1398 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1399 static void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val);
1401 #else
1402 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1403 static inline void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val) {}
1405 #endif
1407 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_add(&rq->load, load);
1412 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1414 update_load_sub(&rq->load, load);
1417 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1418 typedef int (*tg_visitor)(struct task_group *, void *);
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1424 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1426 struct task_group *parent, *child;
1427 int ret;
1429 rcu_read_lock();
1430 parent = &root_task_group;
1431 down:
1432 ret = (*down)(parent, data);
1433 if (ret)
1434 goto out_unlock;
1435 list_for_each_entry_rcu(child, &parent->children, siblings) {
1436 parent = child;
1437 goto down;
1440 continue;
1442 ret = (*up)(parent, data);
1443 if (ret)
1444 goto out_unlock;
1446 child = parent;
1447 parent = parent->parent;
1448 if (parent)
1449 goto up;
1450 out_unlock:
1451 rcu_read_unlock();
1453 return ret;
1456 static int tg_nop(struct task_group *tg, void *data)
1458 return 0;
1460 #endif
1462 #ifdef CONFIG_SMP
1463 /* Used instead of source_load when we know the type == 0 */
1464 static unsigned long weighted_cpuload(const int cpu)
1466 return cpu_rq(cpu)->load.weight;
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1476 static unsigned long source_load(int cpu, int type)
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1484 return min(rq->cpu_load[type-1], total);
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 static unsigned long target_load(int cpu, int type)
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1499 return max(rq->cpu_load[type-1], total);
1502 static unsigned long power_of(int cpu)
1504 return cpu_rq(cpu)->cpu_power;
1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1509 static unsigned long cpu_avg_load_per_task(int cpu)
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1514 if (nr_running)
1515 rq->avg_load_per_task = rq->load.weight / nr_running;
1516 else
1517 rq->avg_load_per_task = 0;
1519 return rq->avg_load_per_task;
1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1524 static __read_mostly unsigned long __percpu *update_shares_data;
1526 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1529 * Calculate and set the cpu's group shares.
1531 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight,
1534 unsigned long *usd_rq_weight)
1536 unsigned long shares, rq_weight;
1537 int boost = 0;
1539 rq_weight = usd_rq_weight[cpu];
1540 if (!rq_weight) {
1541 boost = 1;
1542 rq_weight = NICE_0_LOAD;
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags;
1558 raw_spin_lock_irqsave(&rq->lock, flags);
1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1561 __set_se_shares(tg->se[cpu], shares);
1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
1571 static int tg_shares_up(struct task_group *tg, void *data)
1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1574 unsigned long *usd_rq_weight;
1575 struct sched_domain *sd = data;
1576 unsigned long flags;
1577 int i;
1579 if (!tg->se[0])
1580 return 0;
1582 local_irq_save(flags);
1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1585 for_each_cpu(i, sched_domain_span(sd)) {
1586 weight = tg->cfs_rq[i]->load.weight;
1587 usd_rq_weight[i] = weight;
1589 rq_weight += weight;
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1595 if (!weight)
1596 weight = NICE_0_LOAD;
1598 sum_weight += weight;
1599 shares += tg->cfs_rq[i]->shares;
1602 if (!rq_weight)
1603 rq_weight = sum_weight;
1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares;
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares;
1611 for_each_cpu(i, sched_domain_span(sd))
1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1614 local_irq_restore(flags);
1616 return 0;
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
1624 static int tg_load_down(struct task_group *tg, void *data)
1626 unsigned long load;
1627 long cpu = (long)data;
1629 if (!tg->parent) {
1630 load = cpu_rq(cpu)->load.weight;
1631 } else {
1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1637 tg->cfs_rq[cpu]->h_load = load;
1639 return 0;
1642 static void update_shares(struct sched_domain *sd)
1644 s64 elapsed;
1645 u64 now;
1647 if (root_task_group_empty())
1648 return;
1650 now = local_clock();
1651 elapsed = now - sd->last_update;
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now;
1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
1659 static void update_h_load(long cpu)
1661 if (root_task_group_empty())
1662 return;
1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1667 #else
1669 static inline void update_shares(struct sched_domain *sd)
1673 #endif
1675 #ifdef CONFIG_PREEMPT
1677 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
1687 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1692 raw_spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest);
1695 return 1;
1698 #else
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1706 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1711 int ret = 0;
1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) {
1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING);
1719 ret = 1;
1720 } else
1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING);
1724 return ret;
1727 #endif /* CONFIG_PREEMPT */
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq->lock);
1737 BUG_ON(1);
1740 return _double_lock_balance(this_rq, busiest);
1743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock)
1746 raw_spin_unlock(&busiest->lock);
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1751 * double_rq_lock - safely lock two runqueues
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1756 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else {
1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else {
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1776 * double_rq_unlock - safely unlock two runqueues
1778 * Note this does not restore interrupts like task_rq_unlock,
1779 * you need to do so manually after calling.
1781 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1782 __releases(rq1->lock)
1783 __releases(rq2->lock)
1785 raw_spin_unlock(&rq1->lock);
1786 if (rq1 != rq2)
1787 raw_spin_unlock(&rq2->lock);
1788 else
1789 __release(rq2->lock);
1792 #endif
1794 #ifdef CONFIG_FAIR_GROUP_SCHED
1795 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1797 #ifdef CONFIG_SMP
1798 cfs_rq->shares = shares;
1799 #endif
1801 #endif
1803 static void calc_load_account_idle(struct rq *this_rq);
1804 static void update_sysctl(void);
1805 static int get_update_sysctl_factor(void);
1807 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1809 set_task_rq(p, cpu);
1810 #ifdef CONFIG_SMP
1812 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1813 * successfuly executed on another CPU. We must ensure that updates of
1814 * per-task data have been completed by this moment.
1816 smp_wmb();
1817 task_thread_info(p)->cpu = cpu;
1818 #endif
1821 static const struct sched_class rt_sched_class;
1823 #define sched_class_highest (&rt_sched_class)
1824 #define for_each_class(class) \
1825 for (class = sched_class_highest; class; class = class->next)
1827 #include "sched_stats.h"
1829 static void inc_nr_running(struct rq *rq)
1831 rq->nr_running++;
1834 static void dec_nr_running(struct rq *rq)
1836 rq->nr_running--;
1839 static void set_load_weight(struct task_struct *p)
1841 if (task_has_rt_policy(p)) {
1842 p->se.load.weight = 0;
1843 p->se.load.inv_weight = WMULT_CONST;
1844 return;
1848 * SCHED_IDLE tasks get minimal weight:
1850 if (p->policy == SCHED_IDLE) {
1851 p->se.load.weight = WEIGHT_IDLEPRIO;
1852 p->se.load.inv_weight = WMULT_IDLEPRIO;
1853 return;
1856 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1857 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1862 update_rq_clock(rq);
1863 sched_info_queued(p);
1864 p->sched_class->enqueue_task(rq, p, flags);
1865 p->se.on_rq = 1;
1868 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1870 update_rq_clock(rq);
1871 sched_info_dequeued(p);
1872 p->sched_class->dequeue_task(rq, p, flags);
1873 p->se.on_rq = 0;
1877 * activate_task - move a task to the runqueue.
1879 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1881 if (task_contributes_to_load(p))
1882 rq->nr_uninterruptible--;
1884 enqueue_task(rq, p, flags);
1885 inc_nr_running(rq);
1889 * deactivate_task - remove a task from the runqueue.
1891 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1893 if (task_contributes_to_load(p))
1894 rq->nr_uninterruptible++;
1896 dequeue_task(rq, p, flags);
1897 dec_nr_running(rq);
1900 #include "sched_idletask.c"
1901 #include "sched_fair.c"
1902 #include "sched_rt.c"
1903 #ifdef CONFIG_SCHED_DEBUG
1904 # include "sched_debug.c"
1905 #endif
1908 * __normal_prio - return the priority that is based on the static prio
1910 static inline int __normal_prio(struct task_struct *p)
1912 return p->static_prio;
1916 * Calculate the expected normal priority: i.e. priority
1917 * without taking RT-inheritance into account. Might be
1918 * boosted by interactivity modifiers. Changes upon fork,
1919 * setprio syscalls, and whenever the interactivity
1920 * estimator recalculates.
1922 static inline int normal_prio(struct task_struct *p)
1924 int prio;
1926 if (task_has_rt_policy(p))
1927 prio = MAX_RT_PRIO-1 - p->rt_priority;
1928 else
1929 prio = __normal_prio(p);
1930 return prio;
1934 * Calculate the current priority, i.e. the priority
1935 * taken into account by the scheduler. This value might
1936 * be boosted by RT tasks, or might be boosted by
1937 * interactivity modifiers. Will be RT if the task got
1938 * RT-boosted. If not then it returns p->normal_prio.
1940 static int effective_prio(struct task_struct *p)
1942 p->normal_prio = normal_prio(p);
1944 * If we are RT tasks or we were boosted to RT priority,
1945 * keep the priority unchanged. Otherwise, update priority
1946 * to the normal priority:
1948 if (!rt_prio(p->prio))
1949 return p->normal_prio;
1950 return p->prio;
1954 * task_curr - is this task currently executing on a CPU?
1955 * @p: the task in question.
1957 inline int task_curr(const struct task_struct *p)
1959 return cpu_curr(task_cpu(p)) == p;
1962 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1963 const struct sched_class *prev_class,
1964 int oldprio, int running)
1966 if (prev_class != p->sched_class) {
1967 if (prev_class->switched_from)
1968 prev_class->switched_from(rq, p, running);
1969 p->sched_class->switched_to(rq, p, running);
1970 } else
1971 p->sched_class->prio_changed(rq, p, oldprio, running);
1974 #ifdef CONFIG_SMP
1976 * Is this task likely cache-hot:
1978 static int
1979 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1981 s64 delta;
1983 if (p->sched_class != &fair_sched_class)
1984 return 0;
1987 * Buddy candidates are cache hot:
1989 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1990 (&p->se == cfs_rq_of(&p->se)->next ||
1991 &p->se == cfs_rq_of(&p->se)->last))
1992 return 1;
1994 if (sysctl_sched_migration_cost == -1)
1995 return 1;
1996 if (sysctl_sched_migration_cost == 0)
1997 return 0;
1999 delta = now - p->se.exec_start;
2001 return delta < (s64)sysctl_sched_migration_cost;
2004 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2006 #ifdef CONFIG_SCHED_DEBUG
2008 * We should never call set_task_cpu() on a blocked task,
2009 * ttwu() will sort out the placement.
2011 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2012 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2013 #endif
2015 trace_sched_migrate_task(p, new_cpu);
2017 if (task_cpu(p) != new_cpu) {
2018 p->se.nr_migrations++;
2019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 __set_task_cpu(p, new_cpu);
2025 struct migration_arg {
2026 struct task_struct *task;
2027 int dest_cpu;
2030 static int migration_cpu_stop(void *data);
2033 * The task's runqueue lock must be held.
2034 * Returns true if you have to wait for migration thread.
2036 static bool migrate_task(struct task_struct *p, int dest_cpu)
2038 struct rq *rq = task_rq(p);
2041 * If the task is not on a runqueue (and not running), then
2042 * the next wake-up will properly place the task.
2044 return p->se.on_rq || task_running(rq, p);
2048 * wait_task_inactive - wait for a thread to unschedule.
2050 * If @match_state is nonzero, it's the @p->state value just checked and
2051 * not expected to change. If it changes, i.e. @p might have woken up,
2052 * then return zero. When we succeed in waiting for @p to be off its CPU,
2053 * we return a positive number (its total switch count). If a second call
2054 * a short while later returns the same number, the caller can be sure that
2055 * @p has remained unscheduled the whole time.
2057 * The caller must ensure that the task *will* unschedule sometime soon,
2058 * else this function might spin for a *long* time. This function can't
2059 * be called with interrupts off, or it may introduce deadlock with
2060 * smp_call_function() if an IPI is sent by the same process we are
2061 * waiting to become inactive.
2063 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2065 unsigned long flags;
2066 int running, on_rq;
2067 unsigned long ncsw;
2068 struct rq *rq;
2070 for (;;) {
2072 * We do the initial early heuristics without holding
2073 * any task-queue locks at all. We'll only try to get
2074 * the runqueue lock when things look like they will
2075 * work out!
2077 rq = task_rq(p);
2080 * If the task is actively running on another CPU
2081 * still, just relax and busy-wait without holding
2082 * any locks.
2084 * NOTE! Since we don't hold any locks, it's not
2085 * even sure that "rq" stays as the right runqueue!
2086 * But we don't care, since "task_running()" will
2087 * return false if the runqueue has changed and p
2088 * is actually now running somewhere else!
2090 while (task_running(rq, p)) {
2091 if (match_state && unlikely(p->state != match_state))
2092 return 0;
2093 cpu_relax();
2097 * Ok, time to look more closely! We need the rq
2098 * lock now, to be *sure*. If we're wrong, we'll
2099 * just go back and repeat.
2101 rq = task_rq_lock(p, &flags);
2102 trace_sched_wait_task(p);
2103 running = task_running(rq, p);
2104 on_rq = p->se.on_rq;
2105 ncsw = 0;
2106 if (!match_state || p->state == match_state)
2107 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2108 task_rq_unlock(rq, &flags);
2111 * If it changed from the expected state, bail out now.
2113 if (unlikely(!ncsw))
2114 break;
2117 * Was it really running after all now that we
2118 * checked with the proper locks actually held?
2120 * Oops. Go back and try again..
2122 if (unlikely(running)) {
2123 cpu_relax();
2124 continue;
2128 * It's not enough that it's not actively running,
2129 * it must be off the runqueue _entirely_, and not
2130 * preempted!
2132 * So if it was still runnable (but just not actively
2133 * running right now), it's preempted, and we should
2134 * yield - it could be a while.
2136 if (unlikely(on_rq)) {
2137 schedule_timeout_uninterruptible(1);
2138 continue;
2142 * Ahh, all good. It wasn't running, and it wasn't
2143 * runnable, which means that it will never become
2144 * running in the future either. We're all done!
2146 break;
2149 return ncsw;
2152 /***
2153 * kick_process - kick a running thread to enter/exit the kernel
2154 * @p: the to-be-kicked thread
2156 * Cause a process which is running on another CPU to enter
2157 * kernel-mode, without any delay. (to get signals handled.)
2159 * NOTE: this function doesnt have to take the runqueue lock,
2160 * because all it wants to ensure is that the remote task enters
2161 * the kernel. If the IPI races and the task has been migrated
2162 * to another CPU then no harm is done and the purpose has been
2163 * achieved as well.
2165 void kick_process(struct task_struct *p)
2167 int cpu;
2169 preempt_disable();
2170 cpu = task_cpu(p);
2171 if ((cpu != smp_processor_id()) && task_curr(p))
2172 smp_send_reschedule(cpu);
2173 preempt_enable();
2175 EXPORT_SYMBOL_GPL(kick_process);
2176 #endif /* CONFIG_SMP */
2179 * task_oncpu_function_call - call a function on the cpu on which a task runs
2180 * @p: the task to evaluate
2181 * @func: the function to be called
2182 * @info: the function call argument
2184 * Calls the function @func when the task is currently running. This might
2185 * be on the current CPU, which just calls the function directly
2187 void task_oncpu_function_call(struct task_struct *p,
2188 void (*func) (void *info), void *info)
2190 int cpu;
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if (task_curr(p))
2195 smp_call_function_single(cpu, func, info, 1);
2196 preempt_enable();
2199 #ifdef CONFIG_SMP
2201 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2203 static int select_fallback_rq(int cpu, struct task_struct *p)
2205 int dest_cpu;
2206 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2208 /* Look for allowed, online CPU in same node. */
2209 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2210 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2211 return dest_cpu;
2213 /* Any allowed, online CPU? */
2214 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2215 if (dest_cpu < nr_cpu_ids)
2216 return dest_cpu;
2218 /* No more Mr. Nice Guy. */
2219 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2220 dest_cpu = cpuset_cpus_allowed_fallback(p);
2222 * Don't tell them about moving exiting tasks or
2223 * kernel threads (both mm NULL), since they never
2224 * leave kernel.
2226 if (p->mm && printk_ratelimit()) {
2227 printk(KERN_INFO "process %d (%s) no "
2228 "longer affine to cpu%d\n",
2229 task_pid_nr(p), p->comm, cpu);
2233 return dest_cpu;
2237 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2239 static inline
2240 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2242 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2245 * In order not to call set_task_cpu() on a blocking task we need
2246 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2247 * cpu.
2249 * Since this is common to all placement strategies, this lives here.
2251 * [ this allows ->select_task() to simply return task_cpu(p) and
2252 * not worry about this generic constraint ]
2254 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2255 !cpu_online(cpu)))
2256 cpu = select_fallback_rq(task_cpu(p), p);
2258 return cpu;
2261 static void update_avg(u64 *avg, u64 sample)
2263 s64 diff = sample - *avg;
2264 *avg += diff >> 3;
2266 #endif
2268 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2269 bool is_sync, bool is_migrate, bool is_local,
2270 unsigned long en_flags)
2272 schedstat_inc(p, se.statistics.nr_wakeups);
2273 if (is_sync)
2274 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2275 if (is_migrate)
2276 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2277 if (is_local)
2278 schedstat_inc(p, se.statistics.nr_wakeups_local);
2279 else
2280 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2282 activate_task(rq, p, en_flags);
2285 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2286 int wake_flags, bool success)
2288 trace_sched_wakeup(p, success);
2289 check_preempt_curr(rq, p, wake_flags);
2291 p->state = TASK_RUNNING;
2292 #ifdef CONFIG_SMP
2293 if (p->sched_class->task_woken)
2294 p->sched_class->task_woken(rq, p);
2296 if (unlikely(rq->idle_stamp)) {
2297 u64 delta = rq->clock - rq->idle_stamp;
2298 u64 max = 2*sysctl_sched_migration_cost;
2300 if (delta > max)
2301 rq->avg_idle = max;
2302 else
2303 update_avg(&rq->avg_idle, delta);
2304 rq->idle_stamp = 0;
2306 #endif
2307 /* if a worker is waking up, notify workqueue */
2308 if ((p->flags & PF_WQ_WORKER) && success)
2309 wq_worker_waking_up(p, cpu_of(rq));
2313 * try_to_wake_up - wake up a thread
2314 * @p: the thread to be awakened
2315 * @state: the mask of task states that can be woken
2316 * @wake_flags: wake modifier flags (WF_*)
2318 * Put it on the run-queue if it's not already there. The "current"
2319 * thread is always on the run-queue (except when the actual
2320 * re-schedule is in progress), and as such you're allowed to do
2321 * the simpler "current->state = TASK_RUNNING" to mark yourself
2322 * runnable without the overhead of this.
2324 * Returns %true if @p was woken up, %false if it was already running
2325 * or @state didn't match @p's state.
2327 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2328 int wake_flags)
2330 int cpu, orig_cpu, this_cpu, success = 0;
2331 unsigned long flags;
2332 unsigned long en_flags = ENQUEUE_WAKEUP;
2333 struct rq *rq;
2335 this_cpu = get_cpu();
2337 smp_wmb();
2338 rq = task_rq_lock(p, &flags);
2339 if (!(p->state & state))
2340 goto out;
2342 if (p->se.on_rq)
2343 goto out_running;
2345 cpu = task_cpu(p);
2346 orig_cpu = cpu;
2348 #ifdef CONFIG_SMP
2349 if (unlikely(task_running(rq, p)))
2350 goto out_activate;
2353 * In order to handle concurrent wakeups and release the rq->lock
2354 * we put the task in TASK_WAKING state.
2356 * First fix up the nr_uninterruptible count:
2358 if (task_contributes_to_load(p)) {
2359 if (likely(cpu_online(orig_cpu)))
2360 rq->nr_uninterruptible--;
2361 else
2362 this_rq()->nr_uninterruptible--;
2364 p->state = TASK_WAKING;
2366 if (p->sched_class->task_waking) {
2367 p->sched_class->task_waking(rq, p);
2368 en_flags |= ENQUEUE_WAKING;
2371 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2372 if (cpu != orig_cpu)
2373 set_task_cpu(p, cpu);
2374 __task_rq_unlock(rq);
2376 rq = cpu_rq(cpu);
2377 raw_spin_lock(&rq->lock);
2380 * We migrated the task without holding either rq->lock, however
2381 * since the task is not on the task list itself, nobody else
2382 * will try and migrate the task, hence the rq should match the
2383 * cpu we just moved it to.
2385 WARN_ON(task_cpu(p) != cpu);
2386 WARN_ON(p->state != TASK_WAKING);
2388 #ifdef CONFIG_SCHEDSTATS
2389 schedstat_inc(rq, ttwu_count);
2390 if (cpu == this_cpu)
2391 schedstat_inc(rq, ttwu_local);
2392 else {
2393 struct sched_domain *sd;
2394 for_each_domain(this_cpu, sd) {
2395 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2396 schedstat_inc(sd, ttwu_wake_remote);
2397 break;
2401 #endif /* CONFIG_SCHEDSTATS */
2403 out_activate:
2404 #endif /* CONFIG_SMP */
2405 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2406 cpu == this_cpu, en_flags);
2407 success = 1;
2408 out_running:
2409 ttwu_post_activation(p, rq, wake_flags, success);
2410 out:
2411 task_rq_unlock(rq, &flags);
2412 put_cpu();
2414 return success;
2418 * try_to_wake_up_local - try to wake up a local task with rq lock held
2419 * @p: the thread to be awakened
2421 * Put @p on the run-queue if it's not alredy there. The caller must
2422 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2423 * the current task. this_rq() stays locked over invocation.
2425 static void try_to_wake_up_local(struct task_struct *p)
2427 struct rq *rq = task_rq(p);
2428 bool success = false;
2430 BUG_ON(rq != this_rq());
2431 BUG_ON(p == current);
2432 lockdep_assert_held(&rq->lock);
2434 if (!(p->state & TASK_NORMAL))
2435 return;
2437 if (!p->se.on_rq) {
2438 if (likely(!task_running(rq, p))) {
2439 schedstat_inc(rq, ttwu_count);
2440 schedstat_inc(rq, ttwu_local);
2442 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2443 success = true;
2445 ttwu_post_activation(p, rq, 0, success);
2449 * wake_up_process - Wake up a specific process
2450 * @p: The process to be woken up.
2452 * Attempt to wake up the nominated process and move it to the set of runnable
2453 * processes. Returns 1 if the process was woken up, 0 if it was already
2454 * running.
2456 * It may be assumed that this function implies a write memory barrier before
2457 * changing the task state if and only if any tasks are woken up.
2459 int wake_up_process(struct task_struct *p)
2461 return try_to_wake_up(p, TASK_ALL, 0);
2463 EXPORT_SYMBOL(wake_up_process);
2465 int wake_up_state(struct task_struct *p, unsigned int state)
2467 return try_to_wake_up(p, state, 0);
2471 * Perform scheduler related setup for a newly forked process p.
2472 * p is forked by current.
2474 * __sched_fork() is basic setup used by init_idle() too:
2476 static void __sched_fork(struct task_struct *p)
2478 p->se.exec_start = 0;
2479 p->se.sum_exec_runtime = 0;
2480 p->se.prev_sum_exec_runtime = 0;
2481 p->se.nr_migrations = 0;
2483 #ifdef CONFIG_SCHEDSTATS
2484 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2485 #endif
2487 INIT_LIST_HEAD(&p->rt.run_list);
2488 p->se.on_rq = 0;
2489 INIT_LIST_HEAD(&p->se.group_node);
2491 #ifdef CONFIG_PREEMPT_NOTIFIERS
2492 INIT_HLIST_HEAD(&p->preempt_notifiers);
2493 #endif
2497 * fork()/clone()-time setup:
2499 void sched_fork(struct task_struct *p, int clone_flags)
2501 int cpu = get_cpu();
2503 __sched_fork(p);
2505 * We mark the process as running here. This guarantees that
2506 * nobody will actually run it, and a signal or other external
2507 * event cannot wake it up and insert it on the runqueue either.
2509 p->state = TASK_RUNNING;
2512 * Revert to default priority/policy on fork if requested.
2514 if (unlikely(p->sched_reset_on_fork)) {
2515 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2516 p->policy = SCHED_NORMAL;
2517 p->normal_prio = p->static_prio;
2520 if (PRIO_TO_NICE(p->static_prio) < 0) {
2521 p->static_prio = NICE_TO_PRIO(0);
2522 p->normal_prio = p->static_prio;
2523 set_load_weight(p);
2527 * We don't need the reset flag anymore after the fork. It has
2528 * fulfilled its duty:
2530 p->sched_reset_on_fork = 0;
2534 * Make sure we do not leak PI boosting priority to the child.
2536 p->prio = current->normal_prio;
2538 if (!rt_prio(p->prio))
2539 p->sched_class = &fair_sched_class;
2541 if (p->sched_class->task_fork)
2542 p->sched_class->task_fork(p);
2544 set_task_cpu(p, cpu);
2546 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2547 if (likely(sched_info_on()))
2548 memset(&p->sched_info, 0, sizeof(p->sched_info));
2549 #endif
2550 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2551 p->oncpu = 0;
2552 #endif
2553 #ifdef CONFIG_PREEMPT
2554 /* Want to start with kernel preemption disabled. */
2555 task_thread_info(p)->preempt_count = 1;
2556 #endif
2557 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2559 put_cpu();
2563 * wake_up_new_task - wake up a newly created task for the first time.
2565 * This function will do some initial scheduler statistics housekeeping
2566 * that must be done for every newly created context, then puts the task
2567 * on the runqueue and wakes it.
2569 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2571 unsigned long flags;
2572 struct rq *rq;
2573 int cpu __maybe_unused = get_cpu();
2575 #ifdef CONFIG_SMP
2576 rq = task_rq_lock(p, &flags);
2577 p->state = TASK_WAKING;
2580 * Fork balancing, do it here and not earlier because:
2581 * - cpus_allowed can change in the fork path
2582 * - any previously selected cpu might disappear through hotplug
2584 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2585 * without people poking at ->cpus_allowed.
2587 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2588 set_task_cpu(p, cpu);
2590 p->state = TASK_RUNNING;
2591 task_rq_unlock(rq, &flags);
2592 #endif
2594 rq = task_rq_lock(p, &flags);
2595 activate_task(rq, p, 0);
2596 trace_sched_wakeup_new(p, 1);
2597 check_preempt_curr(rq, p, WF_FORK);
2598 #ifdef CONFIG_SMP
2599 if (p->sched_class->task_woken)
2600 p->sched_class->task_woken(rq, p);
2601 #endif
2602 task_rq_unlock(rq, &flags);
2603 put_cpu();
2606 #ifdef CONFIG_PREEMPT_NOTIFIERS
2609 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2610 * @notifier: notifier struct to register
2612 void preempt_notifier_register(struct preempt_notifier *notifier)
2614 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2616 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619 * preempt_notifier_unregister - no longer interested in preemption notifications
2620 * @notifier: notifier struct to unregister
2622 * This is safe to call from within a preemption notifier.
2624 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2626 hlist_del(&notifier->link);
2628 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2630 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2632 struct preempt_notifier *notifier;
2633 struct hlist_node *node;
2635 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2636 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2639 static void
2640 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2643 struct preempt_notifier *notifier;
2644 struct hlist_node *node;
2646 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_out(notifier, next);
2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2652 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2656 static void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2665 * prepare_task_switch - prepare to switch tasks
2666 * @rq: the runqueue preparing to switch
2667 * @prev: the current task that is being switched out
2668 * @next: the task we are going to switch to.
2670 * This is called with the rq lock held and interrupts off. It must
2671 * be paired with a subsequent finish_task_switch after the context
2672 * switch.
2674 * prepare_task_switch sets up locking and calls architecture specific
2675 * hooks.
2677 static inline void
2678 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 struct task_struct *next)
2681 fire_sched_out_preempt_notifiers(prev, next);
2682 prepare_lock_switch(rq, next);
2683 prepare_arch_switch(next);
2687 * finish_task_switch - clean up after a task-switch
2688 * @rq: runqueue associated with task-switch
2689 * @prev: the thread we just switched away from.
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
2696 * Note that we may have delayed dropping an mm in context_switch(). If
2697 * so, we finish that here outside of the runqueue lock. (Doing it
2698 * with the lock held can cause deadlocks; see schedule() for
2699 * details.)
2701 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2702 __releases(rq->lock)
2704 struct mm_struct *mm = rq->prev_mm;
2705 long prev_state;
2707 rq->prev_mm = NULL;
2710 * A task struct has one reference for the use as "current".
2711 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2712 * schedule one last time. The schedule call will never return, and
2713 * the scheduled task must drop that reference.
2714 * The test for TASK_DEAD must occur while the runqueue locks are
2715 * still held, otherwise prev could be scheduled on another cpu, die
2716 * there before we look at prev->state, and then the reference would
2717 * be dropped twice.
2718 * Manfred Spraul <manfred@colorfullife.com>
2720 prev_state = prev->state;
2721 finish_arch_switch(prev);
2722 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2723 local_irq_disable();
2724 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2725 perf_event_task_sched_in(current);
2726 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2727 local_irq_enable();
2728 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2729 finish_lock_switch(rq, prev);
2731 fire_sched_in_preempt_notifiers(current);
2732 if (mm)
2733 mmdrop(mm);
2734 if (unlikely(prev_state == TASK_DEAD)) {
2736 * Remove function-return probe instances associated with this
2737 * task and put them back on the free list.
2739 kprobe_flush_task(prev);
2740 put_task_struct(prev);
2744 #ifdef CONFIG_SMP
2746 /* assumes rq->lock is held */
2747 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2749 if (prev->sched_class->pre_schedule)
2750 prev->sched_class->pre_schedule(rq, prev);
2753 /* rq->lock is NOT held, but preemption is disabled */
2754 static inline void post_schedule(struct rq *rq)
2756 if (rq->post_schedule) {
2757 unsigned long flags;
2759 raw_spin_lock_irqsave(&rq->lock, flags);
2760 if (rq->curr->sched_class->post_schedule)
2761 rq->curr->sched_class->post_schedule(rq);
2762 raw_spin_unlock_irqrestore(&rq->lock, flags);
2764 rq->post_schedule = 0;
2768 #else
2770 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2774 static inline void post_schedule(struct rq *rq)
2778 #endif
2781 * schedule_tail - first thing a freshly forked thread must call.
2782 * @prev: the thread we just switched away from.
2784 asmlinkage void schedule_tail(struct task_struct *prev)
2785 __releases(rq->lock)
2787 struct rq *rq = this_rq();
2789 finish_task_switch(rq, prev);
2792 * FIXME: do we need to worry about rq being invalidated by the
2793 * task_switch?
2795 post_schedule(rq);
2797 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2798 /* In this case, finish_task_switch does not reenable preemption */
2799 preempt_enable();
2800 #endif
2801 if (current->set_child_tid)
2802 put_user(task_pid_vnr(current), current->set_child_tid);
2806 * context_switch - switch to the new MM and the new
2807 * thread's register state.
2809 static inline void
2810 context_switch(struct rq *rq, struct task_struct *prev,
2811 struct task_struct *next)
2813 struct mm_struct *mm, *oldmm;
2815 prepare_task_switch(rq, prev, next);
2816 trace_sched_switch(prev, next);
2817 mm = next->mm;
2818 oldmm = prev->active_mm;
2820 * For paravirt, this is coupled with an exit in switch_to to
2821 * combine the page table reload and the switch backend into
2822 * one hypercall.
2824 arch_start_context_switch(prev);
2826 if (likely(!mm)) {
2827 next->active_mm = oldmm;
2828 atomic_inc(&oldmm->mm_count);
2829 enter_lazy_tlb(oldmm, next);
2830 } else
2831 switch_mm(oldmm, mm, next);
2833 if (likely(!prev->mm)) {
2834 prev->active_mm = NULL;
2835 rq->prev_mm = oldmm;
2838 * Since the runqueue lock will be released by the next
2839 * task (which is an invalid locking op but in the case
2840 * of the scheduler it's an obvious special-case), so we
2841 * do an early lockdep release here:
2843 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2844 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2845 #endif
2847 /* Here we just switch the register state and the stack. */
2848 switch_to(prev, next, prev);
2850 barrier();
2852 * this_rq must be evaluated again because prev may have moved
2853 * CPUs since it called schedule(), thus the 'rq' on its stack
2854 * frame will be invalid.
2856 finish_task_switch(this_rq(), prev);
2860 * nr_running, nr_uninterruptible and nr_context_switches:
2862 * externally visible scheduler statistics: current number of runnable
2863 * threads, current number of uninterruptible-sleeping threads, total
2864 * number of context switches performed since bootup.
2866 unsigned long nr_running(void)
2868 unsigned long i, sum = 0;
2870 for_each_online_cpu(i)
2871 sum += cpu_rq(i)->nr_running;
2873 return sum;
2876 unsigned long nr_uninterruptible(void)
2878 unsigned long i, sum = 0;
2880 for_each_possible_cpu(i)
2881 sum += cpu_rq(i)->nr_uninterruptible;
2884 * Since we read the counters lockless, it might be slightly
2885 * inaccurate. Do not allow it to go below zero though:
2887 if (unlikely((long)sum < 0))
2888 sum = 0;
2890 return sum;
2893 unsigned long long nr_context_switches(void)
2895 int i;
2896 unsigned long long sum = 0;
2898 for_each_possible_cpu(i)
2899 sum += cpu_rq(i)->nr_switches;
2901 return sum;
2904 unsigned long nr_iowait(void)
2906 unsigned long i, sum = 0;
2908 for_each_possible_cpu(i)
2909 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2911 return sum;
2914 unsigned long nr_iowait_cpu(void)
2916 struct rq *this = this_rq();
2917 return atomic_read(&this->nr_iowait);
2920 unsigned long this_cpu_load(void)
2922 struct rq *this = this_rq();
2923 return this->cpu_load[0];
2927 /* Variables and functions for calc_load */
2928 static atomic_long_t calc_load_tasks;
2929 static unsigned long calc_load_update;
2930 unsigned long avenrun[3];
2931 EXPORT_SYMBOL(avenrun);
2933 static long calc_load_fold_active(struct rq *this_rq)
2935 long nr_active, delta = 0;
2937 nr_active = this_rq->nr_running;
2938 nr_active += (long) this_rq->nr_uninterruptible;
2940 if (nr_active != this_rq->calc_load_active) {
2941 delta = nr_active - this_rq->calc_load_active;
2942 this_rq->calc_load_active = nr_active;
2945 return delta;
2948 #ifdef CONFIG_NO_HZ
2950 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2952 * When making the ILB scale, we should try to pull this in as well.
2954 static atomic_long_t calc_load_tasks_idle;
2956 static void calc_load_account_idle(struct rq *this_rq)
2958 long delta;
2960 delta = calc_load_fold_active(this_rq);
2961 if (delta)
2962 atomic_long_add(delta, &calc_load_tasks_idle);
2965 static long calc_load_fold_idle(void)
2967 long delta = 0;
2970 * Its got a race, we don't care...
2972 if (atomic_long_read(&calc_load_tasks_idle))
2973 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2975 return delta;
2977 #else
2978 static void calc_load_account_idle(struct rq *this_rq)
2982 static inline long calc_load_fold_idle(void)
2984 return 0;
2986 #endif
2989 * get_avenrun - get the load average array
2990 * @loads: pointer to dest load array
2991 * @offset: offset to add
2992 * @shift: shift count to shift the result left
2994 * These values are estimates at best, so no need for locking.
2996 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2998 loads[0] = (avenrun[0] + offset) << shift;
2999 loads[1] = (avenrun[1] + offset) << shift;
3000 loads[2] = (avenrun[2] + offset) << shift;
3003 static unsigned long
3004 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3006 load *= exp;
3007 load += active * (FIXED_1 - exp);
3008 return load >> FSHIFT;
3012 * calc_load - update the avenrun load estimates 10 ticks after the
3013 * CPUs have updated calc_load_tasks.
3015 void calc_global_load(void)
3017 unsigned long upd = calc_load_update + 10;
3018 long active;
3020 if (time_before(jiffies, upd))
3021 return;
3023 active = atomic_long_read(&calc_load_tasks);
3024 active = active > 0 ? active * FIXED_1 : 0;
3026 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3027 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3028 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3030 calc_load_update += LOAD_FREQ;
3034 * Called from update_cpu_load() to periodically update this CPU's
3035 * active count.
3037 static void calc_load_account_active(struct rq *this_rq)
3039 long delta;
3041 if (time_before(jiffies, this_rq->calc_load_update))
3042 return;
3044 delta = calc_load_fold_active(this_rq);
3045 delta += calc_load_fold_idle();
3046 if (delta)
3047 atomic_long_add(delta, &calc_load_tasks);
3049 this_rq->calc_load_update += LOAD_FREQ;
3053 * Update rq->cpu_load[] statistics. This function is usually called every
3054 * scheduler tick (TICK_NSEC).
3056 static void update_cpu_load(struct rq *this_rq)
3058 unsigned long this_load = this_rq->load.weight;
3059 int i, scale;
3061 this_rq->nr_load_updates++;
3063 /* Update our load: */
3064 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3065 unsigned long old_load, new_load;
3067 /* scale is effectively 1 << i now, and >> i divides by scale */
3069 old_load = this_rq->cpu_load[i];
3070 new_load = this_load;
3072 * Round up the averaging division if load is increasing. This
3073 * prevents us from getting stuck on 9 if the load is 10, for
3074 * example.
3076 if (new_load > old_load)
3077 new_load += scale-1;
3078 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3081 calc_load_account_active(this_rq);
3084 #ifdef CONFIG_SMP
3087 * sched_exec - execve() is a valuable balancing opportunity, because at
3088 * this point the task has the smallest effective memory and cache footprint.
3090 void sched_exec(void)
3092 struct task_struct *p = current;
3093 unsigned long flags;
3094 struct rq *rq;
3095 int dest_cpu;
3097 rq = task_rq_lock(p, &flags);
3098 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3099 if (dest_cpu == smp_processor_id())
3100 goto unlock;
3103 * select_task_rq() can race against ->cpus_allowed
3105 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3106 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3107 struct migration_arg arg = { p, dest_cpu };
3109 task_rq_unlock(rq, &flags);
3110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3111 return;
3113 unlock:
3114 task_rq_unlock(rq, &flags);
3117 #endif
3119 DEFINE_PER_CPU(struct kernel_stat, kstat);
3121 EXPORT_PER_CPU_SYMBOL(kstat);
3124 * Return any ns on the sched_clock that have not yet been accounted in
3125 * @p in case that task is currently running.
3127 * Called with task_rq_lock() held on @rq.
3129 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3131 u64 ns = 0;
3133 if (task_current(rq, p)) {
3134 update_rq_clock(rq);
3135 ns = rq->clock - p->se.exec_start;
3136 if ((s64)ns < 0)
3137 ns = 0;
3140 return ns;
3143 unsigned long long task_delta_exec(struct task_struct *p)
3145 unsigned long flags;
3146 struct rq *rq;
3147 u64 ns = 0;
3149 rq = task_rq_lock(p, &flags);
3150 ns = do_task_delta_exec(p, rq);
3151 task_rq_unlock(rq, &flags);
3153 return ns;
3157 * Return accounted runtime for the task.
3158 * In case the task is currently running, return the runtime plus current's
3159 * pending runtime that have not been accounted yet.
3161 unsigned long long task_sched_runtime(struct task_struct *p)
3163 unsigned long flags;
3164 struct rq *rq;
3165 u64 ns = 0;
3167 rq = task_rq_lock(p, &flags);
3168 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3169 task_rq_unlock(rq, &flags);
3171 return ns;
3175 * Return sum_exec_runtime for the thread group.
3176 * In case the task is currently running, return the sum plus current's
3177 * pending runtime that have not been accounted yet.
3179 * Note that the thread group might have other running tasks as well,
3180 * so the return value not includes other pending runtime that other
3181 * running tasks might have.
3183 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3185 struct task_cputime totals;
3186 unsigned long flags;
3187 struct rq *rq;
3188 u64 ns;
3190 rq = task_rq_lock(p, &flags);
3191 thread_group_cputime(p, &totals);
3192 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3193 task_rq_unlock(rq, &flags);
3195 return ns;
3199 * Account user cpu time to a process.
3200 * @p: the process that the cpu time gets accounted to
3201 * @cputime: the cpu time spent in user space since the last update
3202 * @cputime_scaled: cputime scaled by cpu frequency
3204 void account_user_time(struct task_struct *p, cputime_t cputime,
3205 cputime_t cputime_scaled)
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3208 cputime64_t tmp;
3210 /* Add user time to process. */
3211 p->utime = cputime_add(p->utime, cputime);
3212 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3213 account_group_user_time(p, cputime);
3215 /* Add user time to cpustat. */
3216 tmp = cputime_to_cputime64(cputime);
3217 if (TASK_NICE(p) > 0)
3218 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3219 else
3220 cpustat->user = cputime64_add(cpustat->user, tmp);
3222 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3223 /* Account for user time used */
3224 acct_update_integrals(p);
3228 * Account guest cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @cputime: the cpu time spent in virtual machine since the last update
3231 * @cputime_scaled: cputime scaled by cpu frequency
3233 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3234 cputime_t cputime_scaled)
3236 cputime64_t tmp;
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3239 tmp = cputime_to_cputime64(cputime);
3241 /* Add guest time to process. */
3242 p->utime = cputime_add(p->utime, cputime);
3243 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3244 account_group_user_time(p, cputime);
3245 p->gtime = cputime_add(p->gtime, cputime);
3247 /* Add guest time to cpustat. */
3248 if (TASK_NICE(p) > 0) {
3249 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3250 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3251 } else {
3252 cpustat->user = cputime64_add(cpustat->user, tmp);
3253 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3258 * Account system cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @hardirq_offset: the offset to subtract from hardirq_count()
3261 * @cputime: the cpu time spent in kernel space since the last update
3262 * @cputime_scaled: cputime scaled by cpu frequency
3264 void account_system_time(struct task_struct *p, int hardirq_offset,
3265 cputime_t cputime, cputime_t cputime_scaled)
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268 cputime64_t tmp;
3270 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3271 account_guest_time(p, cputime, cputime_scaled);
3272 return;
3275 /* Add system time to process. */
3276 p->stime = cputime_add(p->stime, cputime);
3277 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3278 account_group_system_time(p, cputime);
3280 /* Add system time to cpustat. */
3281 tmp = cputime_to_cputime64(cputime);
3282 if (hardirq_count() - hardirq_offset)
3283 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3284 else if (softirq_count())
3285 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3286 else
3287 cpustat->system = cputime64_add(cpustat->system, tmp);
3289 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3291 /* Account for system time used */
3292 acct_update_integrals(p);
3296 * Account for involuntary wait time.
3297 * @steal: the cpu time spent in involuntary wait
3299 void account_steal_time(cputime_t cputime)
3301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3302 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3304 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3308 * Account for idle time.
3309 * @cputime: the cpu time spent in idle wait
3311 void account_idle_time(cputime_t cputime)
3313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3314 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3315 struct rq *rq = this_rq();
3317 if (atomic_read(&rq->nr_iowait) > 0)
3318 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3319 else
3320 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3323 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3326 * Account a single tick of cpu time.
3327 * @p: the process that the cpu time gets accounted to
3328 * @user_tick: indicates if the tick is a user or a system tick
3330 void account_process_tick(struct task_struct *p, int user_tick)
3332 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3333 struct rq *rq = this_rq();
3335 if (user_tick)
3336 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3337 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3338 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3339 one_jiffy_scaled);
3340 else
3341 account_idle_time(cputime_one_jiffy);
3345 * Account multiple ticks of steal time.
3346 * @p: the process from which the cpu time has been stolen
3347 * @ticks: number of stolen ticks
3349 void account_steal_ticks(unsigned long ticks)
3351 account_steal_time(jiffies_to_cputime(ticks));
3355 * Account multiple ticks of idle time.
3356 * @ticks: number of stolen ticks
3358 void account_idle_ticks(unsigned long ticks)
3360 account_idle_time(jiffies_to_cputime(ticks));
3363 #endif
3366 * Use precise platform statistics if available:
3368 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3369 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3371 *ut = p->utime;
3372 *st = p->stime;
3375 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3377 struct task_cputime cputime;
3379 thread_group_cputime(p, &cputime);
3381 *ut = cputime.utime;
3382 *st = cputime.stime;
3384 #else
3386 #ifndef nsecs_to_cputime
3387 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3388 #endif
3390 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3392 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3395 * Use CFS's precise accounting:
3397 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3399 if (total) {
3400 u64 temp;
3402 temp = (u64)(rtime * utime);
3403 do_div(temp, total);
3404 utime = (cputime_t)temp;
3405 } else
3406 utime = rtime;
3409 * Compare with previous values, to keep monotonicity:
3411 p->prev_utime = max(p->prev_utime, utime);
3412 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3414 *ut = p->prev_utime;
3415 *st = p->prev_stime;
3419 * Must be called with siglock held.
3421 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3423 struct signal_struct *sig = p->signal;
3424 struct task_cputime cputime;
3425 cputime_t rtime, utime, total;
3427 thread_group_cputime(p, &cputime);
3429 total = cputime_add(cputime.utime, cputime.stime);
3430 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3432 if (total) {
3433 u64 temp;
3435 temp = (u64)(rtime * cputime.utime);
3436 do_div(temp, total);
3437 utime = (cputime_t)temp;
3438 } else
3439 utime = rtime;
3441 sig->prev_utime = max(sig->prev_utime, utime);
3442 sig->prev_stime = max(sig->prev_stime,
3443 cputime_sub(rtime, sig->prev_utime));
3445 *ut = sig->prev_utime;
3446 *st = sig->prev_stime;
3448 #endif
3451 * This function gets called by the timer code, with HZ frequency.
3452 * We call it with interrupts disabled.
3454 * It also gets called by the fork code, when changing the parent's
3455 * timeslices.
3457 void scheduler_tick(void)
3459 int cpu = smp_processor_id();
3460 struct rq *rq = cpu_rq(cpu);
3461 struct task_struct *curr = rq->curr;
3463 sched_clock_tick();
3465 raw_spin_lock(&rq->lock);
3466 update_rq_clock(rq);
3467 update_cpu_load(rq);
3468 curr->sched_class->task_tick(rq, curr, 0);
3469 raw_spin_unlock(&rq->lock);
3471 perf_event_task_tick(curr);
3473 #ifdef CONFIG_SMP
3474 rq->idle_at_tick = idle_cpu(cpu);
3475 trigger_load_balance(rq, cpu);
3476 #endif
3479 notrace unsigned long get_parent_ip(unsigned long addr)
3481 if (in_lock_functions(addr)) {
3482 addr = CALLER_ADDR2;
3483 if (in_lock_functions(addr))
3484 addr = CALLER_ADDR3;
3486 return addr;
3489 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3490 defined(CONFIG_PREEMPT_TRACER))
3492 void __kprobes add_preempt_count(int val)
3494 #ifdef CONFIG_DEBUG_PREEMPT
3496 * Underflow?
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
3500 #endif
3501 preempt_count() += val;
3502 #ifdef CONFIG_DEBUG_PREEMPT
3504 * Spinlock count overflowing soon?
3506 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3507 PREEMPT_MASK - 10);
3508 #endif
3509 if (preempt_count() == val)
3510 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3512 EXPORT_SYMBOL(add_preempt_count);
3514 void __kprobes sub_preempt_count(int val)
3516 #ifdef CONFIG_DEBUG_PREEMPT
3518 * Underflow?
3520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3521 return;
3523 * Is the spinlock portion underflowing?
3525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3526 !(preempt_count() & PREEMPT_MASK)))
3527 return;
3528 #endif
3530 if (preempt_count() == val)
3531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3532 preempt_count() -= val;
3534 EXPORT_SYMBOL(sub_preempt_count);
3536 #endif
3539 * Print scheduling while atomic bug:
3541 static noinline void __schedule_bug(struct task_struct *prev)
3543 struct pt_regs *regs = get_irq_regs();
3545 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3546 prev->comm, prev->pid, preempt_count());
3548 debug_show_held_locks(prev);
3549 print_modules();
3550 if (irqs_disabled())
3551 print_irqtrace_events(prev);
3553 if (regs)
3554 show_regs(regs);
3555 else
3556 dump_stack();
3560 * Various schedule()-time debugging checks and statistics:
3562 static inline void schedule_debug(struct task_struct *prev)
3565 * Test if we are atomic. Since do_exit() needs to call into
3566 * schedule() atomically, we ignore that path for now.
3567 * Otherwise, whine if we are scheduling when we should not be.
3569 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3570 __schedule_bug(prev);
3572 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3574 schedstat_inc(this_rq(), sched_count);
3575 #ifdef CONFIG_SCHEDSTATS
3576 if (unlikely(prev->lock_depth >= 0)) {
3577 schedstat_inc(this_rq(), bkl_count);
3578 schedstat_inc(prev, sched_info.bkl_count);
3580 #endif
3583 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3585 if (prev->se.on_rq)
3586 update_rq_clock(rq);
3587 rq->skip_clock_update = 0;
3588 prev->sched_class->put_prev_task(rq, prev);
3592 * Pick up the highest-prio task:
3594 static inline struct task_struct *
3595 pick_next_task(struct rq *rq)
3597 const struct sched_class *class;
3598 struct task_struct *p;
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
3604 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3605 p = fair_sched_class.pick_next_task(rq);
3606 if (likely(p))
3607 return p;
3610 class = sched_class_highest;
3611 for ( ; ; ) {
3612 p = class->pick_next_task(rq);
3613 if (p)
3614 return p;
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3619 class = class->next;
3624 * schedule() is the main scheduler function.
3626 asmlinkage void __sched schedule(void)
3628 struct task_struct *prev, *next;
3629 unsigned long *switch_count;
3630 struct rq *rq;
3631 int cpu;
3633 need_resched:
3634 preempt_disable();
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
3637 rcu_note_context_switch(cpu);
3638 prev = rq->curr;
3640 release_kernel_lock(prev);
3641 need_resched_nonpreemptible:
3643 schedule_debug(prev);
3645 if (sched_feat(HRTICK))
3646 hrtick_clear(rq);
3648 raw_spin_lock_irq(&rq->lock);
3649 clear_tsk_need_resched(prev);
3651 switch_count = &prev->nivcsw;
3652 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3653 if (unlikely(signal_pending_state(prev->state, prev))) {
3654 prev->state = TASK_RUNNING;
3655 } else {
3657 * If a worker is going to sleep, notify and
3658 * ask workqueue whether it wants to wake up a
3659 * task to maintain concurrency. If so, wake
3660 * up the task.
3662 if (prev->flags & PF_WQ_WORKER) {
3663 struct task_struct *to_wakeup;
3665 to_wakeup = wq_worker_sleeping(prev, cpu);
3666 if (to_wakeup)
3667 try_to_wake_up_local(to_wakeup);
3669 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3671 switch_count = &prev->nvcsw;
3674 pre_schedule(rq, prev);
3676 if (unlikely(!rq->nr_running))
3677 idle_balance(cpu, rq);
3679 put_prev_task(rq, prev);
3680 next = pick_next_task(rq);
3682 if (likely(prev != next)) {
3683 sched_info_switch(prev, next);
3684 perf_event_task_sched_out(prev, next);
3686 rq->nr_switches++;
3687 rq->curr = next;
3688 ++*switch_count;
3690 context_switch(rq, prev, next); /* unlocks the rq */
3692 * The context switch have flipped the stack from under us
3693 * and restored the local variables which were saved when
3694 * this task called schedule() in the past. prev == current
3695 * is still correct, but it can be moved to another cpu/rq.
3697 cpu = smp_processor_id();
3698 rq = cpu_rq(cpu);
3699 } else
3700 raw_spin_unlock_irq(&rq->lock);
3702 post_schedule(rq);
3704 if (unlikely(reacquire_kernel_lock(prev)))
3705 goto need_resched_nonpreemptible;
3707 preempt_enable_no_resched();
3708 if (need_resched())
3709 goto need_resched;
3711 EXPORT_SYMBOL(schedule);
3713 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3715 * Look out! "owner" is an entirely speculative pointer
3716 * access and not reliable.
3718 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3720 unsigned int cpu;
3721 struct rq *rq;
3723 if (!sched_feat(OWNER_SPIN))
3724 return 0;
3726 #ifdef CONFIG_DEBUG_PAGEALLOC
3728 * Need to access the cpu field knowing that
3729 * DEBUG_PAGEALLOC could have unmapped it if
3730 * the mutex owner just released it and exited.
3732 if (probe_kernel_address(&owner->cpu, cpu))
3733 return 0;
3734 #else
3735 cpu = owner->cpu;
3736 #endif
3739 * Even if the access succeeded (likely case),
3740 * the cpu field may no longer be valid.
3742 if (cpu >= nr_cpumask_bits)
3743 return 0;
3746 * We need to validate that we can do a
3747 * get_cpu() and that we have the percpu area.
3749 if (!cpu_online(cpu))
3750 return 0;
3752 rq = cpu_rq(cpu);
3754 for (;;) {
3756 * Owner changed, break to re-assess state.
3758 if (lock->owner != owner)
3759 break;
3762 * Is that owner really running on that cpu?
3764 if (task_thread_info(rq->curr) != owner || need_resched())
3765 return 0;
3767 cpu_relax();
3770 return 1;
3772 #endif
3774 #ifdef CONFIG_PREEMPT
3776 * this is the entry point to schedule() from in-kernel preemption
3777 * off of preempt_enable. Kernel preemptions off return from interrupt
3778 * occur there and call schedule directly.
3780 asmlinkage void __sched preempt_schedule(void)
3782 struct thread_info *ti = current_thread_info();
3785 * If there is a non-zero preempt_count or interrupts are disabled,
3786 * we do not want to preempt the current task. Just return..
3788 if (likely(ti->preempt_count || irqs_disabled()))
3789 return;
3791 do {
3792 add_preempt_count(PREEMPT_ACTIVE);
3793 schedule();
3794 sub_preempt_count(PREEMPT_ACTIVE);
3797 * Check again in case we missed a preemption opportunity
3798 * between schedule and now.
3800 barrier();
3801 } while (need_resched());
3803 EXPORT_SYMBOL(preempt_schedule);
3806 * this is the entry point to schedule() from kernel preemption
3807 * off of irq context.
3808 * Note, that this is called and return with irqs disabled. This will
3809 * protect us against recursive calling from irq.
3811 asmlinkage void __sched preempt_schedule_irq(void)
3813 struct thread_info *ti = current_thread_info();
3815 /* Catch callers which need to be fixed */
3816 BUG_ON(ti->preempt_count || !irqs_disabled());
3818 do {
3819 add_preempt_count(PREEMPT_ACTIVE);
3820 local_irq_enable();
3821 schedule();
3822 local_irq_disable();
3823 sub_preempt_count(PREEMPT_ACTIVE);
3826 * Check again in case we missed a preemption opportunity
3827 * between schedule and now.
3829 barrier();
3830 } while (need_resched());
3833 #endif /* CONFIG_PREEMPT */
3835 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3836 void *key)
3838 return try_to_wake_up(curr->private, mode, wake_flags);
3840 EXPORT_SYMBOL(default_wake_function);
3843 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3844 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3845 * number) then we wake all the non-exclusive tasks and one exclusive task.
3847 * There are circumstances in which we can try to wake a task which has already
3848 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3849 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3851 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3852 int nr_exclusive, int wake_flags, void *key)
3854 wait_queue_t *curr, *next;
3856 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3857 unsigned flags = curr->flags;
3859 if (curr->func(curr, mode, wake_flags, key) &&
3860 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3861 break;
3866 * __wake_up - wake up threads blocked on a waitqueue.
3867 * @q: the waitqueue
3868 * @mode: which threads
3869 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3870 * @key: is directly passed to the wakeup function
3872 * It may be assumed that this function implies a write memory barrier before
3873 * changing the task state if and only if any tasks are woken up.
3875 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3876 int nr_exclusive, void *key)
3878 unsigned long flags;
3880 spin_lock_irqsave(&q->lock, flags);
3881 __wake_up_common(q, mode, nr_exclusive, 0, key);
3882 spin_unlock_irqrestore(&q->lock, flags);
3884 EXPORT_SYMBOL(__wake_up);
3887 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3889 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3891 __wake_up_common(q, mode, 1, 0, NULL);
3893 EXPORT_SYMBOL_GPL(__wake_up_locked);
3895 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3897 __wake_up_common(q, mode, 1, 0, key);
3901 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3902 * @q: the waitqueue
3903 * @mode: which threads
3904 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3905 * @key: opaque value to be passed to wakeup targets
3907 * The sync wakeup differs that the waker knows that it will schedule
3908 * away soon, so while the target thread will be woken up, it will not
3909 * be migrated to another CPU - ie. the two threads are 'synchronized'
3910 * with each other. This can prevent needless bouncing between CPUs.
3912 * On UP it can prevent extra preemption.
3914 * It may be assumed that this function implies a write memory barrier before
3915 * changing the task state if and only if any tasks are woken up.
3917 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3918 int nr_exclusive, void *key)
3920 unsigned long flags;
3921 int wake_flags = WF_SYNC;
3923 if (unlikely(!q))
3924 return;
3926 if (unlikely(!nr_exclusive))
3927 wake_flags = 0;
3929 spin_lock_irqsave(&q->lock, flags);
3930 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3931 spin_unlock_irqrestore(&q->lock, flags);
3933 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3936 * __wake_up_sync - see __wake_up_sync_key()
3938 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3940 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3942 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3945 * complete: - signals a single thread waiting on this completion
3946 * @x: holds the state of this particular completion
3948 * This will wake up a single thread waiting on this completion. Threads will be
3949 * awakened in the same order in which they were queued.
3951 * See also complete_all(), wait_for_completion() and related routines.
3953 * It may be assumed that this function implies a write memory barrier before
3954 * changing the task state if and only if any tasks are woken up.
3956 void complete(struct completion *x)
3958 unsigned long flags;
3960 spin_lock_irqsave(&x->wait.lock, flags);
3961 x->done++;
3962 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3963 spin_unlock_irqrestore(&x->wait.lock, flags);
3965 EXPORT_SYMBOL(complete);
3968 * complete_all: - signals all threads waiting on this completion
3969 * @x: holds the state of this particular completion
3971 * This will wake up all threads waiting on this particular completion event.
3973 * It may be assumed that this function implies a write memory barrier before
3974 * changing the task state if and only if any tasks are woken up.
3976 void complete_all(struct completion *x)
3978 unsigned long flags;
3980 spin_lock_irqsave(&x->wait.lock, flags);
3981 x->done += UINT_MAX/2;
3982 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3983 spin_unlock_irqrestore(&x->wait.lock, flags);
3985 EXPORT_SYMBOL(complete_all);
3987 static inline long __sched
3988 do_wait_for_common(struct completion *x, long timeout, int state)
3990 if (!x->done) {
3991 DECLARE_WAITQUEUE(wait, current);
3993 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3994 do {
3995 if (signal_pending_state(state, current)) {
3996 timeout = -ERESTARTSYS;
3997 break;
3999 __set_current_state(state);
4000 spin_unlock_irq(&x->wait.lock);
4001 timeout = schedule_timeout(timeout);
4002 spin_lock_irq(&x->wait.lock);
4003 } while (!x->done && timeout);
4004 __remove_wait_queue(&x->wait, &wait);
4005 if (!x->done)
4006 return timeout;
4008 x->done--;
4009 return timeout ?: 1;
4012 static long __sched
4013 wait_for_common(struct completion *x, long timeout, int state)
4015 might_sleep();
4017 spin_lock_irq(&x->wait.lock);
4018 timeout = do_wait_for_common(x, timeout, state);
4019 spin_unlock_irq(&x->wait.lock);
4020 return timeout;
4024 * wait_for_completion: - waits for completion of a task
4025 * @x: holds the state of this particular completion
4027 * This waits to be signaled for completion of a specific task. It is NOT
4028 * interruptible and there is no timeout.
4030 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4031 * and interrupt capability. Also see complete().
4033 void __sched wait_for_completion(struct completion *x)
4035 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4037 EXPORT_SYMBOL(wait_for_completion);
4040 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4041 * @x: holds the state of this particular completion
4042 * @timeout: timeout value in jiffies
4044 * This waits for either a completion of a specific task to be signaled or for a
4045 * specified timeout to expire. The timeout is in jiffies. It is not
4046 * interruptible.
4048 unsigned long __sched
4049 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4051 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4053 EXPORT_SYMBOL(wait_for_completion_timeout);
4056 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4057 * @x: holds the state of this particular completion
4059 * This waits for completion of a specific task to be signaled. It is
4060 * interruptible.
4062 int __sched wait_for_completion_interruptible(struct completion *x)
4064 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4065 if (t == -ERESTARTSYS)
4066 return t;
4067 return 0;
4069 EXPORT_SYMBOL(wait_for_completion_interruptible);
4072 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4073 * @x: holds the state of this particular completion
4074 * @timeout: timeout value in jiffies
4076 * This waits for either a completion of a specific task to be signaled or for a
4077 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4079 unsigned long __sched
4080 wait_for_completion_interruptible_timeout(struct completion *x,
4081 unsigned long timeout)
4083 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4085 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4088 * wait_for_completion_killable: - waits for completion of a task (killable)
4089 * @x: holds the state of this particular completion
4091 * This waits to be signaled for completion of a specific task. It can be
4092 * interrupted by a kill signal.
4094 int __sched wait_for_completion_killable(struct completion *x)
4096 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4097 if (t == -ERESTARTSYS)
4098 return t;
4099 return 0;
4101 EXPORT_SYMBOL(wait_for_completion_killable);
4104 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4105 * @x: holds the state of this particular completion
4106 * @timeout: timeout value in jiffies
4108 * This waits for either a completion of a specific task to be
4109 * signaled or for a specified timeout to expire. It can be
4110 * interrupted by a kill signal. The timeout is in jiffies.
4112 unsigned long __sched
4113 wait_for_completion_killable_timeout(struct completion *x,
4114 unsigned long timeout)
4116 return wait_for_common(x, timeout, TASK_KILLABLE);
4118 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4121 * try_wait_for_completion - try to decrement a completion without blocking
4122 * @x: completion structure
4124 * Returns: 0 if a decrement cannot be done without blocking
4125 * 1 if a decrement succeeded.
4127 * If a completion is being used as a counting completion,
4128 * attempt to decrement the counter without blocking. This
4129 * enables us to avoid waiting if the resource the completion
4130 * is protecting is not available.
4132 bool try_wait_for_completion(struct completion *x)
4134 unsigned long flags;
4135 int ret = 1;
4137 spin_lock_irqsave(&x->wait.lock, flags);
4138 if (!x->done)
4139 ret = 0;
4140 else
4141 x->done--;
4142 spin_unlock_irqrestore(&x->wait.lock, flags);
4143 return ret;
4145 EXPORT_SYMBOL(try_wait_for_completion);
4148 * completion_done - Test to see if a completion has any waiters
4149 * @x: completion structure
4151 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4152 * 1 if there are no waiters.
4155 bool completion_done(struct completion *x)
4157 unsigned long flags;
4158 int ret = 1;
4160 spin_lock_irqsave(&x->wait.lock, flags);
4161 if (!x->done)
4162 ret = 0;
4163 spin_unlock_irqrestore(&x->wait.lock, flags);
4164 return ret;
4166 EXPORT_SYMBOL(completion_done);
4168 static long __sched
4169 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4171 unsigned long flags;
4172 wait_queue_t wait;
4174 init_waitqueue_entry(&wait, current);
4176 __set_current_state(state);
4178 spin_lock_irqsave(&q->lock, flags);
4179 __add_wait_queue(q, &wait);
4180 spin_unlock(&q->lock);
4181 timeout = schedule_timeout(timeout);
4182 spin_lock_irq(&q->lock);
4183 __remove_wait_queue(q, &wait);
4184 spin_unlock_irqrestore(&q->lock, flags);
4186 return timeout;
4189 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4191 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4193 EXPORT_SYMBOL(interruptible_sleep_on);
4195 long __sched
4196 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4198 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4200 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4202 void __sched sleep_on(wait_queue_head_t *q)
4204 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4206 EXPORT_SYMBOL(sleep_on);
4208 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4210 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4212 EXPORT_SYMBOL(sleep_on_timeout);
4214 #ifdef CONFIG_RT_MUTEXES
4217 * rt_mutex_setprio - set the current priority of a task
4218 * @p: task
4219 * @prio: prio value (kernel-internal form)
4221 * This function changes the 'effective' priority of a task. It does
4222 * not touch ->normal_prio like __setscheduler().
4224 * Used by the rt_mutex code to implement priority inheritance logic.
4226 void rt_mutex_setprio(struct task_struct *p, int prio)
4228 unsigned long flags;
4229 int oldprio, on_rq, running;
4230 struct rq *rq;
4231 const struct sched_class *prev_class;
4233 BUG_ON(prio < 0 || prio > MAX_PRIO);
4235 rq = task_rq_lock(p, &flags);
4237 oldprio = p->prio;
4238 prev_class = p->sched_class;
4239 on_rq = p->se.on_rq;
4240 running = task_current(rq, p);
4241 if (on_rq)
4242 dequeue_task(rq, p, 0);
4243 if (running)
4244 p->sched_class->put_prev_task(rq, p);
4246 if (rt_prio(prio))
4247 p->sched_class = &rt_sched_class;
4248 else
4249 p->sched_class = &fair_sched_class;
4251 p->prio = prio;
4253 if (running)
4254 p->sched_class->set_curr_task(rq);
4255 if (on_rq) {
4256 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4258 check_class_changed(rq, p, prev_class, oldprio, running);
4260 task_rq_unlock(rq, &flags);
4263 #endif
4265 void set_user_nice(struct task_struct *p, long nice)
4267 int old_prio, delta, on_rq;
4268 unsigned long flags;
4269 struct rq *rq;
4271 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4272 return;
4274 * We have to be careful, if called from sys_setpriority(),
4275 * the task might be in the middle of scheduling on another CPU.
4277 rq = task_rq_lock(p, &flags);
4279 * The RT priorities are set via sched_setscheduler(), but we still
4280 * allow the 'normal' nice value to be set - but as expected
4281 * it wont have any effect on scheduling until the task is
4282 * SCHED_FIFO/SCHED_RR:
4284 if (task_has_rt_policy(p)) {
4285 p->static_prio = NICE_TO_PRIO(nice);
4286 goto out_unlock;
4288 on_rq = p->se.on_rq;
4289 if (on_rq)
4290 dequeue_task(rq, p, 0);
4292 p->static_prio = NICE_TO_PRIO(nice);
4293 set_load_weight(p);
4294 old_prio = p->prio;
4295 p->prio = effective_prio(p);
4296 delta = p->prio - old_prio;
4298 if (on_rq) {
4299 enqueue_task(rq, p, 0);
4301 * If the task increased its priority or is running and
4302 * lowered its priority, then reschedule its CPU:
4304 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4305 resched_task(rq->curr);
4307 out_unlock:
4308 task_rq_unlock(rq, &flags);
4310 EXPORT_SYMBOL(set_user_nice);
4313 * can_nice - check if a task can reduce its nice value
4314 * @p: task
4315 * @nice: nice value
4317 int can_nice(const struct task_struct *p, const int nice)
4319 /* convert nice value [19,-20] to rlimit style value [1,40] */
4320 int nice_rlim = 20 - nice;
4322 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4323 capable(CAP_SYS_NICE));
4326 #ifdef __ARCH_WANT_SYS_NICE
4329 * sys_nice - change the priority of the current process.
4330 * @increment: priority increment
4332 * sys_setpriority is a more generic, but much slower function that
4333 * does similar things.
4335 SYSCALL_DEFINE1(nice, int, increment)
4337 long nice, retval;
4340 * Setpriority might change our priority at the same moment.
4341 * We don't have to worry. Conceptually one call occurs first
4342 * and we have a single winner.
4344 if (increment < -40)
4345 increment = -40;
4346 if (increment > 40)
4347 increment = 40;
4349 nice = TASK_NICE(current) + increment;
4350 if (nice < -20)
4351 nice = -20;
4352 if (nice > 19)
4353 nice = 19;
4355 if (increment < 0 && !can_nice(current, nice))
4356 return -EPERM;
4358 retval = security_task_setnice(current, nice);
4359 if (retval)
4360 return retval;
4362 set_user_nice(current, nice);
4363 return 0;
4366 #endif
4369 * task_prio - return the priority value of a given task.
4370 * @p: the task in question.
4372 * This is the priority value as seen by users in /proc.
4373 * RT tasks are offset by -200. Normal tasks are centered
4374 * around 0, value goes from -16 to +15.
4376 int task_prio(const struct task_struct *p)
4378 return p->prio - MAX_RT_PRIO;
4382 * task_nice - return the nice value of a given task.
4383 * @p: the task in question.
4385 int task_nice(const struct task_struct *p)
4387 return TASK_NICE(p);
4389 EXPORT_SYMBOL(task_nice);
4392 * idle_cpu - is a given cpu idle currently?
4393 * @cpu: the processor in question.
4395 int idle_cpu(int cpu)
4397 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4401 * idle_task - return the idle task for a given cpu.
4402 * @cpu: the processor in question.
4404 struct task_struct *idle_task(int cpu)
4406 return cpu_rq(cpu)->idle;
4410 * find_process_by_pid - find a process with a matching PID value.
4411 * @pid: the pid in question.
4413 static struct task_struct *find_process_by_pid(pid_t pid)
4415 return pid ? find_task_by_vpid(pid) : current;
4418 /* Actually do priority change: must hold rq lock. */
4419 static void
4420 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4422 BUG_ON(p->se.on_rq);
4424 p->policy = policy;
4425 p->rt_priority = prio;
4426 p->normal_prio = normal_prio(p);
4427 /* we are holding p->pi_lock already */
4428 p->prio = rt_mutex_getprio(p);
4429 if (rt_prio(p->prio))
4430 p->sched_class = &rt_sched_class;
4431 else
4432 p->sched_class = &fair_sched_class;
4433 set_load_weight(p);
4437 * check the target process has a UID that matches the current process's
4439 static bool check_same_owner(struct task_struct *p)
4441 const struct cred *cred = current_cred(), *pcred;
4442 bool match;
4444 rcu_read_lock();
4445 pcred = __task_cred(p);
4446 match = (cred->euid == pcred->euid ||
4447 cred->euid == pcred->uid);
4448 rcu_read_unlock();
4449 return match;
4452 static int __sched_setscheduler(struct task_struct *p, int policy,
4453 struct sched_param *param, bool user)
4455 int retval, oldprio, oldpolicy = -1, on_rq, running;
4456 unsigned long flags;
4457 const struct sched_class *prev_class;
4458 struct rq *rq;
4459 int reset_on_fork;
4461 /* may grab non-irq protected spin_locks */
4462 BUG_ON(in_interrupt());
4463 recheck:
4464 /* double check policy once rq lock held */
4465 if (policy < 0) {
4466 reset_on_fork = p->sched_reset_on_fork;
4467 policy = oldpolicy = p->policy;
4468 } else {
4469 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4470 policy &= ~SCHED_RESET_ON_FORK;
4472 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4473 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4474 policy != SCHED_IDLE)
4475 return -EINVAL;
4479 * Valid priorities for SCHED_FIFO and SCHED_RR are
4480 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4481 * SCHED_BATCH and SCHED_IDLE is 0.
4483 if (param->sched_priority < 0 ||
4484 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4485 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4486 return -EINVAL;
4487 if (rt_policy(policy) != (param->sched_priority != 0))
4488 return -EINVAL;
4491 * Allow unprivileged RT tasks to decrease priority:
4493 if (user && !capable(CAP_SYS_NICE)) {
4494 if (rt_policy(policy)) {
4495 unsigned long rlim_rtprio;
4497 if (!lock_task_sighand(p, &flags))
4498 return -ESRCH;
4499 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4500 unlock_task_sighand(p, &flags);
4502 /* can't set/change the rt policy */
4503 if (policy != p->policy && !rlim_rtprio)
4504 return -EPERM;
4506 /* can't increase priority */
4507 if (param->sched_priority > p->rt_priority &&
4508 param->sched_priority > rlim_rtprio)
4509 return -EPERM;
4512 * Like positive nice levels, dont allow tasks to
4513 * move out of SCHED_IDLE either:
4515 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4516 return -EPERM;
4518 /* can't change other user's priorities */
4519 if (!check_same_owner(p))
4520 return -EPERM;
4522 /* Normal users shall not reset the sched_reset_on_fork flag */
4523 if (p->sched_reset_on_fork && !reset_on_fork)
4524 return -EPERM;
4527 if (user) {
4528 retval = security_task_setscheduler(p, policy, param);
4529 if (retval)
4530 return retval;
4534 * make sure no PI-waiters arrive (or leave) while we are
4535 * changing the priority of the task:
4537 raw_spin_lock_irqsave(&p->pi_lock, flags);
4539 * To be able to change p->policy safely, the apropriate
4540 * runqueue lock must be held.
4542 rq = __task_rq_lock(p);
4544 #ifdef CONFIG_RT_GROUP_SCHED
4545 if (user) {
4547 * Do not allow realtime tasks into groups that have no runtime
4548 * assigned.
4550 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4551 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4552 __task_rq_unlock(rq);
4553 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4554 return -EPERM;
4557 #endif
4559 /* recheck policy now with rq lock held */
4560 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4561 policy = oldpolicy = -1;
4562 __task_rq_unlock(rq);
4563 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4564 goto recheck;
4566 on_rq = p->se.on_rq;
4567 running = task_current(rq, p);
4568 if (on_rq)
4569 deactivate_task(rq, p, 0);
4570 if (running)
4571 p->sched_class->put_prev_task(rq, p);
4573 p->sched_reset_on_fork = reset_on_fork;
4575 oldprio = p->prio;
4576 prev_class = p->sched_class;
4577 __setscheduler(rq, p, policy, param->sched_priority);
4579 if (running)
4580 p->sched_class->set_curr_task(rq);
4581 if (on_rq) {
4582 activate_task(rq, p, 0);
4584 check_class_changed(rq, p, prev_class, oldprio, running);
4586 __task_rq_unlock(rq);
4587 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4589 rt_mutex_adjust_pi(p);
4591 return 0;
4595 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4596 * @p: the task in question.
4597 * @policy: new policy.
4598 * @param: structure containing the new RT priority.
4600 * NOTE that the task may be already dead.
4602 int sched_setscheduler(struct task_struct *p, int policy,
4603 struct sched_param *param)
4605 return __sched_setscheduler(p, policy, param, true);
4607 EXPORT_SYMBOL_GPL(sched_setscheduler);
4610 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4611 * @p: the task in question.
4612 * @policy: new policy.
4613 * @param: structure containing the new RT priority.
4615 * Just like sched_setscheduler, only don't bother checking if the
4616 * current context has permission. For example, this is needed in
4617 * stop_machine(): we create temporary high priority worker threads,
4618 * but our caller might not have that capability.
4620 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4621 struct sched_param *param)
4623 return __sched_setscheduler(p, policy, param, false);
4626 static int
4627 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4629 struct sched_param lparam;
4630 struct task_struct *p;
4631 int retval;
4633 if (!param || pid < 0)
4634 return -EINVAL;
4635 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4636 return -EFAULT;
4638 rcu_read_lock();
4639 retval = -ESRCH;
4640 p = find_process_by_pid(pid);
4641 if (p != NULL)
4642 retval = sched_setscheduler(p, policy, &lparam);
4643 rcu_read_unlock();
4645 return retval;
4649 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4650 * @pid: the pid in question.
4651 * @policy: new policy.
4652 * @param: structure containing the new RT priority.
4654 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4655 struct sched_param __user *, param)
4657 /* negative values for policy are not valid */
4658 if (policy < 0)
4659 return -EINVAL;
4661 return do_sched_setscheduler(pid, policy, param);
4665 * sys_sched_setparam - set/change the RT priority of a thread
4666 * @pid: the pid in question.
4667 * @param: structure containing the new RT priority.
4669 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4671 return do_sched_setscheduler(pid, -1, param);
4675 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4676 * @pid: the pid in question.
4678 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4680 struct task_struct *p;
4681 int retval;
4683 if (pid < 0)
4684 return -EINVAL;
4686 retval = -ESRCH;
4687 rcu_read_lock();
4688 p = find_process_by_pid(pid);
4689 if (p) {
4690 retval = security_task_getscheduler(p);
4691 if (!retval)
4692 retval = p->policy
4693 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4695 rcu_read_unlock();
4696 return retval;
4700 * sys_sched_getparam - get the RT priority of a thread
4701 * @pid: the pid in question.
4702 * @param: structure containing the RT priority.
4704 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4706 struct sched_param lp;
4707 struct task_struct *p;
4708 int retval;
4710 if (!param || pid < 0)
4711 return -EINVAL;
4713 rcu_read_lock();
4714 p = find_process_by_pid(pid);
4715 retval = -ESRCH;
4716 if (!p)
4717 goto out_unlock;
4719 retval = security_task_getscheduler(p);
4720 if (retval)
4721 goto out_unlock;
4723 lp.sched_priority = p->rt_priority;
4724 rcu_read_unlock();
4727 * This one might sleep, we cannot do it with a spinlock held ...
4729 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4731 return retval;
4733 out_unlock:
4734 rcu_read_unlock();
4735 return retval;
4738 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4740 cpumask_var_t cpus_allowed, new_mask;
4741 struct task_struct *p;
4742 int retval;
4744 get_online_cpus();
4745 rcu_read_lock();
4747 p = find_process_by_pid(pid);
4748 if (!p) {
4749 rcu_read_unlock();
4750 put_online_cpus();
4751 return -ESRCH;
4754 /* Prevent p going away */
4755 get_task_struct(p);
4756 rcu_read_unlock();
4758 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4759 retval = -ENOMEM;
4760 goto out_put_task;
4762 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4763 retval = -ENOMEM;
4764 goto out_free_cpus_allowed;
4766 retval = -EPERM;
4767 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4768 goto out_unlock;
4770 retval = security_task_setscheduler(p, 0, NULL);
4771 if (retval)
4772 goto out_unlock;
4774 cpuset_cpus_allowed(p, cpus_allowed);
4775 cpumask_and(new_mask, in_mask, cpus_allowed);
4776 again:
4777 retval = set_cpus_allowed_ptr(p, new_mask);
4779 if (!retval) {
4780 cpuset_cpus_allowed(p, cpus_allowed);
4781 if (!cpumask_subset(new_mask, cpus_allowed)) {
4783 * We must have raced with a concurrent cpuset
4784 * update. Just reset the cpus_allowed to the
4785 * cpuset's cpus_allowed
4787 cpumask_copy(new_mask, cpus_allowed);
4788 goto again;
4791 out_unlock:
4792 free_cpumask_var(new_mask);
4793 out_free_cpus_allowed:
4794 free_cpumask_var(cpus_allowed);
4795 out_put_task:
4796 put_task_struct(p);
4797 put_online_cpus();
4798 return retval;
4801 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4802 struct cpumask *new_mask)
4804 if (len < cpumask_size())
4805 cpumask_clear(new_mask);
4806 else if (len > cpumask_size())
4807 len = cpumask_size();
4809 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4813 * sys_sched_setaffinity - set the cpu affinity of a process
4814 * @pid: pid of the process
4815 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4816 * @user_mask_ptr: user-space pointer to the new cpu mask
4818 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4819 unsigned long __user *, user_mask_ptr)
4821 cpumask_var_t new_mask;
4822 int retval;
4824 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4825 return -ENOMEM;
4827 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4828 if (retval == 0)
4829 retval = sched_setaffinity(pid, new_mask);
4830 free_cpumask_var(new_mask);
4831 return retval;
4834 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4836 struct task_struct *p;
4837 unsigned long flags;
4838 struct rq *rq;
4839 int retval;
4841 get_online_cpus();
4842 rcu_read_lock();
4844 retval = -ESRCH;
4845 p = find_process_by_pid(pid);
4846 if (!p)
4847 goto out_unlock;
4849 retval = security_task_getscheduler(p);
4850 if (retval)
4851 goto out_unlock;
4853 rq = task_rq_lock(p, &flags);
4854 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4855 task_rq_unlock(rq, &flags);
4857 out_unlock:
4858 rcu_read_unlock();
4859 put_online_cpus();
4861 return retval;
4865 * sys_sched_getaffinity - get the cpu affinity of a process
4866 * @pid: pid of the process
4867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4870 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4871 unsigned long __user *, user_mask_ptr)
4873 int ret;
4874 cpumask_var_t mask;
4876 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4877 return -EINVAL;
4878 if (len & (sizeof(unsigned long)-1))
4879 return -EINVAL;
4881 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4882 return -ENOMEM;
4884 ret = sched_getaffinity(pid, mask);
4885 if (ret == 0) {
4886 size_t retlen = min_t(size_t, len, cpumask_size());
4888 if (copy_to_user(user_mask_ptr, mask, retlen))
4889 ret = -EFAULT;
4890 else
4891 ret = retlen;
4893 free_cpumask_var(mask);
4895 return ret;
4899 * sys_sched_yield - yield the current processor to other threads.
4901 * This function yields the current CPU to other tasks. If there are no
4902 * other threads running on this CPU then this function will return.
4904 SYSCALL_DEFINE0(sched_yield)
4906 struct rq *rq = this_rq_lock();
4908 schedstat_inc(rq, yld_count);
4909 current->sched_class->yield_task(rq);
4912 * Since we are going to call schedule() anyway, there's
4913 * no need to preempt or enable interrupts:
4915 __release(rq->lock);
4916 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4917 do_raw_spin_unlock(&rq->lock);
4918 preempt_enable_no_resched();
4920 schedule();
4922 return 0;
4925 static inline int should_resched(void)
4927 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4930 static void __cond_resched(void)
4932 add_preempt_count(PREEMPT_ACTIVE);
4933 schedule();
4934 sub_preempt_count(PREEMPT_ACTIVE);
4937 int __sched _cond_resched(void)
4939 if (should_resched()) {
4940 __cond_resched();
4941 return 1;
4943 return 0;
4945 EXPORT_SYMBOL(_cond_resched);
4948 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4949 * call schedule, and on return reacquire the lock.
4951 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4952 * operations here to prevent schedule() from being called twice (once via
4953 * spin_unlock(), once by hand).
4955 int __cond_resched_lock(spinlock_t *lock)
4957 int resched = should_resched();
4958 int ret = 0;
4960 lockdep_assert_held(lock);
4962 if (spin_needbreak(lock) || resched) {
4963 spin_unlock(lock);
4964 if (resched)
4965 __cond_resched();
4966 else
4967 cpu_relax();
4968 ret = 1;
4969 spin_lock(lock);
4971 return ret;
4973 EXPORT_SYMBOL(__cond_resched_lock);
4975 int __sched __cond_resched_softirq(void)
4977 BUG_ON(!in_softirq());
4979 if (should_resched()) {
4980 local_bh_enable();
4981 __cond_resched();
4982 local_bh_disable();
4983 return 1;
4985 return 0;
4987 EXPORT_SYMBOL(__cond_resched_softirq);
4990 * yield - yield the current processor to other threads.
4992 * This is a shortcut for kernel-space yielding - it marks the
4993 * thread runnable and calls sys_sched_yield().
4995 void __sched yield(void)
4997 set_current_state(TASK_RUNNING);
4998 sys_sched_yield();
5000 EXPORT_SYMBOL(yield);
5003 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5004 * that process accounting knows that this is a task in IO wait state.
5006 void __sched io_schedule(void)
5008 struct rq *rq = raw_rq();
5010 delayacct_blkio_start();
5011 atomic_inc(&rq->nr_iowait);
5012 current->in_iowait = 1;
5013 schedule();
5014 current->in_iowait = 0;
5015 atomic_dec(&rq->nr_iowait);
5016 delayacct_blkio_end();
5018 EXPORT_SYMBOL(io_schedule);
5020 long __sched io_schedule_timeout(long timeout)
5022 struct rq *rq = raw_rq();
5023 long ret;
5025 delayacct_blkio_start();
5026 atomic_inc(&rq->nr_iowait);
5027 current->in_iowait = 1;
5028 ret = schedule_timeout(timeout);
5029 current->in_iowait = 0;
5030 atomic_dec(&rq->nr_iowait);
5031 delayacct_blkio_end();
5032 return ret;
5036 * sys_sched_get_priority_max - return maximum RT priority.
5037 * @policy: scheduling class.
5039 * this syscall returns the maximum rt_priority that can be used
5040 * by a given scheduling class.
5042 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5044 int ret = -EINVAL;
5046 switch (policy) {
5047 case SCHED_FIFO:
5048 case SCHED_RR:
5049 ret = MAX_USER_RT_PRIO-1;
5050 break;
5051 case SCHED_NORMAL:
5052 case SCHED_BATCH:
5053 case SCHED_IDLE:
5054 ret = 0;
5055 break;
5057 return ret;
5061 * sys_sched_get_priority_min - return minimum RT priority.
5062 * @policy: scheduling class.
5064 * this syscall returns the minimum rt_priority that can be used
5065 * by a given scheduling class.
5067 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5069 int ret = -EINVAL;
5071 switch (policy) {
5072 case SCHED_FIFO:
5073 case SCHED_RR:
5074 ret = 1;
5075 break;
5076 case SCHED_NORMAL:
5077 case SCHED_BATCH:
5078 case SCHED_IDLE:
5079 ret = 0;
5081 return ret;
5085 * sys_sched_rr_get_interval - return the default timeslice of a process.
5086 * @pid: pid of the process.
5087 * @interval: userspace pointer to the timeslice value.
5089 * this syscall writes the default timeslice value of a given process
5090 * into the user-space timespec buffer. A value of '0' means infinity.
5092 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5093 struct timespec __user *, interval)
5095 struct task_struct *p;
5096 unsigned int time_slice;
5097 unsigned long flags;
5098 struct rq *rq;
5099 int retval;
5100 struct timespec t;
5102 if (pid < 0)
5103 return -EINVAL;
5105 retval = -ESRCH;
5106 rcu_read_lock();
5107 p = find_process_by_pid(pid);
5108 if (!p)
5109 goto out_unlock;
5111 retval = security_task_getscheduler(p);
5112 if (retval)
5113 goto out_unlock;
5115 rq = task_rq_lock(p, &flags);
5116 time_slice = p->sched_class->get_rr_interval(rq, p);
5117 task_rq_unlock(rq, &flags);
5119 rcu_read_unlock();
5120 jiffies_to_timespec(time_slice, &t);
5121 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5122 return retval;
5124 out_unlock:
5125 rcu_read_unlock();
5126 return retval;
5129 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5131 void sched_show_task(struct task_struct *p)
5133 unsigned long free = 0;
5134 unsigned state;
5136 state = p->state ? __ffs(p->state) + 1 : 0;
5137 printk(KERN_INFO "%-13.13s %c", p->comm,
5138 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5139 #if BITS_PER_LONG == 32
5140 if (state == TASK_RUNNING)
5141 printk(KERN_CONT " running ");
5142 else
5143 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5144 #else
5145 if (state == TASK_RUNNING)
5146 printk(KERN_CONT " running task ");
5147 else
5148 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5149 #endif
5150 #ifdef CONFIG_DEBUG_STACK_USAGE
5151 free = stack_not_used(p);
5152 #endif
5153 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5154 task_pid_nr(p), task_pid_nr(p->real_parent),
5155 (unsigned long)task_thread_info(p)->flags);
5157 show_stack(p, NULL);
5160 void show_state_filter(unsigned long state_filter)
5162 struct task_struct *g, *p;
5164 #if BITS_PER_LONG == 32
5165 printk(KERN_INFO
5166 " task PC stack pid father\n");
5167 #else
5168 printk(KERN_INFO
5169 " task PC stack pid father\n");
5170 #endif
5171 read_lock(&tasklist_lock);
5172 do_each_thread(g, p) {
5174 * reset the NMI-timeout, listing all files on a slow
5175 * console might take alot of time:
5177 touch_nmi_watchdog();
5178 if (!state_filter || (p->state & state_filter))
5179 sched_show_task(p);
5180 } while_each_thread(g, p);
5182 touch_all_softlockup_watchdogs();
5184 #ifdef CONFIG_SCHED_DEBUG
5185 sysrq_sched_debug_show();
5186 #endif
5187 read_unlock(&tasklist_lock);
5189 * Only show locks if all tasks are dumped:
5191 if (!state_filter)
5192 debug_show_all_locks();
5195 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5197 idle->sched_class = &idle_sched_class;
5201 * init_idle - set up an idle thread for a given CPU
5202 * @idle: task in question
5203 * @cpu: cpu the idle task belongs to
5205 * NOTE: this function does not set the idle thread's NEED_RESCHED
5206 * flag, to make booting more robust.
5208 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5210 struct rq *rq = cpu_rq(cpu);
5211 unsigned long flags;
5213 raw_spin_lock_irqsave(&rq->lock, flags);
5215 __sched_fork(idle);
5216 idle->state = TASK_RUNNING;
5217 idle->se.exec_start = sched_clock();
5219 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5220 __set_task_cpu(idle, cpu);
5222 rq->curr = rq->idle = idle;
5223 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5224 idle->oncpu = 1;
5225 #endif
5226 raw_spin_unlock_irqrestore(&rq->lock, flags);
5228 /* Set the preempt count _outside_ the spinlocks! */
5229 #if defined(CONFIG_PREEMPT)
5230 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5231 #else
5232 task_thread_info(idle)->preempt_count = 0;
5233 #endif
5235 * The idle tasks have their own, simple scheduling class:
5237 idle->sched_class = &idle_sched_class;
5238 ftrace_graph_init_task(idle);
5242 * In a system that switches off the HZ timer nohz_cpu_mask
5243 * indicates which cpus entered this state. This is used
5244 * in the rcu update to wait only for active cpus. For system
5245 * which do not switch off the HZ timer nohz_cpu_mask should
5246 * always be CPU_BITS_NONE.
5248 cpumask_var_t nohz_cpu_mask;
5251 * Increase the granularity value when there are more CPUs,
5252 * because with more CPUs the 'effective latency' as visible
5253 * to users decreases. But the relationship is not linear,
5254 * so pick a second-best guess by going with the log2 of the
5255 * number of CPUs.
5257 * This idea comes from the SD scheduler of Con Kolivas:
5259 static int get_update_sysctl_factor(void)
5261 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5262 unsigned int factor;
5264 switch (sysctl_sched_tunable_scaling) {
5265 case SCHED_TUNABLESCALING_NONE:
5266 factor = 1;
5267 break;
5268 case SCHED_TUNABLESCALING_LINEAR:
5269 factor = cpus;
5270 break;
5271 case SCHED_TUNABLESCALING_LOG:
5272 default:
5273 factor = 1 + ilog2(cpus);
5274 break;
5277 return factor;
5280 static void update_sysctl(void)
5282 unsigned int factor = get_update_sysctl_factor();
5284 #define SET_SYSCTL(name) \
5285 (sysctl_##name = (factor) * normalized_sysctl_##name)
5286 SET_SYSCTL(sched_min_granularity);
5287 SET_SYSCTL(sched_latency);
5288 SET_SYSCTL(sched_wakeup_granularity);
5289 SET_SYSCTL(sched_shares_ratelimit);
5290 #undef SET_SYSCTL
5293 static inline void sched_init_granularity(void)
5295 update_sysctl();
5298 #ifdef CONFIG_SMP
5300 * This is how migration works:
5302 * 1) we invoke migration_cpu_stop() on the target CPU using
5303 * stop_one_cpu().
5304 * 2) stopper starts to run (implicitly forcing the migrated thread
5305 * off the CPU)
5306 * 3) it checks whether the migrated task is still in the wrong runqueue.
5307 * 4) if it's in the wrong runqueue then the migration thread removes
5308 * it and puts it into the right queue.
5309 * 5) stopper completes and stop_one_cpu() returns and the migration
5310 * is done.
5314 * Change a given task's CPU affinity. Migrate the thread to a
5315 * proper CPU and schedule it away if the CPU it's executing on
5316 * is removed from the allowed bitmask.
5318 * NOTE: the caller must have a valid reference to the task, the
5319 * task must not exit() & deallocate itself prematurely. The
5320 * call is not atomic; no spinlocks may be held.
5322 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5324 unsigned long flags;
5325 struct rq *rq;
5326 unsigned int dest_cpu;
5327 int ret = 0;
5330 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5331 * drop the rq->lock and still rely on ->cpus_allowed.
5333 again:
5334 while (task_is_waking(p))
5335 cpu_relax();
5336 rq = task_rq_lock(p, &flags);
5337 if (task_is_waking(p)) {
5338 task_rq_unlock(rq, &flags);
5339 goto again;
5342 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5343 ret = -EINVAL;
5344 goto out;
5347 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5348 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5349 ret = -EINVAL;
5350 goto out;
5353 if (p->sched_class->set_cpus_allowed)
5354 p->sched_class->set_cpus_allowed(p, new_mask);
5355 else {
5356 cpumask_copy(&p->cpus_allowed, new_mask);
5357 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5360 /* Can the task run on the task's current CPU? If so, we're done */
5361 if (cpumask_test_cpu(task_cpu(p), new_mask))
5362 goto out;
5364 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5365 if (migrate_task(p, dest_cpu)) {
5366 struct migration_arg arg = { p, dest_cpu };
5367 /* Need help from migration thread: drop lock and wait. */
5368 task_rq_unlock(rq, &flags);
5369 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5370 tlb_migrate_finish(p->mm);
5371 return 0;
5373 out:
5374 task_rq_unlock(rq, &flags);
5376 return ret;
5378 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5381 * Move (not current) task off this cpu, onto dest cpu. We're doing
5382 * this because either it can't run here any more (set_cpus_allowed()
5383 * away from this CPU, or CPU going down), or because we're
5384 * attempting to rebalance this task on exec (sched_exec).
5386 * So we race with normal scheduler movements, but that's OK, as long
5387 * as the task is no longer on this CPU.
5389 * Returns non-zero if task was successfully migrated.
5391 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5393 struct rq *rq_dest, *rq_src;
5394 int ret = 0;
5396 if (unlikely(!cpu_active(dest_cpu)))
5397 return ret;
5399 rq_src = cpu_rq(src_cpu);
5400 rq_dest = cpu_rq(dest_cpu);
5402 double_rq_lock(rq_src, rq_dest);
5403 /* Already moved. */
5404 if (task_cpu(p) != src_cpu)
5405 goto done;
5406 /* Affinity changed (again). */
5407 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5408 goto fail;
5411 * If we're not on a rq, the next wake-up will ensure we're
5412 * placed properly.
5414 if (p->se.on_rq) {
5415 deactivate_task(rq_src, p, 0);
5416 set_task_cpu(p, dest_cpu);
5417 activate_task(rq_dest, p, 0);
5418 check_preempt_curr(rq_dest, p, 0);
5420 done:
5421 ret = 1;
5422 fail:
5423 double_rq_unlock(rq_src, rq_dest);
5424 return ret;
5428 * migration_cpu_stop - this will be executed by a highprio stopper thread
5429 * and performs thread migration by bumping thread off CPU then
5430 * 'pushing' onto another runqueue.
5432 static int migration_cpu_stop(void *data)
5434 struct migration_arg *arg = data;
5437 * The original target cpu might have gone down and we might
5438 * be on another cpu but it doesn't matter.
5440 local_irq_disable();
5441 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5442 local_irq_enable();
5443 return 0;
5446 #ifdef CONFIG_HOTPLUG_CPU
5448 * Figure out where task on dead CPU should go, use force if necessary.
5450 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5452 struct rq *rq = cpu_rq(dead_cpu);
5453 int needs_cpu, uninitialized_var(dest_cpu);
5454 unsigned long flags;
5456 local_irq_save(flags);
5458 raw_spin_lock(&rq->lock);
5459 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5460 if (needs_cpu)
5461 dest_cpu = select_fallback_rq(dead_cpu, p);
5462 raw_spin_unlock(&rq->lock);
5464 * It can only fail if we race with set_cpus_allowed(),
5465 * in the racer should migrate the task anyway.
5467 if (needs_cpu)
5468 __migrate_task(p, dead_cpu, dest_cpu);
5469 local_irq_restore(flags);
5473 * While a dead CPU has no uninterruptible tasks queued at this point,
5474 * it might still have a nonzero ->nr_uninterruptible counter, because
5475 * for performance reasons the counter is not stricly tracking tasks to
5476 * their home CPUs. So we just add the counter to another CPU's counter,
5477 * to keep the global sum constant after CPU-down:
5479 static void migrate_nr_uninterruptible(struct rq *rq_src)
5481 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5482 unsigned long flags;
5484 local_irq_save(flags);
5485 double_rq_lock(rq_src, rq_dest);
5486 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5487 rq_src->nr_uninterruptible = 0;
5488 double_rq_unlock(rq_src, rq_dest);
5489 local_irq_restore(flags);
5492 /* Run through task list and migrate tasks from the dead cpu. */
5493 static void migrate_live_tasks(int src_cpu)
5495 struct task_struct *p, *t;
5497 read_lock(&tasklist_lock);
5499 do_each_thread(t, p) {
5500 if (p == current)
5501 continue;
5503 if (task_cpu(p) == src_cpu)
5504 move_task_off_dead_cpu(src_cpu, p);
5505 } while_each_thread(t, p);
5507 read_unlock(&tasklist_lock);
5511 * Schedules idle task to be the next runnable task on current CPU.
5512 * It does so by boosting its priority to highest possible.
5513 * Used by CPU offline code.
5515 void sched_idle_next(void)
5517 int this_cpu = smp_processor_id();
5518 struct rq *rq = cpu_rq(this_cpu);
5519 struct task_struct *p = rq->idle;
5520 unsigned long flags;
5522 /* cpu has to be offline */
5523 BUG_ON(cpu_online(this_cpu));
5526 * Strictly not necessary since rest of the CPUs are stopped by now
5527 * and interrupts disabled on the current cpu.
5529 raw_spin_lock_irqsave(&rq->lock, flags);
5531 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5533 activate_task(rq, p, 0);
5535 raw_spin_unlock_irqrestore(&rq->lock, flags);
5539 * Ensures that the idle task is using init_mm right before its cpu goes
5540 * offline.
5542 void idle_task_exit(void)
5544 struct mm_struct *mm = current->active_mm;
5546 BUG_ON(cpu_online(smp_processor_id()));
5548 if (mm != &init_mm)
5549 switch_mm(mm, &init_mm, current);
5550 mmdrop(mm);
5553 /* called under rq->lock with disabled interrupts */
5554 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5556 struct rq *rq = cpu_rq(dead_cpu);
5558 /* Must be exiting, otherwise would be on tasklist. */
5559 BUG_ON(!p->exit_state);
5561 /* Cannot have done final schedule yet: would have vanished. */
5562 BUG_ON(p->state == TASK_DEAD);
5564 get_task_struct(p);
5567 * Drop lock around migration; if someone else moves it,
5568 * that's OK. No task can be added to this CPU, so iteration is
5569 * fine.
5571 raw_spin_unlock_irq(&rq->lock);
5572 move_task_off_dead_cpu(dead_cpu, p);
5573 raw_spin_lock_irq(&rq->lock);
5575 put_task_struct(p);
5578 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5579 static void migrate_dead_tasks(unsigned int dead_cpu)
5581 struct rq *rq = cpu_rq(dead_cpu);
5582 struct task_struct *next;
5584 for ( ; ; ) {
5585 if (!rq->nr_running)
5586 break;
5587 next = pick_next_task(rq);
5588 if (!next)
5589 break;
5590 next->sched_class->put_prev_task(rq, next);
5591 migrate_dead(dead_cpu, next);
5597 * remove the tasks which were accounted by rq from calc_load_tasks.
5599 static void calc_global_load_remove(struct rq *rq)
5601 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5602 rq->calc_load_active = 0;
5604 #endif /* CONFIG_HOTPLUG_CPU */
5606 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5608 static struct ctl_table sd_ctl_dir[] = {
5610 .procname = "sched_domain",
5611 .mode = 0555,
5616 static struct ctl_table sd_ctl_root[] = {
5618 .procname = "kernel",
5619 .mode = 0555,
5620 .child = sd_ctl_dir,
5625 static struct ctl_table *sd_alloc_ctl_entry(int n)
5627 struct ctl_table *entry =
5628 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5630 return entry;
5633 static void sd_free_ctl_entry(struct ctl_table **tablep)
5635 struct ctl_table *entry;
5638 * In the intermediate directories, both the child directory and
5639 * procname are dynamically allocated and could fail but the mode
5640 * will always be set. In the lowest directory the names are
5641 * static strings and all have proc handlers.
5643 for (entry = *tablep; entry->mode; entry++) {
5644 if (entry->child)
5645 sd_free_ctl_entry(&entry->child);
5646 if (entry->proc_handler == NULL)
5647 kfree(entry->procname);
5650 kfree(*tablep);
5651 *tablep = NULL;
5654 static void
5655 set_table_entry(struct ctl_table *entry,
5656 const char *procname, void *data, int maxlen,
5657 mode_t mode, proc_handler *proc_handler)
5659 entry->procname = procname;
5660 entry->data = data;
5661 entry->maxlen = maxlen;
5662 entry->mode = mode;
5663 entry->proc_handler = proc_handler;
5666 static struct ctl_table *
5667 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5669 struct ctl_table *table = sd_alloc_ctl_entry(13);
5671 if (table == NULL)
5672 return NULL;
5674 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5675 sizeof(long), 0644, proc_doulongvec_minmax);
5676 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5677 sizeof(long), 0644, proc_doulongvec_minmax);
5678 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5679 sizeof(int), 0644, proc_dointvec_minmax);
5680 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5681 sizeof(int), 0644, proc_dointvec_minmax);
5682 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5683 sizeof(int), 0644, proc_dointvec_minmax);
5684 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5685 sizeof(int), 0644, proc_dointvec_minmax);
5686 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5687 sizeof(int), 0644, proc_dointvec_minmax);
5688 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5689 sizeof(int), 0644, proc_dointvec_minmax);
5690 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5691 sizeof(int), 0644, proc_dointvec_minmax);
5692 set_table_entry(&table[9], "cache_nice_tries",
5693 &sd->cache_nice_tries,
5694 sizeof(int), 0644, proc_dointvec_minmax);
5695 set_table_entry(&table[10], "flags", &sd->flags,
5696 sizeof(int), 0644, proc_dointvec_minmax);
5697 set_table_entry(&table[11], "name", sd->name,
5698 CORENAME_MAX_SIZE, 0444, proc_dostring);
5699 /* &table[12] is terminator */
5701 return table;
5704 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5706 struct ctl_table *entry, *table;
5707 struct sched_domain *sd;
5708 int domain_num = 0, i;
5709 char buf[32];
5711 for_each_domain(cpu, sd)
5712 domain_num++;
5713 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5714 if (table == NULL)
5715 return NULL;
5717 i = 0;
5718 for_each_domain(cpu, sd) {
5719 snprintf(buf, 32, "domain%d", i);
5720 entry->procname = kstrdup(buf, GFP_KERNEL);
5721 entry->mode = 0555;
5722 entry->child = sd_alloc_ctl_domain_table(sd);
5723 entry++;
5724 i++;
5726 return table;
5729 static struct ctl_table_header *sd_sysctl_header;
5730 static void register_sched_domain_sysctl(void)
5732 int i, cpu_num = num_possible_cpus();
5733 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5734 char buf[32];
5736 WARN_ON(sd_ctl_dir[0].child);
5737 sd_ctl_dir[0].child = entry;
5739 if (entry == NULL)
5740 return;
5742 for_each_possible_cpu(i) {
5743 snprintf(buf, 32, "cpu%d", i);
5744 entry->procname = kstrdup(buf, GFP_KERNEL);
5745 entry->mode = 0555;
5746 entry->child = sd_alloc_ctl_cpu_table(i);
5747 entry++;
5750 WARN_ON(sd_sysctl_header);
5751 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5754 /* may be called multiple times per register */
5755 static void unregister_sched_domain_sysctl(void)
5757 if (sd_sysctl_header)
5758 unregister_sysctl_table(sd_sysctl_header);
5759 sd_sysctl_header = NULL;
5760 if (sd_ctl_dir[0].child)
5761 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5763 #else
5764 static void register_sched_domain_sysctl(void)
5767 static void unregister_sched_domain_sysctl(void)
5770 #endif
5772 static void set_rq_online(struct rq *rq)
5774 if (!rq->online) {
5775 const struct sched_class *class;
5777 cpumask_set_cpu(rq->cpu, rq->rd->online);
5778 rq->online = 1;
5780 for_each_class(class) {
5781 if (class->rq_online)
5782 class->rq_online(rq);
5787 static void set_rq_offline(struct rq *rq)
5789 if (rq->online) {
5790 const struct sched_class *class;
5792 for_each_class(class) {
5793 if (class->rq_offline)
5794 class->rq_offline(rq);
5797 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5798 rq->online = 0;
5803 * migration_call - callback that gets triggered when a CPU is added.
5804 * Here we can start up the necessary migration thread for the new CPU.
5806 static int __cpuinit
5807 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5809 int cpu = (long)hcpu;
5810 unsigned long flags;
5811 struct rq *rq = cpu_rq(cpu);
5813 switch (action) {
5815 case CPU_UP_PREPARE:
5816 case CPU_UP_PREPARE_FROZEN:
5817 rq->calc_load_update = calc_load_update;
5818 break;
5820 case CPU_ONLINE:
5821 case CPU_ONLINE_FROZEN:
5822 /* Update our root-domain */
5823 raw_spin_lock_irqsave(&rq->lock, flags);
5824 if (rq->rd) {
5825 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5827 set_rq_online(rq);
5829 raw_spin_unlock_irqrestore(&rq->lock, flags);
5830 break;
5832 #ifdef CONFIG_HOTPLUG_CPU
5833 case CPU_DEAD:
5834 case CPU_DEAD_FROZEN:
5835 migrate_live_tasks(cpu);
5836 /* Idle task back to normal (off runqueue, low prio) */
5837 raw_spin_lock_irq(&rq->lock);
5838 deactivate_task(rq, rq->idle, 0);
5839 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5840 rq->idle->sched_class = &idle_sched_class;
5841 migrate_dead_tasks(cpu);
5842 raw_spin_unlock_irq(&rq->lock);
5843 migrate_nr_uninterruptible(rq);
5844 BUG_ON(rq->nr_running != 0);
5845 calc_global_load_remove(rq);
5846 break;
5848 case CPU_DYING:
5849 case CPU_DYING_FROZEN:
5850 /* Update our root-domain */
5851 raw_spin_lock_irqsave(&rq->lock, flags);
5852 if (rq->rd) {
5853 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5854 set_rq_offline(rq);
5856 raw_spin_unlock_irqrestore(&rq->lock, flags);
5857 break;
5858 #endif
5860 return NOTIFY_OK;
5864 * Register at high priority so that task migration (migrate_all_tasks)
5865 * happens before everything else. This has to be lower priority than
5866 * the notifier in the perf_event subsystem, though.
5868 static struct notifier_block __cpuinitdata migration_notifier = {
5869 .notifier_call = migration_call,
5870 .priority = CPU_PRI_MIGRATION,
5873 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5874 unsigned long action, void *hcpu)
5876 switch (action & ~CPU_TASKS_FROZEN) {
5877 case CPU_ONLINE:
5878 case CPU_DOWN_FAILED:
5879 set_cpu_active((long)hcpu, true);
5880 return NOTIFY_OK;
5881 default:
5882 return NOTIFY_DONE;
5886 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5887 unsigned long action, void *hcpu)
5889 switch (action & ~CPU_TASKS_FROZEN) {
5890 case CPU_DOWN_PREPARE:
5891 set_cpu_active((long)hcpu, false);
5892 return NOTIFY_OK;
5893 default:
5894 return NOTIFY_DONE;
5898 static int __init migration_init(void)
5900 void *cpu = (void *)(long)smp_processor_id();
5901 int err;
5903 /* Initialize migration for the boot CPU */
5904 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5905 BUG_ON(err == NOTIFY_BAD);
5906 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5907 register_cpu_notifier(&migration_notifier);
5909 /* Register cpu active notifiers */
5910 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5911 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5913 return 0;
5915 early_initcall(migration_init);
5916 #endif
5918 #ifdef CONFIG_SMP
5920 #ifdef CONFIG_SCHED_DEBUG
5922 static __read_mostly int sched_domain_debug_enabled;
5924 static int __init sched_domain_debug_setup(char *str)
5926 sched_domain_debug_enabled = 1;
5928 return 0;
5930 early_param("sched_debug", sched_domain_debug_setup);
5932 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5933 struct cpumask *groupmask)
5935 struct sched_group *group = sd->groups;
5936 char str[256];
5938 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5939 cpumask_clear(groupmask);
5941 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5943 if (!(sd->flags & SD_LOAD_BALANCE)) {
5944 printk("does not load-balance\n");
5945 if (sd->parent)
5946 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5947 " has parent");
5948 return -1;
5951 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5953 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5954 printk(KERN_ERR "ERROR: domain->span does not contain "
5955 "CPU%d\n", cpu);
5957 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5958 printk(KERN_ERR "ERROR: domain->groups does not contain"
5959 " CPU%d\n", cpu);
5962 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5963 do {
5964 if (!group) {
5965 printk("\n");
5966 printk(KERN_ERR "ERROR: group is NULL\n");
5967 break;
5970 if (!group->cpu_power) {
5971 printk(KERN_CONT "\n");
5972 printk(KERN_ERR "ERROR: domain->cpu_power not "
5973 "set\n");
5974 break;
5977 if (!cpumask_weight(sched_group_cpus(group))) {
5978 printk(KERN_CONT "\n");
5979 printk(KERN_ERR "ERROR: empty group\n");
5980 break;
5983 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5984 printk(KERN_CONT "\n");
5985 printk(KERN_ERR "ERROR: repeated CPUs\n");
5986 break;
5989 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5991 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5993 printk(KERN_CONT " %s", str);
5994 if (group->cpu_power != SCHED_LOAD_SCALE) {
5995 printk(KERN_CONT " (cpu_power = %d)",
5996 group->cpu_power);
5999 group = group->next;
6000 } while (group != sd->groups);
6001 printk(KERN_CONT "\n");
6003 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6004 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6006 if (sd->parent &&
6007 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6008 printk(KERN_ERR "ERROR: parent span is not a superset "
6009 "of domain->span\n");
6010 return 0;
6013 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6015 cpumask_var_t groupmask;
6016 int level = 0;
6018 if (!sched_domain_debug_enabled)
6019 return;
6021 if (!sd) {
6022 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6023 return;
6026 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6028 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6029 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6030 return;
6033 for (;;) {
6034 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6035 break;
6036 level++;
6037 sd = sd->parent;
6038 if (!sd)
6039 break;
6041 free_cpumask_var(groupmask);
6043 #else /* !CONFIG_SCHED_DEBUG */
6044 # define sched_domain_debug(sd, cpu) do { } while (0)
6045 #endif /* CONFIG_SCHED_DEBUG */
6047 static int sd_degenerate(struct sched_domain *sd)
6049 if (cpumask_weight(sched_domain_span(sd)) == 1)
6050 return 1;
6052 /* Following flags need at least 2 groups */
6053 if (sd->flags & (SD_LOAD_BALANCE |
6054 SD_BALANCE_NEWIDLE |
6055 SD_BALANCE_FORK |
6056 SD_BALANCE_EXEC |
6057 SD_SHARE_CPUPOWER |
6058 SD_SHARE_PKG_RESOURCES)) {
6059 if (sd->groups != sd->groups->next)
6060 return 0;
6063 /* Following flags don't use groups */
6064 if (sd->flags & (SD_WAKE_AFFINE))
6065 return 0;
6067 return 1;
6070 static int
6071 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6073 unsigned long cflags = sd->flags, pflags = parent->flags;
6075 if (sd_degenerate(parent))
6076 return 1;
6078 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6079 return 0;
6081 /* Flags needing groups don't count if only 1 group in parent */
6082 if (parent->groups == parent->groups->next) {
6083 pflags &= ~(SD_LOAD_BALANCE |
6084 SD_BALANCE_NEWIDLE |
6085 SD_BALANCE_FORK |
6086 SD_BALANCE_EXEC |
6087 SD_SHARE_CPUPOWER |
6088 SD_SHARE_PKG_RESOURCES);
6089 if (nr_node_ids == 1)
6090 pflags &= ~SD_SERIALIZE;
6092 if (~cflags & pflags)
6093 return 0;
6095 return 1;
6098 static void free_rootdomain(struct root_domain *rd)
6100 synchronize_sched();
6102 cpupri_cleanup(&rd->cpupri);
6104 free_cpumask_var(rd->rto_mask);
6105 free_cpumask_var(rd->online);
6106 free_cpumask_var(rd->span);
6107 kfree(rd);
6110 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6112 struct root_domain *old_rd = NULL;
6113 unsigned long flags;
6115 raw_spin_lock_irqsave(&rq->lock, flags);
6117 if (rq->rd) {
6118 old_rd = rq->rd;
6120 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6121 set_rq_offline(rq);
6123 cpumask_clear_cpu(rq->cpu, old_rd->span);
6126 * If we dont want to free the old_rt yet then
6127 * set old_rd to NULL to skip the freeing later
6128 * in this function:
6130 if (!atomic_dec_and_test(&old_rd->refcount))
6131 old_rd = NULL;
6134 atomic_inc(&rd->refcount);
6135 rq->rd = rd;
6137 cpumask_set_cpu(rq->cpu, rd->span);
6138 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6139 set_rq_online(rq);
6141 raw_spin_unlock_irqrestore(&rq->lock, flags);
6143 if (old_rd)
6144 free_rootdomain(old_rd);
6147 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6149 gfp_t gfp = GFP_KERNEL;
6151 memset(rd, 0, sizeof(*rd));
6153 if (bootmem)
6154 gfp = GFP_NOWAIT;
6156 if (!alloc_cpumask_var(&rd->span, gfp))
6157 goto out;
6158 if (!alloc_cpumask_var(&rd->online, gfp))
6159 goto free_span;
6160 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6161 goto free_online;
6163 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6164 goto free_rto_mask;
6165 return 0;
6167 free_rto_mask:
6168 free_cpumask_var(rd->rto_mask);
6169 free_online:
6170 free_cpumask_var(rd->online);
6171 free_span:
6172 free_cpumask_var(rd->span);
6173 out:
6174 return -ENOMEM;
6177 static void init_defrootdomain(void)
6179 init_rootdomain(&def_root_domain, true);
6181 atomic_set(&def_root_domain.refcount, 1);
6184 static struct root_domain *alloc_rootdomain(void)
6186 struct root_domain *rd;
6188 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6189 if (!rd)
6190 return NULL;
6192 if (init_rootdomain(rd, false) != 0) {
6193 kfree(rd);
6194 return NULL;
6197 return rd;
6201 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6202 * hold the hotplug lock.
6204 static void
6205 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6207 struct rq *rq = cpu_rq(cpu);
6208 struct sched_domain *tmp;
6210 for (tmp = sd; tmp; tmp = tmp->parent)
6211 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6213 /* Remove the sched domains which do not contribute to scheduling. */
6214 for (tmp = sd; tmp; ) {
6215 struct sched_domain *parent = tmp->parent;
6216 if (!parent)
6217 break;
6219 if (sd_parent_degenerate(tmp, parent)) {
6220 tmp->parent = parent->parent;
6221 if (parent->parent)
6222 parent->parent->child = tmp;
6223 } else
6224 tmp = tmp->parent;
6227 if (sd && sd_degenerate(sd)) {
6228 sd = sd->parent;
6229 if (sd)
6230 sd->child = NULL;
6233 sched_domain_debug(sd, cpu);
6235 rq_attach_root(rq, rd);
6236 rcu_assign_pointer(rq->sd, sd);
6239 /* cpus with isolated domains */
6240 static cpumask_var_t cpu_isolated_map;
6242 /* Setup the mask of cpus configured for isolated domains */
6243 static int __init isolated_cpu_setup(char *str)
6245 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6246 cpulist_parse(str, cpu_isolated_map);
6247 return 1;
6250 __setup("isolcpus=", isolated_cpu_setup);
6253 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6254 * to a function which identifies what group(along with sched group) a CPU
6255 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6256 * (due to the fact that we keep track of groups covered with a struct cpumask).
6258 * init_sched_build_groups will build a circular linked list of the groups
6259 * covered by the given span, and will set each group's ->cpumask correctly,
6260 * and ->cpu_power to 0.
6262 static void
6263 init_sched_build_groups(const struct cpumask *span,
6264 const struct cpumask *cpu_map,
6265 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6266 struct sched_group **sg,
6267 struct cpumask *tmpmask),
6268 struct cpumask *covered, struct cpumask *tmpmask)
6270 struct sched_group *first = NULL, *last = NULL;
6271 int i;
6273 cpumask_clear(covered);
6275 for_each_cpu(i, span) {
6276 struct sched_group *sg;
6277 int group = group_fn(i, cpu_map, &sg, tmpmask);
6278 int j;
6280 if (cpumask_test_cpu(i, covered))
6281 continue;
6283 cpumask_clear(sched_group_cpus(sg));
6284 sg->cpu_power = 0;
6286 for_each_cpu(j, span) {
6287 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6288 continue;
6290 cpumask_set_cpu(j, covered);
6291 cpumask_set_cpu(j, sched_group_cpus(sg));
6293 if (!first)
6294 first = sg;
6295 if (last)
6296 last->next = sg;
6297 last = sg;
6299 last->next = first;
6302 #define SD_NODES_PER_DOMAIN 16
6304 #ifdef CONFIG_NUMA
6307 * find_next_best_node - find the next node to include in a sched_domain
6308 * @node: node whose sched_domain we're building
6309 * @used_nodes: nodes already in the sched_domain
6311 * Find the next node to include in a given scheduling domain. Simply
6312 * finds the closest node not already in the @used_nodes map.
6314 * Should use nodemask_t.
6316 static int find_next_best_node(int node, nodemask_t *used_nodes)
6318 int i, n, val, min_val, best_node = 0;
6320 min_val = INT_MAX;
6322 for (i = 0; i < nr_node_ids; i++) {
6323 /* Start at @node */
6324 n = (node + i) % nr_node_ids;
6326 if (!nr_cpus_node(n))
6327 continue;
6329 /* Skip already used nodes */
6330 if (node_isset(n, *used_nodes))
6331 continue;
6333 /* Simple min distance search */
6334 val = node_distance(node, n);
6336 if (val < min_val) {
6337 min_val = val;
6338 best_node = n;
6342 node_set(best_node, *used_nodes);
6343 return best_node;
6347 * sched_domain_node_span - get a cpumask for a node's sched_domain
6348 * @node: node whose cpumask we're constructing
6349 * @span: resulting cpumask
6351 * Given a node, construct a good cpumask for its sched_domain to span. It
6352 * should be one that prevents unnecessary balancing, but also spreads tasks
6353 * out optimally.
6355 static void sched_domain_node_span(int node, struct cpumask *span)
6357 nodemask_t used_nodes;
6358 int i;
6360 cpumask_clear(span);
6361 nodes_clear(used_nodes);
6363 cpumask_or(span, span, cpumask_of_node(node));
6364 node_set(node, used_nodes);
6366 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6367 int next_node = find_next_best_node(node, &used_nodes);
6369 cpumask_or(span, span, cpumask_of_node(next_node));
6372 #endif /* CONFIG_NUMA */
6374 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6377 * The cpus mask in sched_group and sched_domain hangs off the end.
6379 * ( See the the comments in include/linux/sched.h:struct sched_group
6380 * and struct sched_domain. )
6382 struct static_sched_group {
6383 struct sched_group sg;
6384 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6387 struct static_sched_domain {
6388 struct sched_domain sd;
6389 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6392 struct s_data {
6393 #ifdef CONFIG_NUMA
6394 int sd_allnodes;
6395 cpumask_var_t domainspan;
6396 cpumask_var_t covered;
6397 cpumask_var_t notcovered;
6398 #endif
6399 cpumask_var_t nodemask;
6400 cpumask_var_t this_sibling_map;
6401 cpumask_var_t this_core_map;
6402 cpumask_var_t send_covered;
6403 cpumask_var_t tmpmask;
6404 struct sched_group **sched_group_nodes;
6405 struct root_domain *rd;
6408 enum s_alloc {
6409 sa_sched_groups = 0,
6410 sa_rootdomain,
6411 sa_tmpmask,
6412 sa_send_covered,
6413 sa_this_core_map,
6414 sa_this_sibling_map,
6415 sa_nodemask,
6416 sa_sched_group_nodes,
6417 #ifdef CONFIG_NUMA
6418 sa_notcovered,
6419 sa_covered,
6420 sa_domainspan,
6421 #endif
6422 sa_none,
6426 * SMT sched-domains:
6428 #ifdef CONFIG_SCHED_SMT
6429 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6430 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6432 static int
6433 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6434 struct sched_group **sg, struct cpumask *unused)
6436 if (sg)
6437 *sg = &per_cpu(sched_groups, cpu).sg;
6438 return cpu;
6440 #endif /* CONFIG_SCHED_SMT */
6443 * multi-core sched-domains:
6445 #ifdef CONFIG_SCHED_MC
6446 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6447 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6448 #endif /* CONFIG_SCHED_MC */
6450 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6451 static int
6452 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6453 struct sched_group **sg, struct cpumask *mask)
6455 int group;
6457 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6458 group = cpumask_first(mask);
6459 if (sg)
6460 *sg = &per_cpu(sched_group_core, group).sg;
6461 return group;
6463 #elif defined(CONFIG_SCHED_MC)
6464 static int
6465 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6466 struct sched_group **sg, struct cpumask *unused)
6468 if (sg)
6469 *sg = &per_cpu(sched_group_core, cpu).sg;
6470 return cpu;
6472 #endif
6474 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6475 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6477 static int
6478 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6479 struct sched_group **sg, struct cpumask *mask)
6481 int group;
6482 #ifdef CONFIG_SCHED_MC
6483 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6484 group = cpumask_first(mask);
6485 #elif defined(CONFIG_SCHED_SMT)
6486 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6487 group = cpumask_first(mask);
6488 #else
6489 group = cpu;
6490 #endif
6491 if (sg)
6492 *sg = &per_cpu(sched_group_phys, group).sg;
6493 return group;
6496 #ifdef CONFIG_NUMA
6498 * The init_sched_build_groups can't handle what we want to do with node
6499 * groups, so roll our own. Now each node has its own list of groups which
6500 * gets dynamically allocated.
6502 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6503 static struct sched_group ***sched_group_nodes_bycpu;
6505 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6506 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6508 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6509 struct sched_group **sg,
6510 struct cpumask *nodemask)
6512 int group;
6514 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6515 group = cpumask_first(nodemask);
6517 if (sg)
6518 *sg = &per_cpu(sched_group_allnodes, group).sg;
6519 return group;
6522 static void init_numa_sched_groups_power(struct sched_group *group_head)
6524 struct sched_group *sg = group_head;
6525 int j;
6527 if (!sg)
6528 return;
6529 do {
6530 for_each_cpu(j, sched_group_cpus(sg)) {
6531 struct sched_domain *sd;
6533 sd = &per_cpu(phys_domains, j).sd;
6534 if (j != group_first_cpu(sd->groups)) {
6536 * Only add "power" once for each
6537 * physical package.
6539 continue;
6542 sg->cpu_power += sd->groups->cpu_power;
6544 sg = sg->next;
6545 } while (sg != group_head);
6548 static int build_numa_sched_groups(struct s_data *d,
6549 const struct cpumask *cpu_map, int num)
6551 struct sched_domain *sd;
6552 struct sched_group *sg, *prev;
6553 int n, j;
6555 cpumask_clear(d->covered);
6556 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6557 if (cpumask_empty(d->nodemask)) {
6558 d->sched_group_nodes[num] = NULL;
6559 goto out;
6562 sched_domain_node_span(num, d->domainspan);
6563 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6565 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6566 GFP_KERNEL, num);
6567 if (!sg) {
6568 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6569 num);
6570 return -ENOMEM;
6572 d->sched_group_nodes[num] = sg;
6574 for_each_cpu(j, d->nodemask) {
6575 sd = &per_cpu(node_domains, j).sd;
6576 sd->groups = sg;
6579 sg->cpu_power = 0;
6580 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6581 sg->next = sg;
6582 cpumask_or(d->covered, d->covered, d->nodemask);
6584 prev = sg;
6585 for (j = 0; j < nr_node_ids; j++) {
6586 n = (num + j) % nr_node_ids;
6587 cpumask_complement(d->notcovered, d->covered);
6588 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6589 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6590 if (cpumask_empty(d->tmpmask))
6591 break;
6592 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6593 if (cpumask_empty(d->tmpmask))
6594 continue;
6595 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6596 GFP_KERNEL, num);
6597 if (!sg) {
6598 printk(KERN_WARNING
6599 "Can not alloc domain group for node %d\n", j);
6600 return -ENOMEM;
6602 sg->cpu_power = 0;
6603 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6604 sg->next = prev->next;
6605 cpumask_or(d->covered, d->covered, d->tmpmask);
6606 prev->next = sg;
6607 prev = sg;
6609 out:
6610 return 0;
6612 #endif /* CONFIG_NUMA */
6614 #ifdef CONFIG_NUMA
6615 /* Free memory allocated for various sched_group structures */
6616 static void free_sched_groups(const struct cpumask *cpu_map,
6617 struct cpumask *nodemask)
6619 int cpu, i;
6621 for_each_cpu(cpu, cpu_map) {
6622 struct sched_group **sched_group_nodes
6623 = sched_group_nodes_bycpu[cpu];
6625 if (!sched_group_nodes)
6626 continue;
6628 for (i = 0; i < nr_node_ids; i++) {
6629 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6631 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6632 if (cpumask_empty(nodemask))
6633 continue;
6635 if (sg == NULL)
6636 continue;
6637 sg = sg->next;
6638 next_sg:
6639 oldsg = sg;
6640 sg = sg->next;
6641 kfree(oldsg);
6642 if (oldsg != sched_group_nodes[i])
6643 goto next_sg;
6645 kfree(sched_group_nodes);
6646 sched_group_nodes_bycpu[cpu] = NULL;
6649 #else /* !CONFIG_NUMA */
6650 static void free_sched_groups(const struct cpumask *cpu_map,
6651 struct cpumask *nodemask)
6654 #endif /* CONFIG_NUMA */
6657 * Initialize sched groups cpu_power.
6659 * cpu_power indicates the capacity of sched group, which is used while
6660 * distributing the load between different sched groups in a sched domain.
6661 * Typically cpu_power for all the groups in a sched domain will be same unless
6662 * there are asymmetries in the topology. If there are asymmetries, group
6663 * having more cpu_power will pickup more load compared to the group having
6664 * less cpu_power.
6666 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6668 struct sched_domain *child;
6669 struct sched_group *group;
6670 long power;
6671 int weight;
6673 WARN_ON(!sd || !sd->groups);
6675 if (cpu != group_first_cpu(sd->groups))
6676 return;
6678 child = sd->child;
6680 sd->groups->cpu_power = 0;
6682 if (!child) {
6683 power = SCHED_LOAD_SCALE;
6684 weight = cpumask_weight(sched_domain_span(sd));
6686 * SMT siblings share the power of a single core.
6687 * Usually multiple threads get a better yield out of
6688 * that one core than a single thread would have,
6689 * reflect that in sd->smt_gain.
6691 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6692 power *= sd->smt_gain;
6693 power /= weight;
6694 power >>= SCHED_LOAD_SHIFT;
6696 sd->groups->cpu_power += power;
6697 return;
6701 * Add cpu_power of each child group to this groups cpu_power.
6703 group = child->groups;
6704 do {
6705 sd->groups->cpu_power += group->cpu_power;
6706 group = group->next;
6707 } while (group != child->groups);
6711 * Initializers for schedule domains
6712 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6715 #ifdef CONFIG_SCHED_DEBUG
6716 # define SD_INIT_NAME(sd, type) sd->name = #type
6717 #else
6718 # define SD_INIT_NAME(sd, type) do { } while (0)
6719 #endif
6721 #define SD_INIT(sd, type) sd_init_##type(sd)
6723 #define SD_INIT_FUNC(type) \
6724 static noinline void sd_init_##type(struct sched_domain *sd) \
6726 memset(sd, 0, sizeof(*sd)); \
6727 *sd = SD_##type##_INIT; \
6728 sd->level = SD_LV_##type; \
6729 SD_INIT_NAME(sd, type); \
6732 SD_INIT_FUNC(CPU)
6733 #ifdef CONFIG_NUMA
6734 SD_INIT_FUNC(ALLNODES)
6735 SD_INIT_FUNC(NODE)
6736 #endif
6737 #ifdef CONFIG_SCHED_SMT
6738 SD_INIT_FUNC(SIBLING)
6739 #endif
6740 #ifdef CONFIG_SCHED_MC
6741 SD_INIT_FUNC(MC)
6742 #endif
6744 static int default_relax_domain_level = -1;
6746 static int __init setup_relax_domain_level(char *str)
6748 unsigned long val;
6750 val = simple_strtoul(str, NULL, 0);
6751 if (val < SD_LV_MAX)
6752 default_relax_domain_level = val;
6754 return 1;
6756 __setup("relax_domain_level=", setup_relax_domain_level);
6758 static void set_domain_attribute(struct sched_domain *sd,
6759 struct sched_domain_attr *attr)
6761 int request;
6763 if (!attr || attr->relax_domain_level < 0) {
6764 if (default_relax_domain_level < 0)
6765 return;
6766 else
6767 request = default_relax_domain_level;
6768 } else
6769 request = attr->relax_domain_level;
6770 if (request < sd->level) {
6771 /* turn off idle balance on this domain */
6772 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6773 } else {
6774 /* turn on idle balance on this domain */
6775 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6779 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6780 const struct cpumask *cpu_map)
6782 switch (what) {
6783 case sa_sched_groups:
6784 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6785 d->sched_group_nodes = NULL;
6786 case sa_rootdomain:
6787 free_rootdomain(d->rd); /* fall through */
6788 case sa_tmpmask:
6789 free_cpumask_var(d->tmpmask); /* fall through */
6790 case sa_send_covered:
6791 free_cpumask_var(d->send_covered); /* fall through */
6792 case sa_this_core_map:
6793 free_cpumask_var(d->this_core_map); /* fall through */
6794 case sa_this_sibling_map:
6795 free_cpumask_var(d->this_sibling_map); /* fall through */
6796 case sa_nodemask:
6797 free_cpumask_var(d->nodemask); /* fall through */
6798 case sa_sched_group_nodes:
6799 #ifdef CONFIG_NUMA
6800 kfree(d->sched_group_nodes); /* fall through */
6801 case sa_notcovered:
6802 free_cpumask_var(d->notcovered); /* fall through */
6803 case sa_covered:
6804 free_cpumask_var(d->covered); /* fall through */
6805 case sa_domainspan:
6806 free_cpumask_var(d->domainspan); /* fall through */
6807 #endif
6808 case sa_none:
6809 break;
6813 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6814 const struct cpumask *cpu_map)
6816 #ifdef CONFIG_NUMA
6817 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6818 return sa_none;
6819 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6820 return sa_domainspan;
6821 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6822 return sa_covered;
6823 /* Allocate the per-node list of sched groups */
6824 d->sched_group_nodes = kcalloc(nr_node_ids,
6825 sizeof(struct sched_group *), GFP_KERNEL);
6826 if (!d->sched_group_nodes) {
6827 printk(KERN_WARNING "Can not alloc sched group node list\n");
6828 return sa_notcovered;
6830 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6831 #endif
6832 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6833 return sa_sched_group_nodes;
6834 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6835 return sa_nodemask;
6836 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6837 return sa_this_sibling_map;
6838 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6839 return sa_this_core_map;
6840 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6841 return sa_send_covered;
6842 d->rd = alloc_rootdomain();
6843 if (!d->rd) {
6844 printk(KERN_WARNING "Cannot alloc root domain\n");
6845 return sa_tmpmask;
6847 return sa_rootdomain;
6850 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6851 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6853 struct sched_domain *sd = NULL;
6854 #ifdef CONFIG_NUMA
6855 struct sched_domain *parent;
6857 d->sd_allnodes = 0;
6858 if (cpumask_weight(cpu_map) >
6859 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6860 sd = &per_cpu(allnodes_domains, i).sd;
6861 SD_INIT(sd, ALLNODES);
6862 set_domain_attribute(sd, attr);
6863 cpumask_copy(sched_domain_span(sd), cpu_map);
6864 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6865 d->sd_allnodes = 1;
6867 parent = sd;
6869 sd = &per_cpu(node_domains, i).sd;
6870 SD_INIT(sd, NODE);
6871 set_domain_attribute(sd, attr);
6872 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6873 sd->parent = parent;
6874 if (parent)
6875 parent->child = sd;
6876 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6877 #endif
6878 return sd;
6881 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6882 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6883 struct sched_domain *parent, int i)
6885 struct sched_domain *sd;
6886 sd = &per_cpu(phys_domains, i).sd;
6887 SD_INIT(sd, CPU);
6888 set_domain_attribute(sd, attr);
6889 cpumask_copy(sched_domain_span(sd), d->nodemask);
6890 sd->parent = parent;
6891 if (parent)
6892 parent->child = sd;
6893 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6894 return sd;
6897 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6898 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6899 struct sched_domain *parent, int i)
6901 struct sched_domain *sd = parent;
6902 #ifdef CONFIG_SCHED_MC
6903 sd = &per_cpu(core_domains, i).sd;
6904 SD_INIT(sd, MC);
6905 set_domain_attribute(sd, attr);
6906 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6907 sd->parent = parent;
6908 parent->child = sd;
6909 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6910 #endif
6911 return sd;
6914 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6915 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6916 struct sched_domain *parent, int i)
6918 struct sched_domain *sd = parent;
6919 #ifdef CONFIG_SCHED_SMT
6920 sd = &per_cpu(cpu_domains, i).sd;
6921 SD_INIT(sd, SIBLING);
6922 set_domain_attribute(sd, attr);
6923 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6924 sd->parent = parent;
6925 parent->child = sd;
6926 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6927 #endif
6928 return sd;
6931 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6932 const struct cpumask *cpu_map, int cpu)
6934 switch (l) {
6935 #ifdef CONFIG_SCHED_SMT
6936 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6937 cpumask_and(d->this_sibling_map, cpu_map,
6938 topology_thread_cpumask(cpu));
6939 if (cpu == cpumask_first(d->this_sibling_map))
6940 init_sched_build_groups(d->this_sibling_map, cpu_map,
6941 &cpu_to_cpu_group,
6942 d->send_covered, d->tmpmask);
6943 break;
6944 #endif
6945 #ifdef CONFIG_SCHED_MC
6946 case SD_LV_MC: /* set up multi-core groups */
6947 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6948 if (cpu == cpumask_first(d->this_core_map))
6949 init_sched_build_groups(d->this_core_map, cpu_map,
6950 &cpu_to_core_group,
6951 d->send_covered, d->tmpmask);
6952 break;
6953 #endif
6954 case SD_LV_CPU: /* set up physical groups */
6955 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6956 if (!cpumask_empty(d->nodemask))
6957 init_sched_build_groups(d->nodemask, cpu_map,
6958 &cpu_to_phys_group,
6959 d->send_covered, d->tmpmask);
6960 break;
6961 #ifdef CONFIG_NUMA
6962 case SD_LV_ALLNODES:
6963 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6964 d->send_covered, d->tmpmask);
6965 break;
6966 #endif
6967 default:
6968 break;
6973 * Build sched domains for a given set of cpus and attach the sched domains
6974 * to the individual cpus
6976 static int __build_sched_domains(const struct cpumask *cpu_map,
6977 struct sched_domain_attr *attr)
6979 enum s_alloc alloc_state = sa_none;
6980 struct s_data d;
6981 struct sched_domain *sd;
6982 int i;
6983 #ifdef CONFIG_NUMA
6984 d.sd_allnodes = 0;
6985 #endif
6987 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6988 if (alloc_state != sa_rootdomain)
6989 goto error;
6990 alloc_state = sa_sched_groups;
6993 * Set up domains for cpus specified by the cpu_map.
6995 for_each_cpu(i, cpu_map) {
6996 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6997 cpu_map);
6999 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7000 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7001 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7002 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7005 for_each_cpu(i, cpu_map) {
7006 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7007 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7010 /* Set up physical groups */
7011 for (i = 0; i < nr_node_ids; i++)
7012 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7014 #ifdef CONFIG_NUMA
7015 /* Set up node groups */
7016 if (d.sd_allnodes)
7017 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7019 for (i = 0; i < nr_node_ids; i++)
7020 if (build_numa_sched_groups(&d, cpu_map, i))
7021 goto error;
7022 #endif
7024 /* Calculate CPU power for physical packages and nodes */
7025 #ifdef CONFIG_SCHED_SMT
7026 for_each_cpu(i, cpu_map) {
7027 sd = &per_cpu(cpu_domains, i).sd;
7028 init_sched_groups_power(i, sd);
7030 #endif
7031 #ifdef CONFIG_SCHED_MC
7032 for_each_cpu(i, cpu_map) {
7033 sd = &per_cpu(core_domains, i).sd;
7034 init_sched_groups_power(i, sd);
7036 #endif
7038 for_each_cpu(i, cpu_map) {
7039 sd = &per_cpu(phys_domains, i).sd;
7040 init_sched_groups_power(i, sd);
7043 #ifdef CONFIG_NUMA
7044 for (i = 0; i < nr_node_ids; i++)
7045 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7047 if (d.sd_allnodes) {
7048 struct sched_group *sg;
7050 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7051 d.tmpmask);
7052 init_numa_sched_groups_power(sg);
7054 #endif
7056 /* Attach the domains */
7057 for_each_cpu(i, cpu_map) {
7058 #ifdef CONFIG_SCHED_SMT
7059 sd = &per_cpu(cpu_domains, i).sd;
7060 #elif defined(CONFIG_SCHED_MC)
7061 sd = &per_cpu(core_domains, i).sd;
7062 #else
7063 sd = &per_cpu(phys_domains, i).sd;
7064 #endif
7065 cpu_attach_domain(sd, d.rd, i);
7068 d.sched_group_nodes = NULL; /* don't free this we still need it */
7069 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7070 return 0;
7072 error:
7073 __free_domain_allocs(&d, alloc_state, cpu_map);
7074 return -ENOMEM;
7077 static int build_sched_domains(const struct cpumask *cpu_map)
7079 return __build_sched_domains(cpu_map, NULL);
7082 static cpumask_var_t *doms_cur; /* current sched domains */
7083 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7084 static struct sched_domain_attr *dattr_cur;
7085 /* attribues of custom domains in 'doms_cur' */
7088 * Special case: If a kmalloc of a doms_cur partition (array of
7089 * cpumask) fails, then fallback to a single sched domain,
7090 * as determined by the single cpumask fallback_doms.
7092 static cpumask_var_t fallback_doms;
7095 * arch_update_cpu_topology lets virtualized architectures update the
7096 * cpu core maps. It is supposed to return 1 if the topology changed
7097 * or 0 if it stayed the same.
7099 int __attribute__((weak)) arch_update_cpu_topology(void)
7101 return 0;
7104 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7106 int i;
7107 cpumask_var_t *doms;
7109 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7110 if (!doms)
7111 return NULL;
7112 for (i = 0; i < ndoms; i++) {
7113 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7114 free_sched_domains(doms, i);
7115 return NULL;
7118 return doms;
7121 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7123 unsigned int i;
7124 for (i = 0; i < ndoms; i++)
7125 free_cpumask_var(doms[i]);
7126 kfree(doms);
7130 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7131 * For now this just excludes isolated cpus, but could be used to
7132 * exclude other special cases in the future.
7134 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7136 int err;
7138 arch_update_cpu_topology();
7139 ndoms_cur = 1;
7140 doms_cur = alloc_sched_domains(ndoms_cur);
7141 if (!doms_cur)
7142 doms_cur = &fallback_doms;
7143 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7144 dattr_cur = NULL;
7145 err = build_sched_domains(doms_cur[0]);
7146 register_sched_domain_sysctl();
7148 return err;
7151 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7152 struct cpumask *tmpmask)
7154 free_sched_groups(cpu_map, tmpmask);
7158 * Detach sched domains from a group of cpus specified in cpu_map
7159 * These cpus will now be attached to the NULL domain
7161 static void detach_destroy_domains(const struct cpumask *cpu_map)
7163 /* Save because hotplug lock held. */
7164 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7165 int i;
7167 for_each_cpu(i, cpu_map)
7168 cpu_attach_domain(NULL, &def_root_domain, i);
7169 synchronize_sched();
7170 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7173 /* handle null as "default" */
7174 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7175 struct sched_domain_attr *new, int idx_new)
7177 struct sched_domain_attr tmp;
7179 /* fast path */
7180 if (!new && !cur)
7181 return 1;
7183 tmp = SD_ATTR_INIT;
7184 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7185 new ? (new + idx_new) : &tmp,
7186 sizeof(struct sched_domain_attr));
7190 * Partition sched domains as specified by the 'ndoms_new'
7191 * cpumasks in the array doms_new[] of cpumasks. This compares
7192 * doms_new[] to the current sched domain partitioning, doms_cur[].
7193 * It destroys each deleted domain and builds each new domain.
7195 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7196 * The masks don't intersect (don't overlap.) We should setup one
7197 * sched domain for each mask. CPUs not in any of the cpumasks will
7198 * not be load balanced. If the same cpumask appears both in the
7199 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7200 * it as it is.
7202 * The passed in 'doms_new' should be allocated using
7203 * alloc_sched_domains. This routine takes ownership of it and will
7204 * free_sched_domains it when done with it. If the caller failed the
7205 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7206 * and partition_sched_domains() will fallback to the single partition
7207 * 'fallback_doms', it also forces the domains to be rebuilt.
7209 * If doms_new == NULL it will be replaced with cpu_online_mask.
7210 * ndoms_new == 0 is a special case for destroying existing domains,
7211 * and it will not create the default domain.
7213 * Call with hotplug lock held
7215 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7216 struct sched_domain_attr *dattr_new)
7218 int i, j, n;
7219 int new_topology;
7221 mutex_lock(&sched_domains_mutex);
7223 /* always unregister in case we don't destroy any domains */
7224 unregister_sched_domain_sysctl();
7226 /* Let architecture update cpu core mappings. */
7227 new_topology = arch_update_cpu_topology();
7229 n = doms_new ? ndoms_new : 0;
7231 /* Destroy deleted domains */
7232 for (i = 0; i < ndoms_cur; i++) {
7233 for (j = 0; j < n && !new_topology; j++) {
7234 if (cpumask_equal(doms_cur[i], doms_new[j])
7235 && dattrs_equal(dattr_cur, i, dattr_new, j))
7236 goto match1;
7238 /* no match - a current sched domain not in new doms_new[] */
7239 detach_destroy_domains(doms_cur[i]);
7240 match1:
7244 if (doms_new == NULL) {
7245 ndoms_cur = 0;
7246 doms_new = &fallback_doms;
7247 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7248 WARN_ON_ONCE(dattr_new);
7251 /* Build new domains */
7252 for (i = 0; i < ndoms_new; i++) {
7253 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7254 if (cpumask_equal(doms_new[i], doms_cur[j])
7255 && dattrs_equal(dattr_new, i, dattr_cur, j))
7256 goto match2;
7258 /* no match - add a new doms_new */
7259 __build_sched_domains(doms_new[i],
7260 dattr_new ? dattr_new + i : NULL);
7261 match2:
7265 /* Remember the new sched domains */
7266 if (doms_cur != &fallback_doms)
7267 free_sched_domains(doms_cur, ndoms_cur);
7268 kfree(dattr_cur); /* kfree(NULL) is safe */
7269 doms_cur = doms_new;
7270 dattr_cur = dattr_new;
7271 ndoms_cur = ndoms_new;
7273 register_sched_domain_sysctl();
7275 mutex_unlock(&sched_domains_mutex);
7278 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7279 static void arch_reinit_sched_domains(void)
7281 get_online_cpus();
7283 /* Destroy domains first to force the rebuild */
7284 partition_sched_domains(0, NULL, NULL);
7286 rebuild_sched_domains();
7287 put_online_cpus();
7290 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7292 unsigned int level = 0;
7294 if (sscanf(buf, "%u", &level) != 1)
7295 return -EINVAL;
7298 * level is always be positive so don't check for
7299 * level < POWERSAVINGS_BALANCE_NONE which is 0
7300 * What happens on 0 or 1 byte write,
7301 * need to check for count as well?
7304 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7305 return -EINVAL;
7307 if (smt)
7308 sched_smt_power_savings = level;
7309 else
7310 sched_mc_power_savings = level;
7312 arch_reinit_sched_domains();
7314 return count;
7317 #ifdef CONFIG_SCHED_MC
7318 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7319 struct sysdev_class_attribute *attr,
7320 char *page)
7322 return sprintf(page, "%u\n", sched_mc_power_savings);
7324 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7325 struct sysdev_class_attribute *attr,
7326 const char *buf, size_t count)
7328 return sched_power_savings_store(buf, count, 0);
7330 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7331 sched_mc_power_savings_show,
7332 sched_mc_power_savings_store);
7333 #endif
7335 #ifdef CONFIG_SCHED_SMT
7336 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7337 struct sysdev_class_attribute *attr,
7338 char *page)
7340 return sprintf(page, "%u\n", sched_smt_power_savings);
7342 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7343 struct sysdev_class_attribute *attr,
7344 const char *buf, size_t count)
7346 return sched_power_savings_store(buf, count, 1);
7348 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7349 sched_smt_power_savings_show,
7350 sched_smt_power_savings_store);
7351 #endif
7353 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7355 int err = 0;
7357 #ifdef CONFIG_SCHED_SMT
7358 if (smt_capable())
7359 err = sysfs_create_file(&cls->kset.kobj,
7360 &attr_sched_smt_power_savings.attr);
7361 #endif
7362 #ifdef CONFIG_SCHED_MC
7363 if (!err && mc_capable())
7364 err = sysfs_create_file(&cls->kset.kobj,
7365 &attr_sched_mc_power_savings.attr);
7366 #endif
7367 return err;
7369 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7372 * Update cpusets according to cpu_active mask. If cpusets are
7373 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7374 * around partition_sched_domains().
7376 static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
7377 unsigned long action, void *hcpu)
7379 switch (action & ~CPU_TASKS_FROZEN) {
7380 case CPU_ONLINE:
7381 case CPU_DOWN_FAILED:
7382 cpuset_update_active_cpus();
7383 return NOTIFY_OK;
7384 default:
7385 return NOTIFY_DONE;
7389 static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
7390 unsigned long action, void *hcpu)
7392 switch (action & ~CPU_TASKS_FROZEN) {
7393 case CPU_DOWN_PREPARE:
7394 cpuset_update_active_cpus();
7395 return NOTIFY_OK;
7396 default:
7397 return NOTIFY_DONE;
7401 static int update_runtime(struct notifier_block *nfb,
7402 unsigned long action, void *hcpu)
7404 int cpu = (int)(long)hcpu;
7406 switch (action) {
7407 case CPU_DOWN_PREPARE:
7408 case CPU_DOWN_PREPARE_FROZEN:
7409 disable_runtime(cpu_rq(cpu));
7410 return NOTIFY_OK;
7412 case CPU_DOWN_FAILED:
7413 case CPU_DOWN_FAILED_FROZEN:
7414 case CPU_ONLINE:
7415 case CPU_ONLINE_FROZEN:
7416 enable_runtime(cpu_rq(cpu));
7417 return NOTIFY_OK;
7419 default:
7420 return NOTIFY_DONE;
7424 void __init sched_init_smp(void)
7426 cpumask_var_t non_isolated_cpus;
7428 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7429 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7431 #if defined(CONFIG_NUMA)
7432 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7433 GFP_KERNEL);
7434 BUG_ON(sched_group_nodes_bycpu == NULL);
7435 #endif
7436 get_online_cpus();
7437 mutex_lock(&sched_domains_mutex);
7438 arch_init_sched_domains(cpu_active_mask);
7439 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7440 if (cpumask_empty(non_isolated_cpus))
7441 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7442 mutex_unlock(&sched_domains_mutex);
7443 put_online_cpus();
7445 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7446 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7448 /* RT runtime code needs to handle some hotplug events */
7449 hotcpu_notifier(update_runtime, 0);
7451 init_hrtick();
7453 /* Move init over to a non-isolated CPU */
7454 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7455 BUG();
7456 sched_init_granularity();
7457 free_cpumask_var(non_isolated_cpus);
7459 init_sched_rt_class();
7461 #else
7462 void __init sched_init_smp(void)
7464 sched_init_granularity();
7466 #endif /* CONFIG_SMP */
7468 const_debug unsigned int sysctl_timer_migration = 1;
7470 int in_sched_functions(unsigned long addr)
7472 return in_lock_functions(addr) ||
7473 (addr >= (unsigned long)__sched_text_start
7474 && addr < (unsigned long)__sched_text_end);
7477 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7479 cfs_rq->tasks_timeline = RB_ROOT;
7480 INIT_LIST_HEAD(&cfs_rq->tasks);
7481 #ifdef CONFIG_FAIR_GROUP_SCHED
7482 cfs_rq->rq = rq;
7483 #endif
7484 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7487 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7489 struct rt_prio_array *array;
7490 int i;
7492 array = &rt_rq->active;
7493 for (i = 0; i < MAX_RT_PRIO; i++) {
7494 INIT_LIST_HEAD(array->queue + i);
7495 __clear_bit(i, array->bitmap);
7497 /* delimiter for bitsearch: */
7498 __set_bit(MAX_RT_PRIO, array->bitmap);
7500 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7501 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7502 #ifdef CONFIG_SMP
7503 rt_rq->highest_prio.next = MAX_RT_PRIO;
7504 #endif
7505 #endif
7506 #ifdef CONFIG_SMP
7507 rt_rq->rt_nr_migratory = 0;
7508 rt_rq->overloaded = 0;
7509 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7510 #endif
7512 rt_rq->rt_time = 0;
7513 rt_rq->rt_throttled = 0;
7514 rt_rq->rt_runtime = 0;
7515 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7517 #ifdef CONFIG_RT_GROUP_SCHED
7518 rt_rq->rt_nr_boosted = 0;
7519 rt_rq->rq = rq;
7520 #endif
7523 #ifdef CONFIG_FAIR_GROUP_SCHED
7524 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7525 struct sched_entity *se, int cpu, int add,
7526 struct sched_entity *parent)
7528 struct rq *rq = cpu_rq(cpu);
7529 tg->cfs_rq[cpu] = cfs_rq;
7530 init_cfs_rq(cfs_rq, rq);
7531 cfs_rq->tg = tg;
7532 if (add)
7533 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7535 tg->se[cpu] = se;
7536 /* se could be NULL for init_task_group */
7537 if (!se)
7538 return;
7540 if (!parent)
7541 se->cfs_rq = &rq->cfs;
7542 else
7543 se->cfs_rq = parent->my_q;
7545 se->my_q = cfs_rq;
7546 se->load.weight = tg->shares;
7547 se->load.inv_weight = 0;
7548 se->parent = parent;
7550 #endif
7552 #ifdef CONFIG_RT_GROUP_SCHED
7553 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7554 struct sched_rt_entity *rt_se, int cpu, int add,
7555 struct sched_rt_entity *parent)
7557 struct rq *rq = cpu_rq(cpu);
7559 tg->rt_rq[cpu] = rt_rq;
7560 init_rt_rq(rt_rq, rq);
7561 rt_rq->tg = tg;
7562 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7563 if (add)
7564 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7566 tg->rt_se[cpu] = rt_se;
7567 if (!rt_se)
7568 return;
7570 if (!parent)
7571 rt_se->rt_rq = &rq->rt;
7572 else
7573 rt_se->rt_rq = parent->my_q;
7575 rt_se->my_q = rt_rq;
7576 rt_se->parent = parent;
7577 INIT_LIST_HEAD(&rt_se->run_list);
7579 #endif
7581 void __init sched_init(void)
7583 int i, j;
7584 unsigned long alloc_size = 0, ptr;
7586 #ifdef CONFIG_FAIR_GROUP_SCHED
7587 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7588 #endif
7589 #ifdef CONFIG_RT_GROUP_SCHED
7590 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7591 #endif
7592 #ifdef CONFIG_CPUMASK_OFFSTACK
7593 alloc_size += num_possible_cpus() * cpumask_size();
7594 #endif
7595 if (alloc_size) {
7596 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7598 #ifdef CONFIG_FAIR_GROUP_SCHED
7599 init_task_group.se = (struct sched_entity **)ptr;
7600 ptr += nr_cpu_ids * sizeof(void **);
7602 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7603 ptr += nr_cpu_ids * sizeof(void **);
7605 #endif /* CONFIG_FAIR_GROUP_SCHED */
7606 #ifdef CONFIG_RT_GROUP_SCHED
7607 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7608 ptr += nr_cpu_ids * sizeof(void **);
7610 init_task_group.rt_rq = (struct rt_rq **)ptr;
7611 ptr += nr_cpu_ids * sizeof(void **);
7613 #endif /* CONFIG_RT_GROUP_SCHED */
7614 #ifdef CONFIG_CPUMASK_OFFSTACK
7615 for_each_possible_cpu(i) {
7616 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7617 ptr += cpumask_size();
7619 #endif /* CONFIG_CPUMASK_OFFSTACK */
7622 #ifdef CONFIG_SMP
7623 init_defrootdomain();
7624 #endif
7626 init_rt_bandwidth(&def_rt_bandwidth,
7627 global_rt_period(), global_rt_runtime());
7629 #ifdef CONFIG_RT_GROUP_SCHED
7630 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7631 global_rt_period(), global_rt_runtime());
7632 #endif /* CONFIG_RT_GROUP_SCHED */
7634 #ifdef CONFIG_CGROUP_SCHED
7635 list_add(&init_task_group.list, &task_groups);
7636 INIT_LIST_HEAD(&init_task_group.children);
7638 #endif /* CONFIG_CGROUP_SCHED */
7640 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7641 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7642 __alignof__(unsigned long));
7643 #endif
7644 for_each_possible_cpu(i) {
7645 struct rq *rq;
7647 rq = cpu_rq(i);
7648 raw_spin_lock_init(&rq->lock);
7649 rq->nr_running = 0;
7650 rq->calc_load_active = 0;
7651 rq->calc_load_update = jiffies + LOAD_FREQ;
7652 init_cfs_rq(&rq->cfs, rq);
7653 init_rt_rq(&rq->rt, rq);
7654 #ifdef CONFIG_FAIR_GROUP_SCHED
7655 init_task_group.shares = init_task_group_load;
7656 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7657 #ifdef CONFIG_CGROUP_SCHED
7659 * How much cpu bandwidth does init_task_group get?
7661 * In case of task-groups formed thr' the cgroup filesystem, it
7662 * gets 100% of the cpu resources in the system. This overall
7663 * system cpu resource is divided among the tasks of
7664 * init_task_group and its child task-groups in a fair manner,
7665 * based on each entity's (task or task-group's) weight
7666 * (se->load.weight).
7668 * In other words, if init_task_group has 10 tasks of weight
7669 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7670 * then A0's share of the cpu resource is:
7672 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7674 * We achieve this by letting init_task_group's tasks sit
7675 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7677 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7678 #endif
7679 #endif /* CONFIG_FAIR_GROUP_SCHED */
7681 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7682 #ifdef CONFIG_RT_GROUP_SCHED
7683 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7684 #ifdef CONFIG_CGROUP_SCHED
7685 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7686 #endif
7687 #endif
7689 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7690 rq->cpu_load[j] = 0;
7691 #ifdef CONFIG_SMP
7692 rq->sd = NULL;
7693 rq->rd = NULL;
7694 rq->cpu_power = SCHED_LOAD_SCALE;
7695 rq->post_schedule = 0;
7696 rq->active_balance = 0;
7697 rq->next_balance = jiffies;
7698 rq->push_cpu = 0;
7699 rq->cpu = i;
7700 rq->online = 0;
7701 rq->idle_stamp = 0;
7702 rq->avg_idle = 2*sysctl_sched_migration_cost;
7703 rq_attach_root(rq, &def_root_domain);
7704 #endif
7705 init_rq_hrtick(rq);
7706 atomic_set(&rq->nr_iowait, 0);
7709 set_load_weight(&init_task);
7711 #ifdef CONFIG_PREEMPT_NOTIFIERS
7712 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7713 #endif
7715 #ifdef CONFIG_SMP
7716 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7717 #endif
7719 #ifdef CONFIG_RT_MUTEXES
7720 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7721 #endif
7724 * The boot idle thread does lazy MMU switching as well:
7726 atomic_inc(&init_mm.mm_count);
7727 enter_lazy_tlb(&init_mm, current);
7730 * Make us the idle thread. Technically, schedule() should not be
7731 * called from this thread, however somewhere below it might be,
7732 * but because we are the idle thread, we just pick up running again
7733 * when this runqueue becomes "idle".
7735 init_idle(current, smp_processor_id());
7737 calc_load_update = jiffies + LOAD_FREQ;
7740 * During early bootup we pretend to be a normal task:
7742 current->sched_class = &fair_sched_class;
7744 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7745 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7746 #ifdef CONFIG_SMP
7747 #ifdef CONFIG_NO_HZ
7748 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7749 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7750 #endif
7751 /* May be allocated at isolcpus cmdline parse time */
7752 if (cpu_isolated_map == NULL)
7753 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7754 #endif /* SMP */
7756 perf_event_init();
7758 scheduler_running = 1;
7761 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7762 static inline int preempt_count_equals(int preempt_offset)
7764 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7766 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7769 void __might_sleep(const char *file, int line, int preempt_offset)
7771 #ifdef in_atomic
7772 static unsigned long prev_jiffy; /* ratelimiting */
7774 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7775 system_state != SYSTEM_RUNNING || oops_in_progress)
7776 return;
7777 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7778 return;
7779 prev_jiffy = jiffies;
7781 printk(KERN_ERR
7782 "BUG: sleeping function called from invalid context at %s:%d\n",
7783 file, line);
7784 printk(KERN_ERR
7785 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7786 in_atomic(), irqs_disabled(),
7787 current->pid, current->comm);
7789 debug_show_held_locks(current);
7790 if (irqs_disabled())
7791 print_irqtrace_events(current);
7792 dump_stack();
7793 #endif
7795 EXPORT_SYMBOL(__might_sleep);
7796 #endif
7798 #ifdef CONFIG_MAGIC_SYSRQ
7799 static void normalize_task(struct rq *rq, struct task_struct *p)
7801 int on_rq;
7803 on_rq = p->se.on_rq;
7804 if (on_rq)
7805 deactivate_task(rq, p, 0);
7806 __setscheduler(rq, p, SCHED_NORMAL, 0);
7807 if (on_rq) {
7808 activate_task(rq, p, 0);
7809 resched_task(rq->curr);
7813 void normalize_rt_tasks(void)
7815 struct task_struct *g, *p;
7816 unsigned long flags;
7817 struct rq *rq;
7819 read_lock_irqsave(&tasklist_lock, flags);
7820 do_each_thread(g, p) {
7822 * Only normalize user tasks:
7824 if (!p->mm)
7825 continue;
7827 p->se.exec_start = 0;
7828 #ifdef CONFIG_SCHEDSTATS
7829 p->se.statistics.wait_start = 0;
7830 p->se.statistics.sleep_start = 0;
7831 p->se.statistics.block_start = 0;
7832 #endif
7834 if (!rt_task(p)) {
7836 * Renice negative nice level userspace
7837 * tasks back to 0:
7839 if (TASK_NICE(p) < 0 && p->mm)
7840 set_user_nice(p, 0);
7841 continue;
7844 raw_spin_lock(&p->pi_lock);
7845 rq = __task_rq_lock(p);
7847 normalize_task(rq, p);
7849 __task_rq_unlock(rq);
7850 raw_spin_unlock(&p->pi_lock);
7851 } while_each_thread(g, p);
7853 read_unlock_irqrestore(&tasklist_lock, flags);
7856 #endif /* CONFIG_MAGIC_SYSRQ */
7858 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7860 * These functions are only useful for the IA64 MCA handling, or kdb.
7862 * They can only be called when the whole system has been
7863 * stopped - every CPU needs to be quiescent, and no scheduling
7864 * activity can take place. Using them for anything else would
7865 * be a serious bug, and as a result, they aren't even visible
7866 * under any other configuration.
7870 * curr_task - return the current task for a given cpu.
7871 * @cpu: the processor in question.
7873 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7875 struct task_struct *curr_task(int cpu)
7877 return cpu_curr(cpu);
7880 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7882 #ifdef CONFIG_IA64
7884 * set_curr_task - set the current task for a given cpu.
7885 * @cpu: the processor in question.
7886 * @p: the task pointer to set.
7888 * Description: This function must only be used when non-maskable interrupts
7889 * are serviced on a separate stack. It allows the architecture to switch the
7890 * notion of the current task on a cpu in a non-blocking manner. This function
7891 * must be called with all CPU's synchronized, and interrupts disabled, the
7892 * and caller must save the original value of the current task (see
7893 * curr_task() above) and restore that value before reenabling interrupts and
7894 * re-starting the system.
7896 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7898 void set_curr_task(int cpu, struct task_struct *p)
7900 cpu_curr(cpu) = p;
7903 #endif
7905 #ifdef CONFIG_FAIR_GROUP_SCHED
7906 static void free_fair_sched_group(struct task_group *tg)
7908 int i;
7910 for_each_possible_cpu(i) {
7911 if (tg->cfs_rq)
7912 kfree(tg->cfs_rq[i]);
7913 if (tg->se)
7914 kfree(tg->se[i]);
7917 kfree(tg->cfs_rq);
7918 kfree(tg->se);
7921 static
7922 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7924 struct cfs_rq *cfs_rq;
7925 struct sched_entity *se;
7926 struct rq *rq;
7927 int i;
7929 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7930 if (!tg->cfs_rq)
7931 goto err;
7932 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7933 if (!tg->se)
7934 goto err;
7936 tg->shares = NICE_0_LOAD;
7938 for_each_possible_cpu(i) {
7939 rq = cpu_rq(i);
7941 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7942 GFP_KERNEL, cpu_to_node(i));
7943 if (!cfs_rq)
7944 goto err;
7946 se = kzalloc_node(sizeof(struct sched_entity),
7947 GFP_KERNEL, cpu_to_node(i));
7948 if (!se)
7949 goto err_free_rq;
7951 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7954 return 1;
7956 err_free_rq:
7957 kfree(cfs_rq);
7958 err:
7959 return 0;
7962 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7964 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7965 &cpu_rq(cpu)->leaf_cfs_rq_list);
7968 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7970 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7972 #else /* !CONFG_FAIR_GROUP_SCHED */
7973 static inline void free_fair_sched_group(struct task_group *tg)
7977 static inline
7978 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7980 return 1;
7983 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7987 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7990 #endif /* CONFIG_FAIR_GROUP_SCHED */
7992 #ifdef CONFIG_RT_GROUP_SCHED
7993 static void free_rt_sched_group(struct task_group *tg)
7995 int i;
7997 destroy_rt_bandwidth(&tg->rt_bandwidth);
7999 for_each_possible_cpu(i) {
8000 if (tg->rt_rq)
8001 kfree(tg->rt_rq[i]);
8002 if (tg->rt_se)
8003 kfree(tg->rt_se[i]);
8006 kfree(tg->rt_rq);
8007 kfree(tg->rt_se);
8010 static
8011 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8013 struct rt_rq *rt_rq;
8014 struct sched_rt_entity *rt_se;
8015 struct rq *rq;
8016 int i;
8018 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8019 if (!tg->rt_rq)
8020 goto err;
8021 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8022 if (!tg->rt_se)
8023 goto err;
8025 init_rt_bandwidth(&tg->rt_bandwidth,
8026 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8028 for_each_possible_cpu(i) {
8029 rq = cpu_rq(i);
8031 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8032 GFP_KERNEL, cpu_to_node(i));
8033 if (!rt_rq)
8034 goto err;
8036 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8037 GFP_KERNEL, cpu_to_node(i));
8038 if (!rt_se)
8039 goto err_free_rq;
8041 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8044 return 1;
8046 err_free_rq:
8047 kfree(rt_rq);
8048 err:
8049 return 0;
8052 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8054 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8055 &cpu_rq(cpu)->leaf_rt_rq_list);
8058 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8060 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8062 #else /* !CONFIG_RT_GROUP_SCHED */
8063 static inline void free_rt_sched_group(struct task_group *tg)
8067 static inline
8068 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8070 return 1;
8073 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8077 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8080 #endif /* CONFIG_RT_GROUP_SCHED */
8082 #ifdef CONFIG_CGROUP_SCHED
8083 static void free_sched_group(struct task_group *tg)
8085 free_fair_sched_group(tg);
8086 free_rt_sched_group(tg);
8087 kfree(tg);
8090 /* allocate runqueue etc for a new task group */
8091 struct task_group *sched_create_group(struct task_group *parent)
8093 struct task_group *tg;
8094 unsigned long flags;
8095 int i;
8097 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8098 if (!tg)
8099 return ERR_PTR(-ENOMEM);
8101 if (!alloc_fair_sched_group(tg, parent))
8102 goto err;
8104 if (!alloc_rt_sched_group(tg, parent))
8105 goto err;
8107 spin_lock_irqsave(&task_group_lock, flags);
8108 for_each_possible_cpu(i) {
8109 register_fair_sched_group(tg, i);
8110 register_rt_sched_group(tg, i);
8112 list_add_rcu(&tg->list, &task_groups);
8114 WARN_ON(!parent); /* root should already exist */
8116 tg->parent = parent;
8117 INIT_LIST_HEAD(&tg->children);
8118 list_add_rcu(&tg->siblings, &parent->children);
8119 spin_unlock_irqrestore(&task_group_lock, flags);
8121 return tg;
8123 err:
8124 free_sched_group(tg);
8125 return ERR_PTR(-ENOMEM);
8128 /* rcu callback to free various structures associated with a task group */
8129 static void free_sched_group_rcu(struct rcu_head *rhp)
8131 /* now it should be safe to free those cfs_rqs */
8132 free_sched_group(container_of(rhp, struct task_group, rcu));
8135 /* Destroy runqueue etc associated with a task group */
8136 void sched_destroy_group(struct task_group *tg)
8138 unsigned long flags;
8139 int i;
8141 spin_lock_irqsave(&task_group_lock, flags);
8142 for_each_possible_cpu(i) {
8143 unregister_fair_sched_group(tg, i);
8144 unregister_rt_sched_group(tg, i);
8146 list_del_rcu(&tg->list);
8147 list_del_rcu(&tg->siblings);
8148 spin_unlock_irqrestore(&task_group_lock, flags);
8150 /* wait for possible concurrent references to cfs_rqs complete */
8151 call_rcu(&tg->rcu, free_sched_group_rcu);
8154 /* change task's runqueue when it moves between groups.
8155 * The caller of this function should have put the task in its new group
8156 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8157 * reflect its new group.
8159 void sched_move_task(struct task_struct *tsk)
8161 int on_rq, running;
8162 unsigned long flags;
8163 struct rq *rq;
8165 rq = task_rq_lock(tsk, &flags);
8167 running = task_current(rq, tsk);
8168 on_rq = tsk->se.on_rq;
8170 if (on_rq)
8171 dequeue_task(rq, tsk, 0);
8172 if (unlikely(running))
8173 tsk->sched_class->put_prev_task(rq, tsk);
8175 set_task_rq(tsk, task_cpu(tsk));
8177 #ifdef CONFIG_FAIR_GROUP_SCHED
8178 if (tsk->sched_class->moved_group)
8179 tsk->sched_class->moved_group(tsk, on_rq);
8180 #endif
8182 if (unlikely(running))
8183 tsk->sched_class->set_curr_task(rq);
8184 if (on_rq)
8185 enqueue_task(rq, tsk, 0);
8187 task_rq_unlock(rq, &flags);
8189 #endif /* CONFIG_CGROUP_SCHED */
8191 #ifdef CONFIG_FAIR_GROUP_SCHED
8192 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8194 struct cfs_rq *cfs_rq = se->cfs_rq;
8195 int on_rq;
8197 on_rq = se->on_rq;
8198 if (on_rq)
8199 dequeue_entity(cfs_rq, se, 0);
8201 se->load.weight = shares;
8202 se->load.inv_weight = 0;
8204 if (on_rq)
8205 enqueue_entity(cfs_rq, se, 0);
8208 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8210 struct cfs_rq *cfs_rq = se->cfs_rq;
8211 struct rq *rq = cfs_rq->rq;
8212 unsigned long flags;
8214 raw_spin_lock_irqsave(&rq->lock, flags);
8215 __set_se_shares(se, shares);
8216 raw_spin_unlock_irqrestore(&rq->lock, flags);
8219 static DEFINE_MUTEX(shares_mutex);
8221 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8223 int i;
8224 unsigned long flags;
8227 * We can't change the weight of the root cgroup.
8229 if (!tg->se[0])
8230 return -EINVAL;
8232 if (shares < MIN_SHARES)
8233 shares = MIN_SHARES;
8234 else if (shares > MAX_SHARES)
8235 shares = MAX_SHARES;
8237 mutex_lock(&shares_mutex);
8238 if (tg->shares == shares)
8239 goto done;
8241 spin_lock_irqsave(&task_group_lock, flags);
8242 for_each_possible_cpu(i)
8243 unregister_fair_sched_group(tg, i);
8244 list_del_rcu(&tg->siblings);
8245 spin_unlock_irqrestore(&task_group_lock, flags);
8247 /* wait for any ongoing reference to this group to finish */
8248 synchronize_sched();
8251 * Now we are free to modify the group's share on each cpu
8252 * w/o tripping rebalance_share or load_balance_fair.
8254 tg->shares = shares;
8255 for_each_possible_cpu(i) {
8257 * force a rebalance
8259 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8260 set_se_shares(tg->se[i], shares);
8264 * Enable load balance activity on this group, by inserting it back on
8265 * each cpu's rq->leaf_cfs_rq_list.
8267 spin_lock_irqsave(&task_group_lock, flags);
8268 for_each_possible_cpu(i)
8269 register_fair_sched_group(tg, i);
8270 list_add_rcu(&tg->siblings, &tg->parent->children);
8271 spin_unlock_irqrestore(&task_group_lock, flags);
8272 done:
8273 mutex_unlock(&shares_mutex);
8274 return 0;
8277 unsigned long sched_group_shares(struct task_group *tg)
8279 return tg->shares;
8281 #endif
8283 #ifdef CONFIG_RT_GROUP_SCHED
8285 * Ensure that the real time constraints are schedulable.
8287 static DEFINE_MUTEX(rt_constraints_mutex);
8289 static unsigned long to_ratio(u64 period, u64 runtime)
8291 if (runtime == RUNTIME_INF)
8292 return 1ULL << 20;
8294 return div64_u64(runtime << 20, period);
8297 /* Must be called with tasklist_lock held */
8298 static inline int tg_has_rt_tasks(struct task_group *tg)
8300 struct task_struct *g, *p;
8302 do_each_thread(g, p) {
8303 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8304 return 1;
8305 } while_each_thread(g, p);
8307 return 0;
8310 struct rt_schedulable_data {
8311 struct task_group *tg;
8312 u64 rt_period;
8313 u64 rt_runtime;
8316 static int tg_schedulable(struct task_group *tg, void *data)
8318 struct rt_schedulable_data *d = data;
8319 struct task_group *child;
8320 unsigned long total, sum = 0;
8321 u64 period, runtime;
8323 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8324 runtime = tg->rt_bandwidth.rt_runtime;
8326 if (tg == d->tg) {
8327 period = d->rt_period;
8328 runtime = d->rt_runtime;
8332 * Cannot have more runtime than the period.
8334 if (runtime > period && runtime != RUNTIME_INF)
8335 return -EINVAL;
8338 * Ensure we don't starve existing RT tasks.
8340 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8341 return -EBUSY;
8343 total = to_ratio(period, runtime);
8346 * Nobody can have more than the global setting allows.
8348 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8349 return -EINVAL;
8352 * The sum of our children's runtime should not exceed our own.
8354 list_for_each_entry_rcu(child, &tg->children, siblings) {
8355 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8356 runtime = child->rt_bandwidth.rt_runtime;
8358 if (child == d->tg) {
8359 period = d->rt_period;
8360 runtime = d->rt_runtime;
8363 sum += to_ratio(period, runtime);
8366 if (sum > total)
8367 return -EINVAL;
8369 return 0;
8372 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8374 struct rt_schedulable_data data = {
8375 .tg = tg,
8376 .rt_period = period,
8377 .rt_runtime = runtime,
8380 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8383 static int tg_set_bandwidth(struct task_group *tg,
8384 u64 rt_period, u64 rt_runtime)
8386 int i, err = 0;
8388 mutex_lock(&rt_constraints_mutex);
8389 read_lock(&tasklist_lock);
8390 err = __rt_schedulable(tg, rt_period, rt_runtime);
8391 if (err)
8392 goto unlock;
8394 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8395 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8396 tg->rt_bandwidth.rt_runtime = rt_runtime;
8398 for_each_possible_cpu(i) {
8399 struct rt_rq *rt_rq = tg->rt_rq[i];
8401 raw_spin_lock(&rt_rq->rt_runtime_lock);
8402 rt_rq->rt_runtime = rt_runtime;
8403 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8405 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8406 unlock:
8407 read_unlock(&tasklist_lock);
8408 mutex_unlock(&rt_constraints_mutex);
8410 return err;
8413 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8415 u64 rt_runtime, rt_period;
8417 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8418 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8419 if (rt_runtime_us < 0)
8420 rt_runtime = RUNTIME_INF;
8422 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8425 long sched_group_rt_runtime(struct task_group *tg)
8427 u64 rt_runtime_us;
8429 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8430 return -1;
8432 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8433 do_div(rt_runtime_us, NSEC_PER_USEC);
8434 return rt_runtime_us;
8437 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8439 u64 rt_runtime, rt_period;
8441 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8442 rt_runtime = tg->rt_bandwidth.rt_runtime;
8444 if (rt_period == 0)
8445 return -EINVAL;
8447 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8450 long sched_group_rt_period(struct task_group *tg)
8452 u64 rt_period_us;
8454 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8455 do_div(rt_period_us, NSEC_PER_USEC);
8456 return rt_period_us;
8459 static int sched_rt_global_constraints(void)
8461 u64 runtime, period;
8462 int ret = 0;
8464 if (sysctl_sched_rt_period <= 0)
8465 return -EINVAL;
8467 runtime = global_rt_runtime();
8468 period = global_rt_period();
8471 * Sanity check on the sysctl variables.
8473 if (runtime > period && runtime != RUNTIME_INF)
8474 return -EINVAL;
8476 mutex_lock(&rt_constraints_mutex);
8477 read_lock(&tasklist_lock);
8478 ret = __rt_schedulable(NULL, 0, 0);
8479 read_unlock(&tasklist_lock);
8480 mutex_unlock(&rt_constraints_mutex);
8482 return ret;
8485 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8487 /* Don't accept realtime tasks when there is no way for them to run */
8488 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8489 return 0;
8491 return 1;
8494 #else /* !CONFIG_RT_GROUP_SCHED */
8495 static int sched_rt_global_constraints(void)
8497 unsigned long flags;
8498 int i;
8500 if (sysctl_sched_rt_period <= 0)
8501 return -EINVAL;
8504 * There's always some RT tasks in the root group
8505 * -- migration, kstopmachine etc..
8507 if (sysctl_sched_rt_runtime == 0)
8508 return -EBUSY;
8510 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8511 for_each_possible_cpu(i) {
8512 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8514 raw_spin_lock(&rt_rq->rt_runtime_lock);
8515 rt_rq->rt_runtime = global_rt_runtime();
8516 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8518 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8520 return 0;
8522 #endif /* CONFIG_RT_GROUP_SCHED */
8524 int sched_rt_handler(struct ctl_table *table, int write,
8525 void __user *buffer, size_t *lenp,
8526 loff_t *ppos)
8528 int ret;
8529 int old_period, old_runtime;
8530 static DEFINE_MUTEX(mutex);
8532 mutex_lock(&mutex);
8533 old_period = sysctl_sched_rt_period;
8534 old_runtime = sysctl_sched_rt_runtime;
8536 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8538 if (!ret && write) {
8539 ret = sched_rt_global_constraints();
8540 if (ret) {
8541 sysctl_sched_rt_period = old_period;
8542 sysctl_sched_rt_runtime = old_runtime;
8543 } else {
8544 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8545 def_rt_bandwidth.rt_period =
8546 ns_to_ktime(global_rt_period());
8549 mutex_unlock(&mutex);
8551 return ret;
8554 #ifdef CONFIG_CGROUP_SCHED
8556 /* return corresponding task_group object of a cgroup */
8557 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8559 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8560 struct task_group, css);
8563 static struct cgroup_subsys_state *
8564 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8566 struct task_group *tg, *parent;
8568 if (!cgrp->parent) {
8569 /* This is early initialization for the top cgroup */
8570 return &init_task_group.css;
8573 parent = cgroup_tg(cgrp->parent);
8574 tg = sched_create_group(parent);
8575 if (IS_ERR(tg))
8576 return ERR_PTR(-ENOMEM);
8578 return &tg->css;
8581 static void
8582 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8584 struct task_group *tg = cgroup_tg(cgrp);
8586 sched_destroy_group(tg);
8589 static int
8590 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8592 #ifdef CONFIG_RT_GROUP_SCHED
8593 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8594 return -EINVAL;
8595 #else
8596 /* We don't support RT-tasks being in separate groups */
8597 if (tsk->sched_class != &fair_sched_class)
8598 return -EINVAL;
8599 #endif
8600 return 0;
8603 static int
8604 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8605 struct task_struct *tsk, bool threadgroup)
8607 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8608 if (retval)
8609 return retval;
8610 if (threadgroup) {
8611 struct task_struct *c;
8612 rcu_read_lock();
8613 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8614 retval = cpu_cgroup_can_attach_task(cgrp, c);
8615 if (retval) {
8616 rcu_read_unlock();
8617 return retval;
8620 rcu_read_unlock();
8622 return 0;
8625 static void
8626 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8627 struct cgroup *old_cont, struct task_struct *tsk,
8628 bool threadgroup)
8630 sched_move_task(tsk);
8631 if (threadgroup) {
8632 struct task_struct *c;
8633 rcu_read_lock();
8634 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8635 sched_move_task(c);
8637 rcu_read_unlock();
8641 #ifdef CONFIG_FAIR_GROUP_SCHED
8642 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8643 u64 shareval)
8645 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8648 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8650 struct task_group *tg = cgroup_tg(cgrp);
8652 return (u64) tg->shares;
8654 #endif /* CONFIG_FAIR_GROUP_SCHED */
8656 #ifdef CONFIG_RT_GROUP_SCHED
8657 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8658 s64 val)
8660 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8663 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8665 return sched_group_rt_runtime(cgroup_tg(cgrp));
8668 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8669 u64 rt_period_us)
8671 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8674 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8676 return sched_group_rt_period(cgroup_tg(cgrp));
8678 #endif /* CONFIG_RT_GROUP_SCHED */
8680 static struct cftype cpu_files[] = {
8681 #ifdef CONFIG_FAIR_GROUP_SCHED
8683 .name = "shares",
8684 .read_u64 = cpu_shares_read_u64,
8685 .write_u64 = cpu_shares_write_u64,
8687 #endif
8688 #ifdef CONFIG_RT_GROUP_SCHED
8690 .name = "rt_runtime_us",
8691 .read_s64 = cpu_rt_runtime_read,
8692 .write_s64 = cpu_rt_runtime_write,
8695 .name = "rt_period_us",
8696 .read_u64 = cpu_rt_period_read_uint,
8697 .write_u64 = cpu_rt_period_write_uint,
8699 #endif
8702 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8704 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8707 struct cgroup_subsys cpu_cgroup_subsys = {
8708 .name = "cpu",
8709 .create = cpu_cgroup_create,
8710 .destroy = cpu_cgroup_destroy,
8711 .can_attach = cpu_cgroup_can_attach,
8712 .attach = cpu_cgroup_attach,
8713 .populate = cpu_cgroup_populate,
8714 .subsys_id = cpu_cgroup_subsys_id,
8715 .early_init = 1,
8718 #endif /* CONFIG_CGROUP_SCHED */
8720 #ifdef CONFIG_CGROUP_CPUACCT
8723 * CPU accounting code for task groups.
8725 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8726 * (balbir@in.ibm.com).
8729 /* track cpu usage of a group of tasks and its child groups */
8730 struct cpuacct {
8731 struct cgroup_subsys_state css;
8732 /* cpuusage holds pointer to a u64-type object on every cpu */
8733 u64 __percpu *cpuusage;
8734 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8735 struct cpuacct *parent;
8738 struct cgroup_subsys cpuacct_subsys;
8740 /* return cpu accounting group corresponding to this container */
8741 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8743 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8744 struct cpuacct, css);
8747 /* return cpu accounting group to which this task belongs */
8748 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8750 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8751 struct cpuacct, css);
8754 /* create a new cpu accounting group */
8755 static struct cgroup_subsys_state *cpuacct_create(
8756 struct cgroup_subsys *ss, struct cgroup *cgrp)
8758 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8759 int i;
8761 if (!ca)
8762 goto out;
8764 ca->cpuusage = alloc_percpu(u64);
8765 if (!ca->cpuusage)
8766 goto out_free_ca;
8768 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8769 if (percpu_counter_init(&ca->cpustat[i], 0))
8770 goto out_free_counters;
8772 if (cgrp->parent)
8773 ca->parent = cgroup_ca(cgrp->parent);
8775 return &ca->css;
8777 out_free_counters:
8778 while (--i >= 0)
8779 percpu_counter_destroy(&ca->cpustat[i]);
8780 free_percpu(ca->cpuusage);
8781 out_free_ca:
8782 kfree(ca);
8783 out:
8784 return ERR_PTR(-ENOMEM);
8787 /* destroy an existing cpu accounting group */
8788 static void
8789 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8791 struct cpuacct *ca = cgroup_ca(cgrp);
8792 int i;
8794 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8795 percpu_counter_destroy(&ca->cpustat[i]);
8796 free_percpu(ca->cpuusage);
8797 kfree(ca);
8800 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8802 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8803 u64 data;
8805 #ifndef CONFIG_64BIT
8807 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8809 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8810 data = *cpuusage;
8811 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8812 #else
8813 data = *cpuusage;
8814 #endif
8816 return data;
8819 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8821 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8823 #ifndef CONFIG_64BIT
8825 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8827 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8828 *cpuusage = val;
8829 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8830 #else
8831 *cpuusage = val;
8832 #endif
8835 /* return total cpu usage (in nanoseconds) of a group */
8836 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8838 struct cpuacct *ca = cgroup_ca(cgrp);
8839 u64 totalcpuusage = 0;
8840 int i;
8842 for_each_present_cpu(i)
8843 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8845 return totalcpuusage;
8848 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8849 u64 reset)
8851 struct cpuacct *ca = cgroup_ca(cgrp);
8852 int err = 0;
8853 int i;
8855 if (reset) {
8856 err = -EINVAL;
8857 goto out;
8860 for_each_present_cpu(i)
8861 cpuacct_cpuusage_write(ca, i, 0);
8863 out:
8864 return err;
8867 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8868 struct seq_file *m)
8870 struct cpuacct *ca = cgroup_ca(cgroup);
8871 u64 percpu;
8872 int i;
8874 for_each_present_cpu(i) {
8875 percpu = cpuacct_cpuusage_read(ca, i);
8876 seq_printf(m, "%llu ", (unsigned long long) percpu);
8878 seq_printf(m, "\n");
8879 return 0;
8882 static const char *cpuacct_stat_desc[] = {
8883 [CPUACCT_STAT_USER] = "user",
8884 [CPUACCT_STAT_SYSTEM] = "system",
8887 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8888 struct cgroup_map_cb *cb)
8890 struct cpuacct *ca = cgroup_ca(cgrp);
8891 int i;
8893 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8894 s64 val = percpu_counter_read(&ca->cpustat[i]);
8895 val = cputime64_to_clock_t(val);
8896 cb->fill(cb, cpuacct_stat_desc[i], val);
8898 return 0;
8901 static struct cftype files[] = {
8903 .name = "usage",
8904 .read_u64 = cpuusage_read,
8905 .write_u64 = cpuusage_write,
8908 .name = "usage_percpu",
8909 .read_seq_string = cpuacct_percpu_seq_read,
8912 .name = "stat",
8913 .read_map = cpuacct_stats_show,
8917 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8919 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8923 * charge this task's execution time to its accounting group.
8925 * called with rq->lock held.
8927 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8929 struct cpuacct *ca;
8930 int cpu;
8932 if (unlikely(!cpuacct_subsys.active))
8933 return;
8935 cpu = task_cpu(tsk);
8937 rcu_read_lock();
8939 ca = task_ca(tsk);
8941 for (; ca; ca = ca->parent) {
8942 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8943 *cpuusage += cputime;
8946 rcu_read_unlock();
8950 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8951 * in cputime_t units. As a result, cpuacct_update_stats calls
8952 * percpu_counter_add with values large enough to always overflow the
8953 * per cpu batch limit causing bad SMP scalability.
8955 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8956 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8957 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8959 #ifdef CONFIG_SMP
8960 #define CPUACCT_BATCH \
8961 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8962 #else
8963 #define CPUACCT_BATCH 0
8964 #endif
8967 * Charge the system/user time to the task's accounting group.
8969 static void cpuacct_update_stats(struct task_struct *tsk,
8970 enum cpuacct_stat_index idx, cputime_t val)
8972 struct cpuacct *ca;
8973 int batch = CPUACCT_BATCH;
8975 if (unlikely(!cpuacct_subsys.active))
8976 return;
8978 rcu_read_lock();
8979 ca = task_ca(tsk);
8981 do {
8982 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8983 ca = ca->parent;
8984 } while (ca);
8985 rcu_read_unlock();
8988 struct cgroup_subsys cpuacct_subsys = {
8989 .name = "cpuacct",
8990 .create = cpuacct_create,
8991 .destroy = cpuacct_destroy,
8992 .populate = cpuacct_populate,
8993 .subsys_id = cpuacct_subsys_id,
8995 #endif /* CONFIG_CGROUP_CPUACCT */
8997 #ifndef CONFIG_SMP
8999 void synchronize_sched_expedited(void)
9001 barrier();
9003 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9005 #else /* #ifndef CONFIG_SMP */
9007 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9009 static int synchronize_sched_expedited_cpu_stop(void *data)
9012 * There must be a full memory barrier on each affected CPU
9013 * between the time that try_stop_cpus() is called and the
9014 * time that it returns.
9016 * In the current initial implementation of cpu_stop, the
9017 * above condition is already met when the control reaches
9018 * this point and the following smp_mb() is not strictly
9019 * necessary. Do smp_mb() anyway for documentation and
9020 * robustness against future implementation changes.
9022 smp_mb(); /* See above comment block. */
9023 return 0;
9027 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9028 * approach to force grace period to end quickly. This consumes
9029 * significant time on all CPUs, and is thus not recommended for
9030 * any sort of common-case code.
9032 * Note that it is illegal to call this function while holding any
9033 * lock that is acquired by a CPU-hotplug notifier. Failing to
9034 * observe this restriction will result in deadlock.
9036 void synchronize_sched_expedited(void)
9038 int snap, trycount = 0;
9040 smp_mb(); /* ensure prior mod happens before capturing snap. */
9041 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9042 get_online_cpus();
9043 while (try_stop_cpus(cpu_online_mask,
9044 synchronize_sched_expedited_cpu_stop,
9045 NULL) == -EAGAIN) {
9046 put_online_cpus();
9047 if (trycount++ < 10)
9048 udelay(trycount * num_online_cpus());
9049 else {
9050 synchronize_sched();
9051 return;
9053 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9054 smp_mb(); /* ensure test happens before caller kfree */
9055 return;
9057 get_online_cpus();
9059 atomic_inc(&synchronize_sched_expedited_count);
9060 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9061 put_online_cpus();
9063 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9065 #endif /* #else #ifndef CONFIG_SMP */