Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[linux-2.6/cjktty.git] / drivers / spi / pxa2xx_spi.c
blob33fcef3150d4c63ae0ef67b24b7566ef495bd145
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/delay.h>
36 #include <mach/dma.h>
37 #include <mach/regs-ssp.h>
38 #include <mach/ssp.h>
39 #include <mach/pxa2xx_spi.h>
41 MODULE_AUTHOR("Stephen Street");
42 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
43 MODULE_LICENSE("GPL");
44 MODULE_ALIAS("platform:pxa2xx-spi");
46 #define MAX_BUSES 3
48 #define RX_THRESH_DFLT 8
49 #define TX_THRESH_DFLT 8
50 #define TIMOUT_DFLT 1000
52 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
53 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
54 #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
55 #define MAX_DMA_LEN 8191
58 * for testing SSCR1 changes that require SSP restart, basically
59 * everything except the service and interrupt enables, the pxa270 developer
60 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
61 * list, but the PXA255 dev man says all bits without really meaning the
62 * service and interrupt enables
64 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
65 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
66 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
67 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
68 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
69 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
71 #define DEFINE_SSP_REG(reg, off) \
72 static inline u32 read_##reg(void const __iomem *p) \
73 { return __raw_readl(p + (off)); } \
75 static inline void write_##reg(u32 v, void __iomem *p) \
76 { __raw_writel(v, p + (off)); }
78 DEFINE_SSP_REG(SSCR0, 0x00)
79 DEFINE_SSP_REG(SSCR1, 0x04)
80 DEFINE_SSP_REG(SSSR, 0x08)
81 DEFINE_SSP_REG(SSITR, 0x0c)
82 DEFINE_SSP_REG(SSDR, 0x10)
83 DEFINE_SSP_REG(SSTO, 0x28)
84 DEFINE_SSP_REG(SSPSP, 0x2c)
86 #define START_STATE ((void*)0)
87 #define RUNNING_STATE ((void*)1)
88 #define DONE_STATE ((void*)2)
89 #define ERROR_STATE ((void*)-1)
91 #define QUEUE_RUNNING 0
92 #define QUEUE_STOPPED 1
94 struct driver_data {
95 /* Driver model hookup */
96 struct platform_device *pdev;
98 /* SSP Info */
99 struct ssp_device *ssp;
101 /* SPI framework hookup */
102 enum pxa_ssp_type ssp_type;
103 struct spi_master *master;
105 /* PXA hookup */
106 struct pxa2xx_spi_master *master_info;
108 /* DMA setup stuff */
109 int rx_channel;
110 int tx_channel;
111 u32 *null_dma_buf;
113 /* SSP register addresses */
114 void __iomem *ioaddr;
115 u32 ssdr_physical;
117 /* SSP masks*/
118 u32 dma_cr1;
119 u32 int_cr1;
120 u32 clear_sr;
121 u32 mask_sr;
123 /* Driver message queue */
124 struct workqueue_struct *workqueue;
125 struct work_struct pump_messages;
126 spinlock_t lock;
127 struct list_head queue;
128 int busy;
129 int run;
131 /* Message Transfer pump */
132 struct tasklet_struct pump_transfers;
134 /* Current message transfer state info */
135 struct spi_message* cur_msg;
136 struct spi_transfer* cur_transfer;
137 struct chip_data *cur_chip;
138 size_t len;
139 void *tx;
140 void *tx_end;
141 void *rx;
142 void *rx_end;
143 int dma_mapped;
144 dma_addr_t rx_dma;
145 dma_addr_t tx_dma;
146 size_t rx_map_len;
147 size_t tx_map_len;
148 u8 n_bytes;
149 u32 dma_width;
150 int (*write)(struct driver_data *drv_data);
151 int (*read)(struct driver_data *drv_data);
152 irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
153 void (*cs_control)(u32 command);
156 struct chip_data {
157 u32 cr0;
158 u32 cr1;
159 u32 psp;
160 u32 timeout;
161 u8 n_bytes;
162 u32 dma_width;
163 u32 dma_burst_size;
164 u32 threshold;
165 u32 dma_threshold;
166 u8 enable_dma;
167 u8 bits_per_word;
168 u32 speed_hz;
169 int (*write)(struct driver_data *drv_data);
170 int (*read)(struct driver_data *drv_data);
171 void (*cs_control)(u32 command);
174 static void pump_messages(struct work_struct *work);
176 static int flush(struct driver_data *drv_data)
178 unsigned long limit = loops_per_jiffy << 1;
180 void __iomem *reg = drv_data->ioaddr;
182 do {
183 while (read_SSSR(reg) & SSSR_RNE) {
184 read_SSDR(reg);
186 } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
187 write_SSSR(SSSR_ROR, reg);
189 return limit;
192 static void null_cs_control(u32 command)
196 static int null_writer(struct driver_data *drv_data)
198 void __iomem *reg = drv_data->ioaddr;
199 u8 n_bytes = drv_data->n_bytes;
201 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
202 || (drv_data->tx == drv_data->tx_end))
203 return 0;
205 write_SSDR(0, reg);
206 drv_data->tx += n_bytes;
208 return 1;
211 static int null_reader(struct driver_data *drv_data)
213 void __iomem *reg = drv_data->ioaddr;
214 u8 n_bytes = drv_data->n_bytes;
216 while ((read_SSSR(reg) & SSSR_RNE)
217 && (drv_data->rx < drv_data->rx_end)) {
218 read_SSDR(reg);
219 drv_data->rx += n_bytes;
222 return drv_data->rx == drv_data->rx_end;
225 static int u8_writer(struct driver_data *drv_data)
227 void __iomem *reg = drv_data->ioaddr;
229 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
230 || (drv_data->tx == drv_data->tx_end))
231 return 0;
233 write_SSDR(*(u8 *)(drv_data->tx), reg);
234 ++drv_data->tx;
236 return 1;
239 static int u8_reader(struct driver_data *drv_data)
241 void __iomem *reg = drv_data->ioaddr;
243 while ((read_SSSR(reg) & SSSR_RNE)
244 && (drv_data->rx < drv_data->rx_end)) {
245 *(u8 *)(drv_data->rx) = read_SSDR(reg);
246 ++drv_data->rx;
249 return drv_data->rx == drv_data->rx_end;
252 static int u16_writer(struct driver_data *drv_data)
254 void __iomem *reg = drv_data->ioaddr;
256 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
257 || (drv_data->tx == drv_data->tx_end))
258 return 0;
260 write_SSDR(*(u16 *)(drv_data->tx), reg);
261 drv_data->tx += 2;
263 return 1;
266 static int u16_reader(struct driver_data *drv_data)
268 void __iomem *reg = drv_data->ioaddr;
270 while ((read_SSSR(reg) & SSSR_RNE)
271 && (drv_data->rx < drv_data->rx_end)) {
272 *(u16 *)(drv_data->rx) = read_SSDR(reg);
273 drv_data->rx += 2;
276 return drv_data->rx == drv_data->rx_end;
279 static int u32_writer(struct driver_data *drv_data)
281 void __iomem *reg = drv_data->ioaddr;
283 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
284 || (drv_data->tx == drv_data->tx_end))
285 return 0;
287 write_SSDR(*(u32 *)(drv_data->tx), reg);
288 drv_data->tx += 4;
290 return 1;
293 static int u32_reader(struct driver_data *drv_data)
295 void __iomem *reg = drv_data->ioaddr;
297 while ((read_SSSR(reg) & SSSR_RNE)
298 && (drv_data->rx < drv_data->rx_end)) {
299 *(u32 *)(drv_data->rx) = read_SSDR(reg);
300 drv_data->rx += 4;
303 return drv_data->rx == drv_data->rx_end;
306 static void *next_transfer(struct driver_data *drv_data)
308 struct spi_message *msg = drv_data->cur_msg;
309 struct spi_transfer *trans = drv_data->cur_transfer;
311 /* Move to next transfer */
312 if (trans->transfer_list.next != &msg->transfers) {
313 drv_data->cur_transfer =
314 list_entry(trans->transfer_list.next,
315 struct spi_transfer,
316 transfer_list);
317 return RUNNING_STATE;
318 } else
319 return DONE_STATE;
322 static int map_dma_buffers(struct driver_data *drv_data)
324 struct spi_message *msg = drv_data->cur_msg;
325 struct device *dev = &msg->spi->dev;
327 if (!drv_data->cur_chip->enable_dma)
328 return 0;
330 if (msg->is_dma_mapped)
331 return drv_data->rx_dma && drv_data->tx_dma;
333 if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
334 return 0;
336 /* Modify setup if rx buffer is null */
337 if (drv_data->rx == NULL) {
338 *drv_data->null_dma_buf = 0;
339 drv_data->rx = drv_data->null_dma_buf;
340 drv_data->rx_map_len = 4;
341 } else
342 drv_data->rx_map_len = drv_data->len;
345 /* Modify setup if tx buffer is null */
346 if (drv_data->tx == NULL) {
347 *drv_data->null_dma_buf = 0;
348 drv_data->tx = drv_data->null_dma_buf;
349 drv_data->tx_map_len = 4;
350 } else
351 drv_data->tx_map_len = drv_data->len;
353 /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
354 * so we flush the cache *before* invalidating it, in case
355 * the tx and rx buffers overlap.
357 drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
358 drv_data->tx_map_len, DMA_TO_DEVICE);
359 if (dma_mapping_error(dev, drv_data->tx_dma))
360 return 0;
362 /* Stream map the rx buffer */
363 drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
364 drv_data->rx_map_len, DMA_FROM_DEVICE);
365 if (dma_mapping_error(dev, drv_data->rx_dma)) {
366 dma_unmap_single(dev, drv_data->tx_dma,
367 drv_data->tx_map_len, DMA_TO_DEVICE);
368 return 0;
371 return 1;
374 static void unmap_dma_buffers(struct driver_data *drv_data)
376 struct device *dev;
378 if (!drv_data->dma_mapped)
379 return;
381 if (!drv_data->cur_msg->is_dma_mapped) {
382 dev = &drv_data->cur_msg->spi->dev;
383 dma_unmap_single(dev, drv_data->rx_dma,
384 drv_data->rx_map_len, DMA_FROM_DEVICE);
385 dma_unmap_single(dev, drv_data->tx_dma,
386 drv_data->tx_map_len, DMA_TO_DEVICE);
389 drv_data->dma_mapped = 0;
392 /* caller already set message->status; dma and pio irqs are blocked */
393 static void giveback(struct driver_data *drv_data)
395 struct spi_transfer* last_transfer;
396 unsigned long flags;
397 struct spi_message *msg;
399 spin_lock_irqsave(&drv_data->lock, flags);
400 msg = drv_data->cur_msg;
401 drv_data->cur_msg = NULL;
402 drv_data->cur_transfer = NULL;
403 drv_data->cur_chip = NULL;
404 queue_work(drv_data->workqueue, &drv_data->pump_messages);
405 spin_unlock_irqrestore(&drv_data->lock, flags);
407 last_transfer = list_entry(msg->transfers.prev,
408 struct spi_transfer,
409 transfer_list);
411 /* Delay if requested before any change in chip select */
412 if (last_transfer->delay_usecs)
413 udelay(last_transfer->delay_usecs);
415 /* Drop chip select UNLESS cs_change is true or we are returning
416 * a message with an error, or next message is for another chip
418 if (!last_transfer->cs_change)
419 drv_data->cs_control(PXA2XX_CS_DEASSERT);
420 else {
421 struct spi_message *next_msg;
423 /* Holding of cs was hinted, but we need to make sure
424 * the next message is for the same chip. Don't waste
425 * time with the following tests unless this was hinted.
427 * We cannot postpone this until pump_messages, because
428 * after calling msg->complete (below) the driver that
429 * sent the current message could be unloaded, which
430 * could invalidate the cs_control() callback...
433 /* get a pointer to the next message, if any */
434 spin_lock_irqsave(&drv_data->lock, flags);
435 if (list_empty(&drv_data->queue))
436 next_msg = NULL;
437 else
438 next_msg = list_entry(drv_data->queue.next,
439 struct spi_message, queue);
440 spin_unlock_irqrestore(&drv_data->lock, flags);
442 /* see if the next and current messages point
443 * to the same chip
445 if (next_msg && next_msg->spi != msg->spi)
446 next_msg = NULL;
447 if (!next_msg || msg->state == ERROR_STATE)
448 drv_data->cs_control(PXA2XX_CS_DEASSERT);
451 msg->state = NULL;
452 if (msg->complete)
453 msg->complete(msg->context);
456 static int wait_ssp_rx_stall(void const __iomem *ioaddr)
458 unsigned long limit = loops_per_jiffy << 1;
460 while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
461 cpu_relax();
463 return limit;
466 static int wait_dma_channel_stop(int channel)
468 unsigned long limit = loops_per_jiffy << 1;
470 while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
471 cpu_relax();
473 return limit;
476 static void dma_error_stop(struct driver_data *drv_data, const char *msg)
478 void __iomem *reg = drv_data->ioaddr;
480 /* Stop and reset */
481 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
482 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
483 write_SSSR(drv_data->clear_sr, reg);
484 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
485 if (drv_data->ssp_type != PXA25x_SSP)
486 write_SSTO(0, reg);
487 flush(drv_data);
488 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
490 unmap_dma_buffers(drv_data);
492 dev_err(&drv_data->pdev->dev, "%s\n", msg);
494 drv_data->cur_msg->state = ERROR_STATE;
495 tasklet_schedule(&drv_data->pump_transfers);
498 static void dma_transfer_complete(struct driver_data *drv_data)
500 void __iomem *reg = drv_data->ioaddr;
501 struct spi_message *msg = drv_data->cur_msg;
503 /* Clear and disable interrupts on SSP and DMA channels*/
504 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
505 write_SSSR(drv_data->clear_sr, reg);
506 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
507 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
509 if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
510 dev_err(&drv_data->pdev->dev,
511 "dma_handler: dma rx channel stop failed\n");
513 if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
514 dev_err(&drv_data->pdev->dev,
515 "dma_transfer: ssp rx stall failed\n");
517 unmap_dma_buffers(drv_data);
519 /* update the buffer pointer for the amount completed in dma */
520 drv_data->rx += drv_data->len -
521 (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
523 /* read trailing data from fifo, it does not matter how many
524 * bytes are in the fifo just read until buffer is full
525 * or fifo is empty, which ever occurs first */
526 drv_data->read(drv_data);
528 /* return count of what was actually read */
529 msg->actual_length += drv_data->len -
530 (drv_data->rx_end - drv_data->rx);
532 /* Transfer delays and chip select release are
533 * handled in pump_transfers or giveback
536 /* Move to next transfer */
537 msg->state = next_transfer(drv_data);
539 /* Schedule transfer tasklet */
540 tasklet_schedule(&drv_data->pump_transfers);
543 static void dma_handler(int channel, void *data)
545 struct driver_data *drv_data = data;
546 u32 irq_status = DCSR(channel) & DMA_INT_MASK;
548 if (irq_status & DCSR_BUSERR) {
550 if (channel == drv_data->tx_channel)
551 dma_error_stop(drv_data,
552 "dma_handler: "
553 "bad bus address on tx channel");
554 else
555 dma_error_stop(drv_data,
556 "dma_handler: "
557 "bad bus address on rx channel");
558 return;
561 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
562 if ((channel == drv_data->tx_channel)
563 && (irq_status & DCSR_ENDINTR)
564 && (drv_data->ssp_type == PXA25x_SSP)) {
566 /* Wait for rx to stall */
567 if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
568 dev_err(&drv_data->pdev->dev,
569 "dma_handler: ssp rx stall failed\n");
571 /* finish this transfer, start the next */
572 dma_transfer_complete(drv_data);
576 static irqreturn_t dma_transfer(struct driver_data *drv_data)
578 u32 irq_status;
579 void __iomem *reg = drv_data->ioaddr;
581 irq_status = read_SSSR(reg) & drv_data->mask_sr;
582 if (irq_status & SSSR_ROR) {
583 dma_error_stop(drv_data, "dma_transfer: fifo overrun");
584 return IRQ_HANDLED;
587 /* Check for false positive timeout */
588 if ((irq_status & SSSR_TINT)
589 && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
590 write_SSSR(SSSR_TINT, reg);
591 return IRQ_HANDLED;
594 if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
596 /* Clear and disable timeout interrupt, do the rest in
597 * dma_transfer_complete */
598 if (drv_data->ssp_type != PXA25x_SSP)
599 write_SSTO(0, reg);
601 /* finish this transfer, start the next */
602 dma_transfer_complete(drv_data);
604 return IRQ_HANDLED;
607 /* Opps problem detected */
608 return IRQ_NONE;
611 static void int_error_stop(struct driver_data *drv_data, const char* msg)
613 void __iomem *reg = drv_data->ioaddr;
615 /* Stop and reset SSP */
616 write_SSSR(drv_data->clear_sr, reg);
617 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
618 if (drv_data->ssp_type != PXA25x_SSP)
619 write_SSTO(0, reg);
620 flush(drv_data);
621 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
623 dev_err(&drv_data->pdev->dev, "%s\n", msg);
625 drv_data->cur_msg->state = ERROR_STATE;
626 tasklet_schedule(&drv_data->pump_transfers);
629 static void int_transfer_complete(struct driver_data *drv_data)
631 void __iomem *reg = drv_data->ioaddr;
633 /* Stop SSP */
634 write_SSSR(drv_data->clear_sr, reg);
635 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
636 if (drv_data->ssp_type != PXA25x_SSP)
637 write_SSTO(0, reg);
639 /* Update total byte transfered return count actual bytes read */
640 drv_data->cur_msg->actual_length += drv_data->len -
641 (drv_data->rx_end - drv_data->rx);
643 /* Transfer delays and chip select release are
644 * handled in pump_transfers or giveback
647 /* Move to next transfer */
648 drv_data->cur_msg->state = next_transfer(drv_data);
650 /* Schedule transfer tasklet */
651 tasklet_schedule(&drv_data->pump_transfers);
654 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
656 void __iomem *reg = drv_data->ioaddr;
658 u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
659 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
661 u32 irq_status = read_SSSR(reg) & irq_mask;
663 if (irq_status & SSSR_ROR) {
664 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
665 return IRQ_HANDLED;
668 if (irq_status & SSSR_TINT) {
669 write_SSSR(SSSR_TINT, reg);
670 if (drv_data->read(drv_data)) {
671 int_transfer_complete(drv_data);
672 return IRQ_HANDLED;
676 /* Drain rx fifo, Fill tx fifo and prevent overruns */
677 do {
678 if (drv_data->read(drv_data)) {
679 int_transfer_complete(drv_data);
680 return IRQ_HANDLED;
682 } while (drv_data->write(drv_data));
684 if (drv_data->read(drv_data)) {
685 int_transfer_complete(drv_data);
686 return IRQ_HANDLED;
689 if (drv_data->tx == drv_data->tx_end) {
690 write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
691 /* PXA25x_SSP has no timeout, read trailing bytes */
692 if (drv_data->ssp_type == PXA25x_SSP) {
693 if (!wait_ssp_rx_stall(reg))
695 int_error_stop(drv_data, "interrupt_transfer: "
696 "rx stall failed");
697 return IRQ_HANDLED;
699 if (!drv_data->read(drv_data))
701 int_error_stop(drv_data,
702 "interrupt_transfer: "
703 "trailing byte read failed");
704 return IRQ_HANDLED;
706 int_transfer_complete(drv_data);
710 /* We did something */
711 return IRQ_HANDLED;
714 static irqreturn_t ssp_int(int irq, void *dev_id)
716 struct driver_data *drv_data = dev_id;
717 void __iomem *reg = drv_data->ioaddr;
719 if (!drv_data->cur_msg) {
721 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
722 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
723 if (drv_data->ssp_type != PXA25x_SSP)
724 write_SSTO(0, reg);
725 write_SSSR(drv_data->clear_sr, reg);
727 dev_err(&drv_data->pdev->dev, "bad message state "
728 "in interrupt handler\n");
730 /* Never fail */
731 return IRQ_HANDLED;
734 return drv_data->transfer_handler(drv_data);
737 static int set_dma_burst_and_threshold(struct chip_data *chip,
738 struct spi_device *spi,
739 u8 bits_per_word, u32 *burst_code,
740 u32 *threshold)
742 struct pxa2xx_spi_chip *chip_info =
743 (struct pxa2xx_spi_chip *)spi->controller_data;
744 int bytes_per_word;
745 int burst_bytes;
746 int thresh_words;
747 int req_burst_size;
748 int retval = 0;
750 /* Set the threshold (in registers) to equal the same amount of data
751 * as represented by burst size (in bytes). The computation below
752 * is (burst_size rounded up to nearest 8 byte, word or long word)
753 * divided by (bytes/register); the tx threshold is the inverse of
754 * the rx, so that there will always be enough data in the rx fifo
755 * to satisfy a burst, and there will always be enough space in the
756 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
757 * there is not enough space), there must always remain enough empty
758 * space in the rx fifo for any data loaded to the tx fifo.
759 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
760 * will be 8, or half the fifo;
761 * The threshold can only be set to 2, 4 or 8, but not 16, because
762 * to burst 16 to the tx fifo, the fifo would have to be empty;
763 * however, the minimum fifo trigger level is 1, and the tx will
764 * request service when the fifo is at this level, with only 15 spaces.
767 /* find bytes/word */
768 if (bits_per_word <= 8)
769 bytes_per_word = 1;
770 else if (bits_per_word <= 16)
771 bytes_per_word = 2;
772 else
773 bytes_per_word = 4;
775 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
776 if (chip_info)
777 req_burst_size = chip_info->dma_burst_size;
778 else {
779 switch (chip->dma_burst_size) {
780 default:
781 /* if the default burst size is not set,
782 * do it now */
783 chip->dma_burst_size = DCMD_BURST8;
784 case DCMD_BURST8:
785 req_burst_size = 8;
786 break;
787 case DCMD_BURST16:
788 req_burst_size = 16;
789 break;
790 case DCMD_BURST32:
791 req_burst_size = 32;
792 break;
795 if (req_burst_size <= 8) {
796 *burst_code = DCMD_BURST8;
797 burst_bytes = 8;
798 } else if (req_burst_size <= 16) {
799 if (bytes_per_word == 1) {
800 /* don't burst more than 1/2 the fifo */
801 *burst_code = DCMD_BURST8;
802 burst_bytes = 8;
803 retval = 1;
804 } else {
805 *burst_code = DCMD_BURST16;
806 burst_bytes = 16;
808 } else {
809 if (bytes_per_word == 1) {
810 /* don't burst more than 1/2 the fifo */
811 *burst_code = DCMD_BURST8;
812 burst_bytes = 8;
813 retval = 1;
814 } else if (bytes_per_word == 2) {
815 /* don't burst more than 1/2 the fifo */
816 *burst_code = DCMD_BURST16;
817 burst_bytes = 16;
818 retval = 1;
819 } else {
820 *burst_code = DCMD_BURST32;
821 burst_bytes = 32;
825 thresh_words = burst_bytes / bytes_per_word;
827 /* thresh_words will be between 2 and 8 */
828 *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
829 | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
831 return retval;
834 static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
836 unsigned long ssp_clk = clk_get_rate(ssp->clk);
838 if (ssp->type == PXA25x_SSP)
839 return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
840 else
841 return ((ssp_clk / rate - 1) & 0xfff) << 8;
844 static void pump_transfers(unsigned long data)
846 struct driver_data *drv_data = (struct driver_data *)data;
847 struct spi_message *message = NULL;
848 struct spi_transfer *transfer = NULL;
849 struct spi_transfer *previous = NULL;
850 struct chip_data *chip = NULL;
851 struct ssp_device *ssp = drv_data->ssp;
852 void __iomem *reg = drv_data->ioaddr;
853 u32 clk_div = 0;
854 u8 bits = 0;
855 u32 speed = 0;
856 u32 cr0;
857 u32 cr1;
858 u32 dma_thresh = drv_data->cur_chip->dma_threshold;
859 u32 dma_burst = drv_data->cur_chip->dma_burst_size;
861 /* Get current state information */
862 message = drv_data->cur_msg;
863 transfer = drv_data->cur_transfer;
864 chip = drv_data->cur_chip;
866 /* Handle for abort */
867 if (message->state == ERROR_STATE) {
868 message->status = -EIO;
869 giveback(drv_data);
870 return;
873 /* Handle end of message */
874 if (message->state == DONE_STATE) {
875 message->status = 0;
876 giveback(drv_data);
877 return;
880 /* Delay if requested at end of transfer before CS change */
881 if (message->state == RUNNING_STATE) {
882 previous = list_entry(transfer->transfer_list.prev,
883 struct spi_transfer,
884 transfer_list);
885 if (previous->delay_usecs)
886 udelay(previous->delay_usecs);
888 /* Drop chip select only if cs_change is requested */
889 if (previous->cs_change)
890 drv_data->cs_control(PXA2XX_CS_DEASSERT);
893 /* Check for transfers that need multiple DMA segments */
894 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
896 /* reject already-mapped transfers; PIO won't always work */
897 if (message->is_dma_mapped
898 || transfer->rx_dma || transfer->tx_dma) {
899 dev_err(&drv_data->pdev->dev,
900 "pump_transfers: mapped transfer length "
901 "of %u is greater than %d\n",
902 transfer->len, MAX_DMA_LEN);
903 message->status = -EINVAL;
904 giveback(drv_data);
905 return;
908 /* warn ... we force this to PIO mode */
909 if (printk_ratelimit())
910 dev_warn(&message->spi->dev, "pump_transfers: "
911 "DMA disabled for transfer length %ld "
912 "greater than %d\n",
913 (long)drv_data->len, MAX_DMA_LEN);
916 /* Setup the transfer state based on the type of transfer */
917 if (flush(drv_data) == 0) {
918 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
919 message->status = -EIO;
920 giveback(drv_data);
921 return;
923 drv_data->n_bytes = chip->n_bytes;
924 drv_data->dma_width = chip->dma_width;
925 drv_data->cs_control = chip->cs_control;
926 drv_data->tx = (void *)transfer->tx_buf;
927 drv_data->tx_end = drv_data->tx + transfer->len;
928 drv_data->rx = transfer->rx_buf;
929 drv_data->rx_end = drv_data->rx + transfer->len;
930 drv_data->rx_dma = transfer->rx_dma;
931 drv_data->tx_dma = transfer->tx_dma;
932 drv_data->len = transfer->len & DCMD_LENGTH;
933 drv_data->write = drv_data->tx ? chip->write : null_writer;
934 drv_data->read = drv_data->rx ? chip->read : null_reader;
936 /* Change speed and bit per word on a per transfer */
937 cr0 = chip->cr0;
938 if (transfer->speed_hz || transfer->bits_per_word) {
940 bits = chip->bits_per_word;
941 speed = chip->speed_hz;
943 if (transfer->speed_hz)
944 speed = transfer->speed_hz;
946 if (transfer->bits_per_word)
947 bits = transfer->bits_per_word;
949 clk_div = ssp_get_clk_div(ssp, speed);
951 if (bits <= 8) {
952 drv_data->n_bytes = 1;
953 drv_data->dma_width = DCMD_WIDTH1;
954 drv_data->read = drv_data->read != null_reader ?
955 u8_reader : null_reader;
956 drv_data->write = drv_data->write != null_writer ?
957 u8_writer : null_writer;
958 } else if (bits <= 16) {
959 drv_data->n_bytes = 2;
960 drv_data->dma_width = DCMD_WIDTH2;
961 drv_data->read = drv_data->read != null_reader ?
962 u16_reader : null_reader;
963 drv_data->write = drv_data->write != null_writer ?
964 u16_writer : null_writer;
965 } else if (bits <= 32) {
966 drv_data->n_bytes = 4;
967 drv_data->dma_width = DCMD_WIDTH4;
968 drv_data->read = drv_data->read != null_reader ?
969 u32_reader : null_reader;
970 drv_data->write = drv_data->write != null_writer ?
971 u32_writer : null_writer;
973 /* if bits/word is changed in dma mode, then must check the
974 * thresholds and burst also */
975 if (chip->enable_dma) {
976 if (set_dma_burst_and_threshold(chip, message->spi,
977 bits, &dma_burst,
978 &dma_thresh))
979 if (printk_ratelimit())
980 dev_warn(&message->spi->dev,
981 "pump_transfers: "
982 "DMA burst size reduced to "
983 "match bits_per_word\n");
986 cr0 = clk_div
987 | SSCR0_Motorola
988 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
989 | SSCR0_SSE
990 | (bits > 16 ? SSCR0_EDSS : 0);
993 message->state = RUNNING_STATE;
995 /* Try to map dma buffer and do a dma transfer if successful, but
996 * only if the length is non-zero and less than MAX_DMA_LEN.
998 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
999 * of PIO instead. Care is needed above because the transfer may
1000 * have have been passed with buffers that are already dma mapped.
1001 * A zero-length transfer in PIO mode will not try to write/read
1002 * to/from the buffers
1004 * REVISIT large transfers are exactly where we most want to be
1005 * using DMA. If this happens much, split those transfers into
1006 * multiple DMA segments rather than forcing PIO.
1008 drv_data->dma_mapped = 0;
1009 if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1010 drv_data->dma_mapped = map_dma_buffers(drv_data);
1011 if (drv_data->dma_mapped) {
1013 /* Ensure we have the correct interrupt handler */
1014 drv_data->transfer_handler = dma_transfer;
1016 /* Setup rx DMA Channel */
1017 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1018 DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1019 DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1020 if (drv_data->rx == drv_data->null_dma_buf)
1021 /* No target address increment */
1022 DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1023 | drv_data->dma_width
1024 | dma_burst
1025 | drv_data->len;
1026 else
1027 DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1028 | DCMD_FLOWSRC
1029 | drv_data->dma_width
1030 | dma_burst
1031 | drv_data->len;
1033 /* Setup tx DMA Channel */
1034 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1035 DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1036 DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1037 if (drv_data->tx == drv_data->null_dma_buf)
1038 /* No source address increment */
1039 DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1040 | drv_data->dma_width
1041 | dma_burst
1042 | drv_data->len;
1043 else
1044 DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1045 | DCMD_FLOWTRG
1046 | drv_data->dma_width
1047 | dma_burst
1048 | drv_data->len;
1050 /* Enable dma end irqs on SSP to detect end of transfer */
1051 if (drv_data->ssp_type == PXA25x_SSP)
1052 DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1054 /* Clear status and start DMA engine */
1055 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1056 write_SSSR(drv_data->clear_sr, reg);
1057 DCSR(drv_data->rx_channel) |= DCSR_RUN;
1058 DCSR(drv_data->tx_channel) |= DCSR_RUN;
1059 } else {
1060 /* Ensure we have the correct interrupt handler */
1061 drv_data->transfer_handler = interrupt_transfer;
1063 /* Clear status */
1064 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1065 write_SSSR(drv_data->clear_sr, reg);
1068 /* see if we need to reload the config registers */
1069 if ((read_SSCR0(reg) != cr0)
1070 || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1071 (cr1 & SSCR1_CHANGE_MASK)) {
1073 /* stop the SSP, and update the other bits */
1074 write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1075 if (drv_data->ssp_type != PXA25x_SSP)
1076 write_SSTO(chip->timeout, reg);
1077 /* first set CR1 without interrupt and service enables */
1078 write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1079 /* restart the SSP */
1080 write_SSCR0(cr0, reg);
1082 } else {
1083 if (drv_data->ssp_type != PXA25x_SSP)
1084 write_SSTO(chip->timeout, reg);
1087 /* FIXME, need to handle cs polarity,
1088 * this driver uses struct pxa2xx_spi_chip.cs_control to
1089 * specify a CS handling function, and it ignores most
1090 * struct spi_device.mode[s], including SPI_CS_HIGH */
1091 drv_data->cs_control(PXA2XX_CS_ASSERT);
1093 /* after chip select, release the data by enabling service
1094 * requests and interrupts, without changing any mode bits */
1095 write_SSCR1(cr1, reg);
1098 static void pump_messages(struct work_struct *work)
1100 struct driver_data *drv_data =
1101 container_of(work, struct driver_data, pump_messages);
1102 unsigned long flags;
1104 /* Lock queue and check for queue work */
1105 spin_lock_irqsave(&drv_data->lock, flags);
1106 if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1107 drv_data->busy = 0;
1108 spin_unlock_irqrestore(&drv_data->lock, flags);
1109 return;
1112 /* Make sure we are not already running a message */
1113 if (drv_data->cur_msg) {
1114 spin_unlock_irqrestore(&drv_data->lock, flags);
1115 return;
1118 /* Extract head of queue */
1119 drv_data->cur_msg = list_entry(drv_data->queue.next,
1120 struct spi_message, queue);
1121 list_del_init(&drv_data->cur_msg->queue);
1123 /* Initial message state*/
1124 drv_data->cur_msg->state = START_STATE;
1125 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1126 struct spi_transfer,
1127 transfer_list);
1129 /* prepare to setup the SSP, in pump_transfers, using the per
1130 * chip configuration */
1131 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1133 /* Mark as busy and launch transfers */
1134 tasklet_schedule(&drv_data->pump_transfers);
1136 drv_data->busy = 1;
1137 spin_unlock_irqrestore(&drv_data->lock, flags);
1140 static int transfer(struct spi_device *spi, struct spi_message *msg)
1142 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1143 unsigned long flags;
1145 spin_lock_irqsave(&drv_data->lock, flags);
1147 if (drv_data->run == QUEUE_STOPPED) {
1148 spin_unlock_irqrestore(&drv_data->lock, flags);
1149 return -ESHUTDOWN;
1152 msg->actual_length = 0;
1153 msg->status = -EINPROGRESS;
1154 msg->state = START_STATE;
1156 list_add_tail(&msg->queue, &drv_data->queue);
1158 if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1159 queue_work(drv_data->workqueue, &drv_data->pump_messages);
1161 spin_unlock_irqrestore(&drv_data->lock, flags);
1163 return 0;
1166 /* the spi->mode bits understood by this driver: */
1167 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1169 static int setup(struct spi_device *spi)
1171 struct pxa2xx_spi_chip *chip_info = NULL;
1172 struct chip_data *chip;
1173 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1174 struct ssp_device *ssp = drv_data->ssp;
1175 unsigned int clk_div;
1176 uint tx_thres = TX_THRESH_DFLT;
1177 uint rx_thres = RX_THRESH_DFLT;
1179 if (!spi->bits_per_word)
1180 spi->bits_per_word = 8;
1182 if (drv_data->ssp_type != PXA25x_SSP
1183 && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1184 dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1185 "b/w not 4-32 for type non-PXA25x_SSP\n",
1186 drv_data->ssp_type, spi->bits_per_word);
1187 return -EINVAL;
1189 else if (drv_data->ssp_type == PXA25x_SSP
1190 && (spi->bits_per_word < 4
1191 || spi->bits_per_word > 16)) {
1192 dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1193 "b/w not 4-16 for type PXA25x_SSP\n",
1194 drv_data->ssp_type, spi->bits_per_word);
1195 return -EINVAL;
1198 if (spi->mode & ~MODEBITS) {
1199 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1200 spi->mode & ~MODEBITS);
1201 return -EINVAL;
1204 /* Only alloc on first setup */
1205 chip = spi_get_ctldata(spi);
1206 if (!chip) {
1207 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1208 if (!chip) {
1209 dev_err(&spi->dev,
1210 "failed setup: can't allocate chip data\n");
1211 return -ENOMEM;
1214 chip->cs_control = null_cs_control;
1215 chip->enable_dma = 0;
1216 chip->timeout = TIMOUT_DFLT;
1217 chip->dma_burst_size = drv_data->master_info->enable_dma ?
1218 DCMD_BURST8 : 0;
1221 /* protocol drivers may change the chip settings, so...
1222 * if chip_info exists, use it */
1223 chip_info = spi->controller_data;
1225 /* chip_info isn't always needed */
1226 chip->cr1 = 0;
1227 if (chip_info) {
1228 if (chip_info->cs_control)
1229 chip->cs_control = chip_info->cs_control;
1230 if (chip_info->timeout)
1231 chip->timeout = chip_info->timeout;
1232 if (chip_info->tx_threshold)
1233 tx_thres = chip_info->tx_threshold;
1234 if (chip_info->rx_threshold)
1235 rx_thres = chip_info->rx_threshold;
1236 chip->enable_dma = drv_data->master_info->enable_dma;
1237 chip->dma_threshold = 0;
1238 if (chip_info->enable_loopback)
1239 chip->cr1 = SSCR1_LBM;
1242 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1243 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1245 /* set dma burst and threshold outside of chip_info path so that if
1246 * chip_info goes away after setting chip->enable_dma, the
1247 * burst and threshold can still respond to changes in bits_per_word */
1248 if (chip->enable_dma) {
1249 /* set up legal burst and threshold for dma */
1250 if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1251 &chip->dma_burst_size,
1252 &chip->dma_threshold)) {
1253 dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1254 "to match bits_per_word\n");
1258 clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1259 chip->speed_hz = spi->max_speed_hz;
1261 chip->cr0 = clk_div
1262 | SSCR0_Motorola
1263 | SSCR0_DataSize(spi->bits_per_word > 16 ?
1264 spi->bits_per_word - 16 : spi->bits_per_word)
1265 | SSCR0_SSE
1266 | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1267 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1268 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1269 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1271 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1272 if (drv_data->ssp_type != PXA25x_SSP)
1273 dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
1274 spi->bits_per_word,
1275 clk_get_rate(ssp->clk)
1276 / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1277 spi->mode & 0x3,
1278 chip->enable_dma ? "DMA" : "PIO");
1279 else
1280 dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
1281 spi->bits_per_word,
1282 clk_get_rate(ssp->clk) / 2
1283 / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1284 spi->mode & 0x3,
1285 chip->enable_dma ? "DMA" : "PIO");
1287 if (spi->bits_per_word <= 8) {
1288 chip->n_bytes = 1;
1289 chip->dma_width = DCMD_WIDTH1;
1290 chip->read = u8_reader;
1291 chip->write = u8_writer;
1292 } else if (spi->bits_per_word <= 16) {
1293 chip->n_bytes = 2;
1294 chip->dma_width = DCMD_WIDTH2;
1295 chip->read = u16_reader;
1296 chip->write = u16_writer;
1297 } else if (spi->bits_per_word <= 32) {
1298 chip->cr0 |= SSCR0_EDSS;
1299 chip->n_bytes = 4;
1300 chip->dma_width = DCMD_WIDTH4;
1301 chip->read = u32_reader;
1302 chip->write = u32_writer;
1303 } else {
1304 dev_err(&spi->dev, "invalid wordsize\n");
1305 return -ENODEV;
1307 chip->bits_per_word = spi->bits_per_word;
1309 spi_set_ctldata(spi, chip);
1311 return 0;
1314 static void cleanup(struct spi_device *spi)
1316 struct chip_data *chip = spi_get_ctldata(spi);
1318 kfree(chip);
1321 static int __init init_queue(struct driver_data *drv_data)
1323 INIT_LIST_HEAD(&drv_data->queue);
1324 spin_lock_init(&drv_data->lock);
1326 drv_data->run = QUEUE_STOPPED;
1327 drv_data->busy = 0;
1329 tasklet_init(&drv_data->pump_transfers,
1330 pump_transfers, (unsigned long)drv_data);
1332 INIT_WORK(&drv_data->pump_messages, pump_messages);
1333 drv_data->workqueue = create_singlethread_workqueue(
1334 dev_name(drv_data->master->dev.parent));
1335 if (drv_data->workqueue == NULL)
1336 return -EBUSY;
1338 return 0;
1341 static int start_queue(struct driver_data *drv_data)
1343 unsigned long flags;
1345 spin_lock_irqsave(&drv_data->lock, flags);
1347 if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1348 spin_unlock_irqrestore(&drv_data->lock, flags);
1349 return -EBUSY;
1352 drv_data->run = QUEUE_RUNNING;
1353 drv_data->cur_msg = NULL;
1354 drv_data->cur_transfer = NULL;
1355 drv_data->cur_chip = NULL;
1356 spin_unlock_irqrestore(&drv_data->lock, flags);
1358 queue_work(drv_data->workqueue, &drv_data->pump_messages);
1360 return 0;
1363 static int stop_queue(struct driver_data *drv_data)
1365 unsigned long flags;
1366 unsigned limit = 500;
1367 int status = 0;
1369 spin_lock_irqsave(&drv_data->lock, flags);
1371 /* This is a bit lame, but is optimized for the common execution path.
1372 * A wait_queue on the drv_data->busy could be used, but then the common
1373 * execution path (pump_messages) would be required to call wake_up or
1374 * friends on every SPI message. Do this instead */
1375 drv_data->run = QUEUE_STOPPED;
1376 while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1377 spin_unlock_irqrestore(&drv_data->lock, flags);
1378 msleep(10);
1379 spin_lock_irqsave(&drv_data->lock, flags);
1382 if (!list_empty(&drv_data->queue) || drv_data->busy)
1383 status = -EBUSY;
1385 spin_unlock_irqrestore(&drv_data->lock, flags);
1387 return status;
1390 static int destroy_queue(struct driver_data *drv_data)
1392 int status;
1394 status = stop_queue(drv_data);
1395 /* we are unloading the module or failing to load (only two calls
1396 * to this routine), and neither call can handle a return value.
1397 * However, destroy_workqueue calls flush_workqueue, and that will
1398 * block until all work is done. If the reason that stop_queue
1399 * timed out is that the work will never finish, then it does no
1400 * good to call destroy_workqueue, so return anyway. */
1401 if (status != 0)
1402 return status;
1404 destroy_workqueue(drv_data->workqueue);
1406 return 0;
1409 static int __init pxa2xx_spi_probe(struct platform_device *pdev)
1411 struct device *dev = &pdev->dev;
1412 struct pxa2xx_spi_master *platform_info;
1413 struct spi_master *master;
1414 struct driver_data *drv_data;
1415 struct ssp_device *ssp;
1416 int status;
1418 platform_info = dev->platform_data;
1420 ssp = ssp_request(pdev->id, pdev->name);
1421 if (ssp == NULL) {
1422 dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1423 return -ENODEV;
1426 /* Allocate master with space for drv_data and null dma buffer */
1427 master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1428 if (!master) {
1429 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1430 ssp_free(ssp);
1431 return -ENOMEM;
1433 drv_data = spi_master_get_devdata(master);
1434 drv_data->master = master;
1435 drv_data->master_info = platform_info;
1436 drv_data->pdev = pdev;
1437 drv_data->ssp = ssp;
1439 master->bus_num = pdev->id;
1440 master->num_chipselect = platform_info->num_chipselect;
1441 master->cleanup = cleanup;
1442 master->setup = setup;
1443 master->transfer = transfer;
1445 drv_data->ssp_type = ssp->type;
1446 drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1447 sizeof(struct driver_data)), 8);
1449 drv_data->ioaddr = ssp->mmio_base;
1450 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1451 if (ssp->type == PXA25x_SSP) {
1452 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1453 drv_data->dma_cr1 = 0;
1454 drv_data->clear_sr = SSSR_ROR;
1455 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1456 } else {
1457 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1458 drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1459 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1460 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1463 status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
1464 if (status < 0) {
1465 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1466 goto out_error_master_alloc;
1469 /* Setup DMA if requested */
1470 drv_data->tx_channel = -1;
1471 drv_data->rx_channel = -1;
1472 if (platform_info->enable_dma) {
1474 /* Get two DMA channels (rx and tx) */
1475 drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1476 DMA_PRIO_HIGH,
1477 dma_handler,
1478 drv_data);
1479 if (drv_data->rx_channel < 0) {
1480 dev_err(dev, "problem (%d) requesting rx channel\n",
1481 drv_data->rx_channel);
1482 status = -ENODEV;
1483 goto out_error_irq_alloc;
1485 drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1486 DMA_PRIO_MEDIUM,
1487 dma_handler,
1488 drv_data);
1489 if (drv_data->tx_channel < 0) {
1490 dev_err(dev, "problem (%d) requesting tx channel\n",
1491 drv_data->tx_channel);
1492 status = -ENODEV;
1493 goto out_error_dma_alloc;
1496 DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1497 DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1500 /* Enable SOC clock */
1501 clk_enable(ssp->clk);
1503 /* Load default SSP configuration */
1504 write_SSCR0(0, drv_data->ioaddr);
1505 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1506 SSCR1_TxTresh(TX_THRESH_DFLT),
1507 drv_data->ioaddr);
1508 write_SSCR0(SSCR0_SerClkDiv(2)
1509 | SSCR0_Motorola
1510 | SSCR0_DataSize(8),
1511 drv_data->ioaddr);
1512 if (drv_data->ssp_type != PXA25x_SSP)
1513 write_SSTO(0, drv_data->ioaddr);
1514 write_SSPSP(0, drv_data->ioaddr);
1516 /* Initial and start queue */
1517 status = init_queue(drv_data);
1518 if (status != 0) {
1519 dev_err(&pdev->dev, "problem initializing queue\n");
1520 goto out_error_clock_enabled;
1522 status = start_queue(drv_data);
1523 if (status != 0) {
1524 dev_err(&pdev->dev, "problem starting queue\n");
1525 goto out_error_clock_enabled;
1528 /* Register with the SPI framework */
1529 platform_set_drvdata(pdev, drv_data);
1530 status = spi_register_master(master);
1531 if (status != 0) {
1532 dev_err(&pdev->dev, "problem registering spi master\n");
1533 goto out_error_queue_alloc;
1536 return status;
1538 out_error_queue_alloc:
1539 destroy_queue(drv_data);
1541 out_error_clock_enabled:
1542 clk_disable(ssp->clk);
1544 out_error_dma_alloc:
1545 if (drv_data->tx_channel != -1)
1546 pxa_free_dma(drv_data->tx_channel);
1547 if (drv_data->rx_channel != -1)
1548 pxa_free_dma(drv_data->rx_channel);
1550 out_error_irq_alloc:
1551 free_irq(ssp->irq, drv_data);
1553 out_error_master_alloc:
1554 spi_master_put(master);
1555 ssp_free(ssp);
1556 return status;
1559 static int pxa2xx_spi_remove(struct platform_device *pdev)
1561 struct driver_data *drv_data = platform_get_drvdata(pdev);
1562 struct ssp_device *ssp;
1563 int status = 0;
1565 if (!drv_data)
1566 return 0;
1567 ssp = drv_data->ssp;
1569 /* Remove the queue */
1570 status = destroy_queue(drv_data);
1571 if (status != 0)
1572 /* the kernel does not check the return status of this
1573 * this routine (mod->exit, within the kernel). Therefore
1574 * nothing is gained by returning from here, the module is
1575 * going away regardless, and we should not leave any more
1576 * resources allocated than necessary. We cannot free the
1577 * message memory in drv_data->queue, but we can release the
1578 * resources below. I think the kernel should honor -EBUSY
1579 * returns but... */
1580 dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1581 "complete, message memory not freed\n");
1583 /* Disable the SSP at the peripheral and SOC level */
1584 write_SSCR0(0, drv_data->ioaddr);
1585 clk_disable(ssp->clk);
1587 /* Release DMA */
1588 if (drv_data->master_info->enable_dma) {
1589 DRCMR(ssp->drcmr_rx) = 0;
1590 DRCMR(ssp->drcmr_tx) = 0;
1591 pxa_free_dma(drv_data->tx_channel);
1592 pxa_free_dma(drv_data->rx_channel);
1595 /* Release IRQ */
1596 free_irq(ssp->irq, drv_data);
1598 /* Release SSP */
1599 ssp_free(ssp);
1601 /* Disconnect from the SPI framework */
1602 spi_unregister_master(drv_data->master);
1604 /* Prevent double remove */
1605 platform_set_drvdata(pdev, NULL);
1607 return 0;
1610 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1612 int status = 0;
1614 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1615 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1618 #ifdef CONFIG_PM
1620 static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
1622 struct driver_data *drv_data = platform_get_drvdata(pdev);
1623 struct ssp_device *ssp = drv_data->ssp;
1624 int status = 0;
1626 status = stop_queue(drv_data);
1627 if (status != 0)
1628 return status;
1629 write_SSCR0(0, drv_data->ioaddr);
1630 clk_disable(ssp->clk);
1632 return 0;
1635 static int pxa2xx_spi_resume(struct platform_device *pdev)
1637 struct driver_data *drv_data = platform_get_drvdata(pdev);
1638 struct ssp_device *ssp = drv_data->ssp;
1639 int status = 0;
1641 /* Enable the SSP clock */
1642 clk_enable(ssp->clk);
1644 /* Start the queue running */
1645 status = start_queue(drv_data);
1646 if (status != 0) {
1647 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1648 return status;
1651 return 0;
1653 #else
1654 #define pxa2xx_spi_suspend NULL
1655 #define pxa2xx_spi_resume NULL
1656 #endif /* CONFIG_PM */
1658 static struct platform_driver driver = {
1659 .driver = {
1660 .name = "pxa2xx-spi",
1661 .owner = THIS_MODULE,
1663 .remove = pxa2xx_spi_remove,
1664 .shutdown = pxa2xx_spi_shutdown,
1665 .suspend = pxa2xx_spi_suspend,
1666 .resume = pxa2xx_spi_resume,
1669 static int __init pxa2xx_spi_init(void)
1671 return platform_driver_probe(&driver, pxa2xx_spi_probe);
1673 module_init(pxa2xx_spi_init);
1675 static void __exit pxa2xx_spi_exit(void)
1677 platform_driver_unregister(&driver);
1679 module_exit(pxa2xx_spi_exit);