Merge branch 'perf/urgent' into perf/core
[linux-2.6/cjktty.git] / kernel / perf_event.c
blob63fbce1c80b5888f29c47446f3511751384a4fc8
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 * max perf event sample rate
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66 static atomic64_t perf_event_id;
69 * Lock for (sysadmin-configurable) event reservations:
71 static DEFINE_SPINLOCK(perf_resource_lock);
74 * Architecture provided APIs - weak aliases:
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
78 return NULL;
81 void __weak hw_perf_disable(void) { barrier(); }
82 void __weak hw_perf_enable(void) { barrier(); }
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
87 struct perf_event_context *ctx)
89 return 0;
92 void __weak perf_event_print_debug(void) { }
94 static DEFINE_PER_CPU(int, perf_disable_count);
96 void perf_disable(void)
98 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
102 void perf_enable(void)
104 if (!--__get_cpu_var(perf_disable_count))
105 hw_perf_enable();
108 static void get_ctx(struct perf_event_context *ctx)
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 static void free_ctx(struct rcu_head *head)
115 struct perf_event_context *ctx;
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
121 static void put_ctx(struct perf_event_context *ctx)
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
132 static void unclone_ctx(struct perf_event_context *ctx)
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
141 * If we inherit events we want to return the parent event id
142 * to userspace.
144 static u64 primary_event_id(struct perf_event *event)
146 u64 id = event->id;
148 if (event->parent)
149 id = event->parent->id;
151 return id;
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162 struct perf_event_context *ctx;
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
178 raw_spin_lock_irqsave(&ctx->lock, *flags);
179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 goto retry;
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 ctx = NULL;
189 rcu_read_unlock();
190 return ctx;
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200 struct perf_event_context *ctx;
201 unsigned long flags;
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
208 return ctx;
211 static void perf_unpin_context(struct perf_event_context *ctx)
213 unsigned long flags;
215 raw_spin_lock_irqsave(&ctx->lock, flags);
216 --ctx->pin_count;
217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 put_ctx(ctx);
221 static inline u64 perf_clock(void)
223 return cpu_clock(raw_smp_processor_id());
227 * Update the record of the current time in a context.
229 static void update_context_time(struct perf_event_context *ctx)
231 u64 now = perf_clock();
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
238 * Update the total_time_enabled and total_time_running fields for a event.
240 static void update_event_times(struct perf_event *event)
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
254 event->total_time_enabled = run_end - event->tstamp_enabled;
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
261 event->total_time_running = run_end - event->tstamp_running;
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280 struct perf_event *group_leader = event->group_leader;
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
287 if (group_leader == event) {
288 struct list_head *list;
290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317 struct perf_event *sibling, *tmp;
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
331 update_event_times(event);
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349 struct list_head *list;
351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
353 sibling->group_leader = sibling;
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
360 static void
361 event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
384 static void
385 group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
389 struct perf_event *event;
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
394 event_sched_out(group_event, cpuctx, ctx);
397 * Schedule out siblings (if any):
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
407 * Cross CPU call to remove a performance event
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
412 static void __perf_event_remove_from_context(void *info)
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
426 raw_spin_lock(&ctx->lock);
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
431 perf_disable();
433 event_sched_out(event, cpuctx, ctx);
435 list_del_event(event, ctx);
437 if (!ctx->task) {
439 * Allow more per task events with respect to the
440 * reservation:
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
447 perf_enable();
448 raw_spin_unlock(&ctx->lock);
453 * Remove the event from a task's (or a CPU's) list of events.
455 * Must be called with ctx->mutex held.
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
467 static void perf_event_remove_from_context(struct perf_event *event)
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
472 if (!task) {
474 * Per cpu events are removed via an smp call and
475 * the removal is always successful.
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
483 retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
487 raw_spin_lock_irq(&ctx->lock);
489 * If the context is active we need to retry the smp call.
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
492 raw_spin_unlock_irq(&ctx->lock);
493 goto retry;
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
501 if (!list_empty(&event->group_entry))
502 list_del_event(event, ctx);
503 raw_spin_unlock_irq(&ctx->lock);
507 * Update total_time_enabled and total_time_running for all events in a group.
509 static void update_group_times(struct perf_event *leader)
511 struct perf_event *event;
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
519 * Cross CPU call to disable a performance event
521 static void __perf_event_disable(void *info)
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
534 raw_spin_lock(&ctx->lock);
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
550 raw_spin_unlock(&ctx->lock);
554 * Disable a event.
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
566 void perf_event_disable(struct perf_event *event)
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
571 if (!task) {
573 * Disable the event on the cpu that it's on
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
583 raw_spin_lock_irq(&ctx->lock);
585 * If the event is still active, we need to retry the cross-call.
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
588 raw_spin_unlock_irq(&ctx->lock);
589 goto retry;
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
601 raw_spin_unlock_irq(&ctx->lock);
604 static int
605 event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
607 struct perf_event_context *ctx)
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
612 event->state = PERF_EVENT_STATE_ACTIVE;
613 event->oncpu = smp_processor_id();
615 * The new state must be visible before we turn it on in the hardware:
617 smp_wmb();
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
634 return 0;
637 static int
638 group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
642 struct perf_event *event, *partial_group;
643 int ret;
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 if (ret)
650 return ret < 0 ? ret : 0;
652 if (event_sched_in(group_event, cpuctx, ctx))
653 return -EAGAIN;
656 * Schedule in siblings as one group (if any):
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659 if (event_sched_in(event, cpuctx, ctx)) {
660 partial_group = event;
661 goto group_error;
665 return 0;
667 group_error:
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
677 event_sched_out(group_event, cpuctx, ctx);
679 return -EAGAIN;
683 * Work out whether we can put this event group on the CPU now.
685 static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
690 * Groups consisting entirely of software events can always go on.
692 if (event->group_flags & PERF_GROUP_SOFTWARE)
693 return 1;
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
698 if (cpuctx->exclusive)
699 return 0;
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
710 return can_add_hw;
713 static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
723 * Cross CPU call to install and enable a performance event
725 * Must be called with ctx->mutex held
727 static void __perf_install_in_context(void *info)
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
733 int err;
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
748 raw_spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
756 perf_disable();
758 add_event_to_ctx(event, ctx);
760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
779 err = event_sched_in(event, cpuctx, ctx);
781 if (err) {
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
798 unlock:
799 perf_enable();
801 raw_spin_unlock(&ctx->lock);
805 * Attach a performance event to a context
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
814 * Must be called with ctx->mutex held.
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
821 struct task_struct *task = ctx->task;
823 if (!task) {
825 * Per cpu events are installed via an smp call and
826 * the install is always successful.
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
833 retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
837 raw_spin_lock_irq(&ctx->lock);
839 * we need to retry the smp call.
841 if (ctx->is_active && list_empty(&event->group_entry)) {
842 raw_spin_unlock_irq(&ctx->lock);
843 goto retry;
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
853 raw_spin_unlock_irq(&ctx->lock);
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
864 static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
867 struct perf_event *sub;
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
878 * Cross CPU call to enable a performance event
880 static void __perf_event_enable(void *info)
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
898 raw_spin_lock(&ctx->lock);
899 ctx->is_active = 1;
900 update_context_time(ctx);
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx);
922 else
923 err = event_sched_in(event, cpuctx, ctx);
924 perf_enable();
927 if (err) {
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
940 unlock:
941 raw_spin_unlock(&ctx->lock);
945 * Enable a event.
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
953 void perf_event_enable(struct perf_event *event)
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
958 if (!task) {
960 * Enable the event on the cpu that it's on
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
967 raw_spin_lock_irq(&ctx->lock);
968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
981 retry:
982 raw_spin_unlock_irq(&ctx->lock);
983 task_oncpu_function_call(task, __perf_event_enable, event);
985 raw_spin_lock_irq(&ctx->lock);
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1001 out:
1002 raw_spin_unlock_irq(&ctx->lock);
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1008 * not supported on inherited events
1010 if (event->attr.inherit)
1011 return -EINVAL;
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1016 return 0;
1019 enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
1029 struct perf_event *event;
1031 raw_spin_lock(&ctx->lock);
1032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1037 perf_disable();
1038 if (!ctx->nr_active)
1039 goto out_enable;
1041 if (event_type & EVENT_PINNED)
1042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1045 if (event_type & EVENT_FLEXIBLE)
1046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047 group_sched_out(event, cpuctx, ctx);
1049 out_enable:
1050 perf_enable();
1051 out:
1052 raw_spin_unlock(&ctx->lock);
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1066 static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1077 u64 value;
1079 if (!event->attr.inherit_stat)
1080 return;
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
1091 event->pmu->read(event);
1092 /* fall-through */
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1098 default:
1099 break;
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1114 * Since we swizzled the values, update the user visible data too.
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1120 #define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1126 struct perf_event *event, *next_event;
1128 if (!ctx->nr_stat)
1129 return;
1131 update_context_time(ctx);
1133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1142 __perf_event_sync_stat(event, next_event);
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1153 * We stop each event and update the event value in event->count.
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1160 void perf_event_task_sched_out(struct task_struct *task,
1161 struct task_struct *next)
1163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 int do_switch = 1;
1169 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1171 if (likely(!ctx || !cpuctx->task_ctx))
1172 return;
1174 rcu_read_lock();
1175 parent = rcu_dereference(ctx->parent_ctx);
1176 next_ctx = next->perf_event_ctxp;
1177 if (parent && next_ctx &&
1178 rcu_dereference(next_ctx->parent_ctx) == parent) {
1180 * Looks like the two contexts are clones, so we might be
1181 * able to optimize the context switch. We lock both
1182 * contexts and check that they are clones under the
1183 * lock (including re-checking that neither has been
1184 * uncloned in the meantime). It doesn't matter which
1185 * order we take the locks because no other cpu could
1186 * be trying to lock both of these tasks.
1188 raw_spin_lock(&ctx->lock);
1189 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1190 if (context_equiv(ctx, next_ctx)) {
1192 * XXX do we need a memory barrier of sorts
1193 * wrt to rcu_dereference() of perf_event_ctxp
1195 task->perf_event_ctxp = next_ctx;
1196 next->perf_event_ctxp = ctx;
1197 ctx->task = next;
1198 next_ctx->task = task;
1199 do_switch = 0;
1201 perf_event_sync_stat(ctx, next_ctx);
1203 raw_spin_unlock(&next_ctx->lock);
1204 raw_spin_unlock(&ctx->lock);
1206 rcu_read_unlock();
1208 if (do_switch) {
1209 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1210 cpuctx->task_ctx = NULL;
1214 static void task_ctx_sched_out(struct perf_event_context *ctx,
1215 enum event_type_t event_type)
1217 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1219 if (!cpuctx->task_ctx)
1220 return;
1222 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1223 return;
1225 ctx_sched_out(ctx, cpuctx, event_type);
1226 cpuctx->task_ctx = NULL;
1230 * Called with IRQs disabled
1232 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1234 task_ctx_sched_out(ctx, EVENT_ALL);
1238 * Called with IRQs disabled
1240 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1241 enum event_type_t event_type)
1243 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 static void
1247 ctx_pinned_sched_in(struct perf_event_context *ctx,
1248 struct perf_cpu_context *cpuctx)
1250 struct perf_event *event;
1252 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1253 if (event->state <= PERF_EVENT_STATE_OFF)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != smp_processor_id())
1256 continue;
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1272 static void
1273 ctx_flexible_sched_in(struct perf_event_context *ctx,
1274 struct perf_cpu_context *cpuctx)
1276 struct perf_event *event;
1277 int can_add_hw = 1;
1279 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1280 /* Ignore events in OFF or ERROR state */
1281 if (event->state <= PERF_EVENT_STATE_OFF)
1282 continue;
1284 * Listen to the 'cpu' scheduling filter constraint
1285 * of events:
1287 if (event->cpu != -1 && event->cpu != smp_processor_id())
1288 continue;
1290 if (group_can_go_on(event, cpuctx, can_add_hw))
1291 if (group_sched_in(event, cpuctx, ctx))
1292 can_add_hw = 0;
1296 static void
1297 ctx_sched_in(struct perf_event_context *ctx,
1298 struct perf_cpu_context *cpuctx,
1299 enum event_type_t event_type)
1301 raw_spin_lock(&ctx->lock);
1302 ctx->is_active = 1;
1303 if (likely(!ctx->nr_events))
1304 goto out;
1306 ctx->timestamp = perf_clock();
1308 perf_disable();
1311 * First go through the list and put on any pinned groups
1312 * in order to give them the best chance of going on.
1314 if (event_type & EVENT_PINNED)
1315 ctx_pinned_sched_in(ctx, cpuctx);
1317 /* Then walk through the lower prio flexible groups */
1318 if (event_type & EVENT_FLEXIBLE)
1319 ctx_flexible_sched_in(ctx, cpuctx);
1321 perf_enable();
1322 out:
1323 raw_spin_unlock(&ctx->lock);
1326 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1327 enum event_type_t event_type)
1329 struct perf_event_context *ctx = &cpuctx->ctx;
1331 ctx_sched_in(ctx, cpuctx, event_type);
1334 static void task_ctx_sched_in(struct task_struct *task,
1335 enum event_type_t event_type)
1337 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1338 struct perf_event_context *ctx = task->perf_event_ctxp;
1340 if (likely(!ctx))
1341 return;
1342 if (cpuctx->task_ctx == ctx)
1343 return;
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345 cpuctx->task_ctx = ctx;
1348 * Called from scheduler to add the events of the current task
1349 * with interrupts disabled.
1351 * We restore the event value and then enable it.
1353 * This does not protect us against NMI, but enable()
1354 * sets the enabled bit in the control field of event _before_
1355 * accessing the event control register. If a NMI hits, then it will
1356 * keep the event running.
1358 void perf_event_task_sched_in(struct task_struct *task)
1360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1361 struct perf_event_context *ctx = task->perf_event_ctxp;
1363 if (likely(!ctx))
1364 return;
1366 if (cpuctx->task_ctx == ctx)
1367 return;
1369 perf_disable();
1372 * We want to keep the following priority order:
1373 * cpu pinned (that don't need to move), task pinned,
1374 * cpu flexible, task flexible.
1376 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1378 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1382 cpuctx->task_ctx = ctx;
1384 perf_enable();
1387 #define MAX_INTERRUPTS (~0ULL)
1389 static void perf_log_throttle(struct perf_event *event, int enable);
1391 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1393 u64 frequency = event->attr.sample_freq;
1394 u64 sec = NSEC_PER_SEC;
1395 u64 divisor, dividend;
1397 int count_fls, nsec_fls, frequency_fls, sec_fls;
1399 count_fls = fls64(count);
1400 nsec_fls = fls64(nsec);
1401 frequency_fls = fls64(frequency);
1402 sec_fls = 30;
1405 * We got @count in @nsec, with a target of sample_freq HZ
1406 * the target period becomes:
1408 * @count * 10^9
1409 * period = -------------------
1410 * @nsec * sample_freq
1415 * Reduce accuracy by one bit such that @a and @b converge
1416 * to a similar magnitude.
1418 #define REDUCE_FLS(a, b) \
1419 do { \
1420 if (a##_fls > b##_fls) { \
1421 a >>= 1; \
1422 a##_fls--; \
1423 } else { \
1424 b >>= 1; \
1425 b##_fls--; \
1427 } while (0)
1430 * Reduce accuracy until either term fits in a u64, then proceed with
1431 * the other, so that finally we can do a u64/u64 division.
1433 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1434 REDUCE_FLS(nsec, frequency);
1435 REDUCE_FLS(sec, count);
1438 if (count_fls + sec_fls > 64) {
1439 divisor = nsec * frequency;
1441 while (count_fls + sec_fls > 64) {
1442 REDUCE_FLS(count, sec);
1443 divisor >>= 1;
1446 dividend = count * sec;
1447 } else {
1448 dividend = count * sec;
1450 while (nsec_fls + frequency_fls > 64) {
1451 REDUCE_FLS(nsec, frequency);
1452 dividend >>= 1;
1455 divisor = nsec * frequency;
1458 return div64_u64(dividend, divisor);
1461 static void perf_event_stop(struct perf_event *event)
1463 if (!event->pmu->stop)
1464 return event->pmu->disable(event);
1466 return event->pmu->stop(event);
1469 static int perf_event_start(struct perf_event *event)
1471 if (!event->pmu->start)
1472 return event->pmu->enable(event);
1474 return event->pmu->start(event);
1477 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1479 struct hw_perf_event *hwc = &event->hw;
1480 u64 period, sample_period;
1481 s64 delta;
1483 period = perf_calculate_period(event, nsec, count);
1485 delta = (s64)(period - hwc->sample_period);
1486 delta = (delta + 7) / 8; /* low pass filter */
1488 sample_period = hwc->sample_period + delta;
1490 if (!sample_period)
1491 sample_period = 1;
1493 hwc->sample_period = sample_period;
1495 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1496 perf_disable();
1497 perf_event_stop(event);
1498 atomic64_set(&hwc->period_left, 0);
1499 perf_event_start(event);
1500 perf_enable();
1504 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1506 struct perf_event *event;
1507 struct hw_perf_event *hwc;
1508 u64 interrupts, now;
1509 s64 delta;
1511 raw_spin_lock(&ctx->lock);
1512 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1513 if (event->state != PERF_EVENT_STATE_ACTIVE)
1514 continue;
1516 if (event->cpu != -1 && event->cpu != smp_processor_id())
1517 continue;
1519 hwc = &event->hw;
1521 interrupts = hwc->interrupts;
1522 hwc->interrupts = 0;
1525 * unthrottle events on the tick
1527 if (interrupts == MAX_INTERRUPTS) {
1528 perf_log_throttle(event, 1);
1529 perf_disable();
1530 event->pmu->unthrottle(event);
1531 perf_enable();
1534 if (!event->attr.freq || !event->attr.sample_freq)
1535 continue;
1537 perf_disable();
1538 event->pmu->read(event);
1539 now = atomic64_read(&event->count);
1540 delta = now - hwc->freq_count_stamp;
1541 hwc->freq_count_stamp = now;
1543 if (delta > 0)
1544 perf_adjust_period(event, TICK_NSEC, delta);
1545 perf_enable();
1547 raw_spin_unlock(&ctx->lock);
1551 * Round-robin a context's events:
1553 static void rotate_ctx(struct perf_event_context *ctx)
1555 raw_spin_lock(&ctx->lock);
1557 /* Rotate the first entry last of non-pinned groups */
1558 list_rotate_left(&ctx->flexible_groups);
1560 raw_spin_unlock(&ctx->lock);
1563 void perf_event_task_tick(struct task_struct *curr)
1565 struct perf_cpu_context *cpuctx;
1566 struct perf_event_context *ctx;
1567 int rotate = 0;
1569 if (!atomic_read(&nr_events))
1570 return;
1572 cpuctx = &__get_cpu_var(perf_cpu_context);
1573 if (cpuctx->ctx.nr_events &&
1574 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1575 rotate = 1;
1577 ctx = curr->perf_event_ctxp;
1578 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1579 rotate = 1;
1581 perf_ctx_adjust_freq(&cpuctx->ctx);
1582 if (ctx)
1583 perf_ctx_adjust_freq(ctx);
1585 if (!rotate)
1586 return;
1588 perf_disable();
1589 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1590 if (ctx)
1591 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1593 rotate_ctx(&cpuctx->ctx);
1594 if (ctx)
1595 rotate_ctx(ctx);
1597 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1598 if (ctx)
1599 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1600 perf_enable();
1603 static int event_enable_on_exec(struct perf_event *event,
1604 struct perf_event_context *ctx)
1606 if (!event->attr.enable_on_exec)
1607 return 0;
1609 event->attr.enable_on_exec = 0;
1610 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1611 return 0;
1613 __perf_event_mark_enabled(event, ctx);
1615 return 1;
1619 * Enable all of a task's events that have been marked enable-on-exec.
1620 * This expects task == current.
1622 static void perf_event_enable_on_exec(struct task_struct *task)
1624 struct perf_event_context *ctx;
1625 struct perf_event *event;
1626 unsigned long flags;
1627 int enabled = 0;
1628 int ret;
1630 local_irq_save(flags);
1631 ctx = task->perf_event_ctxp;
1632 if (!ctx || !ctx->nr_events)
1633 goto out;
1635 __perf_event_task_sched_out(ctx);
1637 raw_spin_lock(&ctx->lock);
1639 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1640 ret = event_enable_on_exec(event, ctx);
1641 if (ret)
1642 enabled = 1;
1645 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1646 ret = event_enable_on_exec(event, ctx);
1647 if (ret)
1648 enabled = 1;
1652 * Unclone this context if we enabled any event.
1654 if (enabled)
1655 unclone_ctx(ctx);
1657 raw_spin_unlock(&ctx->lock);
1659 perf_event_task_sched_in(task);
1660 out:
1661 local_irq_restore(flags);
1665 * Cross CPU call to read the hardware event
1667 static void __perf_event_read(void *info)
1669 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1670 struct perf_event *event = info;
1671 struct perf_event_context *ctx = event->ctx;
1674 * If this is a task context, we need to check whether it is
1675 * the current task context of this cpu. If not it has been
1676 * scheduled out before the smp call arrived. In that case
1677 * event->count would have been updated to a recent sample
1678 * when the event was scheduled out.
1680 if (ctx->task && cpuctx->task_ctx != ctx)
1681 return;
1683 raw_spin_lock(&ctx->lock);
1684 update_context_time(ctx);
1685 update_event_times(event);
1686 raw_spin_unlock(&ctx->lock);
1688 event->pmu->read(event);
1691 static u64 perf_event_read(struct perf_event *event)
1694 * If event is enabled and currently active on a CPU, update the
1695 * value in the event structure:
1697 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1698 smp_call_function_single(event->oncpu,
1699 __perf_event_read, event, 1);
1700 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1701 struct perf_event_context *ctx = event->ctx;
1702 unsigned long flags;
1704 raw_spin_lock_irqsave(&ctx->lock, flags);
1705 update_context_time(ctx);
1706 update_event_times(event);
1707 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1710 return atomic64_read(&event->count);
1714 * Initialize the perf_event context in a task_struct:
1716 static void
1717 __perf_event_init_context(struct perf_event_context *ctx,
1718 struct task_struct *task)
1720 raw_spin_lock_init(&ctx->lock);
1721 mutex_init(&ctx->mutex);
1722 INIT_LIST_HEAD(&ctx->pinned_groups);
1723 INIT_LIST_HEAD(&ctx->flexible_groups);
1724 INIT_LIST_HEAD(&ctx->event_list);
1725 atomic_set(&ctx->refcount, 1);
1726 ctx->task = task;
1729 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1731 struct perf_event_context *ctx;
1732 struct perf_cpu_context *cpuctx;
1733 struct task_struct *task;
1734 unsigned long flags;
1735 int err;
1737 if (pid == -1 && cpu != -1) {
1738 /* Must be root to operate on a CPU event: */
1739 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1740 return ERR_PTR(-EACCES);
1742 if (cpu < 0 || cpu >= nr_cpumask_bits)
1743 return ERR_PTR(-EINVAL);
1746 * We could be clever and allow to attach a event to an
1747 * offline CPU and activate it when the CPU comes up, but
1748 * that's for later.
1750 if (!cpu_online(cpu))
1751 return ERR_PTR(-ENODEV);
1753 cpuctx = &per_cpu(perf_cpu_context, cpu);
1754 ctx = &cpuctx->ctx;
1755 get_ctx(ctx);
1757 return ctx;
1760 rcu_read_lock();
1761 if (!pid)
1762 task = current;
1763 else
1764 task = find_task_by_vpid(pid);
1765 if (task)
1766 get_task_struct(task);
1767 rcu_read_unlock();
1769 if (!task)
1770 return ERR_PTR(-ESRCH);
1773 * Can't attach events to a dying task.
1775 err = -ESRCH;
1776 if (task->flags & PF_EXITING)
1777 goto errout;
1779 /* Reuse ptrace permission checks for now. */
1780 err = -EACCES;
1781 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1782 goto errout;
1784 retry:
1785 ctx = perf_lock_task_context(task, &flags);
1786 if (ctx) {
1787 unclone_ctx(ctx);
1788 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1791 if (!ctx) {
1792 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1793 err = -ENOMEM;
1794 if (!ctx)
1795 goto errout;
1796 __perf_event_init_context(ctx, task);
1797 get_ctx(ctx);
1798 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1800 * We raced with some other task; use
1801 * the context they set.
1803 kfree(ctx);
1804 goto retry;
1806 get_task_struct(task);
1809 put_task_struct(task);
1810 return ctx;
1812 errout:
1813 put_task_struct(task);
1814 return ERR_PTR(err);
1817 static void perf_event_free_filter(struct perf_event *event);
1819 static void free_event_rcu(struct rcu_head *head)
1821 struct perf_event *event;
1823 event = container_of(head, struct perf_event, rcu_head);
1824 if (event->ns)
1825 put_pid_ns(event->ns);
1826 perf_event_free_filter(event);
1827 kfree(event);
1830 static void perf_pending_sync(struct perf_event *event);
1832 static void free_event(struct perf_event *event)
1834 perf_pending_sync(event);
1836 if (!event->parent) {
1837 atomic_dec(&nr_events);
1838 if (event->attr.mmap)
1839 atomic_dec(&nr_mmap_events);
1840 if (event->attr.comm)
1841 atomic_dec(&nr_comm_events);
1842 if (event->attr.task)
1843 atomic_dec(&nr_task_events);
1846 if (event->output) {
1847 fput(event->output->filp);
1848 event->output = NULL;
1851 if (event->destroy)
1852 event->destroy(event);
1854 put_ctx(event->ctx);
1855 call_rcu(&event->rcu_head, free_event_rcu);
1858 int perf_event_release_kernel(struct perf_event *event)
1860 struct perf_event_context *ctx = event->ctx;
1862 WARN_ON_ONCE(ctx->parent_ctx);
1863 mutex_lock(&ctx->mutex);
1864 perf_event_remove_from_context(event);
1865 mutex_unlock(&ctx->mutex);
1867 mutex_lock(&event->owner->perf_event_mutex);
1868 list_del_init(&event->owner_entry);
1869 mutex_unlock(&event->owner->perf_event_mutex);
1870 put_task_struct(event->owner);
1872 free_event(event);
1874 return 0;
1876 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1879 * Called when the last reference to the file is gone.
1881 static int perf_release(struct inode *inode, struct file *file)
1883 struct perf_event *event = file->private_data;
1885 file->private_data = NULL;
1887 return perf_event_release_kernel(event);
1890 static int perf_event_read_size(struct perf_event *event)
1892 int entry = sizeof(u64); /* value */
1893 int size = 0;
1894 int nr = 1;
1896 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1897 size += sizeof(u64);
1899 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1900 size += sizeof(u64);
1902 if (event->attr.read_format & PERF_FORMAT_ID)
1903 entry += sizeof(u64);
1905 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1906 nr += event->group_leader->nr_siblings;
1907 size += sizeof(u64);
1910 size += entry * nr;
1912 return size;
1915 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1917 struct perf_event *child;
1918 u64 total = 0;
1920 *enabled = 0;
1921 *running = 0;
1923 mutex_lock(&event->child_mutex);
1924 total += perf_event_read(event);
1925 *enabled += event->total_time_enabled +
1926 atomic64_read(&event->child_total_time_enabled);
1927 *running += event->total_time_running +
1928 atomic64_read(&event->child_total_time_running);
1930 list_for_each_entry(child, &event->child_list, child_list) {
1931 total += perf_event_read(child);
1932 *enabled += child->total_time_enabled;
1933 *running += child->total_time_running;
1935 mutex_unlock(&event->child_mutex);
1937 return total;
1939 EXPORT_SYMBOL_GPL(perf_event_read_value);
1941 static int perf_event_read_group(struct perf_event *event,
1942 u64 read_format, char __user *buf)
1944 struct perf_event *leader = event->group_leader, *sub;
1945 int n = 0, size = 0, ret = -EFAULT;
1946 struct perf_event_context *ctx = leader->ctx;
1947 u64 values[5];
1948 u64 count, enabled, running;
1950 mutex_lock(&ctx->mutex);
1951 count = perf_event_read_value(leader, &enabled, &running);
1953 values[n++] = 1 + leader->nr_siblings;
1954 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1955 values[n++] = enabled;
1956 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1957 values[n++] = running;
1958 values[n++] = count;
1959 if (read_format & PERF_FORMAT_ID)
1960 values[n++] = primary_event_id(leader);
1962 size = n * sizeof(u64);
1964 if (copy_to_user(buf, values, size))
1965 goto unlock;
1967 ret = size;
1969 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1970 n = 0;
1972 values[n++] = perf_event_read_value(sub, &enabled, &running);
1973 if (read_format & PERF_FORMAT_ID)
1974 values[n++] = primary_event_id(sub);
1976 size = n * sizeof(u64);
1978 if (copy_to_user(buf + ret, values, size)) {
1979 ret = -EFAULT;
1980 goto unlock;
1983 ret += size;
1985 unlock:
1986 mutex_unlock(&ctx->mutex);
1988 return ret;
1991 static int perf_event_read_one(struct perf_event *event,
1992 u64 read_format, char __user *buf)
1994 u64 enabled, running;
1995 u64 values[4];
1996 int n = 0;
1998 values[n++] = perf_event_read_value(event, &enabled, &running);
1999 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2000 values[n++] = enabled;
2001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2002 values[n++] = running;
2003 if (read_format & PERF_FORMAT_ID)
2004 values[n++] = primary_event_id(event);
2006 if (copy_to_user(buf, values, n * sizeof(u64)))
2007 return -EFAULT;
2009 return n * sizeof(u64);
2013 * Read the performance event - simple non blocking version for now
2015 static ssize_t
2016 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2018 u64 read_format = event->attr.read_format;
2019 int ret;
2022 * Return end-of-file for a read on a event that is in
2023 * error state (i.e. because it was pinned but it couldn't be
2024 * scheduled on to the CPU at some point).
2026 if (event->state == PERF_EVENT_STATE_ERROR)
2027 return 0;
2029 if (count < perf_event_read_size(event))
2030 return -ENOSPC;
2032 WARN_ON_ONCE(event->ctx->parent_ctx);
2033 if (read_format & PERF_FORMAT_GROUP)
2034 ret = perf_event_read_group(event, read_format, buf);
2035 else
2036 ret = perf_event_read_one(event, read_format, buf);
2038 return ret;
2041 static ssize_t
2042 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2044 struct perf_event *event = file->private_data;
2046 return perf_read_hw(event, buf, count);
2049 static unsigned int perf_poll(struct file *file, poll_table *wait)
2051 struct perf_event *event = file->private_data;
2052 struct perf_mmap_data *data;
2053 unsigned int events = POLL_HUP;
2055 rcu_read_lock();
2056 data = rcu_dereference(event->data);
2057 if (data)
2058 events = atomic_xchg(&data->poll, 0);
2059 rcu_read_unlock();
2061 poll_wait(file, &event->waitq, wait);
2063 return events;
2066 static void perf_event_reset(struct perf_event *event)
2068 (void)perf_event_read(event);
2069 atomic64_set(&event->count, 0);
2070 perf_event_update_userpage(event);
2074 * Holding the top-level event's child_mutex means that any
2075 * descendant process that has inherited this event will block
2076 * in sync_child_event if it goes to exit, thus satisfying the
2077 * task existence requirements of perf_event_enable/disable.
2079 static void perf_event_for_each_child(struct perf_event *event,
2080 void (*func)(struct perf_event *))
2082 struct perf_event *child;
2084 WARN_ON_ONCE(event->ctx->parent_ctx);
2085 mutex_lock(&event->child_mutex);
2086 func(event);
2087 list_for_each_entry(child, &event->child_list, child_list)
2088 func(child);
2089 mutex_unlock(&event->child_mutex);
2092 static void perf_event_for_each(struct perf_event *event,
2093 void (*func)(struct perf_event *))
2095 struct perf_event_context *ctx = event->ctx;
2096 struct perf_event *sibling;
2098 WARN_ON_ONCE(ctx->parent_ctx);
2099 mutex_lock(&ctx->mutex);
2100 event = event->group_leader;
2102 perf_event_for_each_child(event, func);
2103 func(event);
2104 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2105 perf_event_for_each_child(event, func);
2106 mutex_unlock(&ctx->mutex);
2109 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2111 struct perf_event_context *ctx = event->ctx;
2112 unsigned long size;
2113 int ret = 0;
2114 u64 value;
2116 if (!event->attr.sample_period)
2117 return -EINVAL;
2119 size = copy_from_user(&value, arg, sizeof(value));
2120 if (size != sizeof(value))
2121 return -EFAULT;
2123 if (!value)
2124 return -EINVAL;
2126 raw_spin_lock_irq(&ctx->lock);
2127 if (event->attr.freq) {
2128 if (value > sysctl_perf_event_sample_rate) {
2129 ret = -EINVAL;
2130 goto unlock;
2133 event->attr.sample_freq = value;
2134 } else {
2135 event->attr.sample_period = value;
2136 event->hw.sample_period = value;
2138 unlock:
2139 raw_spin_unlock_irq(&ctx->lock);
2141 return ret;
2144 static int perf_event_set_output(struct perf_event *event, int output_fd);
2145 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2147 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2149 struct perf_event *event = file->private_data;
2150 void (*func)(struct perf_event *);
2151 u32 flags = arg;
2153 switch (cmd) {
2154 case PERF_EVENT_IOC_ENABLE:
2155 func = perf_event_enable;
2156 break;
2157 case PERF_EVENT_IOC_DISABLE:
2158 func = perf_event_disable;
2159 break;
2160 case PERF_EVENT_IOC_RESET:
2161 func = perf_event_reset;
2162 break;
2164 case PERF_EVENT_IOC_REFRESH:
2165 return perf_event_refresh(event, arg);
2167 case PERF_EVENT_IOC_PERIOD:
2168 return perf_event_period(event, (u64 __user *)arg);
2170 case PERF_EVENT_IOC_SET_OUTPUT:
2171 return perf_event_set_output(event, arg);
2173 case PERF_EVENT_IOC_SET_FILTER:
2174 return perf_event_set_filter(event, (void __user *)arg);
2176 default:
2177 return -ENOTTY;
2180 if (flags & PERF_IOC_FLAG_GROUP)
2181 perf_event_for_each(event, func);
2182 else
2183 perf_event_for_each_child(event, func);
2185 return 0;
2188 int perf_event_task_enable(void)
2190 struct perf_event *event;
2192 mutex_lock(&current->perf_event_mutex);
2193 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2194 perf_event_for_each_child(event, perf_event_enable);
2195 mutex_unlock(&current->perf_event_mutex);
2197 return 0;
2200 int perf_event_task_disable(void)
2202 struct perf_event *event;
2204 mutex_lock(&current->perf_event_mutex);
2205 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2206 perf_event_for_each_child(event, perf_event_disable);
2207 mutex_unlock(&current->perf_event_mutex);
2209 return 0;
2212 #ifndef PERF_EVENT_INDEX_OFFSET
2213 # define PERF_EVENT_INDEX_OFFSET 0
2214 #endif
2216 static int perf_event_index(struct perf_event *event)
2218 if (event->state != PERF_EVENT_STATE_ACTIVE)
2219 return 0;
2221 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2225 * Callers need to ensure there can be no nesting of this function, otherwise
2226 * the seqlock logic goes bad. We can not serialize this because the arch
2227 * code calls this from NMI context.
2229 void perf_event_update_userpage(struct perf_event *event)
2231 struct perf_event_mmap_page *userpg;
2232 struct perf_mmap_data *data;
2234 rcu_read_lock();
2235 data = rcu_dereference(event->data);
2236 if (!data)
2237 goto unlock;
2239 userpg = data->user_page;
2242 * Disable preemption so as to not let the corresponding user-space
2243 * spin too long if we get preempted.
2245 preempt_disable();
2246 ++userpg->lock;
2247 barrier();
2248 userpg->index = perf_event_index(event);
2249 userpg->offset = atomic64_read(&event->count);
2250 if (event->state == PERF_EVENT_STATE_ACTIVE)
2251 userpg->offset -= atomic64_read(&event->hw.prev_count);
2253 userpg->time_enabled = event->total_time_enabled +
2254 atomic64_read(&event->child_total_time_enabled);
2256 userpg->time_running = event->total_time_running +
2257 atomic64_read(&event->child_total_time_running);
2259 barrier();
2260 ++userpg->lock;
2261 preempt_enable();
2262 unlock:
2263 rcu_read_unlock();
2266 static unsigned long perf_data_size(struct perf_mmap_data *data)
2268 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2271 #ifndef CONFIG_PERF_USE_VMALLOC
2274 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2277 static struct page *
2278 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2280 if (pgoff > data->nr_pages)
2281 return NULL;
2283 if (pgoff == 0)
2284 return virt_to_page(data->user_page);
2286 return virt_to_page(data->data_pages[pgoff - 1]);
2289 static struct perf_mmap_data *
2290 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2292 struct perf_mmap_data *data;
2293 unsigned long size;
2294 int i;
2296 WARN_ON(atomic_read(&event->mmap_count));
2298 size = sizeof(struct perf_mmap_data);
2299 size += nr_pages * sizeof(void *);
2301 data = kzalloc(size, GFP_KERNEL);
2302 if (!data)
2303 goto fail;
2305 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2306 if (!data->user_page)
2307 goto fail_user_page;
2309 for (i = 0; i < nr_pages; i++) {
2310 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2311 if (!data->data_pages[i])
2312 goto fail_data_pages;
2315 data->data_order = 0;
2316 data->nr_pages = nr_pages;
2318 return data;
2320 fail_data_pages:
2321 for (i--; i >= 0; i--)
2322 free_page((unsigned long)data->data_pages[i]);
2324 free_page((unsigned long)data->user_page);
2326 fail_user_page:
2327 kfree(data);
2329 fail:
2330 return NULL;
2333 static void perf_mmap_free_page(unsigned long addr)
2335 struct page *page = virt_to_page((void *)addr);
2337 page->mapping = NULL;
2338 __free_page(page);
2341 static void perf_mmap_data_free(struct perf_mmap_data *data)
2343 int i;
2345 perf_mmap_free_page((unsigned long)data->user_page);
2346 for (i = 0; i < data->nr_pages; i++)
2347 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2348 kfree(data);
2351 #else
2354 * Back perf_mmap() with vmalloc memory.
2356 * Required for architectures that have d-cache aliasing issues.
2359 static struct page *
2360 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2362 if (pgoff > (1UL << data->data_order))
2363 return NULL;
2365 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2368 static void perf_mmap_unmark_page(void *addr)
2370 struct page *page = vmalloc_to_page(addr);
2372 page->mapping = NULL;
2375 static void perf_mmap_data_free_work(struct work_struct *work)
2377 struct perf_mmap_data *data;
2378 void *base;
2379 int i, nr;
2381 data = container_of(work, struct perf_mmap_data, work);
2382 nr = 1 << data->data_order;
2384 base = data->user_page;
2385 for (i = 0; i < nr + 1; i++)
2386 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2388 vfree(base);
2389 kfree(data);
2392 static void perf_mmap_data_free(struct perf_mmap_data *data)
2394 schedule_work(&data->work);
2397 static struct perf_mmap_data *
2398 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2400 struct perf_mmap_data *data;
2401 unsigned long size;
2402 void *all_buf;
2404 WARN_ON(atomic_read(&event->mmap_count));
2406 size = sizeof(struct perf_mmap_data);
2407 size += sizeof(void *);
2409 data = kzalloc(size, GFP_KERNEL);
2410 if (!data)
2411 goto fail;
2413 INIT_WORK(&data->work, perf_mmap_data_free_work);
2415 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2416 if (!all_buf)
2417 goto fail_all_buf;
2419 data->user_page = all_buf;
2420 data->data_pages[0] = all_buf + PAGE_SIZE;
2421 data->data_order = ilog2(nr_pages);
2422 data->nr_pages = 1;
2424 return data;
2426 fail_all_buf:
2427 kfree(data);
2429 fail:
2430 return NULL;
2433 #endif
2435 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2437 struct perf_event *event = vma->vm_file->private_data;
2438 struct perf_mmap_data *data;
2439 int ret = VM_FAULT_SIGBUS;
2441 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2442 if (vmf->pgoff == 0)
2443 ret = 0;
2444 return ret;
2447 rcu_read_lock();
2448 data = rcu_dereference(event->data);
2449 if (!data)
2450 goto unlock;
2452 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2453 goto unlock;
2455 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2456 if (!vmf->page)
2457 goto unlock;
2459 get_page(vmf->page);
2460 vmf->page->mapping = vma->vm_file->f_mapping;
2461 vmf->page->index = vmf->pgoff;
2463 ret = 0;
2464 unlock:
2465 rcu_read_unlock();
2467 return ret;
2470 static void
2471 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2473 long max_size = perf_data_size(data);
2475 atomic_set(&data->lock, -1);
2477 if (event->attr.watermark) {
2478 data->watermark = min_t(long, max_size,
2479 event->attr.wakeup_watermark);
2482 if (!data->watermark)
2483 data->watermark = max_size / 2;
2486 rcu_assign_pointer(event->data, data);
2489 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2491 struct perf_mmap_data *data;
2493 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2494 perf_mmap_data_free(data);
2497 static void perf_mmap_data_release(struct perf_event *event)
2499 struct perf_mmap_data *data = event->data;
2501 WARN_ON(atomic_read(&event->mmap_count));
2503 rcu_assign_pointer(event->data, NULL);
2504 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2507 static void perf_mmap_open(struct vm_area_struct *vma)
2509 struct perf_event *event = vma->vm_file->private_data;
2511 atomic_inc(&event->mmap_count);
2514 static void perf_mmap_close(struct vm_area_struct *vma)
2516 struct perf_event *event = vma->vm_file->private_data;
2518 WARN_ON_ONCE(event->ctx->parent_ctx);
2519 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2520 unsigned long size = perf_data_size(event->data);
2521 struct user_struct *user = current_user();
2523 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2524 vma->vm_mm->locked_vm -= event->data->nr_locked;
2525 perf_mmap_data_release(event);
2526 mutex_unlock(&event->mmap_mutex);
2530 static const struct vm_operations_struct perf_mmap_vmops = {
2531 .open = perf_mmap_open,
2532 .close = perf_mmap_close,
2533 .fault = perf_mmap_fault,
2534 .page_mkwrite = perf_mmap_fault,
2537 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2539 struct perf_event *event = file->private_data;
2540 unsigned long user_locked, user_lock_limit;
2541 struct user_struct *user = current_user();
2542 unsigned long locked, lock_limit;
2543 struct perf_mmap_data *data;
2544 unsigned long vma_size;
2545 unsigned long nr_pages;
2546 long user_extra, extra;
2547 int ret = 0;
2549 if (!(vma->vm_flags & VM_SHARED))
2550 return -EINVAL;
2552 vma_size = vma->vm_end - vma->vm_start;
2553 nr_pages = (vma_size / PAGE_SIZE) - 1;
2556 * If we have data pages ensure they're a power-of-two number, so we
2557 * can do bitmasks instead of modulo.
2559 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2560 return -EINVAL;
2562 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2563 return -EINVAL;
2565 if (vma->vm_pgoff != 0)
2566 return -EINVAL;
2568 WARN_ON_ONCE(event->ctx->parent_ctx);
2569 mutex_lock(&event->mmap_mutex);
2570 if (event->output) {
2571 ret = -EINVAL;
2572 goto unlock;
2575 if (atomic_inc_not_zero(&event->mmap_count)) {
2576 if (nr_pages != event->data->nr_pages)
2577 ret = -EINVAL;
2578 goto unlock;
2581 user_extra = nr_pages + 1;
2582 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2585 * Increase the limit linearly with more CPUs:
2587 user_lock_limit *= num_online_cpus();
2589 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2591 extra = 0;
2592 if (user_locked > user_lock_limit)
2593 extra = user_locked - user_lock_limit;
2595 lock_limit = rlimit(RLIMIT_MEMLOCK);
2596 lock_limit >>= PAGE_SHIFT;
2597 locked = vma->vm_mm->locked_vm + extra;
2599 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2600 !capable(CAP_IPC_LOCK)) {
2601 ret = -EPERM;
2602 goto unlock;
2605 WARN_ON(event->data);
2607 data = perf_mmap_data_alloc(event, nr_pages);
2608 ret = -ENOMEM;
2609 if (!data)
2610 goto unlock;
2612 ret = 0;
2613 perf_mmap_data_init(event, data);
2615 atomic_set(&event->mmap_count, 1);
2616 atomic_long_add(user_extra, &user->locked_vm);
2617 vma->vm_mm->locked_vm += extra;
2618 event->data->nr_locked = extra;
2619 if (vma->vm_flags & VM_WRITE)
2620 event->data->writable = 1;
2622 unlock:
2623 mutex_unlock(&event->mmap_mutex);
2625 vma->vm_flags |= VM_RESERVED;
2626 vma->vm_ops = &perf_mmap_vmops;
2628 return ret;
2631 static int perf_fasync(int fd, struct file *filp, int on)
2633 struct inode *inode = filp->f_path.dentry->d_inode;
2634 struct perf_event *event = filp->private_data;
2635 int retval;
2637 mutex_lock(&inode->i_mutex);
2638 retval = fasync_helper(fd, filp, on, &event->fasync);
2639 mutex_unlock(&inode->i_mutex);
2641 if (retval < 0)
2642 return retval;
2644 return 0;
2647 static const struct file_operations perf_fops = {
2648 .release = perf_release,
2649 .read = perf_read,
2650 .poll = perf_poll,
2651 .unlocked_ioctl = perf_ioctl,
2652 .compat_ioctl = perf_ioctl,
2653 .mmap = perf_mmap,
2654 .fasync = perf_fasync,
2658 * Perf event wakeup
2660 * If there's data, ensure we set the poll() state and publish everything
2661 * to user-space before waking everybody up.
2664 void perf_event_wakeup(struct perf_event *event)
2666 wake_up_all(&event->waitq);
2668 if (event->pending_kill) {
2669 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2670 event->pending_kill = 0;
2675 * Pending wakeups
2677 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2679 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2680 * single linked list and use cmpxchg() to add entries lockless.
2683 static void perf_pending_event(struct perf_pending_entry *entry)
2685 struct perf_event *event = container_of(entry,
2686 struct perf_event, pending);
2688 if (event->pending_disable) {
2689 event->pending_disable = 0;
2690 __perf_event_disable(event);
2693 if (event->pending_wakeup) {
2694 event->pending_wakeup = 0;
2695 perf_event_wakeup(event);
2699 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2701 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2702 PENDING_TAIL,
2705 static void perf_pending_queue(struct perf_pending_entry *entry,
2706 void (*func)(struct perf_pending_entry *))
2708 struct perf_pending_entry **head;
2710 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2711 return;
2713 entry->func = func;
2715 head = &get_cpu_var(perf_pending_head);
2717 do {
2718 entry->next = *head;
2719 } while (cmpxchg(head, entry->next, entry) != entry->next);
2721 set_perf_event_pending();
2723 put_cpu_var(perf_pending_head);
2726 static int __perf_pending_run(void)
2728 struct perf_pending_entry *list;
2729 int nr = 0;
2731 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2732 while (list != PENDING_TAIL) {
2733 void (*func)(struct perf_pending_entry *);
2734 struct perf_pending_entry *entry = list;
2736 list = list->next;
2738 func = entry->func;
2739 entry->next = NULL;
2741 * Ensure we observe the unqueue before we issue the wakeup,
2742 * so that we won't be waiting forever.
2743 * -- see perf_not_pending().
2745 smp_wmb();
2747 func(entry);
2748 nr++;
2751 return nr;
2754 static inline int perf_not_pending(struct perf_event *event)
2757 * If we flush on whatever cpu we run, there is a chance we don't
2758 * need to wait.
2760 get_cpu();
2761 __perf_pending_run();
2762 put_cpu();
2765 * Ensure we see the proper queue state before going to sleep
2766 * so that we do not miss the wakeup. -- see perf_pending_handle()
2768 smp_rmb();
2769 return event->pending.next == NULL;
2772 static void perf_pending_sync(struct perf_event *event)
2774 wait_event(event->waitq, perf_not_pending(event));
2777 void perf_event_do_pending(void)
2779 __perf_pending_run();
2783 * Callchain support -- arch specific
2786 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2788 return NULL;
2791 __weak
2792 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2798 * Output
2800 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2801 unsigned long offset, unsigned long head)
2803 unsigned long mask;
2805 if (!data->writable)
2806 return true;
2808 mask = perf_data_size(data) - 1;
2810 offset = (offset - tail) & mask;
2811 head = (head - tail) & mask;
2813 if ((int)(head - offset) < 0)
2814 return false;
2816 return true;
2819 static void perf_output_wakeup(struct perf_output_handle *handle)
2821 atomic_set(&handle->data->poll, POLL_IN);
2823 if (handle->nmi) {
2824 handle->event->pending_wakeup = 1;
2825 perf_pending_queue(&handle->event->pending,
2826 perf_pending_event);
2827 } else
2828 perf_event_wakeup(handle->event);
2832 * Curious locking construct.
2834 * We need to ensure a later event_id doesn't publish a head when a former
2835 * event_id isn't done writing. However since we need to deal with NMIs we
2836 * cannot fully serialize things.
2838 * What we do is serialize between CPUs so we only have to deal with NMI
2839 * nesting on a single CPU.
2841 * We only publish the head (and generate a wakeup) when the outer-most
2842 * event_id completes.
2844 static void perf_output_lock(struct perf_output_handle *handle)
2846 struct perf_mmap_data *data = handle->data;
2847 int cur, cpu = get_cpu();
2849 handle->locked = 0;
2851 for (;;) {
2852 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2853 if (cur == -1) {
2854 handle->locked = 1;
2855 break;
2857 if (cur == cpu)
2858 break;
2860 cpu_relax();
2864 static void perf_output_unlock(struct perf_output_handle *handle)
2866 struct perf_mmap_data *data = handle->data;
2867 unsigned long head;
2868 int cpu;
2870 data->done_head = data->head;
2872 if (!handle->locked)
2873 goto out;
2875 again:
2877 * The xchg implies a full barrier that ensures all writes are done
2878 * before we publish the new head, matched by a rmb() in userspace when
2879 * reading this position.
2881 while ((head = atomic_long_xchg(&data->done_head, 0)))
2882 data->user_page->data_head = head;
2885 * NMI can happen here, which means we can miss a done_head update.
2888 cpu = atomic_xchg(&data->lock, -1);
2889 WARN_ON_ONCE(cpu != smp_processor_id());
2892 * Therefore we have to validate we did not indeed do so.
2894 if (unlikely(atomic_long_read(&data->done_head))) {
2896 * Since we had it locked, we can lock it again.
2898 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2899 cpu_relax();
2901 goto again;
2904 if (atomic_xchg(&data->wakeup, 0))
2905 perf_output_wakeup(handle);
2906 out:
2907 put_cpu();
2910 void perf_output_copy(struct perf_output_handle *handle,
2911 const void *buf, unsigned int len)
2913 unsigned int pages_mask;
2914 unsigned long offset;
2915 unsigned int size;
2916 void **pages;
2918 offset = handle->offset;
2919 pages_mask = handle->data->nr_pages - 1;
2920 pages = handle->data->data_pages;
2922 do {
2923 unsigned long page_offset;
2924 unsigned long page_size;
2925 int nr;
2927 nr = (offset >> PAGE_SHIFT) & pages_mask;
2928 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2929 page_offset = offset & (page_size - 1);
2930 size = min_t(unsigned int, page_size - page_offset, len);
2932 memcpy(pages[nr] + page_offset, buf, size);
2934 len -= size;
2935 buf += size;
2936 offset += size;
2937 } while (len);
2939 handle->offset = offset;
2942 * Check we didn't copy past our reservation window, taking the
2943 * possible unsigned int wrap into account.
2945 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2948 int perf_output_begin(struct perf_output_handle *handle,
2949 struct perf_event *event, unsigned int size,
2950 int nmi, int sample)
2952 struct perf_event *output_event;
2953 struct perf_mmap_data *data;
2954 unsigned long tail, offset, head;
2955 int have_lost;
2956 struct {
2957 struct perf_event_header header;
2958 u64 id;
2959 u64 lost;
2960 } lost_event;
2962 rcu_read_lock();
2964 * For inherited events we send all the output towards the parent.
2966 if (event->parent)
2967 event = event->parent;
2969 output_event = rcu_dereference(event->output);
2970 if (output_event)
2971 event = output_event;
2973 data = rcu_dereference(event->data);
2974 if (!data)
2975 goto out;
2977 handle->data = data;
2978 handle->event = event;
2979 handle->nmi = nmi;
2980 handle->sample = sample;
2982 if (!data->nr_pages)
2983 goto fail;
2985 have_lost = atomic_read(&data->lost);
2986 if (have_lost)
2987 size += sizeof(lost_event);
2989 perf_output_lock(handle);
2991 do {
2993 * Userspace could choose to issue a mb() before updating the
2994 * tail pointer. So that all reads will be completed before the
2995 * write is issued.
2997 tail = ACCESS_ONCE(data->user_page->data_tail);
2998 smp_rmb();
2999 offset = head = atomic_long_read(&data->head);
3000 head += size;
3001 if (unlikely(!perf_output_space(data, tail, offset, head)))
3002 goto fail;
3003 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3005 handle->offset = offset;
3006 handle->head = head;
3008 if (head - tail > data->watermark)
3009 atomic_set(&data->wakeup, 1);
3011 if (have_lost) {
3012 lost_event.header.type = PERF_RECORD_LOST;
3013 lost_event.header.misc = 0;
3014 lost_event.header.size = sizeof(lost_event);
3015 lost_event.id = event->id;
3016 lost_event.lost = atomic_xchg(&data->lost, 0);
3018 perf_output_put(handle, lost_event);
3021 return 0;
3023 fail:
3024 atomic_inc(&data->lost);
3025 perf_output_unlock(handle);
3026 out:
3027 rcu_read_unlock();
3029 return -ENOSPC;
3032 void perf_output_end(struct perf_output_handle *handle)
3034 struct perf_event *event = handle->event;
3035 struct perf_mmap_data *data = handle->data;
3037 int wakeup_events = event->attr.wakeup_events;
3039 if (handle->sample && wakeup_events) {
3040 int events = atomic_inc_return(&data->events);
3041 if (events >= wakeup_events) {
3042 atomic_sub(wakeup_events, &data->events);
3043 atomic_set(&data->wakeup, 1);
3047 perf_output_unlock(handle);
3048 rcu_read_unlock();
3051 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3054 * only top level events have the pid namespace they were created in
3056 if (event->parent)
3057 event = event->parent;
3059 return task_tgid_nr_ns(p, event->ns);
3062 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3065 * only top level events have the pid namespace they were created in
3067 if (event->parent)
3068 event = event->parent;
3070 return task_pid_nr_ns(p, event->ns);
3073 static void perf_output_read_one(struct perf_output_handle *handle,
3074 struct perf_event *event)
3076 u64 read_format = event->attr.read_format;
3077 u64 values[4];
3078 int n = 0;
3080 values[n++] = atomic64_read(&event->count);
3081 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3082 values[n++] = event->total_time_enabled +
3083 atomic64_read(&event->child_total_time_enabled);
3085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3086 values[n++] = event->total_time_running +
3087 atomic64_read(&event->child_total_time_running);
3089 if (read_format & PERF_FORMAT_ID)
3090 values[n++] = primary_event_id(event);
3092 perf_output_copy(handle, values, n * sizeof(u64));
3096 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3098 static void perf_output_read_group(struct perf_output_handle *handle,
3099 struct perf_event *event)
3101 struct perf_event *leader = event->group_leader, *sub;
3102 u64 read_format = event->attr.read_format;
3103 u64 values[5];
3104 int n = 0;
3106 values[n++] = 1 + leader->nr_siblings;
3108 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3109 values[n++] = leader->total_time_enabled;
3111 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3112 values[n++] = leader->total_time_running;
3114 if (leader != event)
3115 leader->pmu->read(leader);
3117 values[n++] = atomic64_read(&leader->count);
3118 if (read_format & PERF_FORMAT_ID)
3119 values[n++] = primary_event_id(leader);
3121 perf_output_copy(handle, values, n * sizeof(u64));
3123 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3124 n = 0;
3126 if (sub != event)
3127 sub->pmu->read(sub);
3129 values[n++] = atomic64_read(&sub->count);
3130 if (read_format & PERF_FORMAT_ID)
3131 values[n++] = primary_event_id(sub);
3133 perf_output_copy(handle, values, n * sizeof(u64));
3137 static void perf_output_read(struct perf_output_handle *handle,
3138 struct perf_event *event)
3140 if (event->attr.read_format & PERF_FORMAT_GROUP)
3141 perf_output_read_group(handle, event);
3142 else
3143 perf_output_read_one(handle, event);
3146 void perf_output_sample(struct perf_output_handle *handle,
3147 struct perf_event_header *header,
3148 struct perf_sample_data *data,
3149 struct perf_event *event)
3151 u64 sample_type = data->type;
3153 perf_output_put(handle, *header);
3155 if (sample_type & PERF_SAMPLE_IP)
3156 perf_output_put(handle, data->ip);
3158 if (sample_type & PERF_SAMPLE_TID)
3159 perf_output_put(handle, data->tid_entry);
3161 if (sample_type & PERF_SAMPLE_TIME)
3162 perf_output_put(handle, data->time);
3164 if (sample_type & PERF_SAMPLE_ADDR)
3165 perf_output_put(handle, data->addr);
3167 if (sample_type & PERF_SAMPLE_ID)
3168 perf_output_put(handle, data->id);
3170 if (sample_type & PERF_SAMPLE_STREAM_ID)
3171 perf_output_put(handle, data->stream_id);
3173 if (sample_type & PERF_SAMPLE_CPU)
3174 perf_output_put(handle, data->cpu_entry);
3176 if (sample_type & PERF_SAMPLE_PERIOD)
3177 perf_output_put(handle, data->period);
3179 if (sample_type & PERF_SAMPLE_READ)
3180 perf_output_read(handle, event);
3182 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3183 if (data->callchain) {
3184 int size = 1;
3186 if (data->callchain)
3187 size += data->callchain->nr;
3189 size *= sizeof(u64);
3191 perf_output_copy(handle, data->callchain, size);
3192 } else {
3193 u64 nr = 0;
3194 perf_output_put(handle, nr);
3198 if (sample_type & PERF_SAMPLE_RAW) {
3199 if (data->raw) {
3200 perf_output_put(handle, data->raw->size);
3201 perf_output_copy(handle, data->raw->data,
3202 data->raw->size);
3203 } else {
3204 struct {
3205 u32 size;
3206 u32 data;
3207 } raw = {
3208 .size = sizeof(u32),
3209 .data = 0,
3211 perf_output_put(handle, raw);
3216 void perf_prepare_sample(struct perf_event_header *header,
3217 struct perf_sample_data *data,
3218 struct perf_event *event,
3219 struct pt_regs *regs)
3221 u64 sample_type = event->attr.sample_type;
3223 data->type = sample_type;
3225 header->type = PERF_RECORD_SAMPLE;
3226 header->size = sizeof(*header);
3228 header->misc = 0;
3229 header->misc |= perf_misc_flags(regs);
3231 if (sample_type & PERF_SAMPLE_IP) {
3232 data->ip = perf_instruction_pointer(regs);
3234 header->size += sizeof(data->ip);
3237 if (sample_type & PERF_SAMPLE_TID) {
3238 /* namespace issues */
3239 data->tid_entry.pid = perf_event_pid(event, current);
3240 data->tid_entry.tid = perf_event_tid(event, current);
3242 header->size += sizeof(data->tid_entry);
3245 if (sample_type & PERF_SAMPLE_TIME) {
3246 data->time = perf_clock();
3248 header->size += sizeof(data->time);
3251 if (sample_type & PERF_SAMPLE_ADDR)
3252 header->size += sizeof(data->addr);
3254 if (sample_type & PERF_SAMPLE_ID) {
3255 data->id = primary_event_id(event);
3257 header->size += sizeof(data->id);
3260 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3261 data->stream_id = event->id;
3263 header->size += sizeof(data->stream_id);
3266 if (sample_type & PERF_SAMPLE_CPU) {
3267 data->cpu_entry.cpu = raw_smp_processor_id();
3268 data->cpu_entry.reserved = 0;
3270 header->size += sizeof(data->cpu_entry);
3273 if (sample_type & PERF_SAMPLE_PERIOD)
3274 header->size += sizeof(data->period);
3276 if (sample_type & PERF_SAMPLE_READ)
3277 header->size += perf_event_read_size(event);
3279 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3280 int size = 1;
3282 data->callchain = perf_callchain(regs);
3284 if (data->callchain)
3285 size += data->callchain->nr;
3287 header->size += size * sizeof(u64);
3290 if (sample_type & PERF_SAMPLE_RAW) {
3291 int size = sizeof(u32);
3293 if (data->raw)
3294 size += data->raw->size;
3295 else
3296 size += sizeof(u32);
3298 WARN_ON_ONCE(size & (sizeof(u64)-1));
3299 header->size += size;
3303 static void perf_event_output(struct perf_event *event, int nmi,
3304 struct perf_sample_data *data,
3305 struct pt_regs *regs)
3307 struct perf_output_handle handle;
3308 struct perf_event_header header;
3310 perf_prepare_sample(&header, data, event, regs);
3312 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3313 return;
3315 perf_output_sample(&handle, &header, data, event);
3317 perf_output_end(&handle);
3321 * read event_id
3324 struct perf_read_event {
3325 struct perf_event_header header;
3327 u32 pid;
3328 u32 tid;
3331 static void
3332 perf_event_read_event(struct perf_event *event,
3333 struct task_struct *task)
3335 struct perf_output_handle handle;
3336 struct perf_read_event read_event = {
3337 .header = {
3338 .type = PERF_RECORD_READ,
3339 .misc = 0,
3340 .size = sizeof(read_event) + perf_event_read_size(event),
3342 .pid = perf_event_pid(event, task),
3343 .tid = perf_event_tid(event, task),
3345 int ret;
3347 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3348 if (ret)
3349 return;
3351 perf_output_put(&handle, read_event);
3352 perf_output_read(&handle, event);
3354 perf_output_end(&handle);
3358 * task tracking -- fork/exit
3360 * enabled by: attr.comm | attr.mmap | attr.task
3363 struct perf_task_event {
3364 struct task_struct *task;
3365 struct perf_event_context *task_ctx;
3367 struct {
3368 struct perf_event_header header;
3370 u32 pid;
3371 u32 ppid;
3372 u32 tid;
3373 u32 ptid;
3374 u64 time;
3375 } event_id;
3378 static void perf_event_task_output(struct perf_event *event,
3379 struct perf_task_event *task_event)
3381 struct perf_output_handle handle;
3382 struct task_struct *task = task_event->task;
3383 unsigned long flags;
3384 int size, ret;
3387 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3388 * in perf_output_lock() from interrupt context, it's game over.
3390 local_irq_save(flags);
3392 size = task_event->event_id.header.size;
3393 ret = perf_output_begin(&handle, event, size, 0, 0);
3395 if (ret) {
3396 local_irq_restore(flags);
3397 return;
3400 task_event->event_id.pid = perf_event_pid(event, task);
3401 task_event->event_id.ppid = perf_event_pid(event, current);
3403 task_event->event_id.tid = perf_event_tid(event, task);
3404 task_event->event_id.ptid = perf_event_tid(event, current);
3406 perf_output_put(&handle, task_event->event_id);
3408 perf_output_end(&handle);
3409 local_irq_restore(flags);
3412 static int perf_event_task_match(struct perf_event *event)
3414 if (event->state < PERF_EVENT_STATE_INACTIVE)
3415 return 0;
3417 if (event->cpu != -1 && event->cpu != smp_processor_id())
3418 return 0;
3420 if (event->attr.comm || event->attr.mmap || event->attr.task)
3421 return 1;
3423 return 0;
3426 static void perf_event_task_ctx(struct perf_event_context *ctx,
3427 struct perf_task_event *task_event)
3429 struct perf_event *event;
3431 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3432 if (perf_event_task_match(event))
3433 perf_event_task_output(event, task_event);
3437 static void perf_event_task_event(struct perf_task_event *task_event)
3439 struct perf_cpu_context *cpuctx;
3440 struct perf_event_context *ctx = task_event->task_ctx;
3442 rcu_read_lock();
3443 cpuctx = &get_cpu_var(perf_cpu_context);
3444 perf_event_task_ctx(&cpuctx->ctx, task_event);
3445 if (!ctx)
3446 ctx = rcu_dereference(current->perf_event_ctxp);
3447 if (ctx)
3448 perf_event_task_ctx(ctx, task_event);
3449 put_cpu_var(perf_cpu_context);
3450 rcu_read_unlock();
3453 static void perf_event_task(struct task_struct *task,
3454 struct perf_event_context *task_ctx,
3455 int new)
3457 struct perf_task_event task_event;
3459 if (!atomic_read(&nr_comm_events) &&
3460 !atomic_read(&nr_mmap_events) &&
3461 !atomic_read(&nr_task_events))
3462 return;
3464 task_event = (struct perf_task_event){
3465 .task = task,
3466 .task_ctx = task_ctx,
3467 .event_id = {
3468 .header = {
3469 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3470 .misc = 0,
3471 .size = sizeof(task_event.event_id),
3473 /* .pid */
3474 /* .ppid */
3475 /* .tid */
3476 /* .ptid */
3477 .time = perf_clock(),
3481 perf_event_task_event(&task_event);
3484 void perf_event_fork(struct task_struct *task)
3486 perf_event_task(task, NULL, 1);
3490 * comm tracking
3493 struct perf_comm_event {
3494 struct task_struct *task;
3495 char *comm;
3496 int comm_size;
3498 struct {
3499 struct perf_event_header header;
3501 u32 pid;
3502 u32 tid;
3503 } event_id;
3506 static void perf_event_comm_output(struct perf_event *event,
3507 struct perf_comm_event *comm_event)
3509 struct perf_output_handle handle;
3510 int size = comm_event->event_id.header.size;
3511 int ret = perf_output_begin(&handle, event, size, 0, 0);
3513 if (ret)
3514 return;
3516 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3517 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3519 perf_output_put(&handle, comm_event->event_id);
3520 perf_output_copy(&handle, comm_event->comm,
3521 comm_event->comm_size);
3522 perf_output_end(&handle);
3525 static int perf_event_comm_match(struct perf_event *event)
3527 if (event->state < PERF_EVENT_STATE_INACTIVE)
3528 return 0;
3530 if (event->cpu != -1 && event->cpu != smp_processor_id())
3531 return 0;
3533 if (event->attr.comm)
3534 return 1;
3536 return 0;
3539 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3540 struct perf_comm_event *comm_event)
3542 struct perf_event *event;
3544 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3545 if (perf_event_comm_match(event))
3546 perf_event_comm_output(event, comm_event);
3550 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3552 struct perf_cpu_context *cpuctx;
3553 struct perf_event_context *ctx;
3554 unsigned int size;
3555 char comm[TASK_COMM_LEN];
3557 memset(comm, 0, sizeof(comm));
3558 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3559 size = ALIGN(strlen(comm)+1, sizeof(u64));
3561 comm_event->comm = comm;
3562 comm_event->comm_size = size;
3564 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3566 rcu_read_lock();
3567 cpuctx = &get_cpu_var(perf_cpu_context);
3568 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3569 ctx = rcu_dereference(current->perf_event_ctxp);
3570 if (ctx)
3571 perf_event_comm_ctx(ctx, comm_event);
3572 put_cpu_var(perf_cpu_context);
3573 rcu_read_unlock();
3576 void perf_event_comm(struct task_struct *task)
3578 struct perf_comm_event comm_event;
3580 if (task->perf_event_ctxp)
3581 perf_event_enable_on_exec(task);
3583 if (!atomic_read(&nr_comm_events))
3584 return;
3586 comm_event = (struct perf_comm_event){
3587 .task = task,
3588 /* .comm */
3589 /* .comm_size */
3590 .event_id = {
3591 .header = {
3592 .type = PERF_RECORD_COMM,
3593 .misc = 0,
3594 /* .size */
3596 /* .pid */
3597 /* .tid */
3601 perf_event_comm_event(&comm_event);
3605 * mmap tracking
3608 struct perf_mmap_event {
3609 struct vm_area_struct *vma;
3611 const char *file_name;
3612 int file_size;
3614 struct {
3615 struct perf_event_header header;
3617 u32 pid;
3618 u32 tid;
3619 u64 start;
3620 u64 len;
3621 u64 pgoff;
3622 } event_id;
3625 static void perf_event_mmap_output(struct perf_event *event,
3626 struct perf_mmap_event *mmap_event)
3628 struct perf_output_handle handle;
3629 int size = mmap_event->event_id.header.size;
3630 int ret = perf_output_begin(&handle, event, size, 0, 0);
3632 if (ret)
3633 return;
3635 mmap_event->event_id.pid = perf_event_pid(event, current);
3636 mmap_event->event_id.tid = perf_event_tid(event, current);
3638 perf_output_put(&handle, mmap_event->event_id);
3639 perf_output_copy(&handle, mmap_event->file_name,
3640 mmap_event->file_size);
3641 perf_output_end(&handle);
3644 static int perf_event_mmap_match(struct perf_event *event,
3645 struct perf_mmap_event *mmap_event)
3647 if (event->state < PERF_EVENT_STATE_INACTIVE)
3648 return 0;
3650 if (event->cpu != -1 && event->cpu != smp_processor_id())
3651 return 0;
3653 if (event->attr.mmap)
3654 return 1;
3656 return 0;
3659 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3660 struct perf_mmap_event *mmap_event)
3662 struct perf_event *event;
3664 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3665 if (perf_event_mmap_match(event, mmap_event))
3666 perf_event_mmap_output(event, mmap_event);
3670 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3672 struct perf_cpu_context *cpuctx;
3673 struct perf_event_context *ctx;
3674 struct vm_area_struct *vma = mmap_event->vma;
3675 struct file *file = vma->vm_file;
3676 unsigned int size;
3677 char tmp[16];
3678 char *buf = NULL;
3679 const char *name;
3681 memset(tmp, 0, sizeof(tmp));
3683 if (file) {
3685 * d_path works from the end of the buffer backwards, so we
3686 * need to add enough zero bytes after the string to handle
3687 * the 64bit alignment we do later.
3689 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3690 if (!buf) {
3691 name = strncpy(tmp, "//enomem", sizeof(tmp));
3692 goto got_name;
3694 name = d_path(&file->f_path, buf, PATH_MAX);
3695 if (IS_ERR(name)) {
3696 name = strncpy(tmp, "//toolong", sizeof(tmp));
3697 goto got_name;
3699 } else {
3700 if (arch_vma_name(mmap_event->vma)) {
3701 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3702 sizeof(tmp));
3703 goto got_name;
3706 if (!vma->vm_mm) {
3707 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3708 goto got_name;
3711 name = strncpy(tmp, "//anon", sizeof(tmp));
3712 goto got_name;
3715 got_name:
3716 size = ALIGN(strlen(name)+1, sizeof(u64));
3718 mmap_event->file_name = name;
3719 mmap_event->file_size = size;
3721 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3723 rcu_read_lock();
3724 cpuctx = &get_cpu_var(perf_cpu_context);
3725 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3726 ctx = rcu_dereference(current->perf_event_ctxp);
3727 if (ctx)
3728 perf_event_mmap_ctx(ctx, mmap_event);
3729 put_cpu_var(perf_cpu_context);
3730 rcu_read_unlock();
3732 kfree(buf);
3735 void __perf_event_mmap(struct vm_area_struct *vma)
3737 struct perf_mmap_event mmap_event;
3739 if (!atomic_read(&nr_mmap_events))
3740 return;
3742 mmap_event = (struct perf_mmap_event){
3743 .vma = vma,
3744 /* .file_name */
3745 /* .file_size */
3746 .event_id = {
3747 .header = {
3748 .type = PERF_RECORD_MMAP,
3749 .misc = 0,
3750 /* .size */
3752 /* .pid */
3753 /* .tid */
3754 .start = vma->vm_start,
3755 .len = vma->vm_end - vma->vm_start,
3756 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3760 perf_event_mmap_event(&mmap_event);
3764 * IRQ throttle logging
3767 static void perf_log_throttle(struct perf_event *event, int enable)
3769 struct perf_output_handle handle;
3770 int ret;
3772 struct {
3773 struct perf_event_header header;
3774 u64 time;
3775 u64 id;
3776 u64 stream_id;
3777 } throttle_event = {
3778 .header = {
3779 .type = PERF_RECORD_THROTTLE,
3780 .misc = 0,
3781 .size = sizeof(throttle_event),
3783 .time = perf_clock(),
3784 .id = primary_event_id(event),
3785 .stream_id = event->id,
3788 if (enable)
3789 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3791 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3792 if (ret)
3793 return;
3795 perf_output_put(&handle, throttle_event);
3796 perf_output_end(&handle);
3800 * Generic event overflow handling, sampling.
3803 static int __perf_event_overflow(struct perf_event *event, int nmi,
3804 int throttle, struct perf_sample_data *data,
3805 struct pt_regs *regs)
3807 int events = atomic_read(&event->event_limit);
3808 struct hw_perf_event *hwc = &event->hw;
3809 int ret = 0;
3811 throttle = (throttle && event->pmu->unthrottle != NULL);
3813 if (!throttle) {
3814 hwc->interrupts++;
3815 } else {
3816 if (hwc->interrupts != MAX_INTERRUPTS) {
3817 hwc->interrupts++;
3818 if (HZ * hwc->interrupts >
3819 (u64)sysctl_perf_event_sample_rate) {
3820 hwc->interrupts = MAX_INTERRUPTS;
3821 perf_log_throttle(event, 0);
3822 ret = 1;
3824 } else {
3826 * Keep re-disabling events even though on the previous
3827 * pass we disabled it - just in case we raced with a
3828 * sched-in and the event got enabled again:
3830 ret = 1;
3834 if (event->attr.freq) {
3835 u64 now = perf_clock();
3836 s64 delta = now - hwc->freq_time_stamp;
3838 hwc->freq_time_stamp = now;
3840 if (delta > 0 && delta < 2*TICK_NSEC)
3841 perf_adjust_period(event, delta, hwc->last_period);
3845 * XXX event_limit might not quite work as expected on inherited
3846 * events
3849 event->pending_kill = POLL_IN;
3850 if (events && atomic_dec_and_test(&event->event_limit)) {
3851 ret = 1;
3852 event->pending_kill = POLL_HUP;
3853 if (nmi) {
3854 event->pending_disable = 1;
3855 perf_pending_queue(&event->pending,
3856 perf_pending_event);
3857 } else
3858 perf_event_disable(event);
3861 if (event->overflow_handler)
3862 event->overflow_handler(event, nmi, data, regs);
3863 else
3864 perf_event_output(event, nmi, data, regs);
3866 return ret;
3869 int perf_event_overflow(struct perf_event *event, int nmi,
3870 struct perf_sample_data *data,
3871 struct pt_regs *regs)
3873 return __perf_event_overflow(event, nmi, 1, data, regs);
3877 * Generic software event infrastructure
3881 * We directly increment event->count and keep a second value in
3882 * event->hw.period_left to count intervals. This period event
3883 * is kept in the range [-sample_period, 0] so that we can use the
3884 * sign as trigger.
3887 static u64 perf_swevent_set_period(struct perf_event *event)
3889 struct hw_perf_event *hwc = &event->hw;
3890 u64 period = hwc->last_period;
3891 u64 nr, offset;
3892 s64 old, val;
3894 hwc->last_period = hwc->sample_period;
3896 again:
3897 old = val = atomic64_read(&hwc->period_left);
3898 if (val < 0)
3899 return 0;
3901 nr = div64_u64(period + val, period);
3902 offset = nr * period;
3903 val -= offset;
3904 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3905 goto again;
3907 return nr;
3910 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3911 int nmi, struct perf_sample_data *data,
3912 struct pt_regs *regs)
3914 struct hw_perf_event *hwc = &event->hw;
3915 int throttle = 0;
3917 data->period = event->hw.last_period;
3918 if (!overflow)
3919 overflow = perf_swevent_set_period(event);
3921 if (hwc->interrupts == MAX_INTERRUPTS)
3922 return;
3924 for (; overflow; overflow--) {
3925 if (__perf_event_overflow(event, nmi, throttle,
3926 data, regs)) {
3928 * We inhibit the overflow from happening when
3929 * hwc->interrupts == MAX_INTERRUPTS.
3931 break;
3933 throttle = 1;
3937 static void perf_swevent_unthrottle(struct perf_event *event)
3940 * Nothing to do, we already reset hwc->interrupts.
3944 static void perf_swevent_add(struct perf_event *event, u64 nr,
3945 int nmi, struct perf_sample_data *data,
3946 struct pt_regs *regs)
3948 struct hw_perf_event *hwc = &event->hw;
3950 atomic64_add(nr, &event->count);
3952 if (!regs)
3953 return;
3955 if (!hwc->sample_period)
3956 return;
3958 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3959 return perf_swevent_overflow(event, 1, nmi, data, regs);
3961 if (atomic64_add_negative(nr, &hwc->period_left))
3962 return;
3964 perf_swevent_overflow(event, 0, nmi, data, regs);
3967 static int perf_swevent_is_counting(struct perf_event *event)
3970 * The event is active, we're good!
3972 if (event->state == PERF_EVENT_STATE_ACTIVE)
3973 return 1;
3976 * The event is off/error, not counting.
3978 if (event->state != PERF_EVENT_STATE_INACTIVE)
3979 return 0;
3982 * The event is inactive, if the context is active
3983 * we're part of a group that didn't make it on the 'pmu',
3984 * not counting.
3986 if (event->ctx->is_active)
3987 return 0;
3990 * We're inactive and the context is too, this means the
3991 * task is scheduled out, we're counting events that happen
3992 * to us, like migration events.
3994 return 1;
3997 static int perf_tp_event_match(struct perf_event *event,
3998 struct perf_sample_data *data);
4000 static int perf_exclude_event(struct perf_event *event,
4001 struct pt_regs *regs)
4003 if (regs) {
4004 if (event->attr.exclude_user && user_mode(regs))
4005 return 1;
4007 if (event->attr.exclude_kernel && !user_mode(regs))
4008 return 1;
4011 return 0;
4014 static int perf_swevent_match(struct perf_event *event,
4015 enum perf_type_id type,
4016 u32 event_id,
4017 struct perf_sample_data *data,
4018 struct pt_regs *regs)
4020 if (event->cpu != -1 && event->cpu != smp_processor_id())
4021 return 0;
4023 if (!perf_swevent_is_counting(event))
4024 return 0;
4026 if (event->attr.type != type)
4027 return 0;
4029 if (event->attr.config != event_id)
4030 return 0;
4032 if (perf_exclude_event(event, regs))
4033 return 0;
4035 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4036 !perf_tp_event_match(event, data))
4037 return 0;
4039 return 1;
4042 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4043 enum perf_type_id type,
4044 u32 event_id, u64 nr, int nmi,
4045 struct perf_sample_data *data,
4046 struct pt_regs *regs)
4048 struct perf_event *event;
4050 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4051 if (perf_swevent_match(event, type, event_id, data, regs))
4052 perf_swevent_add(event, nr, nmi, data, regs);
4056 int perf_swevent_get_recursion_context(void)
4058 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4059 int rctx;
4061 if (in_nmi())
4062 rctx = 3;
4063 else if (in_irq())
4064 rctx = 2;
4065 else if (in_softirq())
4066 rctx = 1;
4067 else
4068 rctx = 0;
4070 if (cpuctx->recursion[rctx]) {
4071 put_cpu_var(perf_cpu_context);
4072 return -1;
4075 cpuctx->recursion[rctx]++;
4076 barrier();
4078 return rctx;
4080 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4082 void perf_swevent_put_recursion_context(int rctx)
4084 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4085 barrier();
4086 cpuctx->recursion[rctx]--;
4087 put_cpu_var(perf_cpu_context);
4089 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4091 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4092 u64 nr, int nmi,
4093 struct perf_sample_data *data,
4094 struct pt_regs *regs)
4096 struct perf_cpu_context *cpuctx;
4097 struct perf_event_context *ctx;
4099 cpuctx = &__get_cpu_var(perf_cpu_context);
4100 rcu_read_lock();
4101 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4102 nr, nmi, data, regs);
4104 * doesn't really matter which of the child contexts the
4105 * events ends up in.
4107 ctx = rcu_dereference(current->perf_event_ctxp);
4108 if (ctx)
4109 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4110 rcu_read_unlock();
4113 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4114 struct pt_regs *regs, u64 addr)
4116 struct perf_sample_data data;
4117 int rctx;
4119 rctx = perf_swevent_get_recursion_context();
4120 if (rctx < 0)
4121 return;
4123 perf_sample_data_init(&data, addr);
4125 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4127 perf_swevent_put_recursion_context(rctx);
4130 static void perf_swevent_read(struct perf_event *event)
4134 static int perf_swevent_enable(struct perf_event *event)
4136 struct hw_perf_event *hwc = &event->hw;
4138 if (hwc->sample_period) {
4139 hwc->last_period = hwc->sample_period;
4140 perf_swevent_set_period(event);
4142 return 0;
4145 static void perf_swevent_disable(struct perf_event *event)
4149 static const struct pmu perf_ops_generic = {
4150 .enable = perf_swevent_enable,
4151 .disable = perf_swevent_disable,
4152 .read = perf_swevent_read,
4153 .unthrottle = perf_swevent_unthrottle,
4157 * hrtimer based swevent callback
4160 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4162 enum hrtimer_restart ret = HRTIMER_RESTART;
4163 struct perf_sample_data data;
4164 struct pt_regs *regs;
4165 struct perf_event *event;
4166 u64 period;
4168 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4169 event->pmu->read(event);
4171 perf_sample_data_init(&data, 0);
4172 data.period = event->hw.last_period;
4173 regs = get_irq_regs();
4175 * In case we exclude kernel IPs or are somehow not in interrupt
4176 * context, provide the next best thing, the user IP.
4178 if ((event->attr.exclude_kernel || !regs) &&
4179 !event->attr.exclude_user)
4180 regs = task_pt_regs(current);
4182 if (regs) {
4183 if (!(event->attr.exclude_idle && current->pid == 0))
4184 if (perf_event_overflow(event, 0, &data, regs))
4185 ret = HRTIMER_NORESTART;
4188 period = max_t(u64, 10000, event->hw.sample_period);
4189 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4191 return ret;
4194 static void perf_swevent_start_hrtimer(struct perf_event *event)
4196 struct hw_perf_event *hwc = &event->hw;
4198 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4199 hwc->hrtimer.function = perf_swevent_hrtimer;
4200 if (hwc->sample_period) {
4201 u64 period;
4203 if (hwc->remaining) {
4204 if (hwc->remaining < 0)
4205 period = 10000;
4206 else
4207 period = hwc->remaining;
4208 hwc->remaining = 0;
4209 } else {
4210 period = max_t(u64, 10000, hwc->sample_period);
4212 __hrtimer_start_range_ns(&hwc->hrtimer,
4213 ns_to_ktime(period), 0,
4214 HRTIMER_MODE_REL, 0);
4218 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4220 struct hw_perf_event *hwc = &event->hw;
4222 if (hwc->sample_period) {
4223 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4224 hwc->remaining = ktime_to_ns(remaining);
4226 hrtimer_cancel(&hwc->hrtimer);
4231 * Software event: cpu wall time clock
4234 static void cpu_clock_perf_event_update(struct perf_event *event)
4236 int cpu = raw_smp_processor_id();
4237 s64 prev;
4238 u64 now;
4240 now = cpu_clock(cpu);
4241 prev = atomic64_xchg(&event->hw.prev_count, now);
4242 atomic64_add(now - prev, &event->count);
4245 static int cpu_clock_perf_event_enable(struct perf_event *event)
4247 struct hw_perf_event *hwc = &event->hw;
4248 int cpu = raw_smp_processor_id();
4250 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4251 perf_swevent_start_hrtimer(event);
4253 return 0;
4256 static void cpu_clock_perf_event_disable(struct perf_event *event)
4258 perf_swevent_cancel_hrtimer(event);
4259 cpu_clock_perf_event_update(event);
4262 static void cpu_clock_perf_event_read(struct perf_event *event)
4264 cpu_clock_perf_event_update(event);
4267 static const struct pmu perf_ops_cpu_clock = {
4268 .enable = cpu_clock_perf_event_enable,
4269 .disable = cpu_clock_perf_event_disable,
4270 .read = cpu_clock_perf_event_read,
4274 * Software event: task time clock
4277 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4279 u64 prev;
4280 s64 delta;
4282 prev = atomic64_xchg(&event->hw.prev_count, now);
4283 delta = now - prev;
4284 atomic64_add(delta, &event->count);
4287 static int task_clock_perf_event_enable(struct perf_event *event)
4289 struct hw_perf_event *hwc = &event->hw;
4290 u64 now;
4292 now = event->ctx->time;
4294 atomic64_set(&hwc->prev_count, now);
4296 perf_swevent_start_hrtimer(event);
4298 return 0;
4301 static void task_clock_perf_event_disable(struct perf_event *event)
4303 perf_swevent_cancel_hrtimer(event);
4304 task_clock_perf_event_update(event, event->ctx->time);
4308 static void task_clock_perf_event_read(struct perf_event *event)
4310 u64 time;
4312 if (!in_nmi()) {
4313 update_context_time(event->ctx);
4314 time = event->ctx->time;
4315 } else {
4316 u64 now = perf_clock();
4317 u64 delta = now - event->ctx->timestamp;
4318 time = event->ctx->time + delta;
4321 task_clock_perf_event_update(event, time);
4324 static const struct pmu perf_ops_task_clock = {
4325 .enable = task_clock_perf_event_enable,
4326 .disable = task_clock_perf_event_disable,
4327 .read = task_clock_perf_event_read,
4330 #ifdef CONFIG_EVENT_TRACING
4332 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4333 int entry_size, struct pt_regs *regs)
4335 struct perf_sample_data data;
4336 struct perf_raw_record raw = {
4337 .size = entry_size,
4338 .data = record,
4341 perf_sample_data_init(&data, addr);
4342 data.raw = &raw;
4344 /* Trace events already protected against recursion */
4345 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4346 &data, regs);
4348 EXPORT_SYMBOL_GPL(perf_tp_event);
4350 static int perf_tp_event_match(struct perf_event *event,
4351 struct perf_sample_data *data)
4353 void *record = data->raw->data;
4355 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4356 return 1;
4357 return 0;
4360 static void tp_perf_event_destroy(struct perf_event *event)
4362 perf_trace_disable(event->attr.config);
4365 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4368 * Raw tracepoint data is a severe data leak, only allow root to
4369 * have these.
4371 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4372 perf_paranoid_tracepoint_raw() &&
4373 !capable(CAP_SYS_ADMIN))
4374 return ERR_PTR(-EPERM);
4376 if (perf_trace_enable(event->attr.config))
4377 return NULL;
4379 event->destroy = tp_perf_event_destroy;
4381 return &perf_ops_generic;
4384 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4386 char *filter_str;
4387 int ret;
4389 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4390 return -EINVAL;
4392 filter_str = strndup_user(arg, PAGE_SIZE);
4393 if (IS_ERR(filter_str))
4394 return PTR_ERR(filter_str);
4396 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4398 kfree(filter_str);
4399 return ret;
4402 static void perf_event_free_filter(struct perf_event *event)
4404 ftrace_profile_free_filter(event);
4407 #else
4409 static int perf_tp_event_match(struct perf_event *event,
4410 struct perf_sample_data *data)
4412 return 1;
4415 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4417 return NULL;
4420 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4422 return -ENOENT;
4425 static void perf_event_free_filter(struct perf_event *event)
4429 #endif /* CONFIG_EVENT_TRACING */
4431 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4432 static void bp_perf_event_destroy(struct perf_event *event)
4434 release_bp_slot(event);
4437 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4439 int err;
4441 err = register_perf_hw_breakpoint(bp);
4442 if (err)
4443 return ERR_PTR(err);
4445 bp->destroy = bp_perf_event_destroy;
4447 return &perf_ops_bp;
4450 void perf_bp_event(struct perf_event *bp, void *data)
4452 struct perf_sample_data sample;
4453 struct pt_regs *regs = data;
4455 perf_sample_data_init(&sample, bp->attr.bp_addr);
4457 if (!perf_exclude_event(bp, regs))
4458 perf_swevent_add(bp, 1, 1, &sample, regs);
4460 #else
4461 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4463 return NULL;
4466 void perf_bp_event(struct perf_event *bp, void *regs)
4469 #endif
4471 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4473 static void sw_perf_event_destroy(struct perf_event *event)
4475 u64 event_id = event->attr.config;
4477 WARN_ON(event->parent);
4479 atomic_dec(&perf_swevent_enabled[event_id]);
4482 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4484 const struct pmu *pmu = NULL;
4485 u64 event_id = event->attr.config;
4488 * Software events (currently) can't in general distinguish
4489 * between user, kernel and hypervisor events.
4490 * However, context switches and cpu migrations are considered
4491 * to be kernel events, and page faults are never hypervisor
4492 * events.
4494 switch (event_id) {
4495 case PERF_COUNT_SW_CPU_CLOCK:
4496 pmu = &perf_ops_cpu_clock;
4498 break;
4499 case PERF_COUNT_SW_TASK_CLOCK:
4501 * If the user instantiates this as a per-cpu event,
4502 * use the cpu_clock event instead.
4504 if (event->ctx->task)
4505 pmu = &perf_ops_task_clock;
4506 else
4507 pmu = &perf_ops_cpu_clock;
4509 break;
4510 case PERF_COUNT_SW_PAGE_FAULTS:
4511 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4512 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4513 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4514 case PERF_COUNT_SW_CPU_MIGRATIONS:
4515 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4516 case PERF_COUNT_SW_EMULATION_FAULTS:
4517 if (!event->parent) {
4518 atomic_inc(&perf_swevent_enabled[event_id]);
4519 event->destroy = sw_perf_event_destroy;
4521 pmu = &perf_ops_generic;
4522 break;
4525 return pmu;
4529 * Allocate and initialize a event structure
4531 static struct perf_event *
4532 perf_event_alloc(struct perf_event_attr *attr,
4533 int cpu,
4534 struct perf_event_context *ctx,
4535 struct perf_event *group_leader,
4536 struct perf_event *parent_event,
4537 perf_overflow_handler_t overflow_handler,
4538 gfp_t gfpflags)
4540 const struct pmu *pmu;
4541 struct perf_event *event;
4542 struct hw_perf_event *hwc;
4543 long err;
4545 event = kzalloc(sizeof(*event), gfpflags);
4546 if (!event)
4547 return ERR_PTR(-ENOMEM);
4550 * Single events are their own group leaders, with an
4551 * empty sibling list:
4553 if (!group_leader)
4554 group_leader = event;
4556 mutex_init(&event->child_mutex);
4557 INIT_LIST_HEAD(&event->child_list);
4559 INIT_LIST_HEAD(&event->group_entry);
4560 INIT_LIST_HEAD(&event->event_entry);
4561 INIT_LIST_HEAD(&event->sibling_list);
4562 init_waitqueue_head(&event->waitq);
4564 mutex_init(&event->mmap_mutex);
4566 event->cpu = cpu;
4567 event->attr = *attr;
4568 event->group_leader = group_leader;
4569 event->pmu = NULL;
4570 event->ctx = ctx;
4571 event->oncpu = -1;
4573 event->parent = parent_event;
4575 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4576 event->id = atomic64_inc_return(&perf_event_id);
4578 event->state = PERF_EVENT_STATE_INACTIVE;
4580 if (!overflow_handler && parent_event)
4581 overflow_handler = parent_event->overflow_handler;
4583 event->overflow_handler = overflow_handler;
4585 if (attr->disabled)
4586 event->state = PERF_EVENT_STATE_OFF;
4588 pmu = NULL;
4590 hwc = &event->hw;
4591 hwc->sample_period = attr->sample_period;
4592 if (attr->freq && attr->sample_freq)
4593 hwc->sample_period = 1;
4594 hwc->last_period = hwc->sample_period;
4596 atomic64_set(&hwc->period_left, hwc->sample_period);
4599 * we currently do not support PERF_FORMAT_GROUP on inherited events
4601 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4602 goto done;
4604 switch (attr->type) {
4605 case PERF_TYPE_RAW:
4606 case PERF_TYPE_HARDWARE:
4607 case PERF_TYPE_HW_CACHE:
4608 pmu = hw_perf_event_init(event);
4609 break;
4611 case PERF_TYPE_SOFTWARE:
4612 pmu = sw_perf_event_init(event);
4613 break;
4615 case PERF_TYPE_TRACEPOINT:
4616 pmu = tp_perf_event_init(event);
4617 break;
4619 case PERF_TYPE_BREAKPOINT:
4620 pmu = bp_perf_event_init(event);
4621 break;
4624 default:
4625 break;
4627 done:
4628 err = 0;
4629 if (!pmu)
4630 err = -EINVAL;
4631 else if (IS_ERR(pmu))
4632 err = PTR_ERR(pmu);
4634 if (err) {
4635 if (event->ns)
4636 put_pid_ns(event->ns);
4637 kfree(event);
4638 return ERR_PTR(err);
4641 event->pmu = pmu;
4643 if (!event->parent) {
4644 atomic_inc(&nr_events);
4645 if (event->attr.mmap)
4646 atomic_inc(&nr_mmap_events);
4647 if (event->attr.comm)
4648 atomic_inc(&nr_comm_events);
4649 if (event->attr.task)
4650 atomic_inc(&nr_task_events);
4653 return event;
4656 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4657 struct perf_event_attr *attr)
4659 u32 size;
4660 int ret;
4662 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4663 return -EFAULT;
4666 * zero the full structure, so that a short copy will be nice.
4668 memset(attr, 0, sizeof(*attr));
4670 ret = get_user(size, &uattr->size);
4671 if (ret)
4672 return ret;
4674 if (size > PAGE_SIZE) /* silly large */
4675 goto err_size;
4677 if (!size) /* abi compat */
4678 size = PERF_ATTR_SIZE_VER0;
4680 if (size < PERF_ATTR_SIZE_VER0)
4681 goto err_size;
4684 * If we're handed a bigger struct than we know of,
4685 * ensure all the unknown bits are 0 - i.e. new
4686 * user-space does not rely on any kernel feature
4687 * extensions we dont know about yet.
4689 if (size > sizeof(*attr)) {
4690 unsigned char __user *addr;
4691 unsigned char __user *end;
4692 unsigned char val;
4694 addr = (void __user *)uattr + sizeof(*attr);
4695 end = (void __user *)uattr + size;
4697 for (; addr < end; addr++) {
4698 ret = get_user(val, addr);
4699 if (ret)
4700 return ret;
4701 if (val)
4702 goto err_size;
4704 size = sizeof(*attr);
4707 ret = copy_from_user(attr, uattr, size);
4708 if (ret)
4709 return -EFAULT;
4712 * If the type exists, the corresponding creation will verify
4713 * the attr->config.
4715 if (attr->type >= PERF_TYPE_MAX)
4716 return -EINVAL;
4718 if (attr->__reserved_1)
4719 return -EINVAL;
4721 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4722 return -EINVAL;
4724 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4725 return -EINVAL;
4727 out:
4728 return ret;
4730 err_size:
4731 put_user(sizeof(*attr), &uattr->size);
4732 ret = -E2BIG;
4733 goto out;
4736 static int perf_event_set_output(struct perf_event *event, int output_fd)
4738 struct perf_event *output_event = NULL;
4739 struct file *output_file = NULL;
4740 struct perf_event *old_output;
4741 int fput_needed = 0;
4742 int ret = -EINVAL;
4744 if (!output_fd)
4745 goto set;
4747 output_file = fget_light(output_fd, &fput_needed);
4748 if (!output_file)
4749 return -EBADF;
4751 if (output_file->f_op != &perf_fops)
4752 goto out;
4754 output_event = output_file->private_data;
4756 /* Don't chain output fds */
4757 if (output_event->output)
4758 goto out;
4760 /* Don't set an output fd when we already have an output channel */
4761 if (event->data)
4762 goto out;
4764 atomic_long_inc(&output_file->f_count);
4766 set:
4767 mutex_lock(&event->mmap_mutex);
4768 old_output = event->output;
4769 rcu_assign_pointer(event->output, output_event);
4770 mutex_unlock(&event->mmap_mutex);
4772 if (old_output) {
4774 * we need to make sure no existing perf_output_*()
4775 * is still referencing this event.
4777 synchronize_rcu();
4778 fput(old_output->filp);
4781 ret = 0;
4782 out:
4783 fput_light(output_file, fput_needed);
4784 return ret;
4788 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4790 * @attr_uptr: event_id type attributes for monitoring/sampling
4791 * @pid: target pid
4792 * @cpu: target cpu
4793 * @group_fd: group leader event fd
4795 SYSCALL_DEFINE5(perf_event_open,
4796 struct perf_event_attr __user *, attr_uptr,
4797 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4799 struct perf_event *event, *group_leader;
4800 struct perf_event_attr attr;
4801 struct perf_event_context *ctx;
4802 struct file *event_file = NULL;
4803 struct file *group_file = NULL;
4804 int fput_needed = 0;
4805 int fput_needed2 = 0;
4806 int err;
4808 /* for future expandability... */
4809 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4810 return -EINVAL;
4812 err = perf_copy_attr(attr_uptr, &attr);
4813 if (err)
4814 return err;
4816 if (!attr.exclude_kernel) {
4817 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4818 return -EACCES;
4821 if (attr.freq) {
4822 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4823 return -EINVAL;
4827 * Get the target context (task or percpu):
4829 ctx = find_get_context(pid, cpu);
4830 if (IS_ERR(ctx))
4831 return PTR_ERR(ctx);
4834 * Look up the group leader (we will attach this event to it):
4836 group_leader = NULL;
4837 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4838 err = -EINVAL;
4839 group_file = fget_light(group_fd, &fput_needed);
4840 if (!group_file)
4841 goto err_put_context;
4842 if (group_file->f_op != &perf_fops)
4843 goto err_put_context;
4845 group_leader = group_file->private_data;
4847 * Do not allow a recursive hierarchy (this new sibling
4848 * becoming part of another group-sibling):
4850 if (group_leader->group_leader != group_leader)
4851 goto err_put_context;
4853 * Do not allow to attach to a group in a different
4854 * task or CPU context:
4856 if (group_leader->ctx != ctx)
4857 goto err_put_context;
4859 * Only a group leader can be exclusive or pinned
4861 if (attr.exclusive || attr.pinned)
4862 goto err_put_context;
4865 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4866 NULL, NULL, GFP_KERNEL);
4867 err = PTR_ERR(event);
4868 if (IS_ERR(event))
4869 goto err_put_context;
4871 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4872 if (err < 0)
4873 goto err_free_put_context;
4875 event_file = fget_light(err, &fput_needed2);
4876 if (!event_file)
4877 goto err_free_put_context;
4879 if (flags & PERF_FLAG_FD_OUTPUT) {
4880 err = perf_event_set_output(event, group_fd);
4881 if (err)
4882 goto err_fput_free_put_context;
4885 event->filp = event_file;
4886 WARN_ON_ONCE(ctx->parent_ctx);
4887 mutex_lock(&ctx->mutex);
4888 perf_install_in_context(ctx, event, cpu);
4889 ++ctx->generation;
4890 mutex_unlock(&ctx->mutex);
4892 event->owner = current;
4893 get_task_struct(current);
4894 mutex_lock(&current->perf_event_mutex);
4895 list_add_tail(&event->owner_entry, &current->perf_event_list);
4896 mutex_unlock(&current->perf_event_mutex);
4898 err_fput_free_put_context:
4899 fput_light(event_file, fput_needed2);
4901 err_free_put_context:
4902 if (err < 0)
4903 kfree(event);
4905 err_put_context:
4906 if (err < 0)
4907 put_ctx(ctx);
4909 fput_light(group_file, fput_needed);
4911 return err;
4915 * perf_event_create_kernel_counter
4917 * @attr: attributes of the counter to create
4918 * @cpu: cpu in which the counter is bound
4919 * @pid: task to profile
4921 struct perf_event *
4922 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4923 pid_t pid,
4924 perf_overflow_handler_t overflow_handler)
4926 struct perf_event *event;
4927 struct perf_event_context *ctx;
4928 int err;
4931 * Get the target context (task or percpu):
4934 ctx = find_get_context(pid, cpu);
4935 if (IS_ERR(ctx)) {
4936 err = PTR_ERR(ctx);
4937 goto err_exit;
4940 event = perf_event_alloc(attr, cpu, ctx, NULL,
4941 NULL, overflow_handler, GFP_KERNEL);
4942 if (IS_ERR(event)) {
4943 err = PTR_ERR(event);
4944 goto err_put_context;
4947 event->filp = NULL;
4948 WARN_ON_ONCE(ctx->parent_ctx);
4949 mutex_lock(&ctx->mutex);
4950 perf_install_in_context(ctx, event, cpu);
4951 ++ctx->generation;
4952 mutex_unlock(&ctx->mutex);
4954 event->owner = current;
4955 get_task_struct(current);
4956 mutex_lock(&current->perf_event_mutex);
4957 list_add_tail(&event->owner_entry, &current->perf_event_list);
4958 mutex_unlock(&current->perf_event_mutex);
4960 return event;
4962 err_put_context:
4963 put_ctx(ctx);
4964 err_exit:
4965 return ERR_PTR(err);
4967 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4970 * inherit a event from parent task to child task:
4972 static struct perf_event *
4973 inherit_event(struct perf_event *parent_event,
4974 struct task_struct *parent,
4975 struct perf_event_context *parent_ctx,
4976 struct task_struct *child,
4977 struct perf_event *group_leader,
4978 struct perf_event_context *child_ctx)
4980 struct perf_event *child_event;
4983 * Instead of creating recursive hierarchies of events,
4984 * we link inherited events back to the original parent,
4985 * which has a filp for sure, which we use as the reference
4986 * count:
4988 if (parent_event->parent)
4989 parent_event = parent_event->parent;
4991 child_event = perf_event_alloc(&parent_event->attr,
4992 parent_event->cpu, child_ctx,
4993 group_leader, parent_event,
4994 NULL, GFP_KERNEL);
4995 if (IS_ERR(child_event))
4996 return child_event;
4997 get_ctx(child_ctx);
5000 * Make the child state follow the state of the parent event,
5001 * not its attr.disabled bit. We hold the parent's mutex,
5002 * so we won't race with perf_event_{en, dis}able_family.
5004 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5005 child_event->state = PERF_EVENT_STATE_INACTIVE;
5006 else
5007 child_event->state = PERF_EVENT_STATE_OFF;
5009 if (parent_event->attr.freq) {
5010 u64 sample_period = parent_event->hw.sample_period;
5011 struct hw_perf_event *hwc = &child_event->hw;
5013 hwc->sample_period = sample_period;
5014 hwc->last_period = sample_period;
5016 atomic64_set(&hwc->period_left, sample_period);
5019 child_event->overflow_handler = parent_event->overflow_handler;
5022 * Link it up in the child's context:
5024 add_event_to_ctx(child_event, child_ctx);
5027 * Get a reference to the parent filp - we will fput it
5028 * when the child event exits. This is safe to do because
5029 * we are in the parent and we know that the filp still
5030 * exists and has a nonzero count:
5032 atomic_long_inc(&parent_event->filp->f_count);
5035 * Link this into the parent event's child list
5037 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5038 mutex_lock(&parent_event->child_mutex);
5039 list_add_tail(&child_event->child_list, &parent_event->child_list);
5040 mutex_unlock(&parent_event->child_mutex);
5042 return child_event;
5045 static int inherit_group(struct perf_event *parent_event,
5046 struct task_struct *parent,
5047 struct perf_event_context *parent_ctx,
5048 struct task_struct *child,
5049 struct perf_event_context *child_ctx)
5051 struct perf_event *leader;
5052 struct perf_event *sub;
5053 struct perf_event *child_ctr;
5055 leader = inherit_event(parent_event, parent, parent_ctx,
5056 child, NULL, child_ctx);
5057 if (IS_ERR(leader))
5058 return PTR_ERR(leader);
5059 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5060 child_ctr = inherit_event(sub, parent, parent_ctx,
5061 child, leader, child_ctx);
5062 if (IS_ERR(child_ctr))
5063 return PTR_ERR(child_ctr);
5065 return 0;
5068 static void sync_child_event(struct perf_event *child_event,
5069 struct task_struct *child)
5071 struct perf_event *parent_event = child_event->parent;
5072 u64 child_val;
5074 if (child_event->attr.inherit_stat)
5075 perf_event_read_event(child_event, child);
5077 child_val = atomic64_read(&child_event->count);
5080 * Add back the child's count to the parent's count:
5082 atomic64_add(child_val, &parent_event->count);
5083 atomic64_add(child_event->total_time_enabled,
5084 &parent_event->child_total_time_enabled);
5085 atomic64_add(child_event->total_time_running,
5086 &parent_event->child_total_time_running);
5089 * Remove this event from the parent's list
5091 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5092 mutex_lock(&parent_event->child_mutex);
5093 list_del_init(&child_event->child_list);
5094 mutex_unlock(&parent_event->child_mutex);
5097 * Release the parent event, if this was the last
5098 * reference to it.
5100 fput(parent_event->filp);
5103 static void
5104 __perf_event_exit_task(struct perf_event *child_event,
5105 struct perf_event_context *child_ctx,
5106 struct task_struct *child)
5108 struct perf_event *parent_event;
5110 perf_event_remove_from_context(child_event);
5112 parent_event = child_event->parent;
5114 * It can happen that parent exits first, and has events
5115 * that are still around due to the child reference. These
5116 * events need to be zapped - but otherwise linger.
5118 if (parent_event) {
5119 sync_child_event(child_event, child);
5120 free_event(child_event);
5125 * When a child task exits, feed back event values to parent events.
5127 void perf_event_exit_task(struct task_struct *child)
5129 struct perf_event *child_event, *tmp;
5130 struct perf_event_context *child_ctx;
5131 unsigned long flags;
5133 if (likely(!child->perf_event_ctxp)) {
5134 perf_event_task(child, NULL, 0);
5135 return;
5138 local_irq_save(flags);
5140 * We can't reschedule here because interrupts are disabled,
5141 * and either child is current or it is a task that can't be
5142 * scheduled, so we are now safe from rescheduling changing
5143 * our context.
5145 child_ctx = child->perf_event_ctxp;
5146 __perf_event_task_sched_out(child_ctx);
5149 * Take the context lock here so that if find_get_context is
5150 * reading child->perf_event_ctxp, we wait until it has
5151 * incremented the context's refcount before we do put_ctx below.
5153 raw_spin_lock(&child_ctx->lock);
5154 child->perf_event_ctxp = NULL;
5156 * If this context is a clone; unclone it so it can't get
5157 * swapped to another process while we're removing all
5158 * the events from it.
5160 unclone_ctx(child_ctx);
5161 update_context_time(child_ctx);
5162 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5165 * Report the task dead after unscheduling the events so that we
5166 * won't get any samples after PERF_RECORD_EXIT. We can however still
5167 * get a few PERF_RECORD_READ events.
5169 perf_event_task(child, child_ctx, 0);
5172 * We can recurse on the same lock type through:
5174 * __perf_event_exit_task()
5175 * sync_child_event()
5176 * fput(parent_event->filp)
5177 * perf_release()
5178 * mutex_lock(&ctx->mutex)
5180 * But since its the parent context it won't be the same instance.
5182 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5184 again:
5185 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5186 group_entry)
5187 __perf_event_exit_task(child_event, child_ctx, child);
5189 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5190 group_entry)
5191 __perf_event_exit_task(child_event, child_ctx, child);
5194 * If the last event was a group event, it will have appended all
5195 * its siblings to the list, but we obtained 'tmp' before that which
5196 * will still point to the list head terminating the iteration.
5198 if (!list_empty(&child_ctx->pinned_groups) ||
5199 !list_empty(&child_ctx->flexible_groups))
5200 goto again;
5202 mutex_unlock(&child_ctx->mutex);
5204 put_ctx(child_ctx);
5207 static void perf_free_event(struct perf_event *event,
5208 struct perf_event_context *ctx)
5210 struct perf_event *parent = event->parent;
5212 if (WARN_ON_ONCE(!parent))
5213 return;
5215 mutex_lock(&parent->child_mutex);
5216 list_del_init(&event->child_list);
5217 mutex_unlock(&parent->child_mutex);
5219 fput(parent->filp);
5221 list_del_event(event, ctx);
5222 free_event(event);
5226 * free an unexposed, unused context as created by inheritance by
5227 * init_task below, used by fork() in case of fail.
5229 void perf_event_free_task(struct task_struct *task)
5231 struct perf_event_context *ctx = task->perf_event_ctxp;
5232 struct perf_event *event, *tmp;
5234 if (!ctx)
5235 return;
5237 mutex_lock(&ctx->mutex);
5238 again:
5239 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5240 perf_free_event(event, ctx);
5242 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5243 group_entry)
5244 perf_free_event(event, ctx);
5246 if (!list_empty(&ctx->pinned_groups) ||
5247 !list_empty(&ctx->flexible_groups))
5248 goto again;
5250 mutex_unlock(&ctx->mutex);
5252 put_ctx(ctx);
5255 static int
5256 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5257 struct perf_event_context *parent_ctx,
5258 struct task_struct *child,
5259 int *inherited_all)
5261 int ret;
5262 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5264 if (!event->attr.inherit) {
5265 *inherited_all = 0;
5266 return 0;
5269 if (!child_ctx) {
5271 * This is executed from the parent task context, so
5272 * inherit events that have been marked for cloning.
5273 * First allocate and initialize a context for the
5274 * child.
5277 child_ctx = kzalloc(sizeof(struct perf_event_context),
5278 GFP_KERNEL);
5279 if (!child_ctx)
5280 return -ENOMEM;
5282 __perf_event_init_context(child_ctx, child);
5283 child->perf_event_ctxp = child_ctx;
5284 get_task_struct(child);
5287 ret = inherit_group(event, parent, parent_ctx,
5288 child, child_ctx);
5290 if (ret)
5291 *inherited_all = 0;
5293 return ret;
5298 * Initialize the perf_event context in task_struct
5300 int perf_event_init_task(struct task_struct *child)
5302 struct perf_event_context *child_ctx, *parent_ctx;
5303 struct perf_event_context *cloned_ctx;
5304 struct perf_event *event;
5305 struct task_struct *parent = current;
5306 int inherited_all = 1;
5307 int ret = 0;
5309 child->perf_event_ctxp = NULL;
5311 mutex_init(&child->perf_event_mutex);
5312 INIT_LIST_HEAD(&child->perf_event_list);
5314 if (likely(!parent->perf_event_ctxp))
5315 return 0;
5318 * If the parent's context is a clone, pin it so it won't get
5319 * swapped under us.
5321 parent_ctx = perf_pin_task_context(parent);
5324 * No need to check if parent_ctx != NULL here; since we saw
5325 * it non-NULL earlier, the only reason for it to become NULL
5326 * is if we exit, and since we're currently in the middle of
5327 * a fork we can't be exiting at the same time.
5331 * Lock the parent list. No need to lock the child - not PID
5332 * hashed yet and not running, so nobody can access it.
5334 mutex_lock(&parent_ctx->mutex);
5337 * We dont have to disable NMIs - we are only looking at
5338 * the list, not manipulating it:
5340 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5341 ret = inherit_task_group(event, parent, parent_ctx, child,
5342 &inherited_all);
5343 if (ret)
5344 break;
5347 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5348 ret = inherit_task_group(event, parent, parent_ctx, child,
5349 &inherited_all);
5350 if (ret)
5351 break;
5354 child_ctx = child->perf_event_ctxp;
5356 if (child_ctx && inherited_all) {
5358 * Mark the child context as a clone of the parent
5359 * context, or of whatever the parent is a clone of.
5360 * Note that if the parent is a clone, it could get
5361 * uncloned at any point, but that doesn't matter
5362 * because the list of events and the generation
5363 * count can't have changed since we took the mutex.
5365 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5366 if (cloned_ctx) {
5367 child_ctx->parent_ctx = cloned_ctx;
5368 child_ctx->parent_gen = parent_ctx->parent_gen;
5369 } else {
5370 child_ctx->parent_ctx = parent_ctx;
5371 child_ctx->parent_gen = parent_ctx->generation;
5373 get_ctx(child_ctx->parent_ctx);
5376 mutex_unlock(&parent_ctx->mutex);
5378 perf_unpin_context(parent_ctx);
5380 return ret;
5383 static void __init perf_event_init_all_cpus(void)
5385 int cpu;
5386 struct perf_cpu_context *cpuctx;
5388 for_each_possible_cpu(cpu) {
5389 cpuctx = &per_cpu(perf_cpu_context, cpu);
5390 __perf_event_init_context(&cpuctx->ctx, NULL);
5394 static void __cpuinit perf_event_init_cpu(int cpu)
5396 struct perf_cpu_context *cpuctx;
5398 cpuctx = &per_cpu(perf_cpu_context, cpu);
5400 spin_lock(&perf_resource_lock);
5401 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5402 spin_unlock(&perf_resource_lock);
5405 #ifdef CONFIG_HOTPLUG_CPU
5406 static void __perf_event_exit_cpu(void *info)
5408 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5409 struct perf_event_context *ctx = &cpuctx->ctx;
5410 struct perf_event *event, *tmp;
5412 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5413 __perf_event_remove_from_context(event);
5414 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5415 __perf_event_remove_from_context(event);
5417 static void perf_event_exit_cpu(int cpu)
5419 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5420 struct perf_event_context *ctx = &cpuctx->ctx;
5422 mutex_lock(&ctx->mutex);
5423 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5424 mutex_unlock(&ctx->mutex);
5426 #else
5427 static inline void perf_event_exit_cpu(int cpu) { }
5428 #endif
5430 static int __cpuinit
5431 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5433 unsigned int cpu = (long)hcpu;
5435 switch (action) {
5437 case CPU_UP_PREPARE:
5438 case CPU_UP_PREPARE_FROZEN:
5439 perf_event_init_cpu(cpu);
5440 break;
5442 case CPU_DOWN_PREPARE:
5443 case CPU_DOWN_PREPARE_FROZEN:
5444 perf_event_exit_cpu(cpu);
5445 break;
5447 default:
5448 break;
5451 return NOTIFY_OK;
5455 * This has to have a higher priority than migration_notifier in sched.c.
5457 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5458 .notifier_call = perf_cpu_notify,
5459 .priority = 20,
5462 void __init perf_event_init(void)
5464 perf_event_init_all_cpus();
5465 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5466 (void *)(long)smp_processor_id());
5467 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5468 (void *)(long)smp_processor_id());
5469 register_cpu_notifier(&perf_cpu_nb);
5472 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5473 struct sysdev_class_attribute *attr,
5474 char *buf)
5476 return sprintf(buf, "%d\n", perf_reserved_percpu);
5479 static ssize_t
5480 perf_set_reserve_percpu(struct sysdev_class *class,
5481 struct sysdev_class_attribute *attr,
5482 const char *buf,
5483 size_t count)
5485 struct perf_cpu_context *cpuctx;
5486 unsigned long val;
5487 int err, cpu, mpt;
5489 err = strict_strtoul(buf, 10, &val);
5490 if (err)
5491 return err;
5492 if (val > perf_max_events)
5493 return -EINVAL;
5495 spin_lock(&perf_resource_lock);
5496 perf_reserved_percpu = val;
5497 for_each_online_cpu(cpu) {
5498 cpuctx = &per_cpu(perf_cpu_context, cpu);
5499 raw_spin_lock_irq(&cpuctx->ctx.lock);
5500 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5501 perf_max_events - perf_reserved_percpu);
5502 cpuctx->max_pertask = mpt;
5503 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5505 spin_unlock(&perf_resource_lock);
5507 return count;
5510 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5511 struct sysdev_class_attribute *attr,
5512 char *buf)
5514 return sprintf(buf, "%d\n", perf_overcommit);
5517 static ssize_t
5518 perf_set_overcommit(struct sysdev_class *class,
5519 struct sysdev_class_attribute *attr,
5520 const char *buf, size_t count)
5522 unsigned long val;
5523 int err;
5525 err = strict_strtoul(buf, 10, &val);
5526 if (err)
5527 return err;
5528 if (val > 1)
5529 return -EINVAL;
5531 spin_lock(&perf_resource_lock);
5532 perf_overcommit = val;
5533 spin_unlock(&perf_resource_lock);
5535 return count;
5538 static SYSDEV_CLASS_ATTR(
5539 reserve_percpu,
5540 0644,
5541 perf_show_reserve_percpu,
5542 perf_set_reserve_percpu
5545 static SYSDEV_CLASS_ATTR(
5546 overcommit,
5547 0644,
5548 perf_show_overcommit,
5549 perf_set_overcommit
5552 static struct attribute *perfclass_attrs[] = {
5553 &attr_reserve_percpu.attr,
5554 &attr_overcommit.attr,
5555 NULL
5558 static struct attribute_group perfclass_attr_group = {
5559 .attrs = perfclass_attrs,
5560 .name = "perf_events",
5563 static int __init perf_event_sysfs_init(void)
5565 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5566 &perfclass_attr_group);
5568 device_initcall(perf_event_sysfs_init);