[PATCH] Kill L1_CACHE_SHIFT_MAX
[linux-2.6/cjktty.git] / kernel / cpuset.c
blobf63383e01ec78b348b9e84c6f9be97477c956f16
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/smp_lock.h>
46 #include <linux/spinlock.h>
47 #include <linux/stat.h>
48 #include <linux/string.h>
49 #include <linux/time.h>
50 #include <linux/backing-dev.h>
51 #include <linux/sort.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
55 #include <asm/semaphore.h>
57 #define CPUSET_SUPER_MAGIC 0x27e0eb
59 struct cpuset {
60 unsigned long flags; /* "unsigned long" so bitops work */
61 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
62 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
65 * Count is atomic so can incr (fork) or decr (exit) without a lock.
67 atomic_t count; /* count tasks using this cpuset */
70 * We link our 'sibling' struct into our parents 'children'.
71 * Our children link their 'sibling' into our 'children'.
73 struct list_head sibling; /* my parents children */
74 struct list_head children; /* my children */
76 struct cpuset *parent; /* my parent */
77 struct dentry *dentry; /* cpuset fs entry */
80 * Copy of global cpuset_mems_generation as of the most
81 * recent time this cpuset changed its mems_allowed.
83 int mems_generation;
86 /* bits in struct cpuset flags field */
87 typedef enum {
88 CS_CPU_EXCLUSIVE,
89 CS_MEM_EXCLUSIVE,
90 CS_MEMORY_MIGRATE,
91 CS_REMOVED,
92 CS_NOTIFY_ON_RELEASE
93 } cpuset_flagbits_t;
95 /* convenient tests for these bits */
96 static inline int is_cpu_exclusive(const struct cpuset *cs)
98 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
101 static inline int is_mem_exclusive(const struct cpuset *cs)
103 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
106 static inline int is_removed(const struct cpuset *cs)
108 return !!test_bit(CS_REMOVED, &cs->flags);
111 static inline int notify_on_release(const struct cpuset *cs)
113 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
116 static inline int is_memory_migrate(const struct cpuset *cs)
118 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
122 * Increment this atomic integer everytime any cpuset changes its
123 * mems_allowed value. Users of cpusets can track this generation
124 * number, and avoid having to lock and reload mems_allowed unless
125 * the cpuset they're using changes generation.
127 * A single, global generation is needed because attach_task() could
128 * reattach a task to a different cpuset, which must not have its
129 * generation numbers aliased with those of that tasks previous cpuset.
131 * Generations are needed for mems_allowed because one task cannot
132 * modify anothers memory placement. So we must enable every task,
133 * on every visit to __alloc_pages(), to efficiently check whether
134 * its current->cpuset->mems_allowed has changed, requiring an update
135 * of its current->mems_allowed.
137 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
139 static struct cpuset top_cpuset = {
140 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
141 .cpus_allowed = CPU_MASK_ALL,
142 .mems_allowed = NODE_MASK_ALL,
143 .count = ATOMIC_INIT(0),
144 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
145 .children = LIST_HEAD_INIT(top_cpuset.children),
146 .parent = NULL,
147 .dentry = NULL,
148 .mems_generation = 0,
151 static struct vfsmount *cpuset_mount;
152 static struct super_block *cpuset_sb = NULL;
155 * We have two global cpuset semaphores below. They can nest.
156 * It is ok to first take manage_sem, then nest callback_sem. We also
157 * require taking task_lock() when dereferencing a tasks cpuset pointer.
158 * See "The task_lock() exception", at the end of this comment.
160 * A task must hold both semaphores to modify cpusets. If a task
161 * holds manage_sem, then it blocks others wanting that semaphore,
162 * ensuring that it is the only task able to also acquire callback_sem
163 * and be able to modify cpusets. It can perform various checks on
164 * the cpuset structure first, knowing nothing will change. It can
165 * also allocate memory while just holding manage_sem. While it is
166 * performing these checks, various callback routines can briefly
167 * acquire callback_sem to query cpusets. Once it is ready to make
168 * the changes, it takes callback_sem, blocking everyone else.
170 * Calls to the kernel memory allocator can not be made while holding
171 * callback_sem, as that would risk double tripping on callback_sem
172 * from one of the callbacks into the cpuset code from within
173 * __alloc_pages().
175 * If a task is only holding callback_sem, then it has read-only
176 * access to cpusets.
178 * The task_struct fields mems_allowed and mems_generation may only
179 * be accessed in the context of that task, so require no locks.
181 * Any task can increment and decrement the count field without lock.
182 * So in general, code holding manage_sem or callback_sem can't rely
183 * on the count field not changing. However, if the count goes to
184 * zero, then only attach_task(), which holds both semaphores, can
185 * increment it again. Because a count of zero means that no tasks
186 * are currently attached, therefore there is no way a task attached
187 * to that cpuset can fork (the other way to increment the count).
188 * So code holding manage_sem or callback_sem can safely assume that
189 * if the count is zero, it will stay zero. Similarly, if a task
190 * holds manage_sem or callback_sem on a cpuset with zero count, it
191 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
192 * both of those semaphores.
194 * A possible optimization to improve parallelism would be to make
195 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
196 * to proceed in parallel, with read access, until the holder of
197 * manage_sem needed to take this rwsem for exclusive write access
198 * and modify some cpusets.
200 * The cpuset_common_file_write handler for operations that modify
201 * the cpuset hierarchy holds manage_sem across the entire operation,
202 * single threading all such cpuset modifications across the system.
204 * The cpuset_common_file_read() handlers only hold callback_sem across
205 * small pieces of code, such as when reading out possibly multi-word
206 * cpumasks and nodemasks.
208 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
209 * (usually) take either semaphore. These are the two most performance
210 * critical pieces of code here. The exception occurs on cpuset_exit(),
211 * when a task in a notify_on_release cpuset exits. Then manage_sem
212 * is taken, and if the cpuset count is zero, a usermode call made
213 * to /sbin/cpuset_release_agent with the name of the cpuset (path
214 * relative to the root of cpuset file system) as the argument.
216 * A cpuset can only be deleted if both its 'count' of using tasks
217 * is zero, and its list of 'children' cpusets is empty. Since all
218 * tasks in the system use _some_ cpuset, and since there is always at
219 * least one task in the system (init, pid == 1), therefore, top_cpuset
220 * always has either children cpusets and/or using tasks. So we don't
221 * need a special hack to ensure that top_cpuset cannot be deleted.
223 * The above "Tale of Two Semaphores" would be complete, but for:
225 * The task_lock() exception
227 * The need for this exception arises from the action of attach_task(),
228 * which overwrites one tasks cpuset pointer with another. It does
229 * so using both semaphores, however there are several performance
230 * critical places that need to reference task->cpuset without the
231 * expense of grabbing a system global semaphore. Therefore except as
232 * noted below, when dereferencing or, as in attach_task(), modifying
233 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
234 * (task->alloc_lock) already in the task_struct routinely used for
235 * such matters.
238 static DECLARE_MUTEX(manage_sem);
239 static DECLARE_MUTEX(callback_sem);
242 * A couple of forward declarations required, due to cyclic reference loop:
243 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
244 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
247 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
248 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
250 static struct backing_dev_info cpuset_backing_dev_info = {
251 .ra_pages = 0, /* No readahead */
252 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
255 static struct inode *cpuset_new_inode(mode_t mode)
257 struct inode *inode = new_inode(cpuset_sb);
259 if (inode) {
260 inode->i_mode = mode;
261 inode->i_uid = current->fsuid;
262 inode->i_gid = current->fsgid;
263 inode->i_blksize = PAGE_CACHE_SIZE;
264 inode->i_blocks = 0;
265 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
266 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
268 return inode;
271 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
273 /* is dentry a directory ? if so, kfree() associated cpuset */
274 if (S_ISDIR(inode->i_mode)) {
275 struct cpuset *cs = dentry->d_fsdata;
276 BUG_ON(!(is_removed(cs)));
277 kfree(cs);
279 iput(inode);
282 static struct dentry_operations cpuset_dops = {
283 .d_iput = cpuset_diput,
286 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
288 struct dentry *d = lookup_one_len(name, parent, strlen(name));
289 if (!IS_ERR(d))
290 d->d_op = &cpuset_dops;
291 return d;
294 static void remove_dir(struct dentry *d)
296 struct dentry *parent = dget(d->d_parent);
298 d_delete(d);
299 simple_rmdir(parent->d_inode, d);
300 dput(parent);
304 * NOTE : the dentry must have been dget()'ed
306 static void cpuset_d_remove_dir(struct dentry *dentry)
308 struct list_head *node;
310 spin_lock(&dcache_lock);
311 node = dentry->d_subdirs.next;
312 while (node != &dentry->d_subdirs) {
313 struct dentry *d = list_entry(node, struct dentry, d_child);
314 list_del_init(node);
315 if (d->d_inode) {
316 d = dget_locked(d);
317 spin_unlock(&dcache_lock);
318 d_delete(d);
319 simple_unlink(dentry->d_inode, d);
320 dput(d);
321 spin_lock(&dcache_lock);
323 node = dentry->d_subdirs.next;
325 list_del_init(&dentry->d_child);
326 spin_unlock(&dcache_lock);
327 remove_dir(dentry);
330 static struct super_operations cpuset_ops = {
331 .statfs = simple_statfs,
332 .drop_inode = generic_delete_inode,
335 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
336 int unused_silent)
338 struct inode *inode;
339 struct dentry *root;
341 sb->s_blocksize = PAGE_CACHE_SIZE;
342 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
343 sb->s_magic = CPUSET_SUPER_MAGIC;
344 sb->s_op = &cpuset_ops;
345 cpuset_sb = sb;
347 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
348 if (inode) {
349 inode->i_op = &simple_dir_inode_operations;
350 inode->i_fop = &simple_dir_operations;
351 /* directories start off with i_nlink == 2 (for "." entry) */
352 inode->i_nlink++;
353 } else {
354 return -ENOMEM;
357 root = d_alloc_root(inode);
358 if (!root) {
359 iput(inode);
360 return -ENOMEM;
362 sb->s_root = root;
363 return 0;
366 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
367 int flags, const char *unused_dev_name,
368 void *data)
370 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
373 static struct file_system_type cpuset_fs_type = {
374 .name = "cpuset",
375 .get_sb = cpuset_get_sb,
376 .kill_sb = kill_litter_super,
379 /* struct cftype:
381 * The files in the cpuset filesystem mostly have a very simple read/write
382 * handling, some common function will take care of it. Nevertheless some cases
383 * (read tasks) are special and therefore I define this structure for every
384 * kind of file.
387 * When reading/writing to a file:
388 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
389 * - the 'cftype' of the file is file->f_dentry->d_fsdata
392 struct cftype {
393 char *name;
394 int private;
395 int (*open) (struct inode *inode, struct file *file);
396 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
397 loff_t *ppos);
398 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
399 loff_t *ppos);
400 int (*release) (struct inode *inode, struct file *file);
403 static inline struct cpuset *__d_cs(struct dentry *dentry)
405 return dentry->d_fsdata;
408 static inline struct cftype *__d_cft(struct dentry *dentry)
410 return dentry->d_fsdata;
414 * Call with manage_sem held. Writes path of cpuset into buf.
415 * Returns 0 on success, -errno on error.
418 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
420 char *start;
422 start = buf + buflen;
424 *--start = '\0';
425 for (;;) {
426 int len = cs->dentry->d_name.len;
427 if ((start -= len) < buf)
428 return -ENAMETOOLONG;
429 memcpy(start, cs->dentry->d_name.name, len);
430 cs = cs->parent;
431 if (!cs)
432 break;
433 if (!cs->parent)
434 continue;
435 if (--start < buf)
436 return -ENAMETOOLONG;
437 *start = '/';
439 memmove(buf, start, buf + buflen - start);
440 return 0;
444 * Notify userspace when a cpuset is released, by running
445 * /sbin/cpuset_release_agent with the name of the cpuset (path
446 * relative to the root of cpuset file system) as the argument.
448 * Most likely, this user command will try to rmdir this cpuset.
450 * This races with the possibility that some other task will be
451 * attached to this cpuset before it is removed, or that some other
452 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
453 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
454 * unused, and this cpuset will be reprieved from its death sentence,
455 * to continue to serve a useful existence. Next time it's released,
456 * we will get notified again, if it still has 'notify_on_release' set.
458 * The final arg to call_usermodehelper() is 0, which means don't
459 * wait. The separate /sbin/cpuset_release_agent task is forked by
460 * call_usermodehelper(), then control in this thread returns here,
461 * without waiting for the release agent task. We don't bother to
462 * wait because the caller of this routine has no use for the exit
463 * status of the /sbin/cpuset_release_agent task, so no sense holding
464 * our caller up for that.
466 * When we had only one cpuset semaphore, we had to call this
467 * without holding it, to avoid deadlock when call_usermodehelper()
468 * allocated memory. With two locks, we could now call this while
469 * holding manage_sem, but we still don't, so as to minimize
470 * the time manage_sem is held.
473 static void cpuset_release_agent(const char *pathbuf)
475 char *argv[3], *envp[3];
476 int i;
478 if (!pathbuf)
479 return;
481 i = 0;
482 argv[i++] = "/sbin/cpuset_release_agent";
483 argv[i++] = (char *)pathbuf;
484 argv[i] = NULL;
486 i = 0;
487 /* minimal command environment */
488 envp[i++] = "HOME=/";
489 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
490 envp[i] = NULL;
492 call_usermodehelper(argv[0], argv, envp, 0);
493 kfree(pathbuf);
497 * Either cs->count of using tasks transitioned to zero, or the
498 * cs->children list of child cpusets just became empty. If this
499 * cs is notify_on_release() and now both the user count is zero and
500 * the list of children is empty, prepare cpuset path in a kmalloc'd
501 * buffer, to be returned via ppathbuf, so that the caller can invoke
502 * cpuset_release_agent() with it later on, once manage_sem is dropped.
503 * Call here with manage_sem held.
505 * This check_for_release() routine is responsible for kmalloc'ing
506 * pathbuf. The above cpuset_release_agent() is responsible for
507 * kfree'ing pathbuf. The caller of these routines is responsible
508 * for providing a pathbuf pointer, initialized to NULL, then
509 * calling check_for_release() with manage_sem held and the address
510 * of the pathbuf pointer, then dropping manage_sem, then calling
511 * cpuset_release_agent() with pathbuf, as set by check_for_release().
514 static void check_for_release(struct cpuset *cs, char **ppathbuf)
516 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
517 list_empty(&cs->children)) {
518 char *buf;
520 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
521 if (!buf)
522 return;
523 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
524 kfree(buf);
525 else
526 *ppathbuf = buf;
531 * Return in *pmask the portion of a cpusets's cpus_allowed that
532 * are online. If none are online, walk up the cpuset hierarchy
533 * until we find one that does have some online cpus. If we get
534 * all the way to the top and still haven't found any online cpus,
535 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
536 * task, return cpu_online_map.
538 * One way or another, we guarantee to return some non-empty subset
539 * of cpu_online_map.
541 * Call with callback_sem held.
544 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
546 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
547 cs = cs->parent;
548 if (cs)
549 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
550 else
551 *pmask = cpu_online_map;
552 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
556 * Return in *pmask the portion of a cpusets's mems_allowed that
557 * are online. If none are online, walk up the cpuset hierarchy
558 * until we find one that does have some online mems. If we get
559 * all the way to the top and still haven't found any online mems,
560 * return node_online_map.
562 * One way or another, we guarantee to return some non-empty subset
563 * of node_online_map.
565 * Call with callback_sem held.
568 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
570 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
571 cs = cs->parent;
572 if (cs)
573 nodes_and(*pmask, cs->mems_allowed, node_online_map);
574 else
575 *pmask = node_online_map;
576 BUG_ON(!nodes_intersects(*pmask, node_online_map));
580 * Refresh current tasks mems_allowed and mems_generation from current
581 * tasks cpuset.
583 * Call without callback_sem or task_lock() held. May be called with
584 * or without manage_sem held. Will acquire task_lock() and might
585 * acquire callback_sem during call.
587 * The task_lock() is required to dereference current->cpuset safely.
588 * Without it, we could pick up the pointer value of current->cpuset
589 * in one instruction, and then attach_task could give us a different
590 * cpuset, and then the cpuset we had could be removed and freed,
591 * and then on our next instruction, we could dereference a no longer
592 * valid cpuset pointer to get its mems_generation field.
594 * This routine is needed to update the per-task mems_allowed data,
595 * within the tasks context, when it is trying to allocate memory
596 * (in various mm/mempolicy.c routines) and notices that some other
597 * task has been modifying its cpuset.
600 static void refresh_mems(void)
602 int my_cpusets_mem_gen;
604 task_lock(current);
605 my_cpusets_mem_gen = current->cpuset->mems_generation;
606 task_unlock(current);
608 if (current->cpuset_mems_generation != my_cpusets_mem_gen) {
609 struct cpuset *cs;
610 nodemask_t oldmem = current->mems_allowed;
611 int migrate;
613 down(&callback_sem);
614 task_lock(current);
615 cs = current->cpuset;
616 migrate = is_memory_migrate(cs);
617 guarantee_online_mems(cs, &current->mems_allowed);
618 current->cpuset_mems_generation = cs->mems_generation;
619 task_unlock(current);
620 up(&callback_sem);
621 if (!nodes_equal(oldmem, current->mems_allowed)) {
622 numa_policy_rebind(&oldmem, &current->mems_allowed);
623 if (migrate) {
624 do_migrate_pages(current->mm, &oldmem,
625 &current->mems_allowed,
626 MPOL_MF_MOVE_ALL);
633 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
635 * One cpuset is a subset of another if all its allowed CPUs and
636 * Memory Nodes are a subset of the other, and its exclusive flags
637 * are only set if the other's are set. Call holding manage_sem.
640 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
642 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
643 nodes_subset(p->mems_allowed, q->mems_allowed) &&
644 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
645 is_mem_exclusive(p) <= is_mem_exclusive(q);
649 * validate_change() - Used to validate that any proposed cpuset change
650 * follows the structural rules for cpusets.
652 * If we replaced the flag and mask values of the current cpuset
653 * (cur) with those values in the trial cpuset (trial), would
654 * our various subset and exclusive rules still be valid? Presumes
655 * manage_sem held.
657 * 'cur' is the address of an actual, in-use cpuset. Operations
658 * such as list traversal that depend on the actual address of the
659 * cpuset in the list must use cur below, not trial.
661 * 'trial' is the address of bulk structure copy of cur, with
662 * perhaps one or more of the fields cpus_allowed, mems_allowed,
663 * or flags changed to new, trial values.
665 * Return 0 if valid, -errno if not.
668 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
670 struct cpuset *c, *par;
672 /* Each of our child cpusets must be a subset of us */
673 list_for_each_entry(c, &cur->children, sibling) {
674 if (!is_cpuset_subset(c, trial))
675 return -EBUSY;
678 /* Remaining checks don't apply to root cpuset */
679 if ((par = cur->parent) == NULL)
680 return 0;
682 /* We must be a subset of our parent cpuset */
683 if (!is_cpuset_subset(trial, par))
684 return -EACCES;
686 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
687 list_for_each_entry(c, &par->children, sibling) {
688 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
689 c != cur &&
690 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
691 return -EINVAL;
692 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
693 c != cur &&
694 nodes_intersects(trial->mems_allowed, c->mems_allowed))
695 return -EINVAL;
698 return 0;
702 * For a given cpuset cur, partition the system as follows
703 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
704 * exclusive child cpusets
705 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
706 * exclusive child cpusets
707 * Build these two partitions by calling partition_sched_domains
709 * Call with manage_sem held. May nest a call to the
710 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
713 static void update_cpu_domains(struct cpuset *cur)
715 struct cpuset *c, *par = cur->parent;
716 cpumask_t pspan, cspan;
718 if (par == NULL || cpus_empty(cur->cpus_allowed))
719 return;
722 * Get all cpus from parent's cpus_allowed not part of exclusive
723 * children
725 pspan = par->cpus_allowed;
726 list_for_each_entry(c, &par->children, sibling) {
727 if (is_cpu_exclusive(c))
728 cpus_andnot(pspan, pspan, c->cpus_allowed);
730 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
731 cpus_or(pspan, pspan, cur->cpus_allowed);
732 if (cpus_equal(pspan, cur->cpus_allowed))
733 return;
734 cspan = CPU_MASK_NONE;
735 } else {
736 if (cpus_empty(pspan))
737 return;
738 cspan = cur->cpus_allowed;
740 * Get all cpus from current cpuset's cpus_allowed not part
741 * of exclusive children
743 list_for_each_entry(c, &cur->children, sibling) {
744 if (is_cpu_exclusive(c))
745 cpus_andnot(cspan, cspan, c->cpus_allowed);
749 lock_cpu_hotplug();
750 partition_sched_domains(&pspan, &cspan);
751 unlock_cpu_hotplug();
755 * Call with manage_sem held. May take callback_sem during call.
758 static int update_cpumask(struct cpuset *cs, char *buf)
760 struct cpuset trialcs;
761 int retval, cpus_unchanged;
763 trialcs = *cs;
764 retval = cpulist_parse(buf, trialcs.cpus_allowed);
765 if (retval < 0)
766 return retval;
767 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
768 if (cpus_empty(trialcs.cpus_allowed))
769 return -ENOSPC;
770 retval = validate_change(cs, &trialcs);
771 if (retval < 0)
772 return retval;
773 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
774 down(&callback_sem);
775 cs->cpus_allowed = trialcs.cpus_allowed;
776 up(&callback_sem);
777 if (is_cpu_exclusive(cs) && !cpus_unchanged)
778 update_cpu_domains(cs);
779 return 0;
783 * Call with manage_sem held. May take callback_sem during call.
786 static int update_nodemask(struct cpuset *cs, char *buf)
788 struct cpuset trialcs;
789 int retval;
791 trialcs = *cs;
792 retval = nodelist_parse(buf, trialcs.mems_allowed);
793 if (retval < 0)
794 return retval;
795 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
796 if (nodes_empty(trialcs.mems_allowed))
797 return -ENOSPC;
798 retval = validate_change(cs, &trialcs);
799 if (retval == 0) {
800 down(&callback_sem);
801 cs->mems_allowed = trialcs.mems_allowed;
802 atomic_inc(&cpuset_mems_generation);
803 cs->mems_generation = atomic_read(&cpuset_mems_generation);
804 up(&callback_sem);
806 return retval;
810 * update_flag - read a 0 or a 1 in a file and update associated flag
811 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
812 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
813 * cs: the cpuset to update
814 * buf: the buffer where we read the 0 or 1
816 * Call with manage_sem held.
819 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
821 int turning_on;
822 struct cpuset trialcs;
823 int err, cpu_exclusive_changed;
825 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
827 trialcs = *cs;
828 if (turning_on)
829 set_bit(bit, &trialcs.flags);
830 else
831 clear_bit(bit, &trialcs.flags);
833 err = validate_change(cs, &trialcs);
834 if (err < 0)
835 return err;
836 cpu_exclusive_changed =
837 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
838 down(&callback_sem);
839 if (turning_on)
840 set_bit(bit, &cs->flags);
841 else
842 clear_bit(bit, &cs->flags);
843 up(&callback_sem);
845 if (cpu_exclusive_changed)
846 update_cpu_domains(cs);
847 return 0;
851 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
852 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
853 * notified on release.
855 * Call holding manage_sem. May take callback_sem and task_lock of
856 * the task 'pid' during call.
859 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
861 pid_t pid;
862 struct task_struct *tsk;
863 struct cpuset *oldcs;
864 cpumask_t cpus;
865 nodemask_t from, to;
867 if (sscanf(pidbuf, "%d", &pid) != 1)
868 return -EIO;
869 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
870 return -ENOSPC;
872 if (pid) {
873 read_lock(&tasklist_lock);
875 tsk = find_task_by_pid(pid);
876 if (!tsk || tsk->flags & PF_EXITING) {
877 read_unlock(&tasklist_lock);
878 return -ESRCH;
881 get_task_struct(tsk);
882 read_unlock(&tasklist_lock);
884 if ((current->euid) && (current->euid != tsk->uid)
885 && (current->euid != tsk->suid)) {
886 put_task_struct(tsk);
887 return -EACCES;
889 } else {
890 tsk = current;
891 get_task_struct(tsk);
894 down(&callback_sem);
896 task_lock(tsk);
897 oldcs = tsk->cpuset;
898 if (!oldcs) {
899 task_unlock(tsk);
900 up(&callback_sem);
901 put_task_struct(tsk);
902 return -ESRCH;
904 atomic_inc(&cs->count);
905 tsk->cpuset = cs;
906 task_unlock(tsk);
908 guarantee_online_cpus(cs, &cpus);
909 set_cpus_allowed(tsk, cpus);
911 from = oldcs->mems_allowed;
912 to = cs->mems_allowed;
914 up(&callback_sem);
915 if (is_memory_migrate(cs))
916 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
917 put_task_struct(tsk);
918 if (atomic_dec_and_test(&oldcs->count))
919 check_for_release(oldcs, ppathbuf);
920 return 0;
923 /* The various types of files and directories in a cpuset file system */
925 typedef enum {
926 FILE_ROOT,
927 FILE_DIR,
928 FILE_MEMORY_MIGRATE,
929 FILE_CPULIST,
930 FILE_MEMLIST,
931 FILE_CPU_EXCLUSIVE,
932 FILE_MEM_EXCLUSIVE,
933 FILE_NOTIFY_ON_RELEASE,
934 FILE_TASKLIST,
935 } cpuset_filetype_t;
937 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
938 size_t nbytes, loff_t *unused_ppos)
940 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
941 struct cftype *cft = __d_cft(file->f_dentry);
942 cpuset_filetype_t type = cft->private;
943 char *buffer;
944 char *pathbuf = NULL;
945 int retval = 0;
947 /* Crude upper limit on largest legitimate cpulist user might write. */
948 if (nbytes > 100 + 6 * NR_CPUS)
949 return -E2BIG;
951 /* +1 for nul-terminator */
952 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
953 return -ENOMEM;
955 if (copy_from_user(buffer, userbuf, nbytes)) {
956 retval = -EFAULT;
957 goto out1;
959 buffer[nbytes] = 0; /* nul-terminate */
961 down(&manage_sem);
963 if (is_removed(cs)) {
964 retval = -ENODEV;
965 goto out2;
968 switch (type) {
969 case FILE_CPULIST:
970 retval = update_cpumask(cs, buffer);
971 break;
972 case FILE_MEMLIST:
973 retval = update_nodemask(cs, buffer);
974 break;
975 case FILE_CPU_EXCLUSIVE:
976 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
977 break;
978 case FILE_MEM_EXCLUSIVE:
979 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
980 break;
981 case FILE_NOTIFY_ON_RELEASE:
982 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
983 break;
984 case FILE_MEMORY_MIGRATE:
985 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
986 break;
987 case FILE_TASKLIST:
988 retval = attach_task(cs, buffer, &pathbuf);
989 break;
990 default:
991 retval = -EINVAL;
992 goto out2;
995 if (retval == 0)
996 retval = nbytes;
997 out2:
998 up(&manage_sem);
999 cpuset_release_agent(pathbuf);
1000 out1:
1001 kfree(buffer);
1002 return retval;
1005 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1006 size_t nbytes, loff_t *ppos)
1008 ssize_t retval = 0;
1009 struct cftype *cft = __d_cft(file->f_dentry);
1010 if (!cft)
1011 return -ENODEV;
1013 /* special function ? */
1014 if (cft->write)
1015 retval = cft->write(file, buf, nbytes, ppos);
1016 else
1017 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1019 return retval;
1023 * These ascii lists should be read in a single call, by using a user
1024 * buffer large enough to hold the entire map. If read in smaller
1025 * chunks, there is no guarantee of atomicity. Since the display format
1026 * used, list of ranges of sequential numbers, is variable length,
1027 * and since these maps can change value dynamically, one could read
1028 * gibberish by doing partial reads while a list was changing.
1029 * A single large read to a buffer that crosses a page boundary is
1030 * ok, because the result being copied to user land is not recomputed
1031 * across a page fault.
1034 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1036 cpumask_t mask;
1038 down(&callback_sem);
1039 mask = cs->cpus_allowed;
1040 up(&callback_sem);
1042 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1045 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1047 nodemask_t mask;
1049 down(&callback_sem);
1050 mask = cs->mems_allowed;
1051 up(&callback_sem);
1053 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1056 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1057 size_t nbytes, loff_t *ppos)
1059 struct cftype *cft = __d_cft(file->f_dentry);
1060 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1061 cpuset_filetype_t type = cft->private;
1062 char *page;
1063 ssize_t retval = 0;
1064 char *s;
1066 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1067 return -ENOMEM;
1069 s = page;
1071 switch (type) {
1072 case FILE_CPULIST:
1073 s += cpuset_sprintf_cpulist(s, cs);
1074 break;
1075 case FILE_MEMLIST:
1076 s += cpuset_sprintf_memlist(s, cs);
1077 break;
1078 case FILE_CPU_EXCLUSIVE:
1079 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1080 break;
1081 case FILE_MEM_EXCLUSIVE:
1082 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1083 break;
1084 case FILE_NOTIFY_ON_RELEASE:
1085 *s++ = notify_on_release(cs) ? '1' : '0';
1086 break;
1087 case FILE_MEMORY_MIGRATE:
1088 *s++ = is_memory_migrate(cs) ? '1' : '0';
1089 break;
1090 default:
1091 retval = -EINVAL;
1092 goto out;
1094 *s++ = '\n';
1096 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1097 out:
1098 free_page((unsigned long)page);
1099 return retval;
1102 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1103 loff_t *ppos)
1105 ssize_t retval = 0;
1106 struct cftype *cft = __d_cft(file->f_dentry);
1107 if (!cft)
1108 return -ENODEV;
1110 /* special function ? */
1111 if (cft->read)
1112 retval = cft->read(file, buf, nbytes, ppos);
1113 else
1114 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1116 return retval;
1119 static int cpuset_file_open(struct inode *inode, struct file *file)
1121 int err;
1122 struct cftype *cft;
1124 err = generic_file_open(inode, file);
1125 if (err)
1126 return err;
1128 cft = __d_cft(file->f_dentry);
1129 if (!cft)
1130 return -ENODEV;
1131 if (cft->open)
1132 err = cft->open(inode, file);
1133 else
1134 err = 0;
1136 return err;
1139 static int cpuset_file_release(struct inode *inode, struct file *file)
1141 struct cftype *cft = __d_cft(file->f_dentry);
1142 if (cft->release)
1143 return cft->release(inode, file);
1144 return 0;
1148 * cpuset_rename - Only allow simple rename of directories in place.
1150 static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1151 struct inode *new_dir, struct dentry *new_dentry)
1153 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1154 return -ENOTDIR;
1155 if (new_dentry->d_inode)
1156 return -EEXIST;
1157 if (old_dir != new_dir)
1158 return -EIO;
1159 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1162 static struct file_operations cpuset_file_operations = {
1163 .read = cpuset_file_read,
1164 .write = cpuset_file_write,
1165 .llseek = generic_file_llseek,
1166 .open = cpuset_file_open,
1167 .release = cpuset_file_release,
1170 static struct inode_operations cpuset_dir_inode_operations = {
1171 .lookup = simple_lookup,
1172 .mkdir = cpuset_mkdir,
1173 .rmdir = cpuset_rmdir,
1174 .rename = cpuset_rename,
1177 static int cpuset_create_file(struct dentry *dentry, int mode)
1179 struct inode *inode;
1181 if (!dentry)
1182 return -ENOENT;
1183 if (dentry->d_inode)
1184 return -EEXIST;
1186 inode = cpuset_new_inode(mode);
1187 if (!inode)
1188 return -ENOMEM;
1190 if (S_ISDIR(mode)) {
1191 inode->i_op = &cpuset_dir_inode_operations;
1192 inode->i_fop = &simple_dir_operations;
1194 /* start off with i_nlink == 2 (for "." entry) */
1195 inode->i_nlink++;
1196 } else if (S_ISREG(mode)) {
1197 inode->i_size = 0;
1198 inode->i_fop = &cpuset_file_operations;
1201 d_instantiate(dentry, inode);
1202 dget(dentry); /* Extra count - pin the dentry in core */
1203 return 0;
1207 * cpuset_create_dir - create a directory for an object.
1208 * cs: the cpuset we create the directory for.
1209 * It must have a valid ->parent field
1210 * And we are going to fill its ->dentry field.
1211 * name: The name to give to the cpuset directory. Will be copied.
1212 * mode: mode to set on new directory.
1215 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1217 struct dentry *dentry = NULL;
1218 struct dentry *parent;
1219 int error = 0;
1221 parent = cs->parent->dentry;
1222 dentry = cpuset_get_dentry(parent, name);
1223 if (IS_ERR(dentry))
1224 return PTR_ERR(dentry);
1225 error = cpuset_create_file(dentry, S_IFDIR | mode);
1226 if (!error) {
1227 dentry->d_fsdata = cs;
1228 parent->d_inode->i_nlink++;
1229 cs->dentry = dentry;
1231 dput(dentry);
1233 return error;
1236 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1238 struct dentry *dentry;
1239 int error;
1241 down(&dir->d_inode->i_sem);
1242 dentry = cpuset_get_dentry(dir, cft->name);
1243 if (!IS_ERR(dentry)) {
1244 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1245 if (!error)
1246 dentry->d_fsdata = (void *)cft;
1247 dput(dentry);
1248 } else
1249 error = PTR_ERR(dentry);
1250 up(&dir->d_inode->i_sem);
1251 return error;
1255 * Stuff for reading the 'tasks' file.
1257 * Reading this file can return large amounts of data if a cpuset has
1258 * *lots* of attached tasks. So it may need several calls to read(),
1259 * but we cannot guarantee that the information we produce is correct
1260 * unless we produce it entirely atomically.
1262 * Upon tasks file open(), a struct ctr_struct is allocated, that
1263 * will have a pointer to an array (also allocated here). The struct
1264 * ctr_struct * is stored in file->private_data. Its resources will
1265 * be freed by release() when the file is closed. The array is used
1266 * to sprintf the PIDs and then used by read().
1269 /* cpusets_tasks_read array */
1271 struct ctr_struct {
1272 char *buf;
1273 int bufsz;
1277 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1278 * Return actual number of pids loaded. No need to task_lock(p)
1279 * when reading out p->cpuset, as we don't really care if it changes
1280 * on the next cycle, and we are not going to try to dereference it.
1282 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1284 int n = 0;
1285 struct task_struct *g, *p;
1287 read_lock(&tasklist_lock);
1289 do_each_thread(g, p) {
1290 if (p->cpuset == cs) {
1291 pidarray[n++] = p->pid;
1292 if (unlikely(n == npids))
1293 goto array_full;
1295 } while_each_thread(g, p);
1297 array_full:
1298 read_unlock(&tasklist_lock);
1299 return n;
1302 static int cmppid(const void *a, const void *b)
1304 return *(pid_t *)a - *(pid_t *)b;
1308 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1309 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1310 * count 'cnt' of how many chars would be written if buf were large enough.
1312 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1314 int cnt = 0;
1315 int i;
1317 for (i = 0; i < npids; i++)
1318 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1319 return cnt;
1323 * Handle an open on 'tasks' file. Prepare a buffer listing the
1324 * process id's of tasks currently attached to the cpuset being opened.
1326 * Does not require any specific cpuset semaphores, and does not take any.
1328 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1330 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1331 struct ctr_struct *ctr;
1332 pid_t *pidarray;
1333 int npids;
1334 char c;
1336 if (!(file->f_mode & FMODE_READ))
1337 return 0;
1339 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1340 if (!ctr)
1341 goto err0;
1344 * If cpuset gets more users after we read count, we won't have
1345 * enough space - tough. This race is indistinguishable to the
1346 * caller from the case that the additional cpuset users didn't
1347 * show up until sometime later on.
1349 npids = atomic_read(&cs->count);
1350 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1351 if (!pidarray)
1352 goto err1;
1354 npids = pid_array_load(pidarray, npids, cs);
1355 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1357 /* Call pid_array_to_buf() twice, first just to get bufsz */
1358 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1359 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1360 if (!ctr->buf)
1361 goto err2;
1362 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1364 kfree(pidarray);
1365 file->private_data = ctr;
1366 return 0;
1368 err2:
1369 kfree(pidarray);
1370 err1:
1371 kfree(ctr);
1372 err0:
1373 return -ENOMEM;
1376 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1377 size_t nbytes, loff_t *ppos)
1379 struct ctr_struct *ctr = file->private_data;
1381 if (*ppos + nbytes > ctr->bufsz)
1382 nbytes = ctr->bufsz - *ppos;
1383 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1384 return -EFAULT;
1385 *ppos += nbytes;
1386 return nbytes;
1389 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1391 struct ctr_struct *ctr;
1393 if (file->f_mode & FMODE_READ) {
1394 ctr = file->private_data;
1395 kfree(ctr->buf);
1396 kfree(ctr);
1398 return 0;
1402 * for the common functions, 'private' gives the type of file
1405 static struct cftype cft_tasks = {
1406 .name = "tasks",
1407 .open = cpuset_tasks_open,
1408 .read = cpuset_tasks_read,
1409 .release = cpuset_tasks_release,
1410 .private = FILE_TASKLIST,
1413 static struct cftype cft_cpus = {
1414 .name = "cpus",
1415 .private = FILE_CPULIST,
1418 static struct cftype cft_mems = {
1419 .name = "mems",
1420 .private = FILE_MEMLIST,
1423 static struct cftype cft_cpu_exclusive = {
1424 .name = "cpu_exclusive",
1425 .private = FILE_CPU_EXCLUSIVE,
1428 static struct cftype cft_mem_exclusive = {
1429 .name = "mem_exclusive",
1430 .private = FILE_MEM_EXCLUSIVE,
1433 static struct cftype cft_notify_on_release = {
1434 .name = "notify_on_release",
1435 .private = FILE_NOTIFY_ON_RELEASE,
1438 static struct cftype cft_memory_migrate = {
1439 .name = "memory_migrate",
1440 .private = FILE_MEMORY_MIGRATE,
1443 static int cpuset_populate_dir(struct dentry *cs_dentry)
1445 int err;
1447 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1448 return err;
1449 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1450 return err;
1451 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1452 return err;
1453 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1454 return err;
1455 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1456 return err;
1457 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1458 return err;
1459 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1460 return err;
1461 return 0;
1465 * cpuset_create - create a cpuset
1466 * parent: cpuset that will be parent of the new cpuset.
1467 * name: name of the new cpuset. Will be strcpy'ed.
1468 * mode: mode to set on new inode
1470 * Must be called with the semaphore on the parent inode held
1473 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1475 struct cpuset *cs;
1476 int err;
1478 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1479 if (!cs)
1480 return -ENOMEM;
1482 down(&manage_sem);
1483 refresh_mems();
1484 cs->flags = 0;
1485 if (notify_on_release(parent))
1486 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1487 cs->cpus_allowed = CPU_MASK_NONE;
1488 cs->mems_allowed = NODE_MASK_NONE;
1489 atomic_set(&cs->count, 0);
1490 INIT_LIST_HEAD(&cs->sibling);
1491 INIT_LIST_HEAD(&cs->children);
1492 atomic_inc(&cpuset_mems_generation);
1493 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1495 cs->parent = parent;
1497 down(&callback_sem);
1498 list_add(&cs->sibling, &cs->parent->children);
1499 up(&callback_sem);
1501 err = cpuset_create_dir(cs, name, mode);
1502 if (err < 0)
1503 goto err;
1506 * Release manage_sem before cpuset_populate_dir() because it
1507 * will down() this new directory's i_sem and if we race with
1508 * another mkdir, we might deadlock.
1510 up(&manage_sem);
1512 err = cpuset_populate_dir(cs->dentry);
1513 /* If err < 0, we have a half-filled directory - oh well ;) */
1514 return 0;
1515 err:
1516 list_del(&cs->sibling);
1517 up(&manage_sem);
1518 kfree(cs);
1519 return err;
1522 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1524 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1526 /* the vfs holds inode->i_sem already */
1527 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1530 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1532 struct cpuset *cs = dentry->d_fsdata;
1533 struct dentry *d;
1534 struct cpuset *parent;
1535 char *pathbuf = NULL;
1537 /* the vfs holds both inode->i_sem already */
1539 down(&manage_sem);
1540 refresh_mems();
1541 if (atomic_read(&cs->count) > 0) {
1542 up(&manage_sem);
1543 return -EBUSY;
1545 if (!list_empty(&cs->children)) {
1546 up(&manage_sem);
1547 return -EBUSY;
1549 parent = cs->parent;
1550 down(&callback_sem);
1551 set_bit(CS_REMOVED, &cs->flags);
1552 if (is_cpu_exclusive(cs))
1553 update_cpu_domains(cs);
1554 list_del(&cs->sibling); /* delete my sibling from parent->children */
1555 spin_lock(&cs->dentry->d_lock);
1556 d = dget(cs->dentry);
1557 cs->dentry = NULL;
1558 spin_unlock(&d->d_lock);
1559 cpuset_d_remove_dir(d);
1560 dput(d);
1561 up(&callback_sem);
1562 if (list_empty(&parent->children))
1563 check_for_release(parent, &pathbuf);
1564 up(&manage_sem);
1565 cpuset_release_agent(pathbuf);
1566 return 0;
1570 * cpuset_init - initialize cpusets at system boot
1572 * Description: Initialize top_cpuset and the cpuset internal file system,
1575 int __init cpuset_init(void)
1577 struct dentry *root;
1578 int err;
1580 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1581 top_cpuset.mems_allowed = NODE_MASK_ALL;
1583 atomic_inc(&cpuset_mems_generation);
1584 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1586 init_task.cpuset = &top_cpuset;
1588 err = register_filesystem(&cpuset_fs_type);
1589 if (err < 0)
1590 goto out;
1591 cpuset_mount = kern_mount(&cpuset_fs_type);
1592 if (IS_ERR(cpuset_mount)) {
1593 printk(KERN_ERR "cpuset: could not mount!\n");
1594 err = PTR_ERR(cpuset_mount);
1595 cpuset_mount = NULL;
1596 goto out;
1598 root = cpuset_mount->mnt_sb->s_root;
1599 root->d_fsdata = &top_cpuset;
1600 root->d_inode->i_nlink++;
1601 top_cpuset.dentry = root;
1602 root->d_inode->i_op = &cpuset_dir_inode_operations;
1603 err = cpuset_populate_dir(root);
1604 out:
1605 return err;
1609 * cpuset_init_smp - initialize cpus_allowed
1611 * Description: Finish top cpuset after cpu, node maps are initialized
1614 void __init cpuset_init_smp(void)
1616 top_cpuset.cpus_allowed = cpu_online_map;
1617 top_cpuset.mems_allowed = node_online_map;
1621 * cpuset_fork - attach newly forked task to its parents cpuset.
1622 * @tsk: pointer to task_struct of forking parent process.
1624 * Description: A task inherits its parent's cpuset at fork().
1626 * A pointer to the shared cpuset was automatically copied in fork.c
1627 * by dup_task_struct(). However, we ignore that copy, since it was
1628 * not made under the protection of task_lock(), so might no longer be
1629 * a valid cpuset pointer. attach_task() might have already changed
1630 * current->cpuset, allowing the previously referenced cpuset to
1631 * be removed and freed. Instead, we task_lock(current) and copy
1632 * its present value of current->cpuset for our freshly forked child.
1634 * At the point that cpuset_fork() is called, 'current' is the parent
1635 * task, and the passed argument 'child' points to the child task.
1638 void cpuset_fork(struct task_struct *child)
1640 task_lock(current);
1641 child->cpuset = current->cpuset;
1642 atomic_inc(&child->cpuset->count);
1643 task_unlock(current);
1647 * cpuset_exit - detach cpuset from exiting task
1648 * @tsk: pointer to task_struct of exiting process
1650 * Description: Detach cpuset from @tsk and release it.
1652 * Note that cpusets marked notify_on_release force every task in
1653 * them to take the global manage_sem semaphore when exiting.
1654 * This could impact scaling on very large systems. Be reluctant to
1655 * use notify_on_release cpusets where very high task exit scaling
1656 * is required on large systems.
1658 * Don't even think about derefencing 'cs' after the cpuset use count
1659 * goes to zero, except inside a critical section guarded by manage_sem
1660 * or callback_sem. Otherwise a zero cpuset use count is a license to
1661 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1663 * This routine has to take manage_sem, not callback_sem, because
1664 * it is holding that semaphore while calling check_for_release(),
1665 * which calls kmalloc(), so can't be called holding callback__sem().
1667 * We don't need to task_lock() this reference to tsk->cpuset,
1668 * because tsk is already marked PF_EXITING, so attach_task() won't
1669 * mess with it.
1672 void cpuset_exit(struct task_struct *tsk)
1674 struct cpuset *cs;
1676 BUG_ON(!(tsk->flags & PF_EXITING));
1678 cs = tsk->cpuset;
1679 tsk->cpuset = NULL;
1681 if (notify_on_release(cs)) {
1682 char *pathbuf = NULL;
1684 down(&manage_sem);
1685 if (atomic_dec_and_test(&cs->count))
1686 check_for_release(cs, &pathbuf);
1687 up(&manage_sem);
1688 cpuset_release_agent(pathbuf);
1689 } else {
1690 atomic_dec(&cs->count);
1695 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1696 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1698 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1699 * attached to the specified @tsk. Guaranteed to return some non-empty
1700 * subset of cpu_online_map, even if this means going outside the
1701 * tasks cpuset.
1704 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1706 cpumask_t mask;
1708 down(&callback_sem);
1709 task_lock((struct task_struct *)tsk);
1710 guarantee_online_cpus(tsk->cpuset, &mask);
1711 task_unlock((struct task_struct *)tsk);
1712 up(&callback_sem);
1714 return mask;
1717 void cpuset_init_current_mems_allowed(void)
1719 current->mems_allowed = NODE_MASK_ALL;
1723 * cpuset_update_current_mems_allowed - update mems parameters to new values
1725 * If the current tasks cpusets mems_allowed changed behind our backs,
1726 * update current->mems_allowed and mems_generation to the new value.
1727 * Do not call this routine if in_interrupt().
1729 * Call without callback_sem or task_lock() held. May be called
1730 * with or without manage_sem held. Unless exiting, it will acquire
1731 * task_lock(). Also might acquire callback_sem during call to
1732 * refresh_mems().
1735 void cpuset_update_current_mems_allowed(void)
1737 struct cpuset *cs;
1738 int need_to_refresh = 0;
1740 task_lock(current);
1741 cs = current->cpuset;
1742 if (!cs)
1743 goto done;
1744 if (current->cpuset_mems_generation != cs->mems_generation)
1745 need_to_refresh = 1;
1746 done:
1747 task_unlock(current);
1748 if (need_to_refresh)
1749 refresh_mems();
1753 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1754 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1756 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1758 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1759 MAX_NUMNODES);
1763 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1764 * @zl: the zonelist to be checked
1766 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1768 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1770 int i;
1772 for (i = 0; zl->zones[i]; i++) {
1773 int nid = zl->zones[i]->zone_pgdat->node_id;
1775 if (node_isset(nid, current->mems_allowed))
1776 return 1;
1778 return 0;
1782 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1783 * ancestor to the specified cpuset. Call holding callback_sem.
1784 * If no ancestor is mem_exclusive (an unusual configuration), then
1785 * returns the root cpuset.
1787 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1789 while (!is_mem_exclusive(cs) && cs->parent)
1790 cs = cs->parent;
1791 return cs;
1795 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1796 * @z: is this zone on an allowed node?
1797 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1799 * If we're in interrupt, yes, we can always allocate. If zone
1800 * z's node is in our tasks mems_allowed, yes. If it's not a
1801 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1802 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1803 * Otherwise, no.
1805 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1806 * and do not allow allocations outside the current tasks cpuset.
1807 * GFP_KERNEL allocations are not so marked, so can escape to the
1808 * nearest mem_exclusive ancestor cpuset.
1810 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
1811 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1812 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1813 * mems_allowed came up empty on the first pass over the zonelist.
1814 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1815 * short of memory, might require taking the callback_sem semaphore.
1817 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1818 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1819 * hardwall cpusets - no allocation on a node outside the cpuset is
1820 * allowed (unless in interrupt, of course).
1822 * The second loop doesn't even call here for GFP_ATOMIC requests
1823 * (if the __alloc_pages() local variable 'wait' is set). That check
1824 * and the checks below have the combined affect in the second loop of
1825 * the __alloc_pages() routine that:
1826 * in_interrupt - any node ok (current task context irrelevant)
1827 * GFP_ATOMIC - any node ok
1828 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1829 * GFP_USER - only nodes in current tasks mems allowed ok.
1832 int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1834 int node; /* node that zone z is on */
1835 const struct cpuset *cs; /* current cpuset ancestors */
1836 int allowed = 1; /* is allocation in zone z allowed? */
1838 if (in_interrupt())
1839 return 1;
1840 node = z->zone_pgdat->node_id;
1841 if (node_isset(node, current->mems_allowed))
1842 return 1;
1843 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1844 return 0;
1846 if (current->flags & PF_EXITING) /* Let dying task have memory */
1847 return 1;
1849 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1850 down(&callback_sem);
1852 task_lock(current);
1853 cs = nearest_exclusive_ancestor(current->cpuset);
1854 task_unlock(current);
1856 allowed = node_isset(node, cs->mems_allowed);
1857 up(&callback_sem);
1858 return allowed;
1862 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
1863 * @p: pointer to task_struct of some other task.
1865 * Description: Return true if the nearest mem_exclusive ancestor
1866 * cpusets of tasks @p and current overlap. Used by oom killer to
1867 * determine if task @p's memory usage might impact the memory
1868 * available to the current task.
1870 * Acquires callback_sem - not suitable for calling from a fast path.
1873 int cpuset_excl_nodes_overlap(const struct task_struct *p)
1875 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1876 int overlap = 0; /* do cpusets overlap? */
1878 down(&callback_sem);
1880 task_lock(current);
1881 if (current->flags & PF_EXITING) {
1882 task_unlock(current);
1883 goto done;
1885 cs1 = nearest_exclusive_ancestor(current->cpuset);
1886 task_unlock(current);
1888 task_lock((struct task_struct *)p);
1889 if (p->flags & PF_EXITING) {
1890 task_unlock((struct task_struct *)p);
1891 goto done;
1893 cs2 = nearest_exclusive_ancestor(p->cpuset);
1894 task_unlock((struct task_struct *)p);
1896 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1897 done:
1898 up(&callback_sem);
1900 return overlap;
1904 * proc_cpuset_show()
1905 * - Print tasks cpuset path into seq_file.
1906 * - Used for /proc/<pid>/cpuset.
1907 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
1908 * doesn't really matter if tsk->cpuset changes after we read it,
1909 * and we take manage_sem, keeping attach_task() from changing it
1910 * anyway.
1913 static int proc_cpuset_show(struct seq_file *m, void *v)
1915 struct cpuset *cs;
1916 struct task_struct *tsk;
1917 char *buf;
1918 int retval = 0;
1920 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1921 if (!buf)
1922 return -ENOMEM;
1924 tsk = m->private;
1925 down(&manage_sem);
1926 cs = tsk->cpuset;
1927 if (!cs) {
1928 retval = -EINVAL;
1929 goto out;
1932 retval = cpuset_path(cs, buf, PAGE_SIZE);
1933 if (retval < 0)
1934 goto out;
1935 seq_puts(m, buf);
1936 seq_putc(m, '\n');
1937 out:
1938 up(&manage_sem);
1939 kfree(buf);
1940 return retval;
1943 static int cpuset_open(struct inode *inode, struct file *file)
1945 struct task_struct *tsk = PROC_I(inode)->task;
1946 return single_open(file, proc_cpuset_show, tsk);
1949 struct file_operations proc_cpuset_operations = {
1950 .open = cpuset_open,
1951 .read = seq_read,
1952 .llseek = seq_lseek,
1953 .release = single_release,
1956 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1957 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1959 buffer += sprintf(buffer, "Cpus_allowed:\t");
1960 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1961 buffer += sprintf(buffer, "\n");
1962 buffer += sprintf(buffer, "Mems_allowed:\t");
1963 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1964 buffer += sprintf(buffer, "\n");
1965 return buffer;