Input: ad7877 - filter events where pressure is beyond the maximum
[linux-2.6/cjktty.git] / fs / ceph / mds_client.c
bloba75ddbf9fe3743973c6fd02724f005b8504c3738
1 #include "ceph_debug.h"
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6 #include <linux/smp_lock.h>
8 #include "mds_client.h"
9 #include "mon_client.h"
10 #include "super.h"
11 #include "messenger.h"
12 #include "decode.h"
13 #include "auth.h"
14 #include "pagelist.h"
17 * A cluster of MDS (metadata server) daemons is responsible for
18 * managing the file system namespace (the directory hierarchy and
19 * inodes) and for coordinating shared access to storage. Metadata is
20 * partitioning hierarchically across a number of servers, and that
21 * partition varies over time as the cluster adjusts the distribution
22 * in order to balance load.
24 * The MDS client is primarily responsible to managing synchronous
25 * metadata requests for operations like open, unlink, and so forth.
26 * If there is a MDS failure, we find out about it when we (possibly
27 * request and) receive a new MDS map, and can resubmit affected
28 * requests.
30 * For the most part, though, we take advantage of a lossless
31 * communications channel to the MDS, and do not need to worry about
32 * timing out or resubmitting requests.
34 * We maintain a stateful "session" with each MDS we interact with.
35 * Within each session, we sent periodic heartbeat messages to ensure
36 * any capabilities or leases we have been issues remain valid. If
37 * the session times out and goes stale, our leases and capabilities
38 * are no longer valid.
41 struct ceph_reconnect_state {
42 struct ceph_pagelist *pagelist;
43 bool flock;
46 static void __wake_requests(struct ceph_mds_client *mdsc,
47 struct list_head *head);
49 static const struct ceph_connection_operations mds_con_ops;
53 * mds reply parsing
57 * parse individual inode info
59 static int parse_reply_info_in(void **p, void *end,
60 struct ceph_mds_reply_info_in *info)
62 int err = -EIO;
64 info->in = *p;
65 *p += sizeof(struct ceph_mds_reply_inode) +
66 sizeof(*info->in->fragtree.splits) *
67 le32_to_cpu(info->in->fragtree.nsplits);
69 ceph_decode_32_safe(p, end, info->symlink_len, bad);
70 ceph_decode_need(p, end, info->symlink_len, bad);
71 info->symlink = *p;
72 *p += info->symlink_len;
74 ceph_decode_32_safe(p, end, info->xattr_len, bad);
75 ceph_decode_need(p, end, info->xattr_len, bad);
76 info->xattr_data = *p;
77 *p += info->xattr_len;
78 return 0;
79 bad:
80 return err;
84 * parse a normal reply, which may contain a (dir+)dentry and/or a
85 * target inode.
87 static int parse_reply_info_trace(void **p, void *end,
88 struct ceph_mds_reply_info_parsed *info)
90 int err;
92 if (info->head->is_dentry) {
93 err = parse_reply_info_in(p, end, &info->diri);
94 if (err < 0)
95 goto out_bad;
97 if (unlikely(*p + sizeof(*info->dirfrag) > end))
98 goto bad;
99 info->dirfrag = *p;
100 *p += sizeof(*info->dirfrag) +
101 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
102 if (unlikely(*p > end))
103 goto bad;
105 ceph_decode_32_safe(p, end, info->dname_len, bad);
106 ceph_decode_need(p, end, info->dname_len, bad);
107 info->dname = *p;
108 *p += info->dname_len;
109 info->dlease = *p;
110 *p += sizeof(*info->dlease);
113 if (info->head->is_target) {
114 err = parse_reply_info_in(p, end, &info->targeti);
115 if (err < 0)
116 goto out_bad;
119 if (unlikely(*p != end))
120 goto bad;
121 return 0;
123 bad:
124 err = -EIO;
125 out_bad:
126 pr_err("problem parsing mds trace %d\n", err);
127 return err;
131 * parse readdir results
133 static int parse_reply_info_dir(void **p, void *end,
134 struct ceph_mds_reply_info_parsed *info)
136 u32 num, i = 0;
137 int err;
139 info->dir_dir = *p;
140 if (*p + sizeof(*info->dir_dir) > end)
141 goto bad;
142 *p += sizeof(*info->dir_dir) +
143 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
144 if (*p > end)
145 goto bad;
147 ceph_decode_need(p, end, sizeof(num) + 2, bad);
148 num = ceph_decode_32(p);
149 info->dir_end = ceph_decode_8(p);
150 info->dir_complete = ceph_decode_8(p);
151 if (num == 0)
152 goto done;
154 /* alloc large array */
155 info->dir_nr = num;
156 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
157 sizeof(*info->dir_dname) +
158 sizeof(*info->dir_dname_len) +
159 sizeof(*info->dir_dlease),
160 GFP_NOFS);
161 if (info->dir_in == NULL) {
162 err = -ENOMEM;
163 goto out_bad;
165 info->dir_dname = (void *)(info->dir_in + num);
166 info->dir_dname_len = (void *)(info->dir_dname + num);
167 info->dir_dlease = (void *)(info->dir_dname_len + num);
169 while (num) {
170 /* dentry */
171 ceph_decode_need(p, end, sizeof(u32)*2, bad);
172 info->dir_dname_len[i] = ceph_decode_32(p);
173 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
174 info->dir_dname[i] = *p;
175 *p += info->dir_dname_len[i];
176 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
177 info->dir_dname[i]);
178 info->dir_dlease[i] = *p;
179 *p += sizeof(struct ceph_mds_reply_lease);
181 /* inode */
182 err = parse_reply_info_in(p, end, &info->dir_in[i]);
183 if (err < 0)
184 goto out_bad;
185 i++;
186 num--;
189 done:
190 if (*p != end)
191 goto bad;
192 return 0;
194 bad:
195 err = -EIO;
196 out_bad:
197 pr_err("problem parsing dir contents %d\n", err);
198 return err;
202 * parse entire mds reply
204 static int parse_reply_info(struct ceph_msg *msg,
205 struct ceph_mds_reply_info_parsed *info)
207 void *p, *end;
208 u32 len;
209 int err;
211 info->head = msg->front.iov_base;
212 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
213 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
215 /* trace */
216 ceph_decode_32_safe(&p, end, len, bad);
217 if (len > 0) {
218 err = parse_reply_info_trace(&p, p+len, info);
219 if (err < 0)
220 goto out_bad;
223 /* dir content */
224 ceph_decode_32_safe(&p, end, len, bad);
225 if (len > 0) {
226 err = parse_reply_info_dir(&p, p+len, info);
227 if (err < 0)
228 goto out_bad;
231 /* snap blob */
232 ceph_decode_32_safe(&p, end, len, bad);
233 info->snapblob_len = len;
234 info->snapblob = p;
235 p += len;
237 if (p != end)
238 goto bad;
239 return 0;
241 bad:
242 err = -EIO;
243 out_bad:
244 pr_err("mds parse_reply err %d\n", err);
245 return err;
248 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
250 kfree(info->dir_in);
255 * sessions
257 static const char *session_state_name(int s)
259 switch (s) {
260 case CEPH_MDS_SESSION_NEW: return "new";
261 case CEPH_MDS_SESSION_OPENING: return "opening";
262 case CEPH_MDS_SESSION_OPEN: return "open";
263 case CEPH_MDS_SESSION_HUNG: return "hung";
264 case CEPH_MDS_SESSION_CLOSING: return "closing";
265 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
266 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
267 default: return "???";
271 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
273 if (atomic_inc_not_zero(&s->s_ref)) {
274 dout("mdsc get_session %p %d -> %d\n", s,
275 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
276 return s;
277 } else {
278 dout("mdsc get_session %p 0 -- FAIL", s);
279 return NULL;
283 void ceph_put_mds_session(struct ceph_mds_session *s)
285 dout("mdsc put_session %p %d -> %d\n", s,
286 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
287 if (atomic_dec_and_test(&s->s_ref)) {
288 if (s->s_authorizer)
289 s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
290 s->s_mdsc->client->monc.auth, s->s_authorizer);
291 kfree(s);
296 * called under mdsc->mutex
298 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
299 int mds)
301 struct ceph_mds_session *session;
303 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
304 return NULL;
305 session = mdsc->sessions[mds];
306 dout("lookup_mds_session %p %d\n", session,
307 atomic_read(&session->s_ref));
308 get_session(session);
309 return session;
312 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
314 if (mds >= mdsc->max_sessions)
315 return false;
316 return mdsc->sessions[mds];
319 static int __verify_registered_session(struct ceph_mds_client *mdsc,
320 struct ceph_mds_session *s)
322 if (s->s_mds >= mdsc->max_sessions ||
323 mdsc->sessions[s->s_mds] != s)
324 return -ENOENT;
325 return 0;
329 * create+register a new session for given mds.
330 * called under mdsc->mutex.
332 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
333 int mds)
335 struct ceph_mds_session *s;
337 s = kzalloc(sizeof(*s), GFP_NOFS);
338 if (!s)
339 return ERR_PTR(-ENOMEM);
340 s->s_mdsc = mdsc;
341 s->s_mds = mds;
342 s->s_state = CEPH_MDS_SESSION_NEW;
343 s->s_ttl = 0;
344 s->s_seq = 0;
345 mutex_init(&s->s_mutex);
347 ceph_con_init(mdsc->client->msgr, &s->s_con);
348 s->s_con.private = s;
349 s->s_con.ops = &mds_con_ops;
350 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
351 s->s_con.peer_name.num = cpu_to_le64(mds);
353 spin_lock_init(&s->s_cap_lock);
354 s->s_cap_gen = 0;
355 s->s_cap_ttl = 0;
356 s->s_renew_requested = 0;
357 s->s_renew_seq = 0;
358 INIT_LIST_HEAD(&s->s_caps);
359 s->s_nr_caps = 0;
360 s->s_trim_caps = 0;
361 atomic_set(&s->s_ref, 1);
362 INIT_LIST_HEAD(&s->s_waiting);
363 INIT_LIST_HEAD(&s->s_unsafe);
364 s->s_num_cap_releases = 0;
365 s->s_cap_iterator = NULL;
366 INIT_LIST_HEAD(&s->s_cap_releases);
367 INIT_LIST_HEAD(&s->s_cap_releases_done);
368 INIT_LIST_HEAD(&s->s_cap_flushing);
369 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
371 dout("register_session mds%d\n", mds);
372 if (mds >= mdsc->max_sessions) {
373 int newmax = 1 << get_count_order(mds+1);
374 struct ceph_mds_session **sa;
376 dout("register_session realloc to %d\n", newmax);
377 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
378 if (sa == NULL)
379 goto fail_realloc;
380 if (mdsc->sessions) {
381 memcpy(sa, mdsc->sessions,
382 mdsc->max_sessions * sizeof(void *));
383 kfree(mdsc->sessions);
385 mdsc->sessions = sa;
386 mdsc->max_sessions = newmax;
388 mdsc->sessions[mds] = s;
389 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
391 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
393 return s;
395 fail_realloc:
396 kfree(s);
397 return ERR_PTR(-ENOMEM);
401 * called under mdsc->mutex
403 static void __unregister_session(struct ceph_mds_client *mdsc,
404 struct ceph_mds_session *s)
406 dout("__unregister_session mds%d %p\n", s->s_mds, s);
407 BUG_ON(mdsc->sessions[s->s_mds] != s);
408 mdsc->sessions[s->s_mds] = NULL;
409 ceph_con_close(&s->s_con);
410 ceph_put_mds_session(s);
414 * drop session refs in request.
416 * should be last request ref, or hold mdsc->mutex
418 static void put_request_session(struct ceph_mds_request *req)
420 if (req->r_session) {
421 ceph_put_mds_session(req->r_session);
422 req->r_session = NULL;
426 void ceph_mdsc_release_request(struct kref *kref)
428 struct ceph_mds_request *req = container_of(kref,
429 struct ceph_mds_request,
430 r_kref);
431 if (req->r_request)
432 ceph_msg_put(req->r_request);
433 if (req->r_reply) {
434 ceph_msg_put(req->r_reply);
435 destroy_reply_info(&req->r_reply_info);
437 if (req->r_inode) {
438 ceph_put_cap_refs(ceph_inode(req->r_inode),
439 CEPH_CAP_PIN);
440 iput(req->r_inode);
442 if (req->r_locked_dir)
443 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
444 CEPH_CAP_PIN);
445 if (req->r_target_inode)
446 iput(req->r_target_inode);
447 if (req->r_dentry)
448 dput(req->r_dentry);
449 if (req->r_old_dentry) {
450 ceph_put_cap_refs(
451 ceph_inode(req->r_old_dentry->d_parent->d_inode),
452 CEPH_CAP_PIN);
453 dput(req->r_old_dentry);
455 kfree(req->r_path1);
456 kfree(req->r_path2);
457 put_request_session(req);
458 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
459 kfree(req);
463 * lookup session, bump ref if found.
465 * called under mdsc->mutex.
467 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
468 u64 tid)
470 struct ceph_mds_request *req;
471 struct rb_node *n = mdsc->request_tree.rb_node;
473 while (n) {
474 req = rb_entry(n, struct ceph_mds_request, r_node);
475 if (tid < req->r_tid)
476 n = n->rb_left;
477 else if (tid > req->r_tid)
478 n = n->rb_right;
479 else {
480 ceph_mdsc_get_request(req);
481 return req;
484 return NULL;
487 static void __insert_request(struct ceph_mds_client *mdsc,
488 struct ceph_mds_request *new)
490 struct rb_node **p = &mdsc->request_tree.rb_node;
491 struct rb_node *parent = NULL;
492 struct ceph_mds_request *req = NULL;
494 while (*p) {
495 parent = *p;
496 req = rb_entry(parent, struct ceph_mds_request, r_node);
497 if (new->r_tid < req->r_tid)
498 p = &(*p)->rb_left;
499 else if (new->r_tid > req->r_tid)
500 p = &(*p)->rb_right;
501 else
502 BUG();
505 rb_link_node(&new->r_node, parent, p);
506 rb_insert_color(&new->r_node, &mdsc->request_tree);
510 * Register an in-flight request, and assign a tid. Link to directory
511 * are modifying (if any).
513 * Called under mdsc->mutex.
515 static void __register_request(struct ceph_mds_client *mdsc,
516 struct ceph_mds_request *req,
517 struct inode *dir)
519 req->r_tid = ++mdsc->last_tid;
520 if (req->r_num_caps)
521 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
522 req->r_num_caps);
523 dout("__register_request %p tid %lld\n", req, req->r_tid);
524 ceph_mdsc_get_request(req);
525 __insert_request(mdsc, req);
527 if (dir) {
528 struct ceph_inode_info *ci = ceph_inode(dir);
530 spin_lock(&ci->i_unsafe_lock);
531 req->r_unsafe_dir = dir;
532 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
533 spin_unlock(&ci->i_unsafe_lock);
537 static void __unregister_request(struct ceph_mds_client *mdsc,
538 struct ceph_mds_request *req)
540 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
541 rb_erase(&req->r_node, &mdsc->request_tree);
542 RB_CLEAR_NODE(&req->r_node);
544 if (req->r_unsafe_dir) {
545 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
547 spin_lock(&ci->i_unsafe_lock);
548 list_del_init(&req->r_unsafe_dir_item);
549 spin_unlock(&ci->i_unsafe_lock);
552 ceph_mdsc_put_request(req);
556 * Choose mds to send request to next. If there is a hint set in the
557 * request (e.g., due to a prior forward hint from the mds), use that.
558 * Otherwise, consult frag tree and/or caps to identify the
559 * appropriate mds. If all else fails, choose randomly.
561 * Called under mdsc->mutex.
563 static int __choose_mds(struct ceph_mds_client *mdsc,
564 struct ceph_mds_request *req)
566 struct inode *inode;
567 struct ceph_inode_info *ci;
568 struct ceph_cap *cap;
569 int mode = req->r_direct_mode;
570 int mds = -1;
571 u32 hash = req->r_direct_hash;
572 bool is_hash = req->r_direct_is_hash;
575 * is there a specific mds we should try? ignore hint if we have
576 * no session and the mds is not up (active or recovering).
578 if (req->r_resend_mds >= 0 &&
579 (__have_session(mdsc, req->r_resend_mds) ||
580 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
581 dout("choose_mds using resend_mds mds%d\n",
582 req->r_resend_mds);
583 return req->r_resend_mds;
586 if (mode == USE_RANDOM_MDS)
587 goto random;
589 inode = NULL;
590 if (req->r_inode) {
591 inode = req->r_inode;
592 } else if (req->r_dentry) {
593 if (req->r_dentry->d_inode) {
594 inode = req->r_dentry->d_inode;
595 } else {
596 inode = req->r_dentry->d_parent->d_inode;
597 hash = req->r_dentry->d_name.hash;
598 is_hash = true;
601 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
602 (int)hash, mode);
603 if (!inode)
604 goto random;
605 ci = ceph_inode(inode);
607 if (is_hash && S_ISDIR(inode->i_mode)) {
608 struct ceph_inode_frag frag;
609 int found;
611 ceph_choose_frag(ci, hash, &frag, &found);
612 if (found) {
613 if (mode == USE_ANY_MDS && frag.ndist > 0) {
614 u8 r;
616 /* choose a random replica */
617 get_random_bytes(&r, 1);
618 r %= frag.ndist;
619 mds = frag.dist[r];
620 dout("choose_mds %p %llx.%llx "
621 "frag %u mds%d (%d/%d)\n",
622 inode, ceph_vinop(inode),
623 frag.frag, frag.mds,
624 (int)r, frag.ndist);
625 return mds;
628 /* since this file/dir wasn't known to be
629 * replicated, then we want to look for the
630 * authoritative mds. */
631 mode = USE_AUTH_MDS;
632 if (frag.mds >= 0) {
633 /* choose auth mds */
634 mds = frag.mds;
635 dout("choose_mds %p %llx.%llx "
636 "frag %u mds%d (auth)\n",
637 inode, ceph_vinop(inode), frag.frag, mds);
638 return mds;
643 spin_lock(&inode->i_lock);
644 cap = NULL;
645 if (mode == USE_AUTH_MDS)
646 cap = ci->i_auth_cap;
647 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
648 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
649 if (!cap) {
650 spin_unlock(&inode->i_lock);
651 goto random;
653 mds = cap->session->s_mds;
654 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
655 inode, ceph_vinop(inode), mds,
656 cap == ci->i_auth_cap ? "auth " : "", cap);
657 spin_unlock(&inode->i_lock);
658 return mds;
660 random:
661 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
662 dout("choose_mds chose random mds%d\n", mds);
663 return mds;
668 * session messages
670 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
672 struct ceph_msg *msg;
673 struct ceph_mds_session_head *h;
675 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
676 if (!msg) {
677 pr_err("create_session_msg ENOMEM creating msg\n");
678 return NULL;
680 h = msg->front.iov_base;
681 h->op = cpu_to_le32(op);
682 h->seq = cpu_to_le64(seq);
683 return msg;
687 * send session open request.
689 * called under mdsc->mutex
691 static int __open_session(struct ceph_mds_client *mdsc,
692 struct ceph_mds_session *session)
694 struct ceph_msg *msg;
695 int mstate;
696 int mds = session->s_mds;
698 /* wait for mds to go active? */
699 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
700 dout("open_session to mds%d (%s)\n", mds,
701 ceph_mds_state_name(mstate));
702 session->s_state = CEPH_MDS_SESSION_OPENING;
703 session->s_renew_requested = jiffies;
705 /* send connect message */
706 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
707 if (!msg)
708 return -ENOMEM;
709 ceph_con_send(&session->s_con, msg);
710 return 0;
714 * open sessions for any export targets for the given mds
716 * called under mdsc->mutex
718 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
719 struct ceph_mds_session *session)
721 struct ceph_mds_info *mi;
722 struct ceph_mds_session *ts;
723 int i, mds = session->s_mds;
724 int target;
726 if (mds >= mdsc->mdsmap->m_max_mds)
727 return;
728 mi = &mdsc->mdsmap->m_info[mds];
729 dout("open_export_target_sessions for mds%d (%d targets)\n",
730 session->s_mds, mi->num_export_targets);
732 for (i = 0; i < mi->num_export_targets; i++) {
733 target = mi->export_targets[i];
734 ts = __ceph_lookup_mds_session(mdsc, target);
735 if (!ts) {
736 ts = register_session(mdsc, target);
737 if (IS_ERR(ts))
738 return;
740 if (session->s_state == CEPH_MDS_SESSION_NEW ||
741 session->s_state == CEPH_MDS_SESSION_CLOSING)
742 __open_session(mdsc, session);
743 else
744 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
745 i, ts, session_state_name(ts->s_state));
746 ceph_put_mds_session(ts);
750 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
751 struct ceph_mds_session *session)
753 mutex_lock(&mdsc->mutex);
754 __open_export_target_sessions(mdsc, session);
755 mutex_unlock(&mdsc->mutex);
759 * session caps
763 * Free preallocated cap messages assigned to this session
765 static void cleanup_cap_releases(struct ceph_mds_session *session)
767 struct ceph_msg *msg;
769 spin_lock(&session->s_cap_lock);
770 while (!list_empty(&session->s_cap_releases)) {
771 msg = list_first_entry(&session->s_cap_releases,
772 struct ceph_msg, list_head);
773 list_del_init(&msg->list_head);
774 ceph_msg_put(msg);
776 while (!list_empty(&session->s_cap_releases_done)) {
777 msg = list_first_entry(&session->s_cap_releases_done,
778 struct ceph_msg, list_head);
779 list_del_init(&msg->list_head);
780 ceph_msg_put(msg);
782 spin_unlock(&session->s_cap_lock);
786 * Helper to safely iterate over all caps associated with a session, with
787 * special care taken to handle a racing __ceph_remove_cap().
789 * Caller must hold session s_mutex.
791 static int iterate_session_caps(struct ceph_mds_session *session,
792 int (*cb)(struct inode *, struct ceph_cap *,
793 void *), void *arg)
795 struct list_head *p;
796 struct ceph_cap *cap;
797 struct inode *inode, *last_inode = NULL;
798 struct ceph_cap *old_cap = NULL;
799 int ret;
801 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
802 spin_lock(&session->s_cap_lock);
803 p = session->s_caps.next;
804 while (p != &session->s_caps) {
805 cap = list_entry(p, struct ceph_cap, session_caps);
806 inode = igrab(&cap->ci->vfs_inode);
807 if (!inode) {
808 p = p->next;
809 continue;
811 session->s_cap_iterator = cap;
812 spin_unlock(&session->s_cap_lock);
814 if (last_inode) {
815 iput(last_inode);
816 last_inode = NULL;
818 if (old_cap) {
819 ceph_put_cap(session->s_mdsc, old_cap);
820 old_cap = NULL;
823 ret = cb(inode, cap, arg);
824 last_inode = inode;
826 spin_lock(&session->s_cap_lock);
827 p = p->next;
828 if (cap->ci == NULL) {
829 dout("iterate_session_caps finishing cap %p removal\n",
830 cap);
831 BUG_ON(cap->session != session);
832 list_del_init(&cap->session_caps);
833 session->s_nr_caps--;
834 cap->session = NULL;
835 old_cap = cap; /* put_cap it w/o locks held */
837 if (ret < 0)
838 goto out;
840 ret = 0;
841 out:
842 session->s_cap_iterator = NULL;
843 spin_unlock(&session->s_cap_lock);
845 if (last_inode)
846 iput(last_inode);
847 if (old_cap)
848 ceph_put_cap(session->s_mdsc, old_cap);
850 return ret;
853 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
854 void *arg)
856 struct ceph_inode_info *ci = ceph_inode(inode);
857 int drop = 0;
859 dout("removing cap %p, ci is %p, inode is %p\n",
860 cap, ci, &ci->vfs_inode);
861 spin_lock(&inode->i_lock);
862 __ceph_remove_cap(cap);
863 if (!__ceph_is_any_real_caps(ci)) {
864 struct ceph_mds_client *mdsc =
865 &ceph_sb_to_client(inode->i_sb)->mdsc;
867 spin_lock(&mdsc->cap_dirty_lock);
868 if (!list_empty(&ci->i_dirty_item)) {
869 pr_info(" dropping dirty %s state for %p %lld\n",
870 ceph_cap_string(ci->i_dirty_caps),
871 inode, ceph_ino(inode));
872 ci->i_dirty_caps = 0;
873 list_del_init(&ci->i_dirty_item);
874 drop = 1;
876 if (!list_empty(&ci->i_flushing_item)) {
877 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
878 ceph_cap_string(ci->i_flushing_caps),
879 inode, ceph_ino(inode));
880 ci->i_flushing_caps = 0;
881 list_del_init(&ci->i_flushing_item);
882 mdsc->num_cap_flushing--;
883 drop = 1;
885 if (drop && ci->i_wrbuffer_ref) {
886 pr_info(" dropping dirty data for %p %lld\n",
887 inode, ceph_ino(inode));
888 ci->i_wrbuffer_ref = 0;
889 ci->i_wrbuffer_ref_head = 0;
890 drop++;
892 spin_unlock(&mdsc->cap_dirty_lock);
894 spin_unlock(&inode->i_lock);
895 while (drop--)
896 iput(inode);
897 return 0;
901 * caller must hold session s_mutex
903 static void remove_session_caps(struct ceph_mds_session *session)
905 dout("remove_session_caps on %p\n", session);
906 iterate_session_caps(session, remove_session_caps_cb, NULL);
907 BUG_ON(session->s_nr_caps > 0);
908 BUG_ON(!list_empty(&session->s_cap_flushing));
909 cleanup_cap_releases(session);
913 * wake up any threads waiting on this session's caps. if the cap is
914 * old (didn't get renewed on the client reconnect), remove it now.
916 * caller must hold s_mutex.
918 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
919 void *arg)
921 struct ceph_inode_info *ci = ceph_inode(inode);
923 wake_up_all(&ci->i_cap_wq);
924 if (arg) {
925 spin_lock(&inode->i_lock);
926 ci->i_wanted_max_size = 0;
927 ci->i_requested_max_size = 0;
928 spin_unlock(&inode->i_lock);
930 return 0;
933 static void wake_up_session_caps(struct ceph_mds_session *session,
934 int reconnect)
936 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
937 iterate_session_caps(session, wake_up_session_cb,
938 (void *)(unsigned long)reconnect);
942 * Send periodic message to MDS renewing all currently held caps. The
943 * ack will reset the expiration for all caps from this session.
945 * caller holds s_mutex
947 static int send_renew_caps(struct ceph_mds_client *mdsc,
948 struct ceph_mds_session *session)
950 struct ceph_msg *msg;
951 int state;
953 if (time_after_eq(jiffies, session->s_cap_ttl) &&
954 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
955 pr_info("mds%d caps stale\n", session->s_mds);
956 session->s_renew_requested = jiffies;
958 /* do not try to renew caps until a recovering mds has reconnected
959 * with its clients. */
960 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
961 if (state < CEPH_MDS_STATE_RECONNECT) {
962 dout("send_renew_caps ignoring mds%d (%s)\n",
963 session->s_mds, ceph_mds_state_name(state));
964 return 0;
967 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
968 ceph_mds_state_name(state));
969 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
970 ++session->s_renew_seq);
971 if (!msg)
972 return -ENOMEM;
973 ceph_con_send(&session->s_con, msg);
974 return 0;
978 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
980 * Called under session->s_mutex
982 static void renewed_caps(struct ceph_mds_client *mdsc,
983 struct ceph_mds_session *session, int is_renew)
985 int was_stale;
986 int wake = 0;
988 spin_lock(&session->s_cap_lock);
989 was_stale = is_renew && (session->s_cap_ttl == 0 ||
990 time_after_eq(jiffies, session->s_cap_ttl));
992 session->s_cap_ttl = session->s_renew_requested +
993 mdsc->mdsmap->m_session_timeout*HZ;
995 if (was_stale) {
996 if (time_before(jiffies, session->s_cap_ttl)) {
997 pr_info("mds%d caps renewed\n", session->s_mds);
998 wake = 1;
999 } else {
1000 pr_info("mds%d caps still stale\n", session->s_mds);
1003 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1004 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1005 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1006 spin_unlock(&session->s_cap_lock);
1008 if (wake)
1009 wake_up_session_caps(session, 0);
1013 * send a session close request
1015 static int request_close_session(struct ceph_mds_client *mdsc,
1016 struct ceph_mds_session *session)
1018 struct ceph_msg *msg;
1020 dout("request_close_session mds%d state %s seq %lld\n",
1021 session->s_mds, session_state_name(session->s_state),
1022 session->s_seq);
1023 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1024 if (!msg)
1025 return -ENOMEM;
1026 ceph_con_send(&session->s_con, msg);
1027 return 0;
1031 * Called with s_mutex held.
1033 static int __close_session(struct ceph_mds_client *mdsc,
1034 struct ceph_mds_session *session)
1036 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1037 return 0;
1038 session->s_state = CEPH_MDS_SESSION_CLOSING;
1039 return request_close_session(mdsc, session);
1043 * Trim old(er) caps.
1045 * Because we can't cache an inode without one or more caps, we do
1046 * this indirectly: if a cap is unused, we prune its aliases, at which
1047 * point the inode will hopefully get dropped to.
1049 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1050 * memory pressure from the MDS, though, so it needn't be perfect.
1052 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1054 struct ceph_mds_session *session = arg;
1055 struct ceph_inode_info *ci = ceph_inode(inode);
1056 int used, oissued, mine;
1058 if (session->s_trim_caps <= 0)
1059 return -1;
1061 spin_lock(&inode->i_lock);
1062 mine = cap->issued | cap->implemented;
1063 used = __ceph_caps_used(ci);
1064 oissued = __ceph_caps_issued_other(ci, cap);
1066 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1067 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1068 ceph_cap_string(used));
1069 if (ci->i_dirty_caps)
1070 goto out; /* dirty caps */
1071 if ((used & ~oissued) & mine)
1072 goto out; /* we need these caps */
1074 session->s_trim_caps--;
1075 if (oissued) {
1076 /* we aren't the only cap.. just remove us */
1077 __ceph_remove_cap(cap);
1078 } else {
1079 /* try to drop referring dentries */
1080 spin_unlock(&inode->i_lock);
1081 d_prune_aliases(inode);
1082 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1083 inode, cap, atomic_read(&inode->i_count));
1084 return 0;
1087 out:
1088 spin_unlock(&inode->i_lock);
1089 return 0;
1093 * Trim session cap count down to some max number.
1095 static int trim_caps(struct ceph_mds_client *mdsc,
1096 struct ceph_mds_session *session,
1097 int max_caps)
1099 int trim_caps = session->s_nr_caps - max_caps;
1101 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1102 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1103 if (trim_caps > 0) {
1104 session->s_trim_caps = trim_caps;
1105 iterate_session_caps(session, trim_caps_cb, session);
1106 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1107 session->s_mds, session->s_nr_caps, max_caps,
1108 trim_caps - session->s_trim_caps);
1109 session->s_trim_caps = 0;
1111 return 0;
1115 * Allocate cap_release messages. If there is a partially full message
1116 * in the queue, try to allocate enough to cover it's remainder, so that
1117 * we can send it immediately.
1119 * Called under s_mutex.
1121 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1122 struct ceph_mds_session *session)
1124 struct ceph_msg *msg, *partial = NULL;
1125 struct ceph_mds_cap_release *head;
1126 int err = -ENOMEM;
1127 int extra = mdsc->client->mount_args->cap_release_safety;
1128 int num;
1130 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1131 extra);
1133 spin_lock(&session->s_cap_lock);
1135 if (!list_empty(&session->s_cap_releases)) {
1136 msg = list_first_entry(&session->s_cap_releases,
1137 struct ceph_msg,
1138 list_head);
1139 head = msg->front.iov_base;
1140 num = le32_to_cpu(head->num);
1141 if (num) {
1142 dout(" partial %p with (%d/%d)\n", msg, num,
1143 (int)CEPH_CAPS_PER_RELEASE);
1144 extra += CEPH_CAPS_PER_RELEASE - num;
1145 partial = msg;
1148 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1149 spin_unlock(&session->s_cap_lock);
1150 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1151 GFP_NOFS);
1152 if (!msg)
1153 goto out_unlocked;
1154 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1155 (int)msg->front.iov_len);
1156 head = msg->front.iov_base;
1157 head->num = cpu_to_le32(0);
1158 msg->front.iov_len = sizeof(*head);
1159 spin_lock(&session->s_cap_lock);
1160 list_add(&msg->list_head, &session->s_cap_releases);
1161 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1164 if (partial) {
1165 head = partial->front.iov_base;
1166 num = le32_to_cpu(head->num);
1167 dout(" queueing partial %p with %d/%d\n", partial, num,
1168 (int)CEPH_CAPS_PER_RELEASE);
1169 list_move_tail(&partial->list_head,
1170 &session->s_cap_releases_done);
1171 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1173 err = 0;
1174 spin_unlock(&session->s_cap_lock);
1175 out_unlocked:
1176 return err;
1180 * flush all dirty inode data to disk.
1182 * returns true if we've flushed through want_flush_seq
1184 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1186 int mds, ret = 1;
1188 dout("check_cap_flush want %lld\n", want_flush_seq);
1189 mutex_lock(&mdsc->mutex);
1190 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1191 struct ceph_mds_session *session = mdsc->sessions[mds];
1193 if (!session)
1194 continue;
1195 get_session(session);
1196 mutex_unlock(&mdsc->mutex);
1198 mutex_lock(&session->s_mutex);
1199 if (!list_empty(&session->s_cap_flushing)) {
1200 struct ceph_inode_info *ci =
1201 list_entry(session->s_cap_flushing.next,
1202 struct ceph_inode_info,
1203 i_flushing_item);
1204 struct inode *inode = &ci->vfs_inode;
1206 spin_lock(&inode->i_lock);
1207 if (ci->i_cap_flush_seq <= want_flush_seq) {
1208 dout("check_cap_flush still flushing %p "
1209 "seq %lld <= %lld to mds%d\n", inode,
1210 ci->i_cap_flush_seq, want_flush_seq,
1211 session->s_mds);
1212 ret = 0;
1214 spin_unlock(&inode->i_lock);
1216 mutex_unlock(&session->s_mutex);
1217 ceph_put_mds_session(session);
1219 if (!ret)
1220 return ret;
1221 mutex_lock(&mdsc->mutex);
1224 mutex_unlock(&mdsc->mutex);
1225 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1226 return ret;
1230 * called under s_mutex
1232 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1233 struct ceph_mds_session *session)
1235 struct ceph_msg *msg;
1237 dout("send_cap_releases mds%d\n", session->s_mds);
1238 spin_lock(&session->s_cap_lock);
1239 while (!list_empty(&session->s_cap_releases_done)) {
1240 msg = list_first_entry(&session->s_cap_releases_done,
1241 struct ceph_msg, list_head);
1242 list_del_init(&msg->list_head);
1243 spin_unlock(&session->s_cap_lock);
1244 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1245 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1246 ceph_con_send(&session->s_con, msg);
1247 spin_lock(&session->s_cap_lock);
1249 spin_unlock(&session->s_cap_lock);
1252 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1253 struct ceph_mds_session *session)
1255 struct ceph_msg *msg;
1256 struct ceph_mds_cap_release *head;
1257 unsigned num;
1259 dout("discard_cap_releases mds%d\n", session->s_mds);
1260 spin_lock(&session->s_cap_lock);
1262 /* zero out the in-progress message */
1263 msg = list_first_entry(&session->s_cap_releases,
1264 struct ceph_msg, list_head);
1265 head = msg->front.iov_base;
1266 num = le32_to_cpu(head->num);
1267 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1268 head->num = cpu_to_le32(0);
1269 session->s_num_cap_releases += num;
1271 /* requeue completed messages */
1272 while (!list_empty(&session->s_cap_releases_done)) {
1273 msg = list_first_entry(&session->s_cap_releases_done,
1274 struct ceph_msg, list_head);
1275 list_del_init(&msg->list_head);
1277 head = msg->front.iov_base;
1278 num = le32_to_cpu(head->num);
1279 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1280 num);
1281 session->s_num_cap_releases += num;
1282 head->num = cpu_to_le32(0);
1283 msg->front.iov_len = sizeof(*head);
1284 list_add(&msg->list_head, &session->s_cap_releases);
1287 spin_unlock(&session->s_cap_lock);
1291 * requests
1295 * Create an mds request.
1297 struct ceph_mds_request *
1298 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1300 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1302 if (!req)
1303 return ERR_PTR(-ENOMEM);
1305 mutex_init(&req->r_fill_mutex);
1306 req->r_mdsc = mdsc;
1307 req->r_started = jiffies;
1308 req->r_resend_mds = -1;
1309 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1310 req->r_fmode = -1;
1311 kref_init(&req->r_kref);
1312 INIT_LIST_HEAD(&req->r_wait);
1313 init_completion(&req->r_completion);
1314 init_completion(&req->r_safe_completion);
1315 INIT_LIST_HEAD(&req->r_unsafe_item);
1317 req->r_op = op;
1318 req->r_direct_mode = mode;
1319 return req;
1323 * return oldest (lowest) request, tid in request tree, 0 if none.
1325 * called under mdsc->mutex.
1327 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1329 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1330 return NULL;
1331 return rb_entry(rb_first(&mdsc->request_tree),
1332 struct ceph_mds_request, r_node);
1335 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1337 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1339 if (req)
1340 return req->r_tid;
1341 return 0;
1345 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1346 * on build_path_from_dentry in fs/cifs/dir.c.
1348 * If @stop_on_nosnap, generate path relative to the first non-snapped
1349 * inode.
1351 * Encode hidden .snap dirs as a double /, i.e.
1352 * foo/.snap/bar -> foo//bar
1354 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1355 int stop_on_nosnap)
1357 struct dentry *temp;
1358 char *path;
1359 int len, pos;
1361 if (dentry == NULL)
1362 return ERR_PTR(-EINVAL);
1364 retry:
1365 len = 0;
1366 for (temp = dentry; !IS_ROOT(temp);) {
1367 struct inode *inode = temp->d_inode;
1368 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1369 len++; /* slash only */
1370 else if (stop_on_nosnap && inode &&
1371 ceph_snap(inode) == CEPH_NOSNAP)
1372 break;
1373 else
1374 len += 1 + temp->d_name.len;
1375 temp = temp->d_parent;
1376 if (temp == NULL) {
1377 pr_err("build_path corrupt dentry %p\n", dentry);
1378 return ERR_PTR(-EINVAL);
1381 if (len)
1382 len--; /* no leading '/' */
1384 path = kmalloc(len+1, GFP_NOFS);
1385 if (path == NULL)
1386 return ERR_PTR(-ENOMEM);
1387 pos = len;
1388 path[pos] = 0; /* trailing null */
1389 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1390 struct inode *inode = temp->d_inode;
1392 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1393 dout("build_path path+%d: %p SNAPDIR\n",
1394 pos, temp);
1395 } else if (stop_on_nosnap && inode &&
1396 ceph_snap(inode) == CEPH_NOSNAP) {
1397 break;
1398 } else {
1399 pos -= temp->d_name.len;
1400 if (pos < 0)
1401 break;
1402 strncpy(path + pos, temp->d_name.name,
1403 temp->d_name.len);
1405 if (pos)
1406 path[--pos] = '/';
1407 temp = temp->d_parent;
1408 if (temp == NULL) {
1409 pr_err("build_path corrupt dentry\n");
1410 kfree(path);
1411 return ERR_PTR(-EINVAL);
1414 if (pos != 0) {
1415 pr_err("build_path did not end path lookup where "
1416 "expected, namelen is %d, pos is %d\n", len, pos);
1417 /* presumably this is only possible if racing with a
1418 rename of one of the parent directories (we can not
1419 lock the dentries above us to prevent this, but
1420 retrying should be harmless) */
1421 kfree(path);
1422 goto retry;
1425 *base = ceph_ino(temp->d_inode);
1426 *plen = len;
1427 dout("build_path on %p %d built %llx '%.*s'\n",
1428 dentry, atomic_read(&dentry->d_count), *base, len, path);
1429 return path;
1432 static int build_dentry_path(struct dentry *dentry,
1433 const char **ppath, int *ppathlen, u64 *pino,
1434 int *pfreepath)
1436 char *path;
1438 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1439 *pino = ceph_ino(dentry->d_parent->d_inode);
1440 *ppath = dentry->d_name.name;
1441 *ppathlen = dentry->d_name.len;
1442 return 0;
1444 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1445 if (IS_ERR(path))
1446 return PTR_ERR(path);
1447 *ppath = path;
1448 *pfreepath = 1;
1449 return 0;
1452 static int build_inode_path(struct inode *inode,
1453 const char **ppath, int *ppathlen, u64 *pino,
1454 int *pfreepath)
1456 struct dentry *dentry;
1457 char *path;
1459 if (ceph_snap(inode) == CEPH_NOSNAP) {
1460 *pino = ceph_ino(inode);
1461 *ppathlen = 0;
1462 return 0;
1464 dentry = d_find_alias(inode);
1465 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1466 dput(dentry);
1467 if (IS_ERR(path))
1468 return PTR_ERR(path);
1469 *ppath = path;
1470 *pfreepath = 1;
1471 return 0;
1475 * request arguments may be specified via an inode *, a dentry *, or
1476 * an explicit ino+path.
1478 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1479 const char *rpath, u64 rino,
1480 const char **ppath, int *pathlen,
1481 u64 *ino, int *freepath)
1483 int r = 0;
1485 if (rinode) {
1486 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1487 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1488 ceph_snap(rinode));
1489 } else if (rdentry) {
1490 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1491 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1492 *ppath);
1493 } else if (rpath) {
1494 *ino = rino;
1495 *ppath = rpath;
1496 *pathlen = strlen(rpath);
1497 dout(" path %.*s\n", *pathlen, rpath);
1500 return r;
1504 * called under mdsc->mutex
1506 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1507 struct ceph_mds_request *req,
1508 int mds)
1510 struct ceph_msg *msg;
1511 struct ceph_mds_request_head *head;
1512 const char *path1 = NULL;
1513 const char *path2 = NULL;
1514 u64 ino1 = 0, ino2 = 0;
1515 int pathlen1 = 0, pathlen2 = 0;
1516 int freepath1 = 0, freepath2 = 0;
1517 int len;
1518 u16 releases;
1519 void *p, *end;
1520 int ret;
1522 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1523 req->r_path1, req->r_ino1.ino,
1524 &path1, &pathlen1, &ino1, &freepath1);
1525 if (ret < 0) {
1526 msg = ERR_PTR(ret);
1527 goto out;
1530 ret = set_request_path_attr(NULL, req->r_old_dentry,
1531 req->r_path2, req->r_ino2.ino,
1532 &path2, &pathlen2, &ino2, &freepath2);
1533 if (ret < 0) {
1534 msg = ERR_PTR(ret);
1535 goto out_free1;
1538 len = sizeof(*head) +
1539 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1541 /* calculate (max) length for cap releases */
1542 len += sizeof(struct ceph_mds_request_release) *
1543 (!!req->r_inode_drop + !!req->r_dentry_drop +
1544 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1545 if (req->r_dentry_drop)
1546 len += req->r_dentry->d_name.len;
1547 if (req->r_old_dentry_drop)
1548 len += req->r_old_dentry->d_name.len;
1550 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1551 if (!msg) {
1552 msg = ERR_PTR(-ENOMEM);
1553 goto out_free2;
1556 msg->hdr.tid = cpu_to_le64(req->r_tid);
1558 head = msg->front.iov_base;
1559 p = msg->front.iov_base + sizeof(*head);
1560 end = msg->front.iov_base + msg->front.iov_len;
1562 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1563 head->op = cpu_to_le32(req->r_op);
1564 head->caller_uid = cpu_to_le32(current_fsuid());
1565 head->caller_gid = cpu_to_le32(current_fsgid());
1566 head->args = req->r_args;
1568 ceph_encode_filepath(&p, end, ino1, path1);
1569 ceph_encode_filepath(&p, end, ino2, path2);
1571 /* make note of release offset, in case we need to replay */
1572 req->r_request_release_offset = p - msg->front.iov_base;
1574 /* cap releases */
1575 releases = 0;
1576 if (req->r_inode_drop)
1577 releases += ceph_encode_inode_release(&p,
1578 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1579 mds, req->r_inode_drop, req->r_inode_unless, 0);
1580 if (req->r_dentry_drop)
1581 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1582 mds, req->r_dentry_drop, req->r_dentry_unless);
1583 if (req->r_old_dentry_drop)
1584 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1585 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1586 if (req->r_old_inode_drop)
1587 releases += ceph_encode_inode_release(&p,
1588 req->r_old_dentry->d_inode,
1589 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1590 head->num_releases = cpu_to_le16(releases);
1592 BUG_ON(p > end);
1593 msg->front.iov_len = p - msg->front.iov_base;
1594 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1596 msg->pages = req->r_pages;
1597 msg->nr_pages = req->r_num_pages;
1598 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1599 msg->hdr.data_off = cpu_to_le16(0);
1601 out_free2:
1602 if (freepath2)
1603 kfree((char *)path2);
1604 out_free1:
1605 if (freepath1)
1606 kfree((char *)path1);
1607 out:
1608 return msg;
1612 * called under mdsc->mutex if error, under no mutex if
1613 * success.
1615 static void complete_request(struct ceph_mds_client *mdsc,
1616 struct ceph_mds_request *req)
1618 if (req->r_callback)
1619 req->r_callback(mdsc, req);
1620 else
1621 complete_all(&req->r_completion);
1625 * called under mdsc->mutex
1627 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1628 struct ceph_mds_request *req,
1629 int mds)
1631 struct ceph_mds_request_head *rhead;
1632 struct ceph_msg *msg;
1633 int flags = 0;
1635 req->r_mds = mds;
1636 req->r_attempts++;
1637 if (req->r_inode) {
1638 struct ceph_cap *cap =
1639 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1641 if (cap)
1642 req->r_sent_on_mseq = cap->mseq;
1643 else
1644 req->r_sent_on_mseq = -1;
1646 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1647 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1649 if (req->r_got_unsafe) {
1651 * Replay. Do not regenerate message (and rebuild
1652 * paths, etc.); just use the original message.
1653 * Rebuilding paths will break for renames because
1654 * d_move mangles the src name.
1656 msg = req->r_request;
1657 rhead = msg->front.iov_base;
1659 flags = le32_to_cpu(rhead->flags);
1660 flags |= CEPH_MDS_FLAG_REPLAY;
1661 rhead->flags = cpu_to_le32(flags);
1663 if (req->r_target_inode)
1664 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1666 rhead->num_retry = req->r_attempts - 1;
1668 /* remove cap/dentry releases from message */
1669 rhead->num_releases = 0;
1670 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1671 msg->front.iov_len = req->r_request_release_offset;
1672 return 0;
1675 if (req->r_request) {
1676 ceph_msg_put(req->r_request);
1677 req->r_request = NULL;
1679 msg = create_request_message(mdsc, req, mds);
1680 if (IS_ERR(msg)) {
1681 req->r_err = PTR_ERR(msg);
1682 complete_request(mdsc, req);
1683 return PTR_ERR(msg);
1685 req->r_request = msg;
1687 rhead = msg->front.iov_base;
1688 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1689 if (req->r_got_unsafe)
1690 flags |= CEPH_MDS_FLAG_REPLAY;
1691 if (req->r_locked_dir)
1692 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1693 rhead->flags = cpu_to_le32(flags);
1694 rhead->num_fwd = req->r_num_fwd;
1695 rhead->num_retry = req->r_attempts - 1;
1696 rhead->ino = 0;
1698 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1699 return 0;
1703 * send request, or put it on the appropriate wait list.
1705 static int __do_request(struct ceph_mds_client *mdsc,
1706 struct ceph_mds_request *req)
1708 struct ceph_mds_session *session = NULL;
1709 int mds = -1;
1710 int err = -EAGAIN;
1712 if (req->r_err || req->r_got_result)
1713 goto out;
1715 if (req->r_timeout &&
1716 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1717 dout("do_request timed out\n");
1718 err = -EIO;
1719 goto finish;
1722 mds = __choose_mds(mdsc, req);
1723 if (mds < 0 ||
1724 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1725 dout("do_request no mds or not active, waiting for map\n");
1726 list_add(&req->r_wait, &mdsc->waiting_for_map);
1727 goto out;
1730 /* get, open session */
1731 session = __ceph_lookup_mds_session(mdsc, mds);
1732 if (!session) {
1733 session = register_session(mdsc, mds);
1734 if (IS_ERR(session)) {
1735 err = PTR_ERR(session);
1736 goto finish;
1739 dout("do_request mds%d session %p state %s\n", mds, session,
1740 session_state_name(session->s_state));
1741 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1742 session->s_state != CEPH_MDS_SESSION_HUNG) {
1743 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1744 session->s_state == CEPH_MDS_SESSION_CLOSING)
1745 __open_session(mdsc, session);
1746 list_add(&req->r_wait, &session->s_waiting);
1747 goto out_session;
1750 /* send request */
1751 req->r_session = get_session(session);
1752 req->r_resend_mds = -1; /* forget any previous mds hint */
1754 if (req->r_request_started == 0) /* note request start time */
1755 req->r_request_started = jiffies;
1757 err = __prepare_send_request(mdsc, req, mds);
1758 if (!err) {
1759 ceph_msg_get(req->r_request);
1760 ceph_con_send(&session->s_con, req->r_request);
1763 out_session:
1764 ceph_put_mds_session(session);
1765 out:
1766 return err;
1768 finish:
1769 req->r_err = err;
1770 complete_request(mdsc, req);
1771 goto out;
1775 * called under mdsc->mutex
1777 static void __wake_requests(struct ceph_mds_client *mdsc,
1778 struct list_head *head)
1780 struct ceph_mds_request *req, *nreq;
1782 list_for_each_entry_safe(req, nreq, head, r_wait) {
1783 list_del_init(&req->r_wait);
1784 __do_request(mdsc, req);
1789 * Wake up threads with requests pending for @mds, so that they can
1790 * resubmit their requests to a possibly different mds.
1792 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1794 struct ceph_mds_request *req;
1795 struct rb_node *p;
1797 dout("kick_requests mds%d\n", mds);
1798 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1799 req = rb_entry(p, struct ceph_mds_request, r_node);
1800 if (req->r_got_unsafe)
1801 continue;
1802 if (req->r_session &&
1803 req->r_session->s_mds == mds) {
1804 dout(" kicking tid %llu\n", req->r_tid);
1805 put_request_session(req);
1806 __do_request(mdsc, req);
1811 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1812 struct ceph_mds_request *req)
1814 dout("submit_request on %p\n", req);
1815 mutex_lock(&mdsc->mutex);
1816 __register_request(mdsc, req, NULL);
1817 __do_request(mdsc, req);
1818 mutex_unlock(&mdsc->mutex);
1822 * Synchrously perform an mds request. Take care of all of the
1823 * session setup, forwarding, retry details.
1825 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1826 struct inode *dir,
1827 struct ceph_mds_request *req)
1829 int err;
1831 dout("do_request on %p\n", req);
1833 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1834 if (req->r_inode)
1835 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1836 if (req->r_locked_dir)
1837 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1838 if (req->r_old_dentry)
1839 ceph_get_cap_refs(
1840 ceph_inode(req->r_old_dentry->d_parent->d_inode),
1841 CEPH_CAP_PIN);
1843 /* issue */
1844 mutex_lock(&mdsc->mutex);
1845 __register_request(mdsc, req, dir);
1846 __do_request(mdsc, req);
1848 if (req->r_err) {
1849 err = req->r_err;
1850 __unregister_request(mdsc, req);
1851 dout("do_request early error %d\n", err);
1852 goto out;
1855 /* wait */
1856 mutex_unlock(&mdsc->mutex);
1857 dout("do_request waiting\n");
1858 if (req->r_timeout) {
1859 err = (long)wait_for_completion_killable_timeout(
1860 &req->r_completion, req->r_timeout);
1861 if (err == 0)
1862 err = -EIO;
1863 } else {
1864 err = wait_for_completion_killable(&req->r_completion);
1866 dout("do_request waited, got %d\n", err);
1867 mutex_lock(&mdsc->mutex);
1869 /* only abort if we didn't race with a real reply */
1870 if (req->r_got_result) {
1871 err = le32_to_cpu(req->r_reply_info.head->result);
1872 } else if (err < 0) {
1873 dout("aborted request %lld with %d\n", req->r_tid, err);
1876 * ensure we aren't running concurrently with
1877 * ceph_fill_trace or ceph_readdir_prepopulate, which
1878 * rely on locks (dir mutex) held by our caller.
1880 mutex_lock(&req->r_fill_mutex);
1881 req->r_err = err;
1882 req->r_aborted = true;
1883 mutex_unlock(&req->r_fill_mutex);
1885 if (req->r_locked_dir &&
1886 (req->r_op & CEPH_MDS_OP_WRITE))
1887 ceph_invalidate_dir_request(req);
1888 } else {
1889 err = req->r_err;
1892 out:
1893 mutex_unlock(&mdsc->mutex);
1894 dout("do_request %p done, result %d\n", req, err);
1895 return err;
1899 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1900 * namespace request.
1902 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1904 struct inode *inode = req->r_locked_dir;
1905 struct ceph_inode_info *ci = ceph_inode(inode);
1907 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1908 spin_lock(&inode->i_lock);
1909 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1910 ci->i_release_count++;
1911 spin_unlock(&inode->i_lock);
1913 if (req->r_dentry)
1914 ceph_invalidate_dentry_lease(req->r_dentry);
1915 if (req->r_old_dentry)
1916 ceph_invalidate_dentry_lease(req->r_old_dentry);
1920 * Handle mds reply.
1922 * We take the session mutex and parse and process the reply immediately.
1923 * This preserves the logical ordering of replies, capabilities, etc., sent
1924 * by the MDS as they are applied to our local cache.
1926 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1928 struct ceph_mds_client *mdsc = session->s_mdsc;
1929 struct ceph_mds_request *req;
1930 struct ceph_mds_reply_head *head = msg->front.iov_base;
1931 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
1932 u64 tid;
1933 int err, result;
1934 int mds = session->s_mds;
1936 if (msg->front.iov_len < sizeof(*head)) {
1937 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1938 ceph_msg_dump(msg);
1939 return;
1942 /* get request, session */
1943 tid = le64_to_cpu(msg->hdr.tid);
1944 mutex_lock(&mdsc->mutex);
1945 req = __lookup_request(mdsc, tid);
1946 if (!req) {
1947 dout("handle_reply on unknown tid %llu\n", tid);
1948 mutex_unlock(&mdsc->mutex);
1949 return;
1951 dout("handle_reply %p\n", req);
1953 /* correct session? */
1954 if (req->r_session != session) {
1955 pr_err("mdsc_handle_reply got %llu on session mds%d"
1956 " not mds%d\n", tid, session->s_mds,
1957 req->r_session ? req->r_session->s_mds : -1);
1958 mutex_unlock(&mdsc->mutex);
1959 goto out;
1962 /* dup? */
1963 if ((req->r_got_unsafe && !head->safe) ||
1964 (req->r_got_safe && head->safe)) {
1965 pr_warning("got a dup %s reply on %llu from mds%d\n",
1966 head->safe ? "safe" : "unsafe", tid, mds);
1967 mutex_unlock(&mdsc->mutex);
1968 goto out;
1970 if (req->r_got_safe && !head->safe) {
1971 pr_warning("got unsafe after safe on %llu from mds%d\n",
1972 tid, mds);
1973 mutex_unlock(&mdsc->mutex);
1974 goto out;
1977 result = le32_to_cpu(head->result);
1980 * Handle an ESTALE
1981 * if we're not talking to the authority, send to them
1982 * if the authority has changed while we weren't looking,
1983 * send to new authority
1984 * Otherwise we just have to return an ESTALE
1986 if (result == -ESTALE) {
1987 dout("got ESTALE on request %llu", req->r_tid);
1988 if (!req->r_inode) {
1989 /* do nothing; not an authority problem */
1990 } else if (req->r_direct_mode != USE_AUTH_MDS) {
1991 dout("not using auth, setting for that now");
1992 req->r_direct_mode = USE_AUTH_MDS;
1993 __do_request(mdsc, req);
1994 mutex_unlock(&mdsc->mutex);
1995 goto out;
1996 } else {
1997 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
1998 struct ceph_cap *cap =
1999 ceph_get_cap_for_mds(ci, req->r_mds);;
2001 dout("already using auth");
2002 if ((!cap || cap != ci->i_auth_cap) ||
2003 (cap->mseq != req->r_sent_on_mseq)) {
2004 dout("but cap changed, so resending");
2005 __do_request(mdsc, req);
2006 mutex_unlock(&mdsc->mutex);
2007 goto out;
2010 dout("have to return ESTALE on request %llu", req->r_tid);
2014 if (head->safe) {
2015 req->r_got_safe = true;
2016 __unregister_request(mdsc, req);
2017 complete_all(&req->r_safe_completion);
2019 if (req->r_got_unsafe) {
2021 * We already handled the unsafe response, now do the
2022 * cleanup. No need to examine the response; the MDS
2023 * doesn't include any result info in the safe
2024 * response. And even if it did, there is nothing
2025 * useful we could do with a revised return value.
2027 dout("got safe reply %llu, mds%d\n", tid, mds);
2028 list_del_init(&req->r_unsafe_item);
2030 /* last unsafe request during umount? */
2031 if (mdsc->stopping && !__get_oldest_req(mdsc))
2032 complete_all(&mdsc->safe_umount_waiters);
2033 mutex_unlock(&mdsc->mutex);
2034 goto out;
2036 } else {
2037 req->r_got_unsafe = true;
2038 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2041 dout("handle_reply tid %lld result %d\n", tid, result);
2042 rinfo = &req->r_reply_info;
2043 err = parse_reply_info(msg, rinfo);
2044 mutex_unlock(&mdsc->mutex);
2046 mutex_lock(&session->s_mutex);
2047 if (err < 0) {
2048 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
2049 ceph_msg_dump(msg);
2050 goto out_err;
2053 /* snap trace */
2054 if (rinfo->snapblob_len) {
2055 down_write(&mdsc->snap_rwsem);
2056 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2057 rinfo->snapblob + rinfo->snapblob_len,
2058 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2059 downgrade_write(&mdsc->snap_rwsem);
2060 } else {
2061 down_read(&mdsc->snap_rwsem);
2064 /* insert trace into our cache */
2065 mutex_lock(&req->r_fill_mutex);
2066 err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
2067 if (err == 0) {
2068 if (result == 0 && rinfo->dir_nr)
2069 ceph_readdir_prepopulate(req, req->r_session);
2070 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2072 mutex_unlock(&req->r_fill_mutex);
2074 up_read(&mdsc->snap_rwsem);
2075 out_err:
2076 mutex_lock(&mdsc->mutex);
2077 if (!req->r_aborted) {
2078 if (err) {
2079 req->r_err = err;
2080 } else {
2081 req->r_reply = msg;
2082 ceph_msg_get(msg);
2083 req->r_got_result = true;
2085 } else {
2086 dout("reply arrived after request %lld was aborted\n", tid);
2088 mutex_unlock(&mdsc->mutex);
2090 ceph_add_cap_releases(mdsc, req->r_session);
2091 mutex_unlock(&session->s_mutex);
2093 /* kick calling process */
2094 complete_request(mdsc, req);
2095 out:
2096 ceph_mdsc_put_request(req);
2097 return;
2103 * handle mds notification that our request has been forwarded.
2105 static void handle_forward(struct ceph_mds_client *mdsc,
2106 struct ceph_mds_session *session,
2107 struct ceph_msg *msg)
2109 struct ceph_mds_request *req;
2110 u64 tid = le64_to_cpu(msg->hdr.tid);
2111 u32 next_mds;
2112 u32 fwd_seq;
2113 int err = -EINVAL;
2114 void *p = msg->front.iov_base;
2115 void *end = p + msg->front.iov_len;
2117 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2118 next_mds = ceph_decode_32(&p);
2119 fwd_seq = ceph_decode_32(&p);
2121 mutex_lock(&mdsc->mutex);
2122 req = __lookup_request(mdsc, tid);
2123 if (!req) {
2124 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2125 goto out; /* dup reply? */
2128 if (req->r_aborted) {
2129 dout("forward tid %llu aborted, unregistering\n", tid);
2130 __unregister_request(mdsc, req);
2131 } else if (fwd_seq <= req->r_num_fwd) {
2132 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2133 tid, next_mds, req->r_num_fwd, fwd_seq);
2134 } else {
2135 /* resend. forward race not possible; mds would drop */
2136 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2137 BUG_ON(req->r_err);
2138 BUG_ON(req->r_got_result);
2139 req->r_num_fwd = fwd_seq;
2140 req->r_resend_mds = next_mds;
2141 put_request_session(req);
2142 __do_request(mdsc, req);
2144 ceph_mdsc_put_request(req);
2145 out:
2146 mutex_unlock(&mdsc->mutex);
2147 return;
2149 bad:
2150 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2154 * handle a mds session control message
2156 static void handle_session(struct ceph_mds_session *session,
2157 struct ceph_msg *msg)
2159 struct ceph_mds_client *mdsc = session->s_mdsc;
2160 u32 op;
2161 u64 seq;
2162 int mds = session->s_mds;
2163 struct ceph_mds_session_head *h = msg->front.iov_base;
2164 int wake = 0;
2166 /* decode */
2167 if (msg->front.iov_len != sizeof(*h))
2168 goto bad;
2169 op = le32_to_cpu(h->op);
2170 seq = le64_to_cpu(h->seq);
2172 mutex_lock(&mdsc->mutex);
2173 if (op == CEPH_SESSION_CLOSE)
2174 __unregister_session(mdsc, session);
2175 /* FIXME: this ttl calculation is generous */
2176 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2177 mutex_unlock(&mdsc->mutex);
2179 mutex_lock(&session->s_mutex);
2181 dout("handle_session mds%d %s %p state %s seq %llu\n",
2182 mds, ceph_session_op_name(op), session,
2183 session_state_name(session->s_state), seq);
2185 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2186 session->s_state = CEPH_MDS_SESSION_OPEN;
2187 pr_info("mds%d came back\n", session->s_mds);
2190 switch (op) {
2191 case CEPH_SESSION_OPEN:
2192 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2193 pr_info("mds%d reconnect success\n", session->s_mds);
2194 session->s_state = CEPH_MDS_SESSION_OPEN;
2195 renewed_caps(mdsc, session, 0);
2196 wake = 1;
2197 if (mdsc->stopping)
2198 __close_session(mdsc, session);
2199 break;
2201 case CEPH_SESSION_RENEWCAPS:
2202 if (session->s_renew_seq == seq)
2203 renewed_caps(mdsc, session, 1);
2204 break;
2206 case CEPH_SESSION_CLOSE:
2207 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2208 pr_info("mds%d reconnect denied\n", session->s_mds);
2209 remove_session_caps(session);
2210 wake = 1; /* for good measure */
2211 complete_all(&mdsc->session_close_waiters);
2212 kick_requests(mdsc, mds);
2213 break;
2215 case CEPH_SESSION_STALE:
2216 pr_info("mds%d caps went stale, renewing\n",
2217 session->s_mds);
2218 spin_lock(&session->s_cap_lock);
2219 session->s_cap_gen++;
2220 session->s_cap_ttl = 0;
2221 spin_unlock(&session->s_cap_lock);
2222 send_renew_caps(mdsc, session);
2223 break;
2225 case CEPH_SESSION_RECALL_STATE:
2226 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2227 break;
2229 default:
2230 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2231 WARN_ON(1);
2234 mutex_unlock(&session->s_mutex);
2235 if (wake) {
2236 mutex_lock(&mdsc->mutex);
2237 __wake_requests(mdsc, &session->s_waiting);
2238 mutex_unlock(&mdsc->mutex);
2240 return;
2242 bad:
2243 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2244 (int)msg->front.iov_len);
2245 ceph_msg_dump(msg);
2246 return;
2251 * called under session->mutex.
2253 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2254 struct ceph_mds_session *session)
2256 struct ceph_mds_request *req, *nreq;
2257 int err;
2259 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2261 mutex_lock(&mdsc->mutex);
2262 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2263 err = __prepare_send_request(mdsc, req, session->s_mds);
2264 if (!err) {
2265 ceph_msg_get(req->r_request);
2266 ceph_con_send(&session->s_con, req->r_request);
2269 mutex_unlock(&mdsc->mutex);
2273 * Encode information about a cap for a reconnect with the MDS.
2275 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2276 void *arg)
2278 union {
2279 struct ceph_mds_cap_reconnect v2;
2280 struct ceph_mds_cap_reconnect_v1 v1;
2281 } rec;
2282 size_t reclen;
2283 struct ceph_inode_info *ci;
2284 struct ceph_reconnect_state *recon_state = arg;
2285 struct ceph_pagelist *pagelist = recon_state->pagelist;
2286 char *path;
2287 int pathlen, err;
2288 u64 pathbase;
2289 struct dentry *dentry;
2291 ci = cap->ci;
2293 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2294 inode, ceph_vinop(inode), cap, cap->cap_id,
2295 ceph_cap_string(cap->issued));
2296 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2297 if (err)
2298 return err;
2300 dentry = d_find_alias(inode);
2301 if (dentry) {
2302 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2303 if (IS_ERR(path)) {
2304 err = PTR_ERR(path);
2305 BUG_ON(err);
2307 } else {
2308 path = NULL;
2309 pathlen = 0;
2311 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2312 if (err)
2313 goto out;
2315 spin_lock(&inode->i_lock);
2316 cap->seq = 0; /* reset cap seq */
2317 cap->issue_seq = 0; /* and issue_seq */
2319 if (recon_state->flock) {
2320 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2321 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2322 rec.v2.issued = cpu_to_le32(cap->issued);
2323 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2324 rec.v2.pathbase = cpu_to_le64(pathbase);
2325 rec.v2.flock_len = 0;
2326 reclen = sizeof(rec.v2);
2327 } else {
2328 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2329 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2330 rec.v1.issued = cpu_to_le32(cap->issued);
2331 rec.v1.size = cpu_to_le64(inode->i_size);
2332 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2333 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2334 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2335 rec.v1.pathbase = cpu_to_le64(pathbase);
2336 reclen = sizeof(rec.v1);
2338 spin_unlock(&inode->i_lock);
2340 if (recon_state->flock) {
2341 int num_fcntl_locks, num_flock_locks;
2343 lock_kernel();
2344 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2345 rec.v2.flock_len = (2*sizeof(u32) +
2346 (num_fcntl_locks+num_flock_locks) *
2347 sizeof(struct ceph_filelock));
2349 err = ceph_pagelist_append(pagelist, &rec, reclen);
2350 if (!err)
2351 err = ceph_encode_locks(inode, pagelist,
2352 num_fcntl_locks,
2353 num_flock_locks);
2354 unlock_kernel();
2357 out:
2358 kfree(path);
2359 dput(dentry);
2360 return err;
2365 * If an MDS fails and recovers, clients need to reconnect in order to
2366 * reestablish shared state. This includes all caps issued through
2367 * this session _and_ the snap_realm hierarchy. Because it's not
2368 * clear which snap realms the mds cares about, we send everything we
2369 * know about.. that ensures we'll then get any new info the
2370 * recovering MDS might have.
2372 * This is a relatively heavyweight operation, but it's rare.
2374 * called with mdsc->mutex held.
2376 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2377 struct ceph_mds_session *session)
2379 struct ceph_msg *reply;
2380 struct rb_node *p;
2381 int mds = session->s_mds;
2382 int err = -ENOMEM;
2383 struct ceph_pagelist *pagelist;
2384 struct ceph_reconnect_state recon_state;
2386 pr_info("mds%d reconnect start\n", mds);
2388 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2389 if (!pagelist)
2390 goto fail_nopagelist;
2391 ceph_pagelist_init(pagelist);
2393 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2394 if (!reply)
2395 goto fail_nomsg;
2397 mutex_lock(&session->s_mutex);
2398 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2399 session->s_seq = 0;
2401 ceph_con_open(&session->s_con,
2402 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2404 /* replay unsafe requests */
2405 replay_unsafe_requests(mdsc, session);
2407 down_read(&mdsc->snap_rwsem);
2409 dout("session %p state %s\n", session,
2410 session_state_name(session->s_state));
2412 /* drop old cap expires; we're about to reestablish that state */
2413 discard_cap_releases(mdsc, session);
2415 /* traverse this session's caps */
2416 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2417 if (err)
2418 goto fail;
2420 recon_state.pagelist = pagelist;
2421 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2422 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2423 if (err < 0)
2424 goto fail;
2427 * snaprealms. we provide mds with the ino, seq (version), and
2428 * parent for all of our realms. If the mds has any newer info,
2429 * it will tell us.
2431 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2432 struct ceph_snap_realm *realm =
2433 rb_entry(p, struct ceph_snap_realm, node);
2434 struct ceph_mds_snaprealm_reconnect sr_rec;
2436 dout(" adding snap realm %llx seq %lld parent %llx\n",
2437 realm->ino, realm->seq, realm->parent_ino);
2438 sr_rec.ino = cpu_to_le64(realm->ino);
2439 sr_rec.seq = cpu_to_le64(realm->seq);
2440 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2441 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2442 if (err)
2443 goto fail;
2446 reply->pagelist = pagelist;
2447 if (recon_state.flock)
2448 reply->hdr.version = cpu_to_le16(2);
2449 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2450 reply->nr_pages = calc_pages_for(0, pagelist->length);
2451 ceph_con_send(&session->s_con, reply);
2453 mutex_unlock(&session->s_mutex);
2455 mutex_lock(&mdsc->mutex);
2456 __wake_requests(mdsc, &session->s_waiting);
2457 mutex_unlock(&mdsc->mutex);
2459 up_read(&mdsc->snap_rwsem);
2460 return;
2462 fail:
2463 ceph_msg_put(reply);
2464 up_read(&mdsc->snap_rwsem);
2465 mutex_unlock(&session->s_mutex);
2466 fail_nomsg:
2467 ceph_pagelist_release(pagelist);
2468 kfree(pagelist);
2469 fail_nopagelist:
2470 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2471 return;
2476 * compare old and new mdsmaps, kicking requests
2477 * and closing out old connections as necessary
2479 * called under mdsc->mutex.
2481 static void check_new_map(struct ceph_mds_client *mdsc,
2482 struct ceph_mdsmap *newmap,
2483 struct ceph_mdsmap *oldmap)
2485 int i;
2486 int oldstate, newstate;
2487 struct ceph_mds_session *s;
2489 dout("check_new_map new %u old %u\n",
2490 newmap->m_epoch, oldmap->m_epoch);
2492 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2493 if (mdsc->sessions[i] == NULL)
2494 continue;
2495 s = mdsc->sessions[i];
2496 oldstate = ceph_mdsmap_get_state(oldmap, i);
2497 newstate = ceph_mdsmap_get_state(newmap, i);
2499 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2500 i, ceph_mds_state_name(oldstate),
2501 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2502 ceph_mds_state_name(newstate),
2503 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2504 session_state_name(s->s_state));
2506 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2507 ceph_mdsmap_get_addr(newmap, i),
2508 sizeof(struct ceph_entity_addr))) {
2509 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2510 /* the session never opened, just close it
2511 * out now */
2512 __wake_requests(mdsc, &s->s_waiting);
2513 __unregister_session(mdsc, s);
2514 } else {
2515 /* just close it */
2516 mutex_unlock(&mdsc->mutex);
2517 mutex_lock(&s->s_mutex);
2518 mutex_lock(&mdsc->mutex);
2519 ceph_con_close(&s->s_con);
2520 mutex_unlock(&s->s_mutex);
2521 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2524 /* kick any requests waiting on the recovering mds */
2525 kick_requests(mdsc, i);
2526 } else if (oldstate == newstate) {
2527 continue; /* nothing new with this mds */
2531 * send reconnect?
2533 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2534 newstate >= CEPH_MDS_STATE_RECONNECT) {
2535 mutex_unlock(&mdsc->mutex);
2536 send_mds_reconnect(mdsc, s);
2537 mutex_lock(&mdsc->mutex);
2541 * kick request on any mds that has gone active.
2543 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2544 newstate >= CEPH_MDS_STATE_ACTIVE) {
2545 if (oldstate != CEPH_MDS_STATE_CREATING &&
2546 oldstate != CEPH_MDS_STATE_STARTING)
2547 pr_info("mds%d recovery completed\n", s->s_mds);
2548 kick_requests(mdsc, i);
2549 ceph_kick_flushing_caps(mdsc, s);
2550 wake_up_session_caps(s, 1);
2554 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2555 s = mdsc->sessions[i];
2556 if (!s)
2557 continue;
2558 if (!ceph_mdsmap_is_laggy(newmap, i))
2559 continue;
2560 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2561 s->s_state == CEPH_MDS_SESSION_HUNG ||
2562 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2563 dout(" connecting to export targets of laggy mds%d\n",
2565 __open_export_target_sessions(mdsc, s);
2573 * leases
2577 * caller must hold session s_mutex, dentry->d_lock
2579 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2581 struct ceph_dentry_info *di = ceph_dentry(dentry);
2583 ceph_put_mds_session(di->lease_session);
2584 di->lease_session = NULL;
2587 static void handle_lease(struct ceph_mds_client *mdsc,
2588 struct ceph_mds_session *session,
2589 struct ceph_msg *msg)
2591 struct super_block *sb = mdsc->client->sb;
2592 struct inode *inode;
2593 struct ceph_inode_info *ci;
2594 struct dentry *parent, *dentry;
2595 struct ceph_dentry_info *di;
2596 int mds = session->s_mds;
2597 struct ceph_mds_lease *h = msg->front.iov_base;
2598 u32 seq;
2599 struct ceph_vino vino;
2600 int mask;
2601 struct qstr dname;
2602 int release = 0;
2604 dout("handle_lease from mds%d\n", mds);
2606 /* decode */
2607 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2608 goto bad;
2609 vino.ino = le64_to_cpu(h->ino);
2610 vino.snap = CEPH_NOSNAP;
2611 mask = le16_to_cpu(h->mask);
2612 seq = le32_to_cpu(h->seq);
2613 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2614 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2615 if (dname.len != get_unaligned_le32(h+1))
2616 goto bad;
2618 mutex_lock(&session->s_mutex);
2619 session->s_seq++;
2621 /* lookup inode */
2622 inode = ceph_find_inode(sb, vino);
2623 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2624 ceph_lease_op_name(h->action), mask, vino.ino, inode,
2625 dname.len, dname.name);
2626 if (inode == NULL) {
2627 dout("handle_lease no inode %llx\n", vino.ino);
2628 goto release;
2630 ci = ceph_inode(inode);
2632 /* dentry */
2633 parent = d_find_alias(inode);
2634 if (!parent) {
2635 dout("no parent dentry on inode %p\n", inode);
2636 WARN_ON(1);
2637 goto release; /* hrm... */
2639 dname.hash = full_name_hash(dname.name, dname.len);
2640 dentry = d_lookup(parent, &dname);
2641 dput(parent);
2642 if (!dentry)
2643 goto release;
2645 spin_lock(&dentry->d_lock);
2646 di = ceph_dentry(dentry);
2647 switch (h->action) {
2648 case CEPH_MDS_LEASE_REVOKE:
2649 if (di && di->lease_session == session) {
2650 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2651 h->seq = cpu_to_le32(di->lease_seq);
2652 __ceph_mdsc_drop_dentry_lease(dentry);
2654 release = 1;
2655 break;
2657 case CEPH_MDS_LEASE_RENEW:
2658 if (di && di->lease_session == session &&
2659 di->lease_gen == session->s_cap_gen &&
2660 di->lease_renew_from &&
2661 di->lease_renew_after == 0) {
2662 unsigned long duration =
2663 le32_to_cpu(h->duration_ms) * HZ / 1000;
2665 di->lease_seq = seq;
2666 dentry->d_time = di->lease_renew_from + duration;
2667 di->lease_renew_after = di->lease_renew_from +
2668 (duration >> 1);
2669 di->lease_renew_from = 0;
2671 break;
2673 spin_unlock(&dentry->d_lock);
2674 dput(dentry);
2676 if (!release)
2677 goto out;
2679 release:
2680 /* let's just reuse the same message */
2681 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2682 ceph_msg_get(msg);
2683 ceph_con_send(&session->s_con, msg);
2685 out:
2686 iput(inode);
2687 mutex_unlock(&session->s_mutex);
2688 return;
2690 bad:
2691 pr_err("corrupt lease message\n");
2692 ceph_msg_dump(msg);
2695 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2696 struct inode *inode,
2697 struct dentry *dentry, char action,
2698 u32 seq)
2700 struct ceph_msg *msg;
2701 struct ceph_mds_lease *lease;
2702 int len = sizeof(*lease) + sizeof(u32);
2703 int dnamelen = 0;
2705 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2706 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2707 dnamelen = dentry->d_name.len;
2708 len += dnamelen;
2710 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2711 if (!msg)
2712 return;
2713 lease = msg->front.iov_base;
2714 lease->action = action;
2715 lease->mask = cpu_to_le16(1);
2716 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2717 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2718 lease->seq = cpu_to_le32(seq);
2719 put_unaligned_le32(dnamelen, lease + 1);
2720 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2723 * if this is a preemptive lease RELEASE, no need to
2724 * flush request stream, since the actual request will
2725 * soon follow.
2727 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2729 ceph_con_send(&session->s_con, msg);
2733 * Preemptively release a lease we expect to invalidate anyway.
2734 * Pass @inode always, @dentry is optional.
2736 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2737 struct dentry *dentry, int mask)
2739 struct ceph_dentry_info *di;
2740 struct ceph_mds_session *session;
2741 u32 seq;
2743 BUG_ON(inode == NULL);
2744 BUG_ON(dentry == NULL);
2745 BUG_ON(mask == 0);
2747 /* is dentry lease valid? */
2748 spin_lock(&dentry->d_lock);
2749 di = ceph_dentry(dentry);
2750 if (!di || !di->lease_session ||
2751 di->lease_session->s_mds < 0 ||
2752 di->lease_gen != di->lease_session->s_cap_gen ||
2753 !time_before(jiffies, dentry->d_time)) {
2754 dout("lease_release inode %p dentry %p -- "
2755 "no lease on %d\n",
2756 inode, dentry, mask);
2757 spin_unlock(&dentry->d_lock);
2758 return;
2761 /* we do have a lease on this dentry; note mds and seq */
2762 session = ceph_get_mds_session(di->lease_session);
2763 seq = di->lease_seq;
2764 __ceph_mdsc_drop_dentry_lease(dentry);
2765 spin_unlock(&dentry->d_lock);
2767 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2768 inode, dentry, mask, session->s_mds);
2769 ceph_mdsc_lease_send_msg(session, inode, dentry,
2770 CEPH_MDS_LEASE_RELEASE, seq);
2771 ceph_put_mds_session(session);
2775 * drop all leases (and dentry refs) in preparation for umount
2777 static void drop_leases(struct ceph_mds_client *mdsc)
2779 int i;
2781 dout("drop_leases\n");
2782 mutex_lock(&mdsc->mutex);
2783 for (i = 0; i < mdsc->max_sessions; i++) {
2784 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2785 if (!s)
2786 continue;
2787 mutex_unlock(&mdsc->mutex);
2788 mutex_lock(&s->s_mutex);
2789 mutex_unlock(&s->s_mutex);
2790 ceph_put_mds_session(s);
2791 mutex_lock(&mdsc->mutex);
2793 mutex_unlock(&mdsc->mutex);
2799 * delayed work -- periodically trim expired leases, renew caps with mds
2801 static void schedule_delayed(struct ceph_mds_client *mdsc)
2803 int delay = 5;
2804 unsigned hz = round_jiffies_relative(HZ * delay);
2805 schedule_delayed_work(&mdsc->delayed_work, hz);
2808 static void delayed_work(struct work_struct *work)
2810 int i;
2811 struct ceph_mds_client *mdsc =
2812 container_of(work, struct ceph_mds_client, delayed_work.work);
2813 int renew_interval;
2814 int renew_caps;
2816 dout("mdsc delayed_work\n");
2817 ceph_check_delayed_caps(mdsc);
2819 mutex_lock(&mdsc->mutex);
2820 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2821 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2822 mdsc->last_renew_caps);
2823 if (renew_caps)
2824 mdsc->last_renew_caps = jiffies;
2826 for (i = 0; i < mdsc->max_sessions; i++) {
2827 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2828 if (s == NULL)
2829 continue;
2830 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2831 dout("resending session close request for mds%d\n",
2832 s->s_mds);
2833 request_close_session(mdsc, s);
2834 ceph_put_mds_session(s);
2835 continue;
2837 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2838 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2839 s->s_state = CEPH_MDS_SESSION_HUNG;
2840 pr_info("mds%d hung\n", s->s_mds);
2843 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2844 /* this mds is failed or recovering, just wait */
2845 ceph_put_mds_session(s);
2846 continue;
2848 mutex_unlock(&mdsc->mutex);
2850 mutex_lock(&s->s_mutex);
2851 if (renew_caps)
2852 send_renew_caps(mdsc, s);
2853 else
2854 ceph_con_keepalive(&s->s_con);
2855 ceph_add_cap_releases(mdsc, s);
2856 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2857 s->s_state == CEPH_MDS_SESSION_HUNG)
2858 ceph_send_cap_releases(mdsc, s);
2859 mutex_unlock(&s->s_mutex);
2860 ceph_put_mds_session(s);
2862 mutex_lock(&mdsc->mutex);
2864 mutex_unlock(&mdsc->mutex);
2866 schedule_delayed(mdsc);
2870 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2872 mdsc->client = client;
2873 mutex_init(&mdsc->mutex);
2874 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2875 if (mdsc->mdsmap == NULL)
2876 return -ENOMEM;
2878 init_completion(&mdsc->safe_umount_waiters);
2879 init_completion(&mdsc->session_close_waiters);
2880 INIT_LIST_HEAD(&mdsc->waiting_for_map);
2881 mdsc->sessions = NULL;
2882 mdsc->max_sessions = 0;
2883 mdsc->stopping = 0;
2884 init_rwsem(&mdsc->snap_rwsem);
2885 mdsc->snap_realms = RB_ROOT;
2886 INIT_LIST_HEAD(&mdsc->snap_empty);
2887 spin_lock_init(&mdsc->snap_empty_lock);
2888 mdsc->last_tid = 0;
2889 mdsc->request_tree = RB_ROOT;
2890 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2891 mdsc->last_renew_caps = jiffies;
2892 INIT_LIST_HEAD(&mdsc->cap_delay_list);
2893 spin_lock_init(&mdsc->cap_delay_lock);
2894 INIT_LIST_HEAD(&mdsc->snap_flush_list);
2895 spin_lock_init(&mdsc->snap_flush_lock);
2896 mdsc->cap_flush_seq = 0;
2897 INIT_LIST_HEAD(&mdsc->cap_dirty);
2898 mdsc->num_cap_flushing = 0;
2899 spin_lock_init(&mdsc->cap_dirty_lock);
2900 init_waitqueue_head(&mdsc->cap_flushing_wq);
2901 spin_lock_init(&mdsc->dentry_lru_lock);
2902 INIT_LIST_HEAD(&mdsc->dentry_lru);
2904 ceph_caps_init(mdsc);
2905 ceph_adjust_min_caps(mdsc, client->min_caps);
2907 return 0;
2911 * Wait for safe replies on open mds requests. If we time out, drop
2912 * all requests from the tree to avoid dangling dentry refs.
2914 static void wait_requests(struct ceph_mds_client *mdsc)
2916 struct ceph_mds_request *req;
2917 struct ceph_client *client = mdsc->client;
2919 mutex_lock(&mdsc->mutex);
2920 if (__get_oldest_req(mdsc)) {
2921 mutex_unlock(&mdsc->mutex);
2923 dout("wait_requests waiting for requests\n");
2924 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2925 client->mount_args->mount_timeout * HZ);
2927 /* tear down remaining requests */
2928 mutex_lock(&mdsc->mutex);
2929 while ((req = __get_oldest_req(mdsc))) {
2930 dout("wait_requests timed out on tid %llu\n",
2931 req->r_tid);
2932 __unregister_request(mdsc, req);
2935 mutex_unlock(&mdsc->mutex);
2936 dout("wait_requests done\n");
2940 * called before mount is ro, and before dentries are torn down.
2941 * (hmm, does this still race with new lookups?)
2943 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2945 dout("pre_umount\n");
2946 mdsc->stopping = 1;
2948 drop_leases(mdsc);
2949 ceph_flush_dirty_caps(mdsc);
2950 wait_requests(mdsc);
2953 * wait for reply handlers to drop their request refs and
2954 * their inode/dcache refs
2956 ceph_msgr_flush();
2960 * wait for all write mds requests to flush.
2962 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2964 struct ceph_mds_request *req = NULL, *nextreq;
2965 struct rb_node *n;
2967 mutex_lock(&mdsc->mutex);
2968 dout("wait_unsafe_requests want %lld\n", want_tid);
2969 restart:
2970 req = __get_oldest_req(mdsc);
2971 while (req && req->r_tid <= want_tid) {
2972 /* find next request */
2973 n = rb_next(&req->r_node);
2974 if (n)
2975 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2976 else
2977 nextreq = NULL;
2978 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2979 /* write op */
2980 ceph_mdsc_get_request(req);
2981 if (nextreq)
2982 ceph_mdsc_get_request(nextreq);
2983 mutex_unlock(&mdsc->mutex);
2984 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
2985 req->r_tid, want_tid);
2986 wait_for_completion(&req->r_safe_completion);
2987 mutex_lock(&mdsc->mutex);
2988 ceph_mdsc_put_request(req);
2989 if (!nextreq)
2990 break; /* next dne before, so we're done! */
2991 if (RB_EMPTY_NODE(&nextreq->r_node)) {
2992 /* next request was removed from tree */
2993 ceph_mdsc_put_request(nextreq);
2994 goto restart;
2996 ceph_mdsc_put_request(nextreq); /* won't go away */
2998 req = nextreq;
3000 mutex_unlock(&mdsc->mutex);
3001 dout("wait_unsafe_requests done\n");
3004 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3006 u64 want_tid, want_flush;
3008 if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
3009 return;
3011 dout("sync\n");
3012 mutex_lock(&mdsc->mutex);
3013 want_tid = mdsc->last_tid;
3014 want_flush = mdsc->cap_flush_seq;
3015 mutex_unlock(&mdsc->mutex);
3016 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3018 ceph_flush_dirty_caps(mdsc);
3020 wait_unsafe_requests(mdsc, want_tid);
3021 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3026 * called after sb is ro.
3028 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3030 struct ceph_mds_session *session;
3031 int i;
3032 int n;
3033 struct ceph_client *client = mdsc->client;
3034 unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
3036 dout("close_sessions\n");
3038 mutex_lock(&mdsc->mutex);
3040 /* close sessions */
3041 started = jiffies;
3042 while (time_before(jiffies, started + timeout)) {
3043 dout("closing sessions\n");
3044 n = 0;
3045 for (i = 0; i < mdsc->max_sessions; i++) {
3046 session = __ceph_lookup_mds_session(mdsc, i);
3047 if (!session)
3048 continue;
3049 mutex_unlock(&mdsc->mutex);
3050 mutex_lock(&session->s_mutex);
3051 __close_session(mdsc, session);
3052 mutex_unlock(&session->s_mutex);
3053 ceph_put_mds_session(session);
3054 mutex_lock(&mdsc->mutex);
3055 n++;
3057 if (n == 0)
3058 break;
3060 if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
3061 break;
3063 dout("waiting for sessions to close\n");
3064 mutex_unlock(&mdsc->mutex);
3065 wait_for_completion_timeout(&mdsc->session_close_waiters,
3066 timeout);
3067 mutex_lock(&mdsc->mutex);
3070 /* tear down remaining sessions */
3071 for (i = 0; i < mdsc->max_sessions; i++) {
3072 if (mdsc->sessions[i]) {
3073 session = get_session(mdsc->sessions[i]);
3074 __unregister_session(mdsc, session);
3075 mutex_unlock(&mdsc->mutex);
3076 mutex_lock(&session->s_mutex);
3077 remove_session_caps(session);
3078 mutex_unlock(&session->s_mutex);
3079 ceph_put_mds_session(session);
3080 mutex_lock(&mdsc->mutex);
3084 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3086 mutex_unlock(&mdsc->mutex);
3088 ceph_cleanup_empty_realms(mdsc);
3090 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3092 dout("stopped\n");
3095 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3097 dout("stop\n");
3098 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3099 if (mdsc->mdsmap)
3100 ceph_mdsmap_destroy(mdsc->mdsmap);
3101 kfree(mdsc->sessions);
3102 ceph_caps_finalize(mdsc);
3107 * handle mds map update.
3109 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3111 u32 epoch;
3112 u32 maplen;
3113 void *p = msg->front.iov_base;
3114 void *end = p + msg->front.iov_len;
3115 struct ceph_mdsmap *newmap, *oldmap;
3116 struct ceph_fsid fsid;
3117 int err = -EINVAL;
3119 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3120 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3121 if (ceph_check_fsid(mdsc->client, &fsid) < 0)
3122 return;
3123 epoch = ceph_decode_32(&p);
3124 maplen = ceph_decode_32(&p);
3125 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3127 /* do we need it? */
3128 ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
3129 mutex_lock(&mdsc->mutex);
3130 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3131 dout("handle_map epoch %u <= our %u\n",
3132 epoch, mdsc->mdsmap->m_epoch);
3133 mutex_unlock(&mdsc->mutex);
3134 return;
3137 newmap = ceph_mdsmap_decode(&p, end);
3138 if (IS_ERR(newmap)) {
3139 err = PTR_ERR(newmap);
3140 goto bad_unlock;
3143 /* swap into place */
3144 if (mdsc->mdsmap) {
3145 oldmap = mdsc->mdsmap;
3146 mdsc->mdsmap = newmap;
3147 check_new_map(mdsc, newmap, oldmap);
3148 ceph_mdsmap_destroy(oldmap);
3149 } else {
3150 mdsc->mdsmap = newmap; /* first mds map */
3152 mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3154 __wake_requests(mdsc, &mdsc->waiting_for_map);
3156 mutex_unlock(&mdsc->mutex);
3157 schedule_delayed(mdsc);
3158 return;
3160 bad_unlock:
3161 mutex_unlock(&mdsc->mutex);
3162 bad:
3163 pr_err("error decoding mdsmap %d\n", err);
3164 return;
3167 static struct ceph_connection *con_get(struct ceph_connection *con)
3169 struct ceph_mds_session *s = con->private;
3171 if (get_session(s)) {
3172 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3173 return con;
3175 dout("mdsc con_get %p FAIL\n", s);
3176 return NULL;
3179 static void con_put(struct ceph_connection *con)
3181 struct ceph_mds_session *s = con->private;
3183 ceph_put_mds_session(s);
3184 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3188 * if the client is unresponsive for long enough, the mds will kill
3189 * the session entirely.
3191 static void peer_reset(struct ceph_connection *con)
3193 struct ceph_mds_session *s = con->private;
3194 struct ceph_mds_client *mdsc = s->s_mdsc;
3196 pr_warning("mds%d closed our session\n", s->s_mds);
3197 send_mds_reconnect(mdsc, s);
3200 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3202 struct ceph_mds_session *s = con->private;
3203 struct ceph_mds_client *mdsc = s->s_mdsc;
3204 int type = le16_to_cpu(msg->hdr.type);
3206 mutex_lock(&mdsc->mutex);
3207 if (__verify_registered_session(mdsc, s) < 0) {
3208 mutex_unlock(&mdsc->mutex);
3209 goto out;
3211 mutex_unlock(&mdsc->mutex);
3213 switch (type) {
3214 case CEPH_MSG_MDS_MAP:
3215 ceph_mdsc_handle_map(mdsc, msg);
3216 break;
3217 case CEPH_MSG_CLIENT_SESSION:
3218 handle_session(s, msg);
3219 break;
3220 case CEPH_MSG_CLIENT_REPLY:
3221 handle_reply(s, msg);
3222 break;
3223 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3224 handle_forward(mdsc, s, msg);
3225 break;
3226 case CEPH_MSG_CLIENT_CAPS:
3227 ceph_handle_caps(s, msg);
3228 break;
3229 case CEPH_MSG_CLIENT_SNAP:
3230 ceph_handle_snap(mdsc, s, msg);
3231 break;
3232 case CEPH_MSG_CLIENT_LEASE:
3233 handle_lease(mdsc, s, msg);
3234 break;
3236 default:
3237 pr_err("received unknown message type %d %s\n", type,
3238 ceph_msg_type_name(type));
3240 out:
3241 ceph_msg_put(msg);
3245 * authentication
3247 static int get_authorizer(struct ceph_connection *con,
3248 void **buf, int *len, int *proto,
3249 void **reply_buf, int *reply_len, int force_new)
3251 struct ceph_mds_session *s = con->private;
3252 struct ceph_mds_client *mdsc = s->s_mdsc;
3253 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3254 int ret = 0;
3256 if (force_new && s->s_authorizer) {
3257 ac->ops->destroy_authorizer(ac, s->s_authorizer);
3258 s->s_authorizer = NULL;
3260 if (s->s_authorizer == NULL) {
3261 if (ac->ops->create_authorizer) {
3262 ret = ac->ops->create_authorizer(
3263 ac, CEPH_ENTITY_TYPE_MDS,
3264 &s->s_authorizer,
3265 &s->s_authorizer_buf,
3266 &s->s_authorizer_buf_len,
3267 &s->s_authorizer_reply_buf,
3268 &s->s_authorizer_reply_buf_len);
3269 if (ret)
3270 return ret;
3274 *proto = ac->protocol;
3275 *buf = s->s_authorizer_buf;
3276 *len = s->s_authorizer_buf_len;
3277 *reply_buf = s->s_authorizer_reply_buf;
3278 *reply_len = s->s_authorizer_reply_buf_len;
3279 return 0;
3283 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3285 struct ceph_mds_session *s = con->private;
3286 struct ceph_mds_client *mdsc = s->s_mdsc;
3287 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3289 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3292 static int invalidate_authorizer(struct ceph_connection *con)
3294 struct ceph_mds_session *s = con->private;
3295 struct ceph_mds_client *mdsc = s->s_mdsc;
3296 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3298 if (ac->ops->invalidate_authorizer)
3299 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3301 return ceph_monc_validate_auth(&mdsc->client->monc);
3304 static const struct ceph_connection_operations mds_con_ops = {
3305 .get = con_get,
3306 .put = con_put,
3307 .dispatch = dispatch,
3308 .get_authorizer = get_authorizer,
3309 .verify_authorizer_reply = verify_authorizer_reply,
3310 .invalidate_authorizer = invalidate_authorizer,
3311 .peer_reset = peer_reset,
3317 /* eof */