2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
61 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
67 .index
= HRTIMER_BASE_MONOTONIC
,
68 .clockid
= CLOCK_MONOTONIC
,
69 .get_time
= &ktime_get
,
70 .resolution
= KTIME_LOW_RES
,
73 .index
= HRTIMER_BASE_REALTIME
,
74 .clockid
= CLOCK_REALTIME
,
75 .get_time
= &ktime_get_real
,
76 .resolution
= KTIME_LOW_RES
,
79 .index
= HRTIMER_BASE_BOOTTIME
,
80 .clockid
= CLOCK_BOOTTIME
,
81 .get_time
= &ktime_get_boottime
,
82 .resolution
= KTIME_LOW_RES
,
87 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
88 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
89 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
90 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
93 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
95 return hrtimer_clock_to_base_table
[clock_id
];
100 * Get the coarse grained time at the softirq based on xtime and
103 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
105 ktime_t xtim
, mono
, boot
;
106 struct timespec xts
, tom
, slp
;
108 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
110 xtim
= timespec_to_ktime(xts
);
111 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
112 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
113 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
114 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
115 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
119 * Functions and macros which are different for UP/SMP systems are kept in a
125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126 * means that all timers which are tied to this base via timer->base are
127 * locked, and the base itself is locked too.
129 * So __run_timers/migrate_timers can safely modify all timers which could
130 * be found on the lists/queues.
132 * When the timer's base is locked, and the timer removed from list, it is
133 * possible to set timer->base = NULL and drop the lock: the timer remains
137 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
138 unsigned long *flags
)
140 struct hrtimer_clock_base
*base
;
144 if (likely(base
!= NULL
)) {
145 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
146 if (likely(base
== timer
->base
))
148 /* The timer has migrated to another CPU: */
149 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
157 * Get the preferred target CPU for NOHZ
159 static int hrtimer_get_target(int this_cpu
, int pinned
)
162 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
163 return get_nohz_timer_target();
169 * With HIGHRES=y we do not migrate the timer when it is expiring
170 * before the next event on the target cpu because we cannot reprogram
171 * the target cpu hardware and we would cause it to fire late.
173 * Called with cpu_base->lock of target cpu held.
176 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
178 #ifdef CONFIG_HIGH_RES_TIMERS
181 if (!new_base
->cpu_base
->hres_active
)
184 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
185 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
192 * Switch the timer base to the current CPU when possible.
194 static inline struct hrtimer_clock_base
*
195 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
198 struct hrtimer_clock_base
*new_base
;
199 struct hrtimer_cpu_base
*new_cpu_base
;
200 int this_cpu
= smp_processor_id();
201 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
202 int basenum
= base
->index
;
205 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
206 new_base
= &new_cpu_base
->clock_base
[basenum
];
208 if (base
!= new_base
) {
210 * We are trying to move timer to new_base.
211 * However we can't change timer's base while it is running,
212 * so we keep it on the same CPU. No hassle vs. reprogramming
213 * the event source in the high resolution case. The softirq
214 * code will take care of this when the timer function has
215 * completed. There is no conflict as we hold the lock until
216 * the timer is enqueued.
218 if (unlikely(hrtimer_callback_running(timer
)))
221 /* See the comment in lock_timer_base() */
223 raw_spin_unlock(&base
->cpu_base
->lock
);
224 raw_spin_lock(&new_base
->cpu_base
->lock
);
226 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
228 raw_spin_unlock(&new_base
->cpu_base
->lock
);
229 raw_spin_lock(&base
->cpu_base
->lock
);
233 timer
->base
= new_base
;
238 #else /* CONFIG_SMP */
240 static inline struct hrtimer_clock_base
*
241 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
243 struct hrtimer_clock_base
*base
= timer
->base
;
245 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
250 # define switch_hrtimer_base(t, b, p) (b)
252 #endif /* !CONFIG_SMP */
255 * Functions for the union type storage format of ktime_t which are
256 * too large for inlining:
258 #if BITS_PER_LONG < 64
259 # ifndef CONFIG_KTIME_SCALAR
261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
263 * @nsec: the scalar nsec value to add
265 * Returns the sum of kt and nsec in ktime_t format
267 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
271 if (likely(nsec
< NSEC_PER_SEC
)) {
274 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
276 tmp
= ktime_set((long)nsec
, rem
);
279 return ktime_add(kt
, tmp
);
282 EXPORT_SYMBOL_GPL(ktime_add_ns
);
285 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
287 * @nsec: the scalar nsec value to subtract
289 * Returns the subtraction of @nsec from @kt in ktime_t format
291 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
295 if (likely(nsec
< NSEC_PER_SEC
)) {
298 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
300 tmp
= ktime_set((long)nsec
, rem
);
303 return ktime_sub(kt
, tmp
);
306 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
307 # endif /* !CONFIG_KTIME_SCALAR */
310 * Divide a ktime value by a nanosecond value
312 u64
ktime_divns(const ktime_t kt
, s64 div
)
317 dclc
= ktime_to_ns(kt
);
318 /* Make sure the divisor is less than 2^32: */
324 do_div(dclc
, (unsigned long) div
);
328 #endif /* BITS_PER_LONG >= 64 */
331 * Add two ktime values and do a safety check for overflow:
333 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
335 ktime_t res
= ktime_add(lhs
, rhs
);
338 * We use KTIME_SEC_MAX here, the maximum timeout which we can
339 * return to user space in a timespec:
341 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
342 res
= ktime_set(KTIME_SEC_MAX
, 0);
347 EXPORT_SYMBOL_GPL(ktime_add_safe
);
349 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
351 static struct debug_obj_descr hrtimer_debug_descr
;
353 static void *hrtimer_debug_hint(void *addr
)
355 return ((struct hrtimer
*) addr
)->function
;
359 * fixup_init is called when:
360 * - an active object is initialized
362 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
364 struct hrtimer
*timer
= addr
;
367 case ODEBUG_STATE_ACTIVE
:
368 hrtimer_cancel(timer
);
369 debug_object_init(timer
, &hrtimer_debug_descr
);
377 * fixup_activate is called when:
378 * - an active object is activated
379 * - an unknown object is activated (might be a statically initialized object)
381 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
385 case ODEBUG_STATE_NOTAVAILABLE
:
389 case ODEBUG_STATE_ACTIVE
:
398 * fixup_free is called when:
399 * - an active object is freed
401 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
403 struct hrtimer
*timer
= addr
;
406 case ODEBUG_STATE_ACTIVE
:
407 hrtimer_cancel(timer
);
408 debug_object_free(timer
, &hrtimer_debug_descr
);
415 static struct debug_obj_descr hrtimer_debug_descr
= {
417 .debug_hint
= hrtimer_debug_hint
,
418 .fixup_init
= hrtimer_fixup_init
,
419 .fixup_activate
= hrtimer_fixup_activate
,
420 .fixup_free
= hrtimer_fixup_free
,
423 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
425 debug_object_init(timer
, &hrtimer_debug_descr
);
428 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
430 debug_object_activate(timer
, &hrtimer_debug_descr
);
433 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
435 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
438 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
440 debug_object_free(timer
, &hrtimer_debug_descr
);
443 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
444 enum hrtimer_mode mode
);
446 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
447 enum hrtimer_mode mode
)
449 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
450 __hrtimer_init(timer
, clock_id
, mode
);
452 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
454 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
456 debug_object_free(timer
, &hrtimer_debug_descr
);
460 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
461 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
462 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
466 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
467 enum hrtimer_mode mode
)
469 debug_hrtimer_init(timer
);
470 trace_hrtimer_init(timer
, clockid
, mode
);
473 static inline void debug_activate(struct hrtimer
*timer
)
475 debug_hrtimer_activate(timer
);
476 trace_hrtimer_start(timer
);
479 static inline void debug_deactivate(struct hrtimer
*timer
)
481 debug_hrtimer_deactivate(timer
);
482 trace_hrtimer_cancel(timer
);
485 /* High resolution timer related functions */
486 #ifdef CONFIG_HIGH_RES_TIMERS
489 * High resolution timer enabled ?
491 static int hrtimer_hres_enabled __read_mostly
= 1;
494 * Enable / Disable high resolution mode
496 static int __init
setup_hrtimer_hres(char *str
)
498 if (!strcmp(str
, "off"))
499 hrtimer_hres_enabled
= 0;
500 else if (!strcmp(str
, "on"))
501 hrtimer_hres_enabled
= 1;
507 __setup("highres=", setup_hrtimer_hres
);
510 * hrtimer_high_res_enabled - query, if the highres mode is enabled
512 static inline int hrtimer_is_hres_enabled(void)
514 return hrtimer_hres_enabled
;
518 * Is the high resolution mode active ?
520 static inline int hrtimer_hres_active(void)
522 return __this_cpu_read(hrtimer_bases
.hres_active
);
526 * Reprogram the event source with checking both queues for the
528 * Called with interrupts disabled and base->lock held
531 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
534 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
535 ktime_t expires
, expires_next
;
537 expires_next
.tv64
= KTIME_MAX
;
539 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
540 struct hrtimer
*timer
;
541 struct timerqueue_node
*next
;
543 next
= timerqueue_getnext(&base
->active
);
546 timer
= container_of(next
, struct hrtimer
, node
);
548 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
550 * clock_was_set() has changed base->offset so the
551 * result might be negative. Fix it up to prevent a
552 * false positive in clockevents_program_event()
554 if (expires
.tv64
< 0)
556 if (expires
.tv64
< expires_next
.tv64
)
557 expires_next
= expires
;
560 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
563 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
565 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
566 tick_program_event(cpu_base
->expires_next
, 1);
570 * Shared reprogramming for clock_realtime and clock_monotonic
572 * When a timer is enqueued and expires earlier than the already enqueued
573 * timers, we have to check, whether it expires earlier than the timer for
574 * which the clock event device was armed.
576 * Called with interrupts disabled and base->cpu_base.lock held
578 static int hrtimer_reprogram(struct hrtimer
*timer
,
579 struct hrtimer_clock_base
*base
)
581 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
582 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
585 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
588 * When the callback is running, we do not reprogram the clock event
589 * device. The timer callback is either running on a different CPU or
590 * the callback is executed in the hrtimer_interrupt context. The
591 * reprogramming is handled either by the softirq, which called the
592 * callback or at the end of the hrtimer_interrupt.
594 if (hrtimer_callback_running(timer
))
598 * CLOCK_REALTIME timer might be requested with an absolute
599 * expiry time which is less than base->offset. Nothing wrong
600 * about that, just avoid to call into the tick code, which
601 * has now objections against negative expiry values.
603 if (expires
.tv64
< 0)
606 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
610 * If a hang was detected in the last timer interrupt then we
611 * do not schedule a timer which is earlier than the expiry
612 * which we enforced in the hang detection. We want the system
615 if (cpu_base
->hang_detected
)
619 * Clockevents returns -ETIME, when the event was in the past.
621 res
= tick_program_event(expires
, 0);
622 if (!IS_ERR_VALUE(res
))
623 cpu_base
->expires_next
= expires
;
628 * Initialize the high resolution related parts of cpu_base
630 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
632 base
->expires_next
.tv64
= KTIME_MAX
;
633 base
->hres_active
= 0;
637 * When High resolution timers are active, try to reprogram. Note, that in case
638 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
639 * check happens. The timer gets enqueued into the rbtree. The reprogramming
640 * and expiry check is done in the hrtimer_interrupt or in the softirq.
642 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
643 struct hrtimer_clock_base
*base
,
646 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
648 raw_spin_unlock(&base
->cpu_base
->lock
);
649 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
650 raw_spin_lock(&base
->cpu_base
->lock
);
652 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
660 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
662 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
663 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
665 return ktime_get_update_offsets(offs_real
, offs_boot
);
669 * Retrigger next event is called after clock was set
671 * Called with interrupts disabled via on_each_cpu()
673 static void retrigger_next_event(void *arg
)
675 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
677 if (!hrtimer_hres_active())
680 raw_spin_lock(&base
->lock
);
681 hrtimer_update_base(base
);
682 hrtimer_force_reprogram(base
, 0);
683 raw_spin_unlock(&base
->lock
);
687 * Switch to high resolution mode
689 static int hrtimer_switch_to_hres(void)
691 int i
, cpu
= smp_processor_id();
692 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
695 if (base
->hres_active
)
698 local_irq_save(flags
);
700 if (tick_init_highres()) {
701 local_irq_restore(flags
);
702 printk(KERN_WARNING
"Could not switch to high resolution "
703 "mode on CPU %d\n", cpu
);
706 base
->hres_active
= 1;
707 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
708 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
710 tick_setup_sched_timer();
711 /* "Retrigger" the interrupt to get things going */
712 retrigger_next_event(NULL
);
713 local_irq_restore(flags
);
718 * Called from timekeeping code to reprogramm the hrtimer interrupt
719 * device. If called from the timer interrupt context we defer it to
722 void clock_was_set_delayed(void)
724 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
726 cpu_base
->clock_was_set
= 1;
727 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
732 static inline int hrtimer_hres_active(void) { return 0; }
733 static inline int hrtimer_is_hres_enabled(void) { return 0; }
734 static inline int hrtimer_switch_to_hres(void) { return 0; }
736 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
737 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
738 struct hrtimer_clock_base
*base
,
743 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
744 static inline void retrigger_next_event(void *arg
) { }
746 #endif /* CONFIG_HIGH_RES_TIMERS */
749 * Clock realtime was set
751 * Change the offset of the realtime clock vs. the monotonic
754 * We might have to reprogram the high resolution timer interrupt. On
755 * SMP we call the architecture specific code to retrigger _all_ high
756 * resolution timer interrupts. On UP we just disable interrupts and
757 * call the high resolution interrupt code.
759 void clock_was_set(void)
761 #ifdef CONFIG_HIGH_RES_TIMERS
762 /* Retrigger the CPU local events everywhere */
763 on_each_cpu(retrigger_next_event
, NULL
, 1);
765 timerfd_clock_was_set();
769 * During resume we might have to reprogram the high resolution timer
770 * interrupt (on the local CPU):
772 void hrtimers_resume(void)
774 WARN_ONCE(!irqs_disabled(),
775 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
777 retrigger_next_event(NULL
);
778 timerfd_clock_was_set();
781 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
783 #ifdef CONFIG_TIMER_STATS
784 if (timer
->start_site
)
786 timer
->start_site
= __builtin_return_address(0);
787 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
788 timer
->start_pid
= current
->pid
;
792 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
794 #ifdef CONFIG_TIMER_STATS
795 timer
->start_site
= NULL
;
799 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
801 #ifdef CONFIG_TIMER_STATS
802 if (likely(!timer_stats_active
))
804 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
805 timer
->function
, timer
->start_comm
, 0);
810 * Counterpart to lock_hrtimer_base above:
813 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
815 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
819 * hrtimer_forward - forward the timer expiry
820 * @timer: hrtimer to forward
821 * @now: forward past this time
822 * @interval: the interval to forward
824 * Forward the timer expiry so it will expire in the future.
825 * Returns the number of overruns.
827 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
832 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
837 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
838 interval
.tv64
= timer
->base
->resolution
.tv64
;
840 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
841 s64 incr
= ktime_to_ns(interval
);
843 orun
= ktime_divns(delta
, incr
);
844 hrtimer_add_expires_ns(timer
, incr
* orun
);
845 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
848 * This (and the ktime_add() below) is the
849 * correction for exact:
853 hrtimer_add_expires(timer
, interval
);
857 EXPORT_SYMBOL_GPL(hrtimer_forward
);
860 * enqueue_hrtimer - internal function to (re)start a timer
862 * The timer is inserted in expiry order. Insertion into the
863 * red black tree is O(log(n)). Must hold the base lock.
865 * Returns 1 when the new timer is the leftmost timer in the tree.
867 static int enqueue_hrtimer(struct hrtimer
*timer
,
868 struct hrtimer_clock_base
*base
)
870 debug_activate(timer
);
872 timerqueue_add(&base
->active
, &timer
->node
);
873 base
->cpu_base
->active_bases
|= 1 << base
->index
;
876 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
877 * state of a possibly running callback.
879 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
881 return (&timer
->node
== base
->active
.next
);
885 * __remove_hrtimer - internal function to remove a timer
887 * Caller must hold the base lock.
889 * High resolution timer mode reprograms the clock event device when the
890 * timer is the one which expires next. The caller can disable this by setting
891 * reprogram to zero. This is useful, when the context does a reprogramming
892 * anyway (e.g. timer interrupt)
894 static void __remove_hrtimer(struct hrtimer
*timer
,
895 struct hrtimer_clock_base
*base
,
896 unsigned long newstate
, int reprogram
)
898 struct timerqueue_node
*next_timer
;
899 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
902 next_timer
= timerqueue_getnext(&base
->active
);
903 timerqueue_del(&base
->active
, &timer
->node
);
904 if (&timer
->node
== next_timer
) {
905 #ifdef CONFIG_HIGH_RES_TIMERS
906 /* Reprogram the clock event device. if enabled */
907 if (reprogram
&& hrtimer_hres_active()) {
910 expires
= ktime_sub(hrtimer_get_expires(timer
),
912 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
913 hrtimer_force_reprogram(base
->cpu_base
, 1);
917 if (!timerqueue_getnext(&base
->active
))
918 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
920 timer
->state
= newstate
;
924 * remove hrtimer, called with base lock held
927 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
929 if (hrtimer_is_queued(timer
)) {
934 * Remove the timer and force reprogramming when high
935 * resolution mode is active and the timer is on the current
936 * CPU. If we remove a timer on another CPU, reprogramming is
937 * skipped. The interrupt event on this CPU is fired and
938 * reprogramming happens in the interrupt handler. This is a
939 * rare case and less expensive than a smp call.
941 debug_deactivate(timer
);
942 timer_stats_hrtimer_clear_start_info(timer
);
943 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
945 * We must preserve the CALLBACK state flag here,
946 * otherwise we could move the timer base in
947 * switch_hrtimer_base.
949 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
950 __remove_hrtimer(timer
, base
, state
, reprogram
);
956 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
957 unsigned long delta_ns
, const enum hrtimer_mode mode
,
960 struct hrtimer_clock_base
*base
, *new_base
;
964 base
= lock_hrtimer_base(timer
, &flags
);
966 /* Remove an active timer from the queue: */
967 ret
= remove_hrtimer(timer
, base
);
969 /* Switch the timer base, if necessary: */
970 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
972 if (mode
& HRTIMER_MODE_REL
) {
973 tim
= ktime_add_safe(tim
, new_base
->get_time());
975 * CONFIG_TIME_LOW_RES is a temporary way for architectures
976 * to signal that they simply return xtime in
977 * do_gettimeoffset(). In this case we want to round up by
978 * resolution when starting a relative timer, to avoid short
979 * timeouts. This will go away with the GTOD framework.
981 #ifdef CONFIG_TIME_LOW_RES
982 tim
= ktime_add_safe(tim
, base
->resolution
);
986 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
988 timer_stats_hrtimer_set_start_info(timer
);
990 leftmost
= enqueue_hrtimer(timer
, new_base
);
993 * Only allow reprogramming if the new base is on this CPU.
994 * (it might still be on another CPU if the timer was pending)
996 * XXX send_remote_softirq() ?
998 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
999 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
1001 unlock_hrtimer_base(timer
, &flags
);
1007 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1008 * @timer: the timer to be added
1010 * @delta_ns: "slack" range for the timer
1011 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1015 * 1 when the timer was active
1017 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1018 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1020 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1022 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1025 * hrtimer_start - (re)start an hrtimer on the current CPU
1026 * @timer: the timer to be added
1028 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1032 * 1 when the timer was active
1035 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1037 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1039 EXPORT_SYMBOL_GPL(hrtimer_start
);
1043 * hrtimer_try_to_cancel - try to deactivate a timer
1044 * @timer: hrtimer to stop
1047 * 0 when the timer was not active
1048 * 1 when the timer was active
1049 * -1 when the timer is currently excuting the callback function and
1052 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1054 struct hrtimer_clock_base
*base
;
1055 unsigned long flags
;
1058 base
= lock_hrtimer_base(timer
, &flags
);
1060 if (!hrtimer_callback_running(timer
))
1061 ret
= remove_hrtimer(timer
, base
);
1063 unlock_hrtimer_base(timer
, &flags
);
1068 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1071 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1072 * @timer: the timer to be cancelled
1075 * 0 when the timer was not active
1076 * 1 when the timer was active
1078 int hrtimer_cancel(struct hrtimer
*timer
)
1081 int ret
= hrtimer_try_to_cancel(timer
);
1088 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1091 * hrtimer_get_remaining - get remaining time for the timer
1092 * @timer: the timer to read
1094 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1096 unsigned long flags
;
1099 lock_hrtimer_base(timer
, &flags
);
1100 rem
= hrtimer_expires_remaining(timer
);
1101 unlock_hrtimer_base(timer
, &flags
);
1105 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1109 * hrtimer_get_next_event - get the time until next expiry event
1111 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1114 ktime_t
hrtimer_get_next_event(void)
1116 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1117 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1118 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1119 unsigned long flags
;
1122 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1124 if (!hrtimer_hres_active()) {
1125 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1126 struct hrtimer
*timer
;
1127 struct timerqueue_node
*next
;
1129 next
= timerqueue_getnext(&base
->active
);
1133 timer
= container_of(next
, struct hrtimer
, node
);
1134 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1135 delta
= ktime_sub(delta
, base
->get_time());
1136 if (delta
.tv64
< mindelta
.tv64
)
1137 mindelta
.tv64
= delta
.tv64
;
1141 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1143 if (mindelta
.tv64
< 0)
1149 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1150 enum hrtimer_mode mode
)
1152 struct hrtimer_cpu_base
*cpu_base
;
1155 memset(timer
, 0, sizeof(struct hrtimer
));
1157 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1159 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1160 clock_id
= CLOCK_MONOTONIC
;
1162 base
= hrtimer_clockid_to_base(clock_id
);
1163 timer
->base
= &cpu_base
->clock_base
[base
];
1164 timerqueue_init(&timer
->node
);
1166 #ifdef CONFIG_TIMER_STATS
1167 timer
->start_site
= NULL
;
1168 timer
->start_pid
= -1;
1169 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer: the timer to be initialized
1176 * @clock_id: the clock to be used
1177 * @mode: timer mode abs/rel
1179 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1180 enum hrtimer_mode mode
)
1182 debug_init(timer
, clock_id
, mode
);
1183 __hrtimer_init(timer
, clock_id
, mode
);
1185 EXPORT_SYMBOL_GPL(hrtimer_init
);
1188 * hrtimer_get_res - get the timer resolution for a clock
1189 * @which_clock: which clock to query
1190 * @tp: pointer to timespec variable to store the resolution
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
1195 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1197 struct hrtimer_cpu_base
*cpu_base
;
1198 int base
= hrtimer_clockid_to_base(which_clock
);
1200 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1201 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1205 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1207 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1209 struct hrtimer_clock_base
*base
= timer
->base
;
1210 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1211 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1214 WARN_ON(!irqs_disabled());
1216 debug_deactivate(timer
);
1217 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1218 timer_stats_account_hrtimer(timer
);
1219 fn
= timer
->function
;
1222 * Because we run timers from hardirq context, there is no chance
1223 * they get migrated to another cpu, therefore its safe to unlock
1226 raw_spin_unlock(&cpu_base
->lock
);
1227 trace_hrtimer_expire_entry(timer
, now
);
1228 restart
= fn(timer
);
1229 trace_hrtimer_expire_exit(timer
);
1230 raw_spin_lock(&cpu_base
->lock
);
1233 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1234 * we do not reprogramm the event hardware. Happens either in
1235 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1237 if (restart
!= HRTIMER_NORESTART
) {
1238 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1239 enqueue_hrtimer(timer
, base
);
1242 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1244 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1247 #ifdef CONFIG_HIGH_RES_TIMERS
1250 * High resolution timer interrupt
1251 * Called with interrupts disabled
1253 void hrtimer_interrupt(struct clock_event_device
*dev
)
1255 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1256 ktime_t expires_next
, now
, entry_time
, delta
;
1259 BUG_ON(!cpu_base
->hres_active
);
1260 cpu_base
->nr_events
++;
1261 dev
->next_event
.tv64
= KTIME_MAX
;
1263 raw_spin_lock(&cpu_base
->lock
);
1264 entry_time
= now
= hrtimer_update_base(cpu_base
);
1266 expires_next
.tv64
= KTIME_MAX
;
1268 * We set expires_next to KTIME_MAX here with cpu_base->lock
1269 * held to prevent that a timer is enqueued in our queue via
1270 * the migration code. This does not affect enqueueing of
1271 * timers which run their callback and need to be requeued on
1274 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1276 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1277 struct hrtimer_clock_base
*base
;
1278 struct timerqueue_node
*node
;
1281 if (!(cpu_base
->active_bases
& (1 << i
)))
1284 base
= cpu_base
->clock_base
+ i
;
1285 basenow
= ktime_add(now
, base
->offset
);
1287 while ((node
= timerqueue_getnext(&base
->active
))) {
1288 struct hrtimer
*timer
;
1290 timer
= container_of(node
, struct hrtimer
, node
);
1293 * The immediate goal for using the softexpires is
1294 * minimizing wakeups, not running timers at the
1295 * earliest interrupt after their soft expiration.
1296 * This allows us to avoid using a Priority Search
1297 * Tree, which can answer a stabbing querry for
1298 * overlapping intervals and instead use the simple
1299 * BST we already have.
1300 * We don't add extra wakeups by delaying timers that
1301 * are right-of a not yet expired timer, because that
1302 * timer will have to trigger a wakeup anyway.
1305 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1308 expires
= ktime_sub(hrtimer_get_expires(timer
),
1310 if (expires
.tv64
< expires_next
.tv64
)
1311 expires_next
= expires
;
1315 __run_hrtimer(timer
, &basenow
);
1320 * Store the new expiry value so the migration code can verify
1323 cpu_base
->expires_next
= expires_next
;
1324 raw_spin_unlock(&cpu_base
->lock
);
1326 /* Reprogramming necessary ? */
1327 if (expires_next
.tv64
== KTIME_MAX
||
1328 !tick_program_event(expires_next
, 0)) {
1329 cpu_base
->hang_detected
= 0;
1334 * The next timer was already expired due to:
1336 * - long lasting callbacks
1337 * - being scheduled away when running in a VM
1339 * We need to prevent that we loop forever in the hrtimer
1340 * interrupt routine. We give it 3 attempts to avoid
1341 * overreacting on some spurious event.
1343 * Acquire base lock for updating the offsets and retrieving
1346 raw_spin_lock(&cpu_base
->lock
);
1347 now
= hrtimer_update_base(cpu_base
);
1348 cpu_base
->nr_retries
++;
1352 * Give the system a chance to do something else than looping
1353 * here. We stored the entry time, so we know exactly how long
1354 * we spent here. We schedule the next event this amount of
1357 cpu_base
->nr_hangs
++;
1358 cpu_base
->hang_detected
= 1;
1359 raw_spin_unlock(&cpu_base
->lock
);
1360 delta
= ktime_sub(now
, entry_time
);
1361 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1362 cpu_base
->max_hang_time
= delta
;
1364 * Limit it to a sensible value as we enforce a longer
1365 * delay. Give the CPU at least 100ms to catch up.
1367 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1368 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1370 expires_next
= ktime_add(now
, delta
);
1371 tick_program_event(expires_next
, 1);
1372 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1373 ktime_to_ns(delta
));
1377 * local version of hrtimer_peek_ahead_timers() called with interrupts
1380 static void __hrtimer_peek_ahead_timers(void)
1382 struct tick_device
*td
;
1384 if (!hrtimer_hres_active())
1387 td
= &__get_cpu_var(tick_cpu_device
);
1388 if (td
&& td
->evtdev
)
1389 hrtimer_interrupt(td
->evtdev
);
1393 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1395 * hrtimer_peek_ahead_timers will peek at the timer queue of
1396 * the current cpu and check if there are any timers for which
1397 * the soft expires time has passed. If any such timers exist,
1398 * they are run immediately and then removed from the timer queue.
1401 void hrtimer_peek_ahead_timers(void)
1403 unsigned long flags
;
1405 local_irq_save(flags
);
1406 __hrtimer_peek_ahead_timers();
1407 local_irq_restore(flags
);
1410 static void run_hrtimer_softirq(struct softirq_action
*h
)
1412 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1414 if (cpu_base
->clock_was_set
) {
1415 cpu_base
->clock_was_set
= 0;
1419 hrtimer_peek_ahead_timers();
1422 #else /* CONFIG_HIGH_RES_TIMERS */
1424 static inline void __hrtimer_peek_ahead_timers(void) { }
1426 #endif /* !CONFIG_HIGH_RES_TIMERS */
1429 * Called from timer softirq every jiffy, expire hrtimers:
1431 * For HRT its the fall back code to run the softirq in the timer
1432 * softirq context in case the hrtimer initialization failed or has
1433 * not been done yet.
1435 void hrtimer_run_pending(void)
1437 if (hrtimer_hres_active())
1441 * This _is_ ugly: We have to check in the softirq context,
1442 * whether we can switch to highres and / or nohz mode. The
1443 * clocksource switch happens in the timer interrupt with
1444 * xtime_lock held. Notification from there only sets the
1445 * check bit in the tick_oneshot code, otherwise we might
1446 * deadlock vs. xtime_lock.
1448 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1449 hrtimer_switch_to_hres();
1453 * Called from hardirq context every jiffy
1455 void hrtimer_run_queues(void)
1457 struct timerqueue_node
*node
;
1458 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1459 struct hrtimer_clock_base
*base
;
1460 int index
, gettime
= 1;
1462 if (hrtimer_hres_active())
1465 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1466 base
= &cpu_base
->clock_base
[index
];
1467 if (!timerqueue_getnext(&base
->active
))
1471 hrtimer_get_softirq_time(cpu_base
);
1475 raw_spin_lock(&cpu_base
->lock
);
1477 while ((node
= timerqueue_getnext(&base
->active
))) {
1478 struct hrtimer
*timer
;
1480 timer
= container_of(node
, struct hrtimer
, node
);
1481 if (base
->softirq_time
.tv64
<=
1482 hrtimer_get_expires_tv64(timer
))
1485 __run_hrtimer(timer
, &base
->softirq_time
);
1487 raw_spin_unlock(&cpu_base
->lock
);
1492 * Sleep related functions:
1494 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1496 struct hrtimer_sleeper
*t
=
1497 container_of(timer
, struct hrtimer_sleeper
, timer
);
1498 struct task_struct
*task
= t
->task
;
1502 wake_up_process(task
);
1504 return HRTIMER_NORESTART
;
1507 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1509 sl
->timer
.function
= hrtimer_wakeup
;
1512 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1514 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1516 hrtimer_init_sleeper(t
, current
);
1519 set_current_state(TASK_INTERRUPTIBLE
);
1520 hrtimer_start_expires(&t
->timer
, mode
);
1521 if (!hrtimer_active(&t
->timer
))
1524 if (likely(t
->task
))
1527 hrtimer_cancel(&t
->timer
);
1528 mode
= HRTIMER_MODE_ABS
;
1530 } while (t
->task
&& !signal_pending(current
));
1532 __set_current_state(TASK_RUNNING
);
1534 return t
->task
== NULL
;
1537 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1539 struct timespec rmt
;
1542 rem
= hrtimer_expires_remaining(timer
);
1545 rmt
= ktime_to_timespec(rem
);
1547 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1553 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1555 struct hrtimer_sleeper t
;
1556 struct timespec __user
*rmtp
;
1559 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1561 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1563 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1566 rmtp
= restart
->nanosleep
.rmtp
;
1568 ret
= update_rmtp(&t
.timer
, rmtp
);
1573 /* The other values in restart are already filled in */
1574 ret
= -ERESTART_RESTARTBLOCK
;
1576 destroy_hrtimer_on_stack(&t
.timer
);
1580 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1581 const enum hrtimer_mode mode
, const clockid_t clockid
)
1583 struct restart_block
*restart
;
1584 struct hrtimer_sleeper t
;
1586 unsigned long slack
;
1588 slack
= current
->timer_slack_ns
;
1589 if (rt_task(current
))
1592 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1593 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1594 if (do_nanosleep(&t
, mode
))
1597 /* Absolute timers do not update the rmtp value and restart: */
1598 if (mode
== HRTIMER_MODE_ABS
) {
1599 ret
= -ERESTARTNOHAND
;
1604 ret
= update_rmtp(&t
.timer
, rmtp
);
1609 restart
= ¤t_thread_info()->restart_block
;
1610 restart
->fn
= hrtimer_nanosleep_restart
;
1611 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1612 restart
->nanosleep
.rmtp
= rmtp
;
1613 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1615 ret
= -ERESTART_RESTARTBLOCK
;
1617 destroy_hrtimer_on_stack(&t
.timer
);
1621 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1622 struct timespec __user
*, rmtp
)
1626 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1629 if (!timespec_valid(&tu
))
1632 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1636 * Functions related to boot-time initialization:
1638 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1640 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1643 raw_spin_lock_init(&cpu_base
->lock
);
1645 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1646 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1647 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1650 hrtimer_init_hres(cpu_base
);
1653 #ifdef CONFIG_HOTPLUG_CPU
1655 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1656 struct hrtimer_clock_base
*new_base
)
1658 struct hrtimer
*timer
;
1659 struct timerqueue_node
*node
;
1661 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1662 timer
= container_of(node
, struct hrtimer
, node
);
1663 BUG_ON(hrtimer_callback_running(timer
));
1664 debug_deactivate(timer
);
1667 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1668 * timer could be seen as !active and just vanish away
1669 * under us on another CPU
1671 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1672 timer
->base
= new_base
;
1674 * Enqueue the timers on the new cpu. This does not
1675 * reprogram the event device in case the timer
1676 * expires before the earliest on this CPU, but we run
1677 * hrtimer_interrupt after we migrated everything to
1678 * sort out already expired timers and reprogram the
1681 enqueue_hrtimer(timer
, new_base
);
1683 /* Clear the migration state bit */
1684 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1688 static void migrate_hrtimers(int scpu
)
1690 struct hrtimer_cpu_base
*old_base
, *new_base
;
1693 BUG_ON(cpu_online(scpu
));
1694 tick_cancel_sched_timer(scpu
);
1696 local_irq_disable();
1697 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1698 new_base
= &__get_cpu_var(hrtimer_bases
);
1700 * The caller is globally serialized and nobody else
1701 * takes two locks at once, deadlock is not possible.
1703 raw_spin_lock(&new_base
->lock
);
1704 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1706 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1707 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1708 &new_base
->clock_base
[i
]);
1711 raw_spin_unlock(&old_base
->lock
);
1712 raw_spin_unlock(&new_base
->lock
);
1714 /* Check, if we got expired work to do */
1715 __hrtimer_peek_ahead_timers();
1719 #endif /* CONFIG_HOTPLUG_CPU */
1721 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1722 unsigned long action
, void *hcpu
)
1724 int scpu
= (long)hcpu
;
1728 case CPU_UP_PREPARE
:
1729 case CPU_UP_PREPARE_FROZEN
:
1730 init_hrtimers_cpu(scpu
);
1733 #ifdef CONFIG_HOTPLUG_CPU
1735 case CPU_DYING_FROZEN
:
1736 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1739 case CPU_DEAD_FROZEN
:
1741 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1742 migrate_hrtimers(scpu
);
1754 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1755 .notifier_call
= hrtimer_cpu_notify
,
1758 void __init
hrtimers_init(void)
1760 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1761 (void *)(long)smp_processor_id());
1762 register_cpu_notifier(&hrtimers_nb
);
1763 #ifdef CONFIG_HIGH_RES_TIMERS
1764 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1769 * schedule_hrtimeout_range_clock - sleep until timeout
1770 * @expires: timeout value (ktime_t)
1771 * @delta: slack in expires timeout (ktime_t)
1772 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1773 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1776 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1777 const enum hrtimer_mode mode
, int clock
)
1779 struct hrtimer_sleeper t
;
1782 * Optimize when a zero timeout value is given. It does not
1783 * matter whether this is an absolute or a relative time.
1785 if (expires
&& !expires
->tv64
) {
1786 __set_current_state(TASK_RUNNING
);
1791 * A NULL parameter means "infinite"
1795 __set_current_state(TASK_RUNNING
);
1799 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1800 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1802 hrtimer_init_sleeper(&t
, current
);
1804 hrtimer_start_expires(&t
.timer
, mode
);
1805 if (!hrtimer_active(&t
.timer
))
1811 hrtimer_cancel(&t
.timer
);
1812 destroy_hrtimer_on_stack(&t
.timer
);
1814 __set_current_state(TASK_RUNNING
);
1816 return !t
.task
? 0 : -EINTR
;
1820 * schedule_hrtimeout_range - sleep until timeout
1821 * @expires: timeout value (ktime_t)
1822 * @delta: slack in expires timeout (ktime_t)
1823 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1825 * Make the current task sleep until the given expiry time has
1826 * elapsed. The routine will return immediately unless
1827 * the current task state has been set (see set_current_state()).
1829 * The @delta argument gives the kernel the freedom to schedule the
1830 * actual wakeup to a time that is both power and performance friendly.
1831 * The kernel give the normal best effort behavior for "@expires+@delta",
1832 * but may decide to fire the timer earlier, but no earlier than @expires.
1834 * You can set the task state as follows -
1836 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1837 * pass before the routine returns.
1839 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1840 * delivered to the current task.
1842 * The current task state is guaranteed to be TASK_RUNNING when this
1845 * Returns 0 when the timer has expired otherwise -EINTR
1847 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1848 const enum hrtimer_mode mode
)
1850 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1853 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1856 * schedule_hrtimeout - sleep until timeout
1857 * @expires: timeout value (ktime_t)
1858 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1860 * Make the current task sleep until the given expiry time has
1861 * elapsed. The routine will return immediately unless
1862 * the current task state has been set (see set_current_state()).
1864 * You can set the task state as follows -
1866 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1867 * pass before the routine returns.
1869 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1870 * delivered to the current task.
1872 * The current task state is guaranteed to be TASK_RUNNING when this
1875 * Returns 0 when the timer has expired otherwise -EINTR
1877 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1878 const enum hrtimer_mode mode
)
1880 return schedule_hrtimeout_range(expires
, 0, mode
);
1882 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);