KMS: fix EDID detailed timing vsync parsing
[linux-2.6/cjktty.git] / sound / soc / omap / mcbsp.c
blob285c8368cb47bcaf3461b4470f09fb9d7159c0fc
1 /*
2 * sound/soc/omap/mcbsp.c
4 * Copyright (C) 2004 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com>
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 * Peter Ujfalusi <peter.ujfalusi@ti.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * Multichannel mode not supported.
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/platform_device.h>
21 #include <linux/interrupt.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/pm_runtime.h>
29 #include <linux/platform_data/asoc-ti-mcbsp.h>
31 #include "mcbsp.h"
33 static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
35 void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
37 if (mcbsp->pdata->reg_size == 2) {
38 ((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
39 __raw_writew((u16)val, addr);
40 } else {
41 ((u32 *)mcbsp->reg_cache)[reg] = val;
42 __raw_writel(val, addr);
46 static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
48 void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
50 if (mcbsp->pdata->reg_size == 2) {
51 return !from_cache ? __raw_readw(addr) :
52 ((u16 *)mcbsp->reg_cache)[reg];
53 } else {
54 return !from_cache ? __raw_readl(addr) :
55 ((u32 *)mcbsp->reg_cache)[reg];
59 static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
61 __raw_writel(val, mcbsp->st_data->io_base_st + reg);
64 static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
66 return __raw_readl(mcbsp->st_data->io_base_st + reg);
69 #define MCBSP_READ(mcbsp, reg) \
70 omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
71 #define MCBSP_WRITE(mcbsp, reg, val) \
72 omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
73 #define MCBSP_READ_CACHE(mcbsp, reg) \
74 omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
76 #define MCBSP_ST_READ(mcbsp, reg) \
77 omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
78 #define MCBSP_ST_WRITE(mcbsp, reg, val) \
79 omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
81 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
83 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
84 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n",
85 MCBSP_READ(mcbsp, DRR2));
86 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n",
87 MCBSP_READ(mcbsp, DRR1));
88 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n",
89 MCBSP_READ(mcbsp, DXR2));
90 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n",
91 MCBSP_READ(mcbsp, DXR1));
92 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
93 MCBSP_READ(mcbsp, SPCR2));
94 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
95 MCBSP_READ(mcbsp, SPCR1));
96 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n",
97 MCBSP_READ(mcbsp, RCR2));
98 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n",
99 MCBSP_READ(mcbsp, RCR1));
100 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n",
101 MCBSP_READ(mcbsp, XCR2));
102 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n",
103 MCBSP_READ(mcbsp, XCR1));
104 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
105 MCBSP_READ(mcbsp, SRGR2));
106 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
107 MCBSP_READ(mcbsp, SRGR1));
108 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n",
109 MCBSP_READ(mcbsp, PCR0));
110 dev_dbg(mcbsp->dev, "***********************\n");
113 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
115 struct omap_mcbsp *mcbsp = dev_id;
116 u16 irqst;
118 irqst = MCBSP_READ(mcbsp, IRQST);
119 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
121 if (irqst & RSYNCERREN)
122 dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
123 if (irqst & RFSREN)
124 dev_dbg(mcbsp->dev, "RX Frame Sync\n");
125 if (irqst & REOFEN)
126 dev_dbg(mcbsp->dev, "RX End Of Frame\n");
127 if (irqst & RRDYEN)
128 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
129 if (irqst & RUNDFLEN)
130 dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
131 if (irqst & ROVFLEN)
132 dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
134 if (irqst & XSYNCERREN)
135 dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
136 if (irqst & XFSXEN)
137 dev_dbg(mcbsp->dev, "TX Frame Sync\n");
138 if (irqst & XEOFEN)
139 dev_dbg(mcbsp->dev, "TX End Of Frame\n");
140 if (irqst & XRDYEN)
141 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
142 if (irqst & XUNDFLEN)
143 dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
144 if (irqst & XOVFLEN)
145 dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
146 if (irqst & XEMPTYEOFEN)
147 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
149 MCBSP_WRITE(mcbsp, IRQST, irqst);
151 return IRQ_HANDLED;
154 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
156 struct omap_mcbsp *mcbsp_tx = dev_id;
157 u16 irqst_spcr2;
159 irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
160 dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
162 if (irqst_spcr2 & XSYNC_ERR) {
163 dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
164 irqst_spcr2);
165 /* Writing zero to XSYNC_ERR clears the IRQ */
166 MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
169 return IRQ_HANDLED;
172 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
174 struct omap_mcbsp *mcbsp_rx = dev_id;
175 u16 irqst_spcr1;
177 irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
178 dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
180 if (irqst_spcr1 & RSYNC_ERR) {
181 dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
182 irqst_spcr1);
183 /* Writing zero to RSYNC_ERR clears the IRQ */
184 MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
187 return IRQ_HANDLED;
191 * omap_mcbsp_config simply write a config to the
192 * appropriate McBSP.
193 * You either call this function or set the McBSP registers
194 * by yourself before calling omap_mcbsp_start().
196 void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
197 const struct omap_mcbsp_reg_cfg *config)
199 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
200 mcbsp->id, mcbsp->phys_base);
202 /* We write the given config */
203 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
204 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
205 MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
206 MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
207 MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
208 MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
209 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
210 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
211 MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
212 MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
213 MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
214 if (mcbsp->pdata->has_ccr) {
215 MCBSP_WRITE(mcbsp, XCCR, config->xccr);
216 MCBSP_WRITE(mcbsp, RCCR, config->rccr);
218 /* Enable wakeup behavior */
219 if (mcbsp->pdata->has_wakeup)
220 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
222 /* Enable TX/RX sync error interrupts by default */
223 if (mcbsp->irq)
224 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN);
228 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
229 * @id - mcbsp id
230 * @stream - indicates the direction of data flow (rx or tx)
232 * Returns the address of mcbsp data transmit register or data receive register
233 * to be used by DMA for transferring/receiving data based on the value of
234 * @stream for the requested mcbsp given by @id
236 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
237 unsigned int stream)
239 int data_reg;
241 if (mcbsp->pdata->reg_size == 2) {
242 if (stream)
243 data_reg = OMAP_MCBSP_REG_DRR1;
244 else
245 data_reg = OMAP_MCBSP_REG_DXR1;
246 } else {
247 if (stream)
248 data_reg = OMAP_MCBSP_REG_DRR;
249 else
250 data_reg = OMAP_MCBSP_REG_DXR;
253 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
256 static void omap_st_on(struct omap_mcbsp *mcbsp)
258 unsigned int w;
260 if (mcbsp->pdata->enable_st_clock)
261 mcbsp->pdata->enable_st_clock(mcbsp->id, 1);
263 /* Enable McBSP Sidetone */
264 w = MCBSP_READ(mcbsp, SSELCR);
265 MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
267 /* Enable Sidetone from Sidetone Core */
268 w = MCBSP_ST_READ(mcbsp, SSELCR);
269 MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
272 static void omap_st_off(struct omap_mcbsp *mcbsp)
274 unsigned int w;
276 w = MCBSP_ST_READ(mcbsp, SSELCR);
277 MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
279 w = MCBSP_READ(mcbsp, SSELCR);
280 MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
282 if (mcbsp->pdata->enable_st_clock)
283 mcbsp->pdata->enable_st_clock(mcbsp->id, 0);
286 static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
288 u16 val, i;
290 val = MCBSP_ST_READ(mcbsp, SSELCR);
292 if (val & ST_COEFFWREN)
293 MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
295 MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
297 for (i = 0; i < 128; i++)
298 MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
300 i = 0;
302 val = MCBSP_ST_READ(mcbsp, SSELCR);
303 while (!(val & ST_COEFFWRDONE) && (++i < 1000))
304 val = MCBSP_ST_READ(mcbsp, SSELCR);
306 MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
308 if (i == 1000)
309 dev_err(mcbsp->dev, "McBSP FIR load error!\n");
312 static void omap_st_chgain(struct omap_mcbsp *mcbsp)
314 u16 w;
315 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
317 w = MCBSP_ST_READ(mcbsp, SSELCR);
319 MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
320 ST_CH1GAIN(st_data->ch1gain));
323 int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
325 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
326 int ret = 0;
328 if (!st_data)
329 return -ENOENT;
331 spin_lock_irq(&mcbsp->lock);
332 if (channel == 0)
333 st_data->ch0gain = chgain;
334 else if (channel == 1)
335 st_data->ch1gain = chgain;
336 else
337 ret = -EINVAL;
339 if (st_data->enabled)
340 omap_st_chgain(mcbsp);
341 spin_unlock_irq(&mcbsp->lock);
343 return ret;
346 int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
348 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
349 int ret = 0;
351 if (!st_data)
352 return -ENOENT;
354 spin_lock_irq(&mcbsp->lock);
355 if (channel == 0)
356 *chgain = st_data->ch0gain;
357 else if (channel == 1)
358 *chgain = st_data->ch1gain;
359 else
360 ret = -EINVAL;
361 spin_unlock_irq(&mcbsp->lock);
363 return ret;
366 static int omap_st_start(struct omap_mcbsp *mcbsp)
368 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
370 if (st_data->enabled && !st_data->running) {
371 omap_st_fir_write(mcbsp, st_data->taps);
372 omap_st_chgain(mcbsp);
374 if (!mcbsp->free) {
375 omap_st_on(mcbsp);
376 st_data->running = 1;
380 return 0;
383 int omap_st_enable(struct omap_mcbsp *mcbsp)
385 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
387 if (!st_data)
388 return -ENODEV;
390 spin_lock_irq(&mcbsp->lock);
391 st_data->enabled = 1;
392 omap_st_start(mcbsp);
393 spin_unlock_irq(&mcbsp->lock);
395 return 0;
398 static int omap_st_stop(struct omap_mcbsp *mcbsp)
400 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
402 if (st_data->running) {
403 if (!mcbsp->free) {
404 omap_st_off(mcbsp);
405 st_data->running = 0;
409 return 0;
412 int omap_st_disable(struct omap_mcbsp *mcbsp)
414 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
415 int ret = 0;
417 if (!st_data)
418 return -ENODEV;
420 spin_lock_irq(&mcbsp->lock);
421 omap_st_stop(mcbsp);
422 st_data->enabled = 0;
423 spin_unlock_irq(&mcbsp->lock);
425 return ret;
428 int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
430 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
432 if (!st_data)
433 return -ENODEV;
435 return st_data->enabled;
439 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
440 * The threshold parameter is 1 based, and it is converted (threshold - 1)
441 * for the THRSH2 register.
443 void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
445 if (mcbsp->pdata->buffer_size == 0)
446 return;
448 if (threshold && threshold <= mcbsp->max_tx_thres)
449 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
453 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
454 * The threshold parameter is 1 based, and it is converted (threshold - 1)
455 * for the THRSH1 register.
457 void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
459 if (mcbsp->pdata->buffer_size == 0)
460 return;
462 if (threshold && threshold <= mcbsp->max_rx_thres)
463 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
467 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
469 u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
471 u16 buffstat;
473 if (mcbsp->pdata->buffer_size == 0)
474 return 0;
476 /* Returns the number of free locations in the buffer */
477 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
479 /* Number of slots are different in McBSP ports */
480 return mcbsp->pdata->buffer_size - buffstat;
484 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
485 * to reach the threshold value (when the DMA will be triggered to read it)
487 u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
489 u16 buffstat, threshold;
491 if (mcbsp->pdata->buffer_size == 0)
492 return 0;
494 /* Returns the number of used locations in the buffer */
495 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
496 /* RX threshold */
497 threshold = MCBSP_READ(mcbsp, THRSH1);
499 /* Return the number of location till we reach the threshold limit */
500 if (threshold <= buffstat)
501 return 0;
502 else
503 return threshold - buffstat;
506 int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
508 void *reg_cache;
509 int err;
511 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
512 if (!reg_cache) {
513 return -ENOMEM;
516 spin_lock(&mcbsp->lock);
517 if (!mcbsp->free) {
518 dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
519 mcbsp->id);
520 err = -EBUSY;
521 goto err_kfree;
524 mcbsp->free = false;
525 mcbsp->reg_cache = reg_cache;
526 spin_unlock(&mcbsp->lock);
528 if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
529 mcbsp->pdata->ops->request(mcbsp->id - 1);
532 * Make sure that transmitter, receiver and sample-rate generator are
533 * not running before activating IRQs.
535 MCBSP_WRITE(mcbsp, SPCR1, 0);
536 MCBSP_WRITE(mcbsp, SPCR2, 0);
538 if (mcbsp->irq) {
539 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
540 "McBSP", (void *)mcbsp);
541 if (err != 0) {
542 dev_err(mcbsp->dev, "Unable to request IRQ\n");
543 goto err_clk_disable;
545 } else {
546 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
547 "McBSP TX", (void *)mcbsp);
548 if (err != 0) {
549 dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
550 goto err_clk_disable;
553 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
554 "McBSP RX", (void *)mcbsp);
555 if (err != 0) {
556 dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
557 goto err_free_irq;
561 return 0;
562 err_free_irq:
563 free_irq(mcbsp->tx_irq, (void *)mcbsp);
564 err_clk_disable:
565 if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
566 mcbsp->pdata->ops->free(mcbsp->id - 1);
568 /* Disable wakeup behavior */
569 if (mcbsp->pdata->has_wakeup)
570 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
572 spin_lock(&mcbsp->lock);
573 mcbsp->free = true;
574 mcbsp->reg_cache = NULL;
575 err_kfree:
576 spin_unlock(&mcbsp->lock);
577 kfree(reg_cache);
579 return err;
582 void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
584 void *reg_cache;
586 if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
587 mcbsp->pdata->ops->free(mcbsp->id - 1);
589 /* Disable wakeup behavior */
590 if (mcbsp->pdata->has_wakeup)
591 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
593 /* Disable interrupt requests */
594 if (mcbsp->irq)
595 MCBSP_WRITE(mcbsp, IRQEN, 0);
597 if (mcbsp->irq) {
598 free_irq(mcbsp->irq, (void *)mcbsp);
599 } else {
600 free_irq(mcbsp->rx_irq, (void *)mcbsp);
601 free_irq(mcbsp->tx_irq, (void *)mcbsp);
604 reg_cache = mcbsp->reg_cache;
607 * Select CLKS source from internal source unconditionally before
608 * marking the McBSP port as free.
609 * If the external clock source via MCBSP_CLKS pin has been selected the
610 * system will refuse to enter idle if the CLKS pin source is not reset
611 * back to internal source.
613 if (!mcbsp_omap1())
614 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
616 spin_lock(&mcbsp->lock);
617 if (mcbsp->free)
618 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
619 else
620 mcbsp->free = true;
621 mcbsp->reg_cache = NULL;
622 spin_unlock(&mcbsp->lock);
624 if (reg_cache)
625 kfree(reg_cache);
629 * Here we start the McBSP, by enabling transmitter, receiver or both.
630 * If no transmitter or receiver is active prior calling, then sample-rate
631 * generator and frame sync are started.
633 void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
635 int enable_srg = 0;
636 u16 w;
638 if (mcbsp->st_data)
639 omap_st_start(mcbsp);
641 /* Only enable SRG, if McBSP is master */
642 w = MCBSP_READ_CACHE(mcbsp, PCR0);
643 if (w & (FSXM | FSRM | CLKXM | CLKRM))
644 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
645 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
647 if (enable_srg) {
648 /* Start the sample generator */
649 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
650 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
653 /* Enable transmitter and receiver */
654 tx &= 1;
655 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
656 MCBSP_WRITE(mcbsp, SPCR2, w | tx);
658 rx &= 1;
659 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
660 MCBSP_WRITE(mcbsp, SPCR1, w | rx);
663 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
664 * REVISIT: 100us may give enough time for two CLKSRG, however
665 * due to some unknown PM related, clock gating etc. reason it
666 * is now at 500us.
668 udelay(500);
670 if (enable_srg) {
671 /* Start frame sync */
672 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
673 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
676 if (mcbsp->pdata->has_ccr) {
677 /* Release the transmitter and receiver */
678 w = MCBSP_READ_CACHE(mcbsp, XCCR);
679 w &= ~(tx ? XDISABLE : 0);
680 MCBSP_WRITE(mcbsp, XCCR, w);
681 w = MCBSP_READ_CACHE(mcbsp, RCCR);
682 w &= ~(rx ? RDISABLE : 0);
683 MCBSP_WRITE(mcbsp, RCCR, w);
686 /* Dump McBSP Regs */
687 omap_mcbsp_dump_reg(mcbsp);
690 void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
692 int idle;
693 u16 w;
695 /* Reset transmitter */
696 tx &= 1;
697 if (mcbsp->pdata->has_ccr) {
698 w = MCBSP_READ_CACHE(mcbsp, XCCR);
699 w |= (tx ? XDISABLE : 0);
700 MCBSP_WRITE(mcbsp, XCCR, w);
702 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
703 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
705 /* Reset receiver */
706 rx &= 1;
707 if (mcbsp->pdata->has_ccr) {
708 w = MCBSP_READ_CACHE(mcbsp, RCCR);
709 w |= (rx ? RDISABLE : 0);
710 MCBSP_WRITE(mcbsp, RCCR, w);
712 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
713 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
715 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
716 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
718 if (idle) {
719 /* Reset the sample rate generator */
720 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
721 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
724 if (mcbsp->st_data)
725 omap_st_stop(mcbsp);
728 int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
730 struct clk *fck_src;
731 const char *src;
732 int r;
734 if (fck_src_id == MCBSP_CLKS_PAD_SRC)
735 src = "pad_fck";
736 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
737 src = "prcm_fck";
738 else
739 return -EINVAL;
741 fck_src = clk_get(mcbsp->dev, src);
742 if (IS_ERR(fck_src)) {
743 dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
744 return -EINVAL;
747 pm_runtime_put_sync(mcbsp->dev);
749 r = clk_set_parent(mcbsp->fclk, fck_src);
750 if (r) {
751 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
752 src);
753 clk_put(fck_src);
754 return r;
757 pm_runtime_get_sync(mcbsp->dev);
759 clk_put(fck_src);
761 return 0;
765 #define max_thres(m) (mcbsp->pdata->buffer_size)
766 #define valid_threshold(m, val) ((val) <= max_thres(m))
767 #define THRESHOLD_PROP_BUILDER(prop) \
768 static ssize_t prop##_show(struct device *dev, \
769 struct device_attribute *attr, char *buf) \
771 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
773 return sprintf(buf, "%u\n", mcbsp->prop); \
776 static ssize_t prop##_store(struct device *dev, \
777 struct device_attribute *attr, \
778 const char *buf, size_t size) \
780 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
781 unsigned long val; \
782 int status; \
784 status = strict_strtoul(buf, 0, &val); \
785 if (status) \
786 return status; \
788 if (!valid_threshold(mcbsp, val)) \
789 return -EDOM; \
791 mcbsp->prop = val; \
792 return size; \
795 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
797 THRESHOLD_PROP_BUILDER(max_tx_thres);
798 THRESHOLD_PROP_BUILDER(max_rx_thres);
800 static const char *dma_op_modes[] = {
801 "element", "threshold",
804 static ssize_t dma_op_mode_show(struct device *dev,
805 struct device_attribute *attr, char *buf)
807 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
808 int dma_op_mode, i = 0;
809 ssize_t len = 0;
810 const char * const *s;
812 dma_op_mode = mcbsp->dma_op_mode;
814 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
815 if (dma_op_mode == i)
816 len += sprintf(buf + len, "[%s] ", *s);
817 else
818 len += sprintf(buf + len, "%s ", *s);
820 len += sprintf(buf + len, "\n");
822 return len;
825 static ssize_t dma_op_mode_store(struct device *dev,
826 struct device_attribute *attr,
827 const char *buf, size_t size)
829 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
830 const char * const *s;
831 int i = 0;
833 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
834 if (sysfs_streq(buf, *s))
835 break;
837 if (i == ARRAY_SIZE(dma_op_modes))
838 return -EINVAL;
840 spin_lock_irq(&mcbsp->lock);
841 if (!mcbsp->free) {
842 size = -EBUSY;
843 goto unlock;
845 mcbsp->dma_op_mode = i;
847 unlock:
848 spin_unlock_irq(&mcbsp->lock);
850 return size;
853 static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
855 static const struct attribute *additional_attrs[] = {
856 &dev_attr_max_tx_thres.attr,
857 &dev_attr_max_rx_thres.attr,
858 &dev_attr_dma_op_mode.attr,
859 NULL,
862 static const struct attribute_group additional_attr_group = {
863 .attrs = (struct attribute **)additional_attrs,
866 static ssize_t st_taps_show(struct device *dev,
867 struct device_attribute *attr, char *buf)
869 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
870 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
871 ssize_t status = 0;
872 int i;
874 spin_lock_irq(&mcbsp->lock);
875 for (i = 0; i < st_data->nr_taps; i++)
876 status += sprintf(&buf[status], (i ? ", %d" : "%d"),
877 st_data->taps[i]);
878 if (i)
879 status += sprintf(&buf[status], "\n");
880 spin_unlock_irq(&mcbsp->lock);
882 return status;
885 static ssize_t st_taps_store(struct device *dev,
886 struct device_attribute *attr,
887 const char *buf, size_t size)
889 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
890 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
891 int val, tmp, status, i = 0;
893 spin_lock_irq(&mcbsp->lock);
894 memset(st_data->taps, 0, sizeof(st_data->taps));
895 st_data->nr_taps = 0;
897 do {
898 status = sscanf(buf, "%d%n", &val, &tmp);
899 if (status < 0 || status == 0) {
900 size = -EINVAL;
901 goto out;
903 if (val < -32768 || val > 32767) {
904 size = -EINVAL;
905 goto out;
907 st_data->taps[i++] = val;
908 buf += tmp;
909 if (*buf != ',')
910 break;
911 buf++;
912 } while (1);
914 st_data->nr_taps = i;
916 out:
917 spin_unlock_irq(&mcbsp->lock);
919 return size;
922 static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
924 static const struct attribute *sidetone_attrs[] = {
925 &dev_attr_st_taps.attr,
926 NULL,
929 static const struct attribute_group sidetone_attr_group = {
930 .attrs = (struct attribute **)sidetone_attrs,
933 static int omap_st_add(struct omap_mcbsp *mcbsp, struct resource *res)
935 struct omap_mcbsp_st_data *st_data;
936 int err;
938 st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
939 if (!st_data)
940 return -ENOMEM;
942 st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
943 resource_size(res));
944 if (!st_data->io_base_st)
945 return -ENOMEM;
947 err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
948 if (err)
949 return err;
951 mcbsp->st_data = st_data;
952 return 0;
956 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
957 * 730 has only 2 McBSP, and both of them are MPU peripherals.
959 int omap_mcbsp_init(struct platform_device *pdev)
961 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
962 struct resource *res;
963 int ret = 0;
965 spin_lock_init(&mcbsp->lock);
966 mcbsp->free = true;
968 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
969 if (!res) {
970 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
971 if (!res) {
972 dev_err(mcbsp->dev, "invalid memory resource\n");
973 return -ENOMEM;
976 if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
977 dev_name(&pdev->dev))) {
978 dev_err(mcbsp->dev, "memory region already claimed\n");
979 return -ENODEV;
982 mcbsp->phys_base = res->start;
983 mcbsp->reg_cache_size = resource_size(res);
984 mcbsp->io_base = devm_ioremap(&pdev->dev, res->start,
985 resource_size(res));
986 if (!mcbsp->io_base)
987 return -ENOMEM;
989 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
990 if (!res)
991 mcbsp->phys_dma_base = mcbsp->phys_base;
992 else
993 mcbsp->phys_dma_base = res->start;
996 * OMAP1, 2 uses two interrupt lines: TX, RX
997 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
998 * OMAP4 and newer SoC only have the combined IRQ line.
999 * Use the combined IRQ if available since it gives better debugging
1000 * possibilities.
1002 mcbsp->irq = platform_get_irq_byname(pdev, "common");
1003 if (mcbsp->irq == -ENXIO) {
1004 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
1006 if (mcbsp->tx_irq == -ENXIO) {
1007 mcbsp->irq = platform_get_irq(pdev, 0);
1008 mcbsp->tx_irq = 0;
1009 } else {
1010 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
1011 mcbsp->irq = 0;
1015 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1016 if (!res) {
1017 dev_err(&pdev->dev, "invalid rx DMA channel\n");
1018 return -ENODEV;
1020 /* RX DMA request number, and port address configuration */
1021 mcbsp->dma_data[1].name = "Audio Capture";
1022 mcbsp->dma_data[1].dma_req = res->start;
1023 mcbsp->dma_data[1].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
1025 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1026 if (!res) {
1027 dev_err(&pdev->dev, "invalid tx DMA channel\n");
1028 return -ENODEV;
1030 /* TX DMA request number, and port address configuration */
1031 mcbsp->dma_data[0].name = "Audio Playback";
1032 mcbsp->dma_data[0].dma_req = res->start;
1033 mcbsp->dma_data[0].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
1035 mcbsp->fclk = clk_get(&pdev->dev, "fck");
1036 if (IS_ERR(mcbsp->fclk)) {
1037 ret = PTR_ERR(mcbsp->fclk);
1038 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
1039 return ret;
1042 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
1043 if (mcbsp->pdata->buffer_size) {
1045 * Initially configure the maximum thresholds to a safe value.
1046 * The McBSP FIFO usage with these values should not go under
1047 * 16 locations.
1048 * If the whole FIFO without safety buffer is used, than there
1049 * is a possibility that the DMA will be not able to push the
1050 * new data on time, causing channel shifts in runtime.
1052 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
1053 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
1055 ret = sysfs_create_group(&mcbsp->dev->kobj,
1056 &additional_attr_group);
1057 if (ret) {
1058 dev_err(mcbsp->dev,
1059 "Unable to create additional controls\n");
1060 goto err_thres;
1062 } else {
1063 mcbsp->max_tx_thres = -EINVAL;
1064 mcbsp->max_rx_thres = -EINVAL;
1067 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
1068 if (res) {
1069 ret = omap_st_add(mcbsp, res);
1070 if (ret) {
1071 dev_err(mcbsp->dev,
1072 "Unable to create sidetone controls\n");
1073 goto err_st;
1077 return 0;
1079 err_st:
1080 if (mcbsp->pdata->buffer_size)
1081 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1082 err_thres:
1083 clk_put(mcbsp->fclk);
1084 return ret;
1087 void omap_mcbsp_sysfs_remove(struct omap_mcbsp *mcbsp)
1089 if (mcbsp->pdata->buffer_size)
1090 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1092 if (mcbsp->st_data)
1093 sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);