dummy: fix rcu_sched self-detected stalls
[linux-2.6/cjktty.git] / fs / super.c
blobcf001775617f5781ac4f43f5695ad7802c6b4524
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include "internal.h"
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
43 * One thing we have to be careful of with a per-sb shrinker is that we don't
44 * drop the last active reference to the superblock from within the shrinker.
45 * If that happens we could trigger unregistering the shrinker from within the
46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47 * take a passive reference to the superblock to avoid this from occurring.
49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
51 struct super_block *sb;
52 int fs_objects = 0;
53 int total_objects;
55 sb = container_of(shrink, struct super_block, s_shrink);
58 * Deadlock avoidance. We may hold various FS locks, and we don't want
59 * to recurse into the FS that called us in clear_inode() and friends..
61 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 return -1;
64 if (!grab_super_passive(sb))
65 return !sc->nr_to_scan ? 0 : -1;
67 if (sb->s_op && sb->s_op->nr_cached_objects)
68 fs_objects = sb->s_op->nr_cached_objects(sb);
70 total_objects = sb->s_nr_dentry_unused +
71 sb->s_nr_inodes_unused + fs_objects + 1;
73 if (sc->nr_to_scan) {
74 int dentries;
75 int inodes;
77 /* proportion the scan between the caches */
78 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
79 total_objects;
80 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
81 total_objects;
82 if (fs_objects)
83 fs_objects = (sc->nr_to_scan * fs_objects) /
84 total_objects;
86 * prune the dcache first as the icache is pinned by it, then
87 * prune the icache, followed by the filesystem specific caches
89 prune_dcache_sb(sb, dentries);
90 prune_icache_sb(sb, inodes);
92 if (fs_objects && sb->s_op->free_cached_objects) {
93 sb->s_op->free_cached_objects(sb, fs_objects);
94 fs_objects = sb->s_op->nr_cached_objects(sb);
96 total_objects = sb->s_nr_dentry_unused +
97 sb->s_nr_inodes_unused + fs_objects;
100 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
101 drop_super(sb);
102 return total_objects;
106 * alloc_super - create new superblock
107 * @type: filesystem type superblock should belong to
109 * Allocates and initializes a new &struct super_block. alloc_super()
110 * returns a pointer new superblock or %NULL if allocation had failed.
112 static struct super_block *alloc_super(struct file_system_type *type)
114 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
115 static const struct super_operations default_op;
117 if (s) {
118 if (security_sb_alloc(s)) {
119 kfree(s);
120 s = NULL;
121 goto out;
123 #ifdef CONFIG_SMP
124 s->s_files = alloc_percpu(struct list_head);
125 if (!s->s_files) {
126 security_sb_free(s);
127 kfree(s);
128 s = NULL;
129 goto out;
130 } else {
131 int i;
133 for_each_possible_cpu(i)
134 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
136 #else
137 INIT_LIST_HEAD(&s->s_files);
138 #endif
139 s->s_bdi = &default_backing_dev_info;
140 INIT_HLIST_NODE(&s->s_instances);
141 INIT_HLIST_BL_HEAD(&s->s_anon);
142 INIT_LIST_HEAD(&s->s_inodes);
143 INIT_LIST_HEAD(&s->s_dentry_lru);
144 INIT_LIST_HEAD(&s->s_inode_lru);
145 spin_lock_init(&s->s_inode_lru_lock);
146 INIT_LIST_HEAD(&s->s_mounts);
147 init_rwsem(&s->s_umount);
148 mutex_init(&s->s_lock);
149 lockdep_set_class(&s->s_umount, &type->s_umount_key);
151 * The locking rules for s_lock are up to the
152 * filesystem. For example ext3fs has different
153 * lock ordering than usbfs:
155 lockdep_set_class(&s->s_lock, &type->s_lock_key);
157 * sget() can have s_umount recursion.
159 * When it cannot find a suitable sb, it allocates a new
160 * one (this one), and tries again to find a suitable old
161 * one.
163 * In case that succeeds, it will acquire the s_umount
164 * lock of the old one. Since these are clearly distrinct
165 * locks, and this object isn't exposed yet, there's no
166 * risk of deadlocks.
168 * Annotate this by putting this lock in a different
169 * subclass.
171 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
172 s->s_count = 1;
173 atomic_set(&s->s_active, 1);
174 mutex_init(&s->s_vfs_rename_mutex);
175 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
176 mutex_init(&s->s_dquot.dqio_mutex);
177 mutex_init(&s->s_dquot.dqonoff_mutex);
178 init_rwsem(&s->s_dquot.dqptr_sem);
179 init_waitqueue_head(&s->s_wait_unfrozen);
180 s->s_maxbytes = MAX_NON_LFS;
181 s->s_op = &default_op;
182 s->s_time_gran = 1000000000;
183 s->cleancache_poolid = -1;
185 s->s_shrink.seeks = DEFAULT_SEEKS;
186 s->s_shrink.shrink = prune_super;
187 s->s_shrink.batch = 1024;
189 out:
190 return s;
194 * destroy_super - frees a superblock
195 * @s: superblock to free
197 * Frees a superblock.
199 static inline void destroy_super(struct super_block *s)
201 #ifdef CONFIG_SMP
202 free_percpu(s->s_files);
203 #endif
204 security_sb_free(s);
205 WARN_ON(!list_empty(&s->s_mounts));
206 kfree(s->s_subtype);
207 kfree(s->s_options);
208 kfree(s);
211 /* Superblock refcounting */
214 * Drop a superblock's refcount. The caller must hold sb_lock.
216 static void __put_super(struct super_block *sb)
218 if (!--sb->s_count) {
219 list_del_init(&sb->s_list);
220 destroy_super(sb);
225 * put_super - drop a temporary reference to superblock
226 * @sb: superblock in question
228 * Drops a temporary reference, frees superblock if there's no
229 * references left.
231 static void put_super(struct super_block *sb)
233 spin_lock(&sb_lock);
234 __put_super(sb);
235 spin_unlock(&sb_lock);
240 * deactivate_locked_super - drop an active reference to superblock
241 * @s: superblock to deactivate
243 * Drops an active reference to superblock, converting it into a temprory
244 * one if there is no other active references left. In that case we
245 * tell fs driver to shut it down and drop the temporary reference we
246 * had just acquired.
248 * Caller holds exclusive lock on superblock; that lock is released.
250 void deactivate_locked_super(struct super_block *s)
252 struct file_system_type *fs = s->s_type;
253 if (atomic_dec_and_test(&s->s_active)) {
254 cleancache_invalidate_fs(s);
255 fs->kill_sb(s);
257 /* caches are now gone, we can safely kill the shrinker now */
258 unregister_shrinker(&s->s_shrink);
261 * We need to call rcu_barrier so all the delayed rcu free
262 * inodes are flushed before we release the fs module.
264 rcu_barrier();
265 put_filesystem(fs);
266 put_super(s);
267 } else {
268 up_write(&s->s_umount);
272 EXPORT_SYMBOL(deactivate_locked_super);
275 * deactivate_super - drop an active reference to superblock
276 * @s: superblock to deactivate
278 * Variant of deactivate_locked_super(), except that superblock is *not*
279 * locked by caller. If we are going to drop the final active reference,
280 * lock will be acquired prior to that.
282 void deactivate_super(struct super_block *s)
284 if (!atomic_add_unless(&s->s_active, -1, 1)) {
285 down_write(&s->s_umount);
286 deactivate_locked_super(s);
290 EXPORT_SYMBOL(deactivate_super);
293 * grab_super - acquire an active reference
294 * @s: reference we are trying to make active
296 * Tries to acquire an active reference. grab_super() is used when we
297 * had just found a superblock in super_blocks or fs_type->fs_supers
298 * and want to turn it into a full-blown active reference. grab_super()
299 * is called with sb_lock held and drops it. Returns 1 in case of
300 * success, 0 if we had failed (superblock contents was already dead or
301 * dying when grab_super() had been called).
303 static int grab_super(struct super_block *s) __releases(sb_lock)
305 if (atomic_inc_not_zero(&s->s_active)) {
306 spin_unlock(&sb_lock);
307 return 1;
309 /* it's going away */
310 s->s_count++;
311 spin_unlock(&sb_lock);
312 /* wait for it to die */
313 down_write(&s->s_umount);
314 up_write(&s->s_umount);
315 put_super(s);
316 return 0;
320 * grab_super_passive - acquire a passive reference
321 * @s: reference we are trying to grab
323 * Tries to acquire a passive reference. This is used in places where we
324 * cannot take an active reference but we need to ensure that the
325 * superblock does not go away while we are working on it. It returns
326 * false if a reference was not gained, and returns true with the s_umount
327 * lock held in read mode if a reference is gained. On successful return,
328 * the caller must drop the s_umount lock and the passive reference when
329 * done.
331 bool grab_super_passive(struct super_block *sb)
333 spin_lock(&sb_lock);
334 if (hlist_unhashed(&sb->s_instances)) {
335 spin_unlock(&sb_lock);
336 return false;
339 sb->s_count++;
340 spin_unlock(&sb_lock);
342 if (down_read_trylock(&sb->s_umount)) {
343 if (sb->s_root && (sb->s_flags & MS_BORN))
344 return true;
345 up_read(&sb->s_umount);
348 put_super(sb);
349 return false;
353 * Superblock locking. We really ought to get rid of these two.
355 void lock_super(struct super_block * sb)
357 mutex_lock(&sb->s_lock);
360 void unlock_super(struct super_block * sb)
362 mutex_unlock(&sb->s_lock);
365 EXPORT_SYMBOL(lock_super);
366 EXPORT_SYMBOL(unlock_super);
369 * generic_shutdown_super - common helper for ->kill_sb()
370 * @sb: superblock to kill
372 * generic_shutdown_super() does all fs-independent work on superblock
373 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
374 * that need destruction out of superblock, call generic_shutdown_super()
375 * and release aforementioned objects. Note: dentries and inodes _are_
376 * taken care of and do not need specific handling.
378 * Upon calling this function, the filesystem may no longer alter or
379 * rearrange the set of dentries belonging to this super_block, nor may it
380 * change the attachments of dentries to inodes.
382 void generic_shutdown_super(struct super_block *sb)
384 const struct super_operations *sop = sb->s_op;
386 if (sb->s_root) {
387 shrink_dcache_for_umount(sb);
388 sync_filesystem(sb);
389 sb->s_flags &= ~MS_ACTIVE;
391 fsnotify_unmount_inodes(&sb->s_inodes);
393 evict_inodes(sb);
395 if (sop->put_super)
396 sop->put_super(sb);
398 if (!list_empty(&sb->s_inodes)) {
399 printk("VFS: Busy inodes after unmount of %s. "
400 "Self-destruct in 5 seconds. Have a nice day...\n",
401 sb->s_id);
404 spin_lock(&sb_lock);
405 /* should be initialized for __put_super_and_need_restart() */
406 hlist_del_init(&sb->s_instances);
407 spin_unlock(&sb_lock);
408 up_write(&sb->s_umount);
411 EXPORT_SYMBOL(generic_shutdown_super);
414 * sget - find or create a superblock
415 * @type: filesystem type superblock should belong to
416 * @test: comparison callback
417 * @set: setup callback
418 * @data: argument to each of them
420 struct super_block *sget(struct file_system_type *type,
421 int (*test)(struct super_block *,void *),
422 int (*set)(struct super_block *,void *),
423 void *data)
425 struct super_block *s = NULL;
426 struct hlist_node *node;
427 struct super_block *old;
428 int err;
430 retry:
431 spin_lock(&sb_lock);
432 if (test) {
433 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
434 if (!test(old, data))
435 continue;
436 if (!grab_super(old))
437 goto retry;
438 if (s) {
439 up_write(&s->s_umount);
440 destroy_super(s);
441 s = NULL;
443 down_write(&old->s_umount);
444 if (unlikely(!(old->s_flags & MS_BORN))) {
445 deactivate_locked_super(old);
446 goto retry;
448 return old;
451 if (!s) {
452 spin_unlock(&sb_lock);
453 s = alloc_super(type);
454 if (!s)
455 return ERR_PTR(-ENOMEM);
456 goto retry;
459 err = set(s, data);
460 if (err) {
461 spin_unlock(&sb_lock);
462 up_write(&s->s_umount);
463 destroy_super(s);
464 return ERR_PTR(err);
466 s->s_type = type;
467 strlcpy(s->s_id, type->name, sizeof(s->s_id));
468 list_add_tail(&s->s_list, &super_blocks);
469 hlist_add_head(&s->s_instances, &type->fs_supers);
470 spin_unlock(&sb_lock);
471 get_filesystem(type);
472 register_shrinker(&s->s_shrink);
473 return s;
476 EXPORT_SYMBOL(sget);
478 void drop_super(struct super_block *sb)
480 up_read(&sb->s_umount);
481 put_super(sb);
484 EXPORT_SYMBOL(drop_super);
487 * sync_supers - helper for periodic superblock writeback
489 * Call the write_super method if present on all dirty superblocks in
490 * the system. This is for the periodic writeback used by most older
491 * filesystems. For data integrity superblock writeback use
492 * sync_filesystems() instead.
494 * Note: check the dirty flag before waiting, so we don't
495 * hold up the sync while mounting a device. (The newly
496 * mounted device won't need syncing.)
498 void sync_supers(void)
500 struct super_block *sb, *p = NULL;
502 spin_lock(&sb_lock);
503 list_for_each_entry(sb, &super_blocks, s_list) {
504 if (hlist_unhashed(&sb->s_instances))
505 continue;
506 if (sb->s_op->write_super && sb->s_dirt) {
507 sb->s_count++;
508 spin_unlock(&sb_lock);
510 down_read(&sb->s_umount);
511 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
512 sb->s_op->write_super(sb);
513 up_read(&sb->s_umount);
515 spin_lock(&sb_lock);
516 if (p)
517 __put_super(p);
518 p = sb;
521 if (p)
522 __put_super(p);
523 spin_unlock(&sb_lock);
527 * iterate_supers - call function for all active superblocks
528 * @f: function to call
529 * @arg: argument to pass to it
531 * Scans the superblock list and calls given function, passing it
532 * locked superblock and given argument.
534 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
536 struct super_block *sb, *p = NULL;
538 spin_lock(&sb_lock);
539 list_for_each_entry(sb, &super_blocks, s_list) {
540 if (hlist_unhashed(&sb->s_instances))
541 continue;
542 sb->s_count++;
543 spin_unlock(&sb_lock);
545 down_read(&sb->s_umount);
546 if (sb->s_root && (sb->s_flags & MS_BORN))
547 f(sb, arg);
548 up_read(&sb->s_umount);
550 spin_lock(&sb_lock);
551 if (p)
552 __put_super(p);
553 p = sb;
555 if (p)
556 __put_super(p);
557 spin_unlock(&sb_lock);
561 * iterate_supers_type - call function for superblocks of given type
562 * @type: fs type
563 * @f: function to call
564 * @arg: argument to pass to it
566 * Scans the superblock list and calls given function, passing it
567 * locked superblock and given argument.
569 void iterate_supers_type(struct file_system_type *type,
570 void (*f)(struct super_block *, void *), void *arg)
572 struct super_block *sb, *p = NULL;
573 struct hlist_node *node;
575 spin_lock(&sb_lock);
576 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
577 sb->s_count++;
578 spin_unlock(&sb_lock);
580 down_read(&sb->s_umount);
581 if (sb->s_root && (sb->s_flags & MS_BORN))
582 f(sb, arg);
583 up_read(&sb->s_umount);
585 spin_lock(&sb_lock);
586 if (p)
587 __put_super(p);
588 p = sb;
590 if (p)
591 __put_super(p);
592 spin_unlock(&sb_lock);
595 EXPORT_SYMBOL(iterate_supers_type);
598 * get_super - get the superblock of a device
599 * @bdev: device to get the superblock for
601 * Scans the superblock list and finds the superblock of the file system
602 * mounted on the device given. %NULL is returned if no match is found.
605 struct super_block *get_super(struct block_device *bdev)
607 struct super_block *sb;
609 if (!bdev)
610 return NULL;
612 spin_lock(&sb_lock);
613 rescan:
614 list_for_each_entry(sb, &super_blocks, s_list) {
615 if (hlist_unhashed(&sb->s_instances))
616 continue;
617 if (sb->s_bdev == bdev) {
618 sb->s_count++;
619 spin_unlock(&sb_lock);
620 down_read(&sb->s_umount);
621 /* still alive? */
622 if (sb->s_root && (sb->s_flags & MS_BORN))
623 return sb;
624 up_read(&sb->s_umount);
625 /* nope, got unmounted */
626 spin_lock(&sb_lock);
627 __put_super(sb);
628 goto rescan;
631 spin_unlock(&sb_lock);
632 return NULL;
635 EXPORT_SYMBOL(get_super);
638 * get_super_thawed - get thawed superblock of a device
639 * @bdev: device to get the superblock for
641 * Scans the superblock list and finds the superblock of the file system
642 * mounted on the device. The superblock is returned once it is thawed
643 * (or immediately if it was not frozen). %NULL is returned if no match
644 * is found.
646 struct super_block *get_super_thawed(struct block_device *bdev)
648 while (1) {
649 struct super_block *s = get_super(bdev);
650 if (!s || s->s_frozen == SB_UNFROZEN)
651 return s;
652 up_read(&s->s_umount);
653 vfs_check_frozen(s, SB_FREEZE_WRITE);
654 put_super(s);
657 EXPORT_SYMBOL(get_super_thawed);
660 * get_active_super - get an active reference to the superblock of a device
661 * @bdev: device to get the superblock for
663 * Scans the superblock list and finds the superblock of the file system
664 * mounted on the device given. Returns the superblock with an active
665 * reference or %NULL if none was found.
667 struct super_block *get_active_super(struct block_device *bdev)
669 struct super_block *sb;
671 if (!bdev)
672 return NULL;
674 restart:
675 spin_lock(&sb_lock);
676 list_for_each_entry(sb, &super_blocks, s_list) {
677 if (hlist_unhashed(&sb->s_instances))
678 continue;
679 if (sb->s_bdev == bdev) {
680 if (grab_super(sb)) /* drops sb_lock */
681 return sb;
682 else
683 goto restart;
686 spin_unlock(&sb_lock);
687 return NULL;
690 struct super_block *user_get_super(dev_t dev)
692 struct super_block *sb;
694 spin_lock(&sb_lock);
695 rescan:
696 list_for_each_entry(sb, &super_blocks, s_list) {
697 if (hlist_unhashed(&sb->s_instances))
698 continue;
699 if (sb->s_dev == dev) {
700 sb->s_count++;
701 spin_unlock(&sb_lock);
702 down_read(&sb->s_umount);
703 /* still alive? */
704 if (sb->s_root && (sb->s_flags & MS_BORN))
705 return sb;
706 up_read(&sb->s_umount);
707 /* nope, got unmounted */
708 spin_lock(&sb_lock);
709 __put_super(sb);
710 goto rescan;
713 spin_unlock(&sb_lock);
714 return NULL;
718 * do_remount_sb - asks filesystem to change mount options.
719 * @sb: superblock in question
720 * @flags: numeric part of options
721 * @data: the rest of options
722 * @force: whether or not to force the change
724 * Alters the mount options of a mounted file system.
726 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
728 int retval;
729 int remount_ro;
731 if (sb->s_frozen != SB_UNFROZEN)
732 return -EBUSY;
734 #ifdef CONFIG_BLOCK
735 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
736 return -EACCES;
737 #endif
739 if (flags & MS_RDONLY)
740 acct_auto_close(sb);
741 shrink_dcache_sb(sb);
742 sync_filesystem(sb);
744 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
746 /* If we are remounting RDONLY and current sb is read/write,
747 make sure there are no rw files opened */
748 if (remount_ro) {
749 if (force) {
750 mark_files_ro(sb);
751 } else {
752 retval = sb_prepare_remount_readonly(sb);
753 if (retval)
754 return retval;
758 if (sb->s_op->remount_fs) {
759 retval = sb->s_op->remount_fs(sb, &flags, data);
760 if (retval) {
761 if (!force)
762 goto cancel_readonly;
763 /* If forced remount, go ahead despite any errors */
764 WARN(1, "forced remount of a %s fs returned %i\n",
765 sb->s_type->name, retval);
768 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
769 /* Needs to be ordered wrt mnt_is_readonly() */
770 smp_wmb();
771 sb->s_readonly_remount = 0;
774 * Some filesystems modify their metadata via some other path than the
775 * bdev buffer cache (eg. use a private mapping, or directories in
776 * pagecache, etc). Also file data modifications go via their own
777 * mappings. So If we try to mount readonly then copy the filesystem
778 * from bdev, we could get stale data, so invalidate it to give a best
779 * effort at coherency.
781 if (remount_ro && sb->s_bdev)
782 invalidate_bdev(sb->s_bdev);
783 return 0;
785 cancel_readonly:
786 sb->s_readonly_remount = 0;
787 return retval;
790 static void do_emergency_remount(struct work_struct *work)
792 struct super_block *sb, *p = NULL;
794 spin_lock(&sb_lock);
795 list_for_each_entry(sb, &super_blocks, s_list) {
796 if (hlist_unhashed(&sb->s_instances))
797 continue;
798 sb->s_count++;
799 spin_unlock(&sb_lock);
800 down_write(&sb->s_umount);
801 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
802 !(sb->s_flags & MS_RDONLY)) {
804 * What lock protects sb->s_flags??
806 do_remount_sb(sb, MS_RDONLY, NULL, 1);
808 up_write(&sb->s_umount);
809 spin_lock(&sb_lock);
810 if (p)
811 __put_super(p);
812 p = sb;
814 if (p)
815 __put_super(p);
816 spin_unlock(&sb_lock);
817 kfree(work);
818 printk("Emergency Remount complete\n");
821 void emergency_remount(void)
823 struct work_struct *work;
825 work = kmalloc(sizeof(*work), GFP_ATOMIC);
826 if (work) {
827 INIT_WORK(work, do_emergency_remount);
828 schedule_work(work);
833 * Unnamed block devices are dummy devices used by virtual
834 * filesystems which don't use real block-devices. -- jrs
837 static DEFINE_IDA(unnamed_dev_ida);
838 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
839 static int unnamed_dev_start = 0; /* don't bother trying below it */
841 int get_anon_bdev(dev_t *p)
843 int dev;
844 int error;
846 retry:
847 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
848 return -ENOMEM;
849 spin_lock(&unnamed_dev_lock);
850 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
851 if (!error)
852 unnamed_dev_start = dev + 1;
853 spin_unlock(&unnamed_dev_lock);
854 if (error == -EAGAIN)
855 /* We raced and lost with another CPU. */
856 goto retry;
857 else if (error)
858 return -EAGAIN;
860 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
861 spin_lock(&unnamed_dev_lock);
862 ida_remove(&unnamed_dev_ida, dev);
863 if (unnamed_dev_start > dev)
864 unnamed_dev_start = dev;
865 spin_unlock(&unnamed_dev_lock);
866 return -EMFILE;
868 *p = MKDEV(0, dev & MINORMASK);
869 return 0;
871 EXPORT_SYMBOL(get_anon_bdev);
873 void free_anon_bdev(dev_t dev)
875 int slot = MINOR(dev);
876 spin_lock(&unnamed_dev_lock);
877 ida_remove(&unnamed_dev_ida, slot);
878 if (slot < unnamed_dev_start)
879 unnamed_dev_start = slot;
880 spin_unlock(&unnamed_dev_lock);
882 EXPORT_SYMBOL(free_anon_bdev);
884 int set_anon_super(struct super_block *s, void *data)
886 int error = get_anon_bdev(&s->s_dev);
887 if (!error)
888 s->s_bdi = &noop_backing_dev_info;
889 return error;
892 EXPORT_SYMBOL(set_anon_super);
894 void kill_anon_super(struct super_block *sb)
896 dev_t dev = sb->s_dev;
897 generic_shutdown_super(sb);
898 free_anon_bdev(dev);
901 EXPORT_SYMBOL(kill_anon_super);
903 void kill_litter_super(struct super_block *sb)
905 if (sb->s_root)
906 d_genocide(sb->s_root);
907 kill_anon_super(sb);
910 EXPORT_SYMBOL(kill_litter_super);
912 static int ns_test_super(struct super_block *sb, void *data)
914 return sb->s_fs_info == data;
917 static int ns_set_super(struct super_block *sb, void *data)
919 sb->s_fs_info = data;
920 return set_anon_super(sb, NULL);
923 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
924 void *data, int (*fill_super)(struct super_block *, void *, int))
926 struct super_block *sb;
928 sb = sget(fs_type, ns_test_super, ns_set_super, data);
929 if (IS_ERR(sb))
930 return ERR_CAST(sb);
932 if (!sb->s_root) {
933 int err;
934 sb->s_flags = flags;
935 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
936 if (err) {
937 deactivate_locked_super(sb);
938 return ERR_PTR(err);
941 sb->s_flags |= MS_ACTIVE;
944 return dget(sb->s_root);
947 EXPORT_SYMBOL(mount_ns);
949 #ifdef CONFIG_BLOCK
950 static int set_bdev_super(struct super_block *s, void *data)
952 s->s_bdev = data;
953 s->s_dev = s->s_bdev->bd_dev;
956 * We set the bdi here to the queue backing, file systems can
957 * overwrite this in ->fill_super()
959 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
960 return 0;
963 static int test_bdev_super(struct super_block *s, void *data)
965 return (void *)s->s_bdev == data;
968 struct dentry *mount_bdev(struct file_system_type *fs_type,
969 int flags, const char *dev_name, void *data,
970 int (*fill_super)(struct super_block *, void *, int))
972 struct block_device *bdev;
973 struct super_block *s;
974 fmode_t mode = FMODE_READ | FMODE_EXCL;
975 int error = 0;
977 if (!(flags & MS_RDONLY))
978 mode |= FMODE_WRITE;
980 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
981 if (IS_ERR(bdev))
982 return ERR_CAST(bdev);
985 * once the super is inserted into the list by sget, s_umount
986 * will protect the lockfs code from trying to start a snapshot
987 * while we are mounting
989 mutex_lock(&bdev->bd_fsfreeze_mutex);
990 if (bdev->bd_fsfreeze_count > 0) {
991 mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 error = -EBUSY;
993 goto error_bdev;
995 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
996 mutex_unlock(&bdev->bd_fsfreeze_mutex);
997 if (IS_ERR(s))
998 goto error_s;
1000 if (s->s_root) {
1001 if ((flags ^ s->s_flags) & MS_RDONLY) {
1002 deactivate_locked_super(s);
1003 error = -EBUSY;
1004 goto error_bdev;
1008 * s_umount nests inside bd_mutex during
1009 * __invalidate_device(). blkdev_put() acquires
1010 * bd_mutex and can't be called under s_umount. Drop
1011 * s_umount temporarily. This is safe as we're
1012 * holding an active reference.
1014 up_write(&s->s_umount);
1015 blkdev_put(bdev, mode);
1016 down_write(&s->s_umount);
1017 } else {
1018 char b[BDEVNAME_SIZE];
1020 s->s_flags = flags | MS_NOSEC;
1021 s->s_mode = mode;
1022 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1023 sb_set_blocksize(s, block_size(bdev));
1024 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1025 if (error) {
1026 deactivate_locked_super(s);
1027 goto error;
1030 s->s_flags |= MS_ACTIVE;
1031 bdev->bd_super = s;
1034 return dget(s->s_root);
1036 error_s:
1037 error = PTR_ERR(s);
1038 error_bdev:
1039 blkdev_put(bdev, mode);
1040 error:
1041 return ERR_PTR(error);
1043 EXPORT_SYMBOL(mount_bdev);
1045 void kill_block_super(struct super_block *sb)
1047 struct block_device *bdev = sb->s_bdev;
1048 fmode_t mode = sb->s_mode;
1050 bdev->bd_super = NULL;
1051 generic_shutdown_super(sb);
1052 sync_blockdev(bdev);
1053 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1054 blkdev_put(bdev, mode | FMODE_EXCL);
1057 EXPORT_SYMBOL(kill_block_super);
1058 #endif
1060 struct dentry *mount_nodev(struct file_system_type *fs_type,
1061 int flags, void *data,
1062 int (*fill_super)(struct super_block *, void *, int))
1064 int error;
1065 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1067 if (IS_ERR(s))
1068 return ERR_CAST(s);
1070 s->s_flags = flags;
1072 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1073 if (error) {
1074 deactivate_locked_super(s);
1075 return ERR_PTR(error);
1077 s->s_flags |= MS_ACTIVE;
1078 return dget(s->s_root);
1080 EXPORT_SYMBOL(mount_nodev);
1082 static int compare_single(struct super_block *s, void *p)
1084 return 1;
1087 struct dentry *mount_single(struct file_system_type *fs_type,
1088 int flags, void *data,
1089 int (*fill_super)(struct super_block *, void *, int))
1091 struct super_block *s;
1092 int error;
1094 s = sget(fs_type, compare_single, set_anon_super, NULL);
1095 if (IS_ERR(s))
1096 return ERR_CAST(s);
1097 if (!s->s_root) {
1098 s->s_flags = flags;
1099 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1100 if (error) {
1101 deactivate_locked_super(s);
1102 return ERR_PTR(error);
1104 s->s_flags |= MS_ACTIVE;
1105 } else {
1106 do_remount_sb(s, flags, data, 0);
1108 return dget(s->s_root);
1110 EXPORT_SYMBOL(mount_single);
1112 struct dentry *
1113 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1115 struct dentry *root;
1116 struct super_block *sb;
1117 char *secdata = NULL;
1118 int error = -ENOMEM;
1120 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1121 secdata = alloc_secdata();
1122 if (!secdata)
1123 goto out;
1125 error = security_sb_copy_data(data, secdata);
1126 if (error)
1127 goto out_free_secdata;
1130 root = type->mount(type, flags, name, data);
1131 if (IS_ERR(root)) {
1132 error = PTR_ERR(root);
1133 goto out_free_secdata;
1135 sb = root->d_sb;
1136 BUG_ON(!sb);
1137 WARN_ON(!sb->s_bdi);
1138 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1139 sb->s_flags |= MS_BORN;
1141 error = security_sb_kern_mount(sb, flags, secdata);
1142 if (error)
1143 goto out_sb;
1146 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1147 * but s_maxbytes was an unsigned long long for many releases. Throw
1148 * this warning for a little while to try and catch filesystems that
1149 * violate this rule.
1151 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1152 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1154 up_write(&sb->s_umount);
1155 free_secdata(secdata);
1156 return root;
1157 out_sb:
1158 dput(root);
1159 deactivate_locked_super(sb);
1160 out_free_secdata:
1161 free_secdata(secdata);
1162 out:
1163 return ERR_PTR(error);
1167 * freeze_super - lock the filesystem and force it into a consistent state
1168 * @sb: the super to lock
1170 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1171 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1172 * -EBUSY.
1174 int freeze_super(struct super_block *sb)
1176 int ret;
1178 atomic_inc(&sb->s_active);
1179 down_write(&sb->s_umount);
1180 if (sb->s_frozen) {
1181 deactivate_locked_super(sb);
1182 return -EBUSY;
1185 if (!(sb->s_flags & MS_BORN)) {
1186 up_write(&sb->s_umount);
1187 return 0; /* sic - it's "nothing to do" */
1190 if (sb->s_flags & MS_RDONLY) {
1191 sb->s_frozen = SB_FREEZE_TRANS;
1192 smp_wmb();
1193 up_write(&sb->s_umount);
1194 return 0;
1197 sb->s_frozen = SB_FREEZE_WRITE;
1198 smp_wmb();
1200 sync_filesystem(sb);
1202 sb->s_frozen = SB_FREEZE_TRANS;
1203 smp_wmb();
1205 sync_blockdev(sb->s_bdev);
1206 if (sb->s_op->freeze_fs) {
1207 ret = sb->s_op->freeze_fs(sb);
1208 if (ret) {
1209 printk(KERN_ERR
1210 "VFS:Filesystem freeze failed\n");
1211 sb->s_frozen = SB_UNFROZEN;
1212 smp_wmb();
1213 wake_up(&sb->s_wait_unfrozen);
1214 deactivate_locked_super(sb);
1215 return ret;
1218 up_write(&sb->s_umount);
1219 return 0;
1221 EXPORT_SYMBOL(freeze_super);
1224 * thaw_super -- unlock filesystem
1225 * @sb: the super to thaw
1227 * Unlocks the filesystem and marks it writeable again after freeze_super().
1229 int thaw_super(struct super_block *sb)
1231 int error;
1233 down_write(&sb->s_umount);
1234 if (sb->s_frozen == SB_UNFROZEN) {
1235 up_write(&sb->s_umount);
1236 return -EINVAL;
1239 if (sb->s_flags & MS_RDONLY)
1240 goto out;
1242 if (sb->s_op->unfreeze_fs) {
1243 error = sb->s_op->unfreeze_fs(sb);
1244 if (error) {
1245 printk(KERN_ERR
1246 "VFS:Filesystem thaw failed\n");
1247 sb->s_frozen = SB_FREEZE_TRANS;
1248 up_write(&sb->s_umount);
1249 return error;
1253 out:
1254 sb->s_frozen = SB_UNFROZEN;
1255 smp_wmb();
1256 wake_up(&sb->s_wait_unfrozen);
1257 deactivate_locked_super(sb);
1259 return 0;
1261 EXPORT_SYMBOL(thaw_super);