sdio: fix recursion issues between sdio-uart driver and tty layer
[linux-2.6/cjktty.git] / arch / ia64 / kernel / setup.c
blob9e392a30d19783d3426ca720b95fbea1221a71ff
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
74 extern void ia64_setup_printk_clock(void);
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
93 extern char _text[], _end[], _etext[];
95 unsigned long ia64_max_cacheline_size;
97 int dma_get_cache_alignment(void)
99 return ia64_max_cacheline_size;
101 EXPORT_SYMBOL(dma_get_cache_alignment);
103 unsigned long ia64_iobase; /* virtual address for I/O accesses */
104 EXPORT_SYMBOL(ia64_iobase);
105 struct io_space io_space[MAX_IO_SPACES];
106 EXPORT_SYMBOL(io_space);
107 unsigned int num_io_spaces;
110 * "flush_icache_range()" needs to know what processor dependent stride size to use
111 * when it makes i-cache(s) coherent with d-caches.
113 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
114 unsigned long ia64_i_cache_stride_shift = ~0;
117 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
118 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120 * address of the second buffer must be aligned to (merge_mask+1) in order to be
121 * mergeable). By default, we assume there is no I/O MMU which can merge physically
122 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123 * page-size of 2^64.
125 unsigned long ia64_max_iommu_merge_mask = ~0UL;
126 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
129 * We use a special marker for the end of memory and it uses the extra (+1) slot
131 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132 int num_rsvd_regions __initdata;
136 * Filter incoming memory segments based on the primitive map created from the boot
137 * parameters. Segments contained in the map are removed from the memory ranges. A
138 * caller-specified function is called with the memory ranges that remain after filtering.
139 * This routine does not assume the incoming segments are sorted.
141 int __init
142 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
144 unsigned long range_start, range_end, prev_start;
145 void (*func)(unsigned long, unsigned long, int);
146 int i;
148 #if IGNORE_PFN0
149 if (start == PAGE_OFFSET) {
150 printk(KERN_WARNING "warning: skipping physical page 0\n");
151 start += PAGE_SIZE;
152 if (start >= end) return 0;
154 #endif
156 * lowest possible address(walker uses virtual)
158 prev_start = PAGE_OFFSET;
159 func = arg;
161 for (i = 0; i < num_rsvd_regions; ++i) {
162 range_start = max(start, prev_start);
163 range_end = min(end, rsvd_region[i].start);
165 if (range_start < range_end)
166 call_pernode_memory(__pa(range_start), range_end - range_start, func);
168 /* nothing more available in this segment */
169 if (range_end == end) return 0;
171 prev_start = rsvd_region[i].end;
173 /* end of memory marker allows full processing inside loop body */
174 return 0;
177 static void __init
178 sort_regions (struct rsvd_region *rsvd_region, int max)
180 int j;
182 /* simple bubble sorting */
183 while (max--) {
184 for (j = 0; j < max; ++j) {
185 if (rsvd_region[j].start > rsvd_region[j+1].start) {
186 struct rsvd_region tmp;
187 tmp = rsvd_region[j];
188 rsvd_region[j] = rsvd_region[j + 1];
189 rsvd_region[j + 1] = tmp;
196 * Request address space for all standard resources
198 static int __init register_memory(void)
200 code_resource.start = ia64_tpa(_text);
201 code_resource.end = ia64_tpa(_etext) - 1;
202 data_resource.start = ia64_tpa(_etext);
203 data_resource.end = ia64_tpa(_end) - 1;
204 efi_initialize_iomem_resources(&code_resource, &data_resource);
206 return 0;
209 __initcall(register_memory);
212 * reserve_memory - setup reserved memory areas
214 * Setup the reserved memory areas set aside for the boot parameters,
215 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
216 * see include/asm-ia64/meminit.h if you need to define more.
218 void __init
219 reserve_memory (void)
221 int n = 0;
224 * none of the entries in this table overlap
226 rsvd_region[n].start = (unsigned long) ia64_boot_param;
227 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
228 n++;
230 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232 n++;
234 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235 rsvd_region[n].end = (rsvd_region[n].start
236 + strlen(__va(ia64_boot_param->command_line)) + 1);
237 n++;
239 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
241 n++;
243 #ifdef CONFIG_BLK_DEV_INITRD
244 if (ia64_boot_param->initrd_start) {
245 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
247 n++;
249 #endif
251 #ifdef CONFIG_PROC_VMCORE
252 if (reserve_elfcorehdr(&rsvd_region[n].start,
253 &rsvd_region[n].end) == 0)
254 n++;
255 #endif
257 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258 n++;
260 #ifdef CONFIG_KEXEC
261 /* crashkernel=size@offset specifies the size to reserve for a crash
262 * kernel. If offset is 0, then it is determined automatically.
263 * By reserving this memory we guarantee that linux never set's it
264 * up as a DMA target.Useful for holding code to do something
265 * appropriate after a kernel panic.
268 char *from = strstr(boot_command_line, "crashkernel=");
269 unsigned long base, size;
270 if (from) {
271 size = memparse(from + 12, &from);
272 if (*from == '@')
273 base = memparse(from+1, &from);
274 else
275 base = 0;
276 if (size) {
277 if (!base) {
278 sort_regions(rsvd_region, n);
279 base = kdump_find_rsvd_region(size,
280 rsvd_region, n);
282 if (base != ~0UL) {
283 rsvd_region[n].start =
284 (unsigned long)__va(base);
285 rsvd_region[n].end =
286 (unsigned long)__va(base + size);
287 n++;
288 crashk_res.start = base;
289 crashk_res.end = base + size - 1;
293 efi_memmap_res.start = ia64_boot_param->efi_memmap;
294 efi_memmap_res.end = efi_memmap_res.start +
295 ia64_boot_param->efi_memmap_size;
296 boot_param_res.start = __pa(ia64_boot_param);
297 boot_param_res.end = boot_param_res.start +
298 sizeof(*ia64_boot_param);
300 #endif
301 /* end of memory marker */
302 rsvd_region[n].start = ~0UL;
303 rsvd_region[n].end = ~0UL;
304 n++;
306 num_rsvd_regions = n;
307 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
309 sort_regions(rsvd_region, num_rsvd_regions);
314 * find_initrd - get initrd parameters from the boot parameter structure
316 * Grab the initrd start and end from the boot parameter struct given us by
317 * the boot loader.
319 void __init
320 find_initrd (void)
322 #ifdef CONFIG_BLK_DEV_INITRD
323 if (ia64_boot_param->initrd_start) {
324 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325 initrd_end = initrd_start+ia64_boot_param->initrd_size;
327 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328 initrd_start, ia64_boot_param->initrd_size);
330 #endif
333 static void __init
334 io_port_init (void)
336 unsigned long phys_iobase;
339 * Set `iobase' based on the EFI memory map or, failing that, the
340 * value firmware left in ar.k0.
342 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343 * the port's virtual address, so ia32_load_state() loads it with a
344 * user virtual address. But in ia64 mode, glibc uses the
345 * *physical* address in ar.k0 to mmap the appropriate area from
346 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
347 * cases, user-mode can only use the legacy 0-64K I/O port space.
349 * ar.k0 is not involved in kernel I/O port accesses, which can use
350 * any of the I/O port spaces and are done via MMIO using the
351 * virtual mmio_base from the appropriate io_space[].
353 phys_iobase = efi_get_iobase();
354 if (!phys_iobase) {
355 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356 printk(KERN_INFO "No I/O port range found in EFI memory map, "
357 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
359 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
362 /* setup legacy IO port space */
363 io_space[0].mmio_base = ia64_iobase;
364 io_space[0].sparse = 1;
365 num_io_spaces = 1;
369 * early_console_setup - setup debugging console
371 * Consoles started here require little enough setup that we can start using
372 * them very early in the boot process, either right after the machine
373 * vector initialization, or even before if the drivers can detect their hw.
375 * Returns non-zero if a console couldn't be setup.
377 static inline int __init
378 early_console_setup (char *cmdline)
380 int earlycons = 0;
382 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
384 extern int sn_serial_console_early_setup(void);
385 if (!sn_serial_console_early_setup())
386 earlycons++;
388 #endif
389 #ifdef CONFIG_EFI_PCDP
390 if (!efi_setup_pcdp_console(cmdline))
391 earlycons++;
392 #endif
393 if (!simcons_register())
394 earlycons++;
396 return (earlycons) ? 0 : -1;
399 static inline void
400 mark_bsp_online (void)
402 #ifdef CONFIG_SMP
403 /* If we register an early console, allow CPU 0 to printk */
404 cpu_set(smp_processor_id(), cpu_online_map);
405 #endif
408 #ifdef CONFIG_SMP
409 static void __init
410 check_for_logical_procs (void)
412 pal_logical_to_physical_t info;
413 s64 status;
415 status = ia64_pal_logical_to_phys(0, &info);
416 if (status == -1) {
417 printk(KERN_INFO "No logical to physical processor mapping "
418 "available\n");
419 return;
421 if (status) {
422 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
423 status);
424 return;
427 * Total number of siblings that BSP has. Though not all of them
428 * may have booted successfully. The correct number of siblings
429 * booted is in info.overview_num_log.
431 smp_num_siblings = info.overview_tpc;
432 smp_num_cpucores = info.overview_cpp;
434 #endif
436 static __initdata int nomca;
437 static __init int setup_nomca(char *s)
439 nomca = 1;
440 return 0;
442 early_param("nomca", setup_nomca);
444 #ifdef CONFIG_PROC_VMCORE
445 /* elfcorehdr= specifies the location of elf core header
446 * stored by the crashed kernel.
448 static int __init parse_elfcorehdr(char *arg)
450 if (!arg)
451 return -EINVAL;
453 elfcorehdr_addr = memparse(arg, &arg);
454 return 0;
456 early_param("elfcorehdr", parse_elfcorehdr);
458 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
460 unsigned long length;
462 /* We get the address using the kernel command line,
463 * but the size is extracted from the EFI tables.
464 * Both address and size are required for reservation
465 * to work properly.
468 if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
469 return -EINVAL;
471 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
472 elfcorehdr_addr = ELFCORE_ADDR_MAX;
473 return -EINVAL;
476 *start = (unsigned long)__va(elfcorehdr_addr);
477 *end = *start + length;
478 return 0;
481 #endif /* CONFIG_PROC_VMCORE */
483 void __init
484 setup_arch (char **cmdline_p)
486 unw_init();
488 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
490 *cmdline_p = __va(ia64_boot_param->command_line);
491 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
493 efi_init();
494 io_port_init();
496 #ifdef CONFIG_IA64_GENERIC
497 /* machvec needs to be parsed from the command line
498 * before parse_early_param() is called to ensure
499 * that ia64_mv is initialised before any command line
500 * settings may cause console setup to occur
502 machvec_init_from_cmdline(*cmdline_p);
503 #endif
505 parse_early_param();
507 if (early_console_setup(*cmdline_p) == 0)
508 mark_bsp_online();
510 #ifdef CONFIG_ACPI
511 /* Initialize the ACPI boot-time table parser */
512 acpi_table_init();
513 # ifdef CONFIG_ACPI_NUMA
514 acpi_numa_init();
515 # endif
516 #else
517 # ifdef CONFIG_SMP
518 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
519 # endif
520 #endif /* CONFIG_APCI_BOOT */
522 find_memory();
524 /* process SAL system table: */
525 ia64_sal_init(__va(efi.sal_systab));
527 ia64_setup_printk_clock();
529 #ifdef CONFIG_SMP
530 cpu_physical_id(0) = hard_smp_processor_id();
532 cpu_set(0, cpu_sibling_map[0]);
533 cpu_set(0, cpu_core_map[0]);
535 check_for_logical_procs();
536 if (smp_num_cpucores > 1)
537 printk(KERN_INFO
538 "cpu package is Multi-Core capable: number of cores=%d\n",
539 smp_num_cpucores);
540 if (smp_num_siblings > 1)
541 printk(KERN_INFO
542 "cpu package is Multi-Threading capable: number of siblings=%d\n",
543 smp_num_siblings);
544 #endif
546 cpu_init(); /* initialize the bootstrap CPU */
547 mmu_context_init(); /* initialize context_id bitmap */
549 check_sal_cache_flush();
551 #ifdef CONFIG_ACPI
552 acpi_boot_init();
553 #endif
555 #ifdef CONFIG_VT
556 if (!conswitchp) {
557 # if defined(CONFIG_DUMMY_CONSOLE)
558 conswitchp = &dummy_con;
559 # endif
560 # if defined(CONFIG_VGA_CONSOLE)
562 * Non-legacy systems may route legacy VGA MMIO range to system
563 * memory. vga_con probes the MMIO hole, so memory looks like
564 * a VGA device to it. The EFI memory map can tell us if it's
565 * memory so we can avoid this problem.
567 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
568 conswitchp = &vga_con;
569 # endif
571 #endif
573 /* enable IA-64 Machine Check Abort Handling unless disabled */
574 if (!nomca)
575 ia64_mca_init();
577 platform_setup(cmdline_p);
578 paging_init();
582 * Display cpu info for all CPUs.
584 static int
585 show_cpuinfo (struct seq_file *m, void *v)
587 #ifdef CONFIG_SMP
588 # define lpj c->loops_per_jiffy
589 # define cpunum c->cpu
590 #else
591 # define lpj loops_per_jiffy
592 # define cpunum 0
593 #endif
594 static struct {
595 unsigned long mask;
596 const char *feature_name;
597 } feature_bits[] = {
598 { 1UL << 0, "branchlong" },
599 { 1UL << 1, "spontaneous deferral"},
600 { 1UL << 2, "16-byte atomic ops" }
602 char features[128], *cp, *sep;
603 struct cpuinfo_ia64 *c = v;
604 unsigned long mask;
605 unsigned long proc_freq;
606 int i, size;
608 mask = c->features;
610 /* build the feature string: */
611 memcpy(features, "standard", 9);
612 cp = features;
613 size = sizeof(features);
614 sep = "";
615 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
616 if (mask & feature_bits[i].mask) {
617 cp += snprintf(cp, size, "%s%s", sep,
618 feature_bits[i].feature_name),
619 sep = ", ";
620 mask &= ~feature_bits[i].mask;
621 size = sizeof(features) - (cp - features);
624 if (mask && size > 1) {
625 /* print unknown features as a hex value */
626 snprintf(cp, size, "%s0x%lx", sep, mask);
629 proc_freq = cpufreq_quick_get(cpunum);
630 if (!proc_freq)
631 proc_freq = c->proc_freq / 1000;
633 seq_printf(m,
634 "processor : %d\n"
635 "vendor : %s\n"
636 "arch : IA-64\n"
637 "family : %u\n"
638 "model : %u\n"
639 "model name : %s\n"
640 "revision : %u\n"
641 "archrev : %u\n"
642 "features : %s\n"
643 "cpu number : %lu\n"
644 "cpu regs : %u\n"
645 "cpu MHz : %lu.%03lu\n"
646 "itc MHz : %lu.%06lu\n"
647 "BogoMIPS : %lu.%02lu\n",
648 cpunum, c->vendor, c->family, c->model,
649 c->model_name, c->revision, c->archrev,
650 features, c->ppn, c->number,
651 proc_freq / 1000, proc_freq % 1000,
652 c->itc_freq / 1000000, c->itc_freq % 1000000,
653 lpj*HZ/500000, (lpj*HZ/5000) % 100);
654 #ifdef CONFIG_SMP
655 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
656 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
657 seq_printf(m,
658 "physical id: %u\n"
659 "core id : %u\n"
660 "thread id : %u\n",
661 c->socket_id, c->core_id, c->thread_id);
662 #endif
663 seq_printf(m,"\n");
665 return 0;
668 static void *
669 c_start (struct seq_file *m, loff_t *pos)
671 #ifdef CONFIG_SMP
672 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
673 ++*pos;
674 #endif
675 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
678 static void *
679 c_next (struct seq_file *m, void *v, loff_t *pos)
681 ++*pos;
682 return c_start(m, pos);
685 static void
686 c_stop (struct seq_file *m, void *v)
690 struct seq_operations cpuinfo_op = {
691 .start = c_start,
692 .next = c_next,
693 .stop = c_stop,
694 .show = show_cpuinfo
697 #define MAX_BRANDS 8
698 static char brandname[MAX_BRANDS][128];
700 static char * __cpuinit
701 get_model_name(__u8 family, __u8 model)
703 static int overflow;
704 char brand[128];
705 int i;
707 memcpy(brand, "Unknown", 8);
708 if (ia64_pal_get_brand_info(brand)) {
709 if (family == 0x7)
710 memcpy(brand, "Merced", 7);
711 else if (family == 0x1f) switch (model) {
712 case 0: memcpy(brand, "McKinley", 9); break;
713 case 1: memcpy(brand, "Madison", 8); break;
714 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
717 for (i = 0; i < MAX_BRANDS; i++)
718 if (strcmp(brandname[i], brand) == 0)
719 return brandname[i];
720 for (i = 0; i < MAX_BRANDS; i++)
721 if (brandname[i][0] == '\0')
722 return strcpy(brandname[i], brand);
723 if (overflow++ == 0)
724 printk(KERN_ERR
725 "%s: Table overflow. Some processor model information will be missing\n",
726 __FUNCTION__);
727 return "Unknown";
730 static void __cpuinit
731 identify_cpu (struct cpuinfo_ia64 *c)
733 union {
734 unsigned long bits[5];
735 struct {
736 /* id 0 & 1: */
737 char vendor[16];
739 /* id 2 */
740 u64 ppn; /* processor serial number */
742 /* id 3: */
743 unsigned number : 8;
744 unsigned revision : 8;
745 unsigned model : 8;
746 unsigned family : 8;
747 unsigned archrev : 8;
748 unsigned reserved : 24;
750 /* id 4: */
751 u64 features;
752 } field;
753 } cpuid;
754 pal_vm_info_1_u_t vm1;
755 pal_vm_info_2_u_t vm2;
756 pal_status_t status;
757 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
758 int i;
759 for (i = 0; i < 5; ++i)
760 cpuid.bits[i] = ia64_get_cpuid(i);
762 memcpy(c->vendor, cpuid.field.vendor, 16);
763 #ifdef CONFIG_SMP
764 c->cpu = smp_processor_id();
766 /* below default values will be overwritten by identify_siblings()
767 * for Multi-Threading/Multi-Core capable CPUs
769 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
770 c->socket_id = -1;
772 identify_siblings(c);
773 #endif
774 c->ppn = cpuid.field.ppn;
775 c->number = cpuid.field.number;
776 c->revision = cpuid.field.revision;
777 c->model = cpuid.field.model;
778 c->family = cpuid.field.family;
779 c->archrev = cpuid.field.archrev;
780 c->features = cpuid.field.features;
781 c->model_name = get_model_name(c->family, c->model);
783 status = ia64_pal_vm_summary(&vm1, &vm2);
784 if (status == PAL_STATUS_SUCCESS) {
785 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
786 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
788 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
789 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
792 void __init
793 setup_per_cpu_areas (void)
795 /* start_kernel() requires this... */
796 #ifdef CONFIG_ACPI_HOTPLUG_CPU
797 prefill_possible_map();
798 #endif
802 * Calculate the max. cache line size.
804 * In addition, the minimum of the i-cache stride sizes is calculated for
805 * "flush_icache_range()".
807 static void __cpuinit
808 get_max_cacheline_size (void)
810 unsigned long line_size, max = 1;
811 u64 l, levels, unique_caches;
812 pal_cache_config_info_t cci;
813 s64 status;
815 status = ia64_pal_cache_summary(&levels, &unique_caches);
816 if (status != 0) {
817 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
818 __FUNCTION__, status);
819 max = SMP_CACHE_BYTES;
820 /* Safest setup for "flush_icache_range()" */
821 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
822 goto out;
825 for (l = 0; l < levels; ++l) {
826 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
827 &cci);
828 if (status != 0) {
829 printk(KERN_ERR
830 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
831 __FUNCTION__, l, status);
832 max = SMP_CACHE_BYTES;
833 /* The safest setup for "flush_icache_range()" */
834 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
835 cci.pcci_unified = 1;
837 line_size = 1 << cci.pcci_line_size;
838 if (line_size > max)
839 max = line_size;
840 if (!cci.pcci_unified) {
841 status = ia64_pal_cache_config_info(l,
842 /* cache_type (instruction)= */ 1,
843 &cci);
844 if (status != 0) {
845 printk(KERN_ERR
846 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
847 __FUNCTION__, l, status);
848 /* The safest setup for "flush_icache_range()" */
849 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
852 if (cci.pcci_stride < ia64_i_cache_stride_shift)
853 ia64_i_cache_stride_shift = cci.pcci_stride;
855 out:
856 if (max > ia64_max_cacheline_size)
857 ia64_max_cacheline_size = max;
861 * cpu_init() initializes state that is per-CPU. This function acts
862 * as a 'CPU state barrier', nothing should get across.
864 void __cpuinit
865 cpu_init (void)
867 extern void __cpuinit ia64_mmu_init (void *);
868 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
869 unsigned long num_phys_stacked;
870 pal_vm_info_2_u_t vmi;
871 unsigned int max_ctx;
872 struct cpuinfo_ia64 *cpu_info;
873 void *cpu_data;
875 cpu_data = per_cpu_init();
878 * We set ar.k3 so that assembly code in MCA handler can compute
879 * physical addresses of per cpu variables with a simple:
880 * phys = ar.k3 + &per_cpu_var
882 ia64_set_kr(IA64_KR_PER_CPU_DATA,
883 ia64_tpa(cpu_data) - (long) __per_cpu_start);
885 get_max_cacheline_size();
888 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
889 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
890 * depends on the data returned by identify_cpu(). We break the dependency by
891 * accessing cpu_data() through the canonical per-CPU address.
893 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
894 identify_cpu(cpu_info);
896 #ifdef CONFIG_MCKINLEY
898 # define FEATURE_SET 16
899 struct ia64_pal_retval iprv;
901 if (cpu_info->family == 0x1f) {
902 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
903 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
904 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
905 (iprv.v1 | 0x80), FEATURE_SET, 0);
908 #endif
910 /* Clear the stack memory reserved for pt_regs: */
911 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
913 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
916 * Initialize the page-table base register to a global
917 * directory with all zeroes. This ensure that we can handle
918 * TLB-misses to user address-space even before we created the
919 * first user address-space. This may happen, e.g., due to
920 * aggressive use of lfetch.fault.
922 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
925 * Initialize default control register to defer speculative faults except
926 * for those arising from TLB misses, which are not deferred. The
927 * kernel MUST NOT depend on a particular setting of these bits (in other words,
928 * the kernel must have recovery code for all speculative accesses). Turn on
929 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
930 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
931 * be fine).
933 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
934 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
935 atomic_inc(&init_mm.mm_count);
936 current->active_mm = &init_mm;
937 if (current->mm)
938 BUG();
940 ia64_mmu_init(ia64_imva(cpu_data));
941 ia64_mca_cpu_init(ia64_imva(cpu_data));
943 #ifdef CONFIG_IA32_SUPPORT
944 ia32_cpu_init();
945 #endif
947 /* Clear ITC to eliminate sched_clock() overflows in human time. */
948 ia64_set_itc(0);
950 /* disable all local interrupt sources: */
951 ia64_set_itv(1 << 16);
952 ia64_set_lrr0(1 << 16);
953 ia64_set_lrr1(1 << 16);
954 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
955 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
957 /* clear TPR & XTP to enable all interrupt classes: */
958 ia64_setreg(_IA64_REG_CR_TPR, 0);
960 /* Clear any pending interrupts left by SAL/EFI */
961 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
962 ia64_eoi();
964 #ifdef CONFIG_SMP
965 normal_xtp();
966 #endif
968 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
969 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
970 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
971 else {
972 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
973 max_ctx = (1U << 15) - 1; /* use architected minimum */
975 while (max_ctx < ia64_ctx.max_ctx) {
976 unsigned int old = ia64_ctx.max_ctx;
977 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
978 break;
981 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
982 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
983 "stacked regs\n");
984 num_phys_stacked = 96;
986 /* size of physical stacked register partition plus 8 bytes: */
987 if (num_phys_stacked > max_num_phys_stacked) {
988 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
989 max_num_phys_stacked = num_phys_stacked;
991 platform_cpu_init();
992 pm_idle = default_idle;
995 void __init
996 check_bugs (void)
998 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
999 (unsigned long) __end___mckinley_e9_bundles);
1002 static int __init run_dmi_scan(void)
1004 dmi_scan_machine();
1005 return 0;
1007 core_initcall(run_dmi_scan);