4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
27 static void sum_vm_events(unsigned long *ret
)
32 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
34 for_each_online_cpu(cpu
) {
35 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
37 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
38 ret
[i
] += this->event
[i
];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret
)
53 EXPORT_SYMBOL_GPL(all_vm_events
);
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu
)
64 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
67 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
68 count_vm_events(i
, fold_state
->event
[i
]);
69 fold_state
->event
[i
] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
82 EXPORT_SYMBOL(vm_stat
);
86 int calculate_pressure_threshold(struct zone
*zone
)
89 int watermark_distance
;
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
99 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
100 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
103 * Maximum threshold is 125
105 threshold
= min(125, threshold
);
110 int calculate_normal_threshold(struct zone
*zone
)
113 int mem
; /* memory in 128 MB units */
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
121 * Some sample thresholds:
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
145 mem
= zone
->present_pages
>> (27 - PAGE_SHIFT
);
147 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
150 * Maximum threshold is 125
152 threshold
= min(125, threshold
);
158 * Refresh the thresholds for each zone.
160 static void refresh_zone_stat_thresholds(void)
166 for_each_populated_zone(zone
) {
167 unsigned long max_drift
, tolerate_drift
;
169 threshold
= calculate_normal_threshold(zone
);
171 for_each_online_cpu(cpu
)
172 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
180 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
181 max_drift
= num_online_cpus() * threshold
;
182 if (max_drift
> tolerate_drift
)
183 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
188 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
189 int (*calculate_pressure
)(struct zone
*))
196 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
197 zone
= &pgdat
->node_zones
[i
];
198 if (!zone
->percpu_drift_mark
)
201 threshold
= (*calculate_pressure
)(zone
);
202 for_each_possible_cpu(cpu
)
203 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
209 * For use when we know that interrupts are disabled.
211 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
214 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
215 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
219 x
= delta
+ __this_cpu_read(*p
);
221 t
= __this_cpu_read(pcp
->stat_threshold
);
223 if (unlikely(x
> t
|| x
< -t
)) {
224 zone_page_state_add(x
, zone
, item
);
227 __this_cpu_write(*p
, x
);
229 EXPORT_SYMBOL(__mod_zone_page_state
);
232 * Optimized increment and decrement functions.
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
244 * NOTE: These functions are very performance sensitive. Change only
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
254 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
256 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
257 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
260 v
= __this_cpu_inc_return(*p
);
261 t
= __this_cpu_read(pcp
->stat_threshold
);
262 if (unlikely(v
> t
)) {
263 s8 overstep
= t
>> 1;
265 zone_page_state_add(v
+ overstep
, zone
, item
);
266 __this_cpu_write(*p
, -overstep
);
270 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
272 __inc_zone_state(page_zone(page
), item
);
274 EXPORT_SYMBOL(__inc_zone_page_state
);
276 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
278 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
279 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
282 v
= __this_cpu_dec_return(*p
);
283 t
= __this_cpu_read(pcp
->stat_threshold
);
284 if (unlikely(v
< - t
)) {
285 s8 overstep
= t
>> 1;
287 zone_page_state_add(v
- overstep
, zone
, item
);
288 __this_cpu_write(*p
, overstep
);
292 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
294 __dec_zone_state(page_zone(page
), item
);
296 EXPORT_SYMBOL(__dec_zone_page_state
);
298 #ifdef CONFIG_CMPXCHG_LOCAL
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 * mod_state() modifies the zone counter state through atomic per cpu
306 * Overstep mode specifies how overstep should handled:
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
311 static inline void mod_state(struct zone
*zone
,
312 enum zone_stat_item item
, int delta
, int overstep_mode
)
314 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
315 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
319 z
= 0; /* overflow to zone counters */
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the following
325 * will apply the threshold again and therefore bring the
326 * counter under the threshold.
328 t
= this_cpu_read(pcp
->stat_threshold
);
330 o
= this_cpu_read(*p
);
333 if (n
> t
|| n
< -t
) {
334 int os
= overstep_mode
* (t
>> 1) ;
336 /* Overflow must be added to zone counters */
340 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
343 zone_page_state_add(z
, zone
, item
);
346 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
349 mod_state(zone
, item
, delta
, 0);
351 EXPORT_SYMBOL(mod_zone_page_state
);
353 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
355 mod_state(zone
, item
, 1, 1);
358 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
360 mod_state(page_zone(page
), item
, 1, 1);
362 EXPORT_SYMBOL(inc_zone_page_state
);
364 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
366 mod_state(page_zone(page
), item
, -1, -1);
368 EXPORT_SYMBOL(dec_zone_page_state
);
371 * Use interrupt disable to serialize counter updates
373 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
378 local_irq_save(flags
);
379 __mod_zone_page_state(zone
, item
, delta
);
380 local_irq_restore(flags
);
382 EXPORT_SYMBOL(mod_zone_page_state
);
384 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
388 local_irq_save(flags
);
389 __inc_zone_state(zone
, item
);
390 local_irq_restore(flags
);
393 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
398 zone
= page_zone(page
);
399 local_irq_save(flags
);
400 __inc_zone_state(zone
, item
);
401 local_irq_restore(flags
);
403 EXPORT_SYMBOL(inc_zone_page_state
);
405 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
409 local_irq_save(flags
);
410 __dec_zone_page_state(page
, item
);
411 local_irq_restore(flags
);
413 EXPORT_SYMBOL(dec_zone_page_state
);
417 * Update the zone counters for one cpu.
419 * The cpu specified must be either the current cpu or a processor that
420 * is not online. If it is the current cpu then the execution thread must
421 * be pinned to the current cpu.
423 * Note that refresh_cpu_vm_stats strives to only access
424 * node local memory. The per cpu pagesets on remote zones are placed
425 * in the memory local to the processor using that pageset. So the
426 * loop over all zones will access a series of cachelines local to
429 * The call to zone_page_state_add updates the cachelines with the
430 * statistics in the remote zone struct as well as the global cachelines
431 * with the global counters. These could cause remote node cache line
432 * bouncing and will have to be only done when necessary.
434 void refresh_cpu_vm_stats(int cpu
)
438 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
440 for_each_populated_zone(zone
) {
441 struct per_cpu_pageset
*p
;
443 p
= per_cpu_ptr(zone
->pageset
, cpu
);
445 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
446 if (p
->vm_stat_diff
[i
]) {
450 local_irq_save(flags
);
451 v
= p
->vm_stat_diff
[i
];
452 p
->vm_stat_diff
[i
] = 0;
453 local_irq_restore(flags
);
454 atomic_long_add(v
, &zone
->vm_stat
[i
]);
457 /* 3 seconds idle till flush */
464 * Deal with draining the remote pageset of this
467 * Check if there are pages remaining in this pageset
468 * if not then there is nothing to expire.
470 if (!p
->expire
|| !p
->pcp
.count
)
474 * We never drain zones local to this processor.
476 if (zone_to_nid(zone
) == numa_node_id()) {
486 drain_zone_pages(zone
, &p
->pcp
);
490 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
492 atomic_long_add(global_diff
[i
], &vm_stat
[i
]);
499 * zonelist = the list of zones passed to the allocator
500 * z = the zone from which the allocation occurred.
502 * Must be called with interrupts disabled.
504 * When __GFP_OTHER_NODE is set assume the node of the preferred
505 * zone is the local node. This is useful for daemons who allocate
506 * memory on behalf of other processes.
508 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
510 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
511 __inc_zone_state(z
, NUMA_HIT
);
513 __inc_zone_state(z
, NUMA_MISS
);
514 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
516 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
517 preferred_zone
->node
: numa_node_id()))
518 __inc_zone_state(z
, NUMA_LOCAL
);
520 __inc_zone_state(z
, NUMA_OTHER
);
524 #ifdef CONFIG_COMPACTION
526 struct contig_page_info
{
527 unsigned long free_pages
;
528 unsigned long free_blocks_total
;
529 unsigned long free_blocks_suitable
;
533 * Calculate the number of free pages in a zone, how many contiguous
534 * pages are free and how many are large enough to satisfy an allocation of
535 * the target size. Note that this function makes no attempt to estimate
536 * how many suitable free blocks there *might* be if MOVABLE pages were
537 * migrated. Calculating that is possible, but expensive and can be
538 * figured out from userspace
540 static void fill_contig_page_info(struct zone
*zone
,
541 unsigned int suitable_order
,
542 struct contig_page_info
*info
)
546 info
->free_pages
= 0;
547 info
->free_blocks_total
= 0;
548 info
->free_blocks_suitable
= 0;
550 for (order
= 0; order
< MAX_ORDER
; order
++) {
551 unsigned long blocks
;
553 /* Count number of free blocks */
554 blocks
= zone
->free_area
[order
].nr_free
;
555 info
->free_blocks_total
+= blocks
;
557 /* Count free base pages */
558 info
->free_pages
+= blocks
<< order
;
560 /* Count the suitable free blocks */
561 if (order
>= suitable_order
)
562 info
->free_blocks_suitable
+= blocks
<<
563 (order
- suitable_order
);
568 * A fragmentation index only makes sense if an allocation of a requested
569 * size would fail. If that is true, the fragmentation index indicates
570 * whether external fragmentation or a lack of memory was the problem.
571 * The value can be used to determine if page reclaim or compaction
574 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
576 unsigned long requested
= 1UL << order
;
578 if (!info
->free_blocks_total
)
581 /* Fragmentation index only makes sense when a request would fail */
582 if (info
->free_blocks_suitable
)
586 * Index is between 0 and 1 so return within 3 decimal places
588 * 0 => allocation would fail due to lack of memory
589 * 1 => allocation would fail due to fragmentation
591 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
594 /* Same as __fragmentation index but allocs contig_page_info on stack */
595 int fragmentation_index(struct zone
*zone
, unsigned int order
)
597 struct contig_page_info info
;
599 fill_contig_page_info(zone
, order
, &info
);
600 return __fragmentation_index(order
, &info
);
604 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
605 #include <linux/proc_fs.h>
606 #include <linux/seq_file.h>
608 static char * const migratetype_names
[MIGRATE_TYPES
] = {
616 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
620 for (pgdat
= first_online_pgdat();
622 pgdat
= next_online_pgdat(pgdat
))
628 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
630 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
633 return next_online_pgdat(pgdat
);
636 static void frag_stop(struct seq_file
*m
, void *arg
)
640 /* Walk all the zones in a node and print using a callback */
641 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
642 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
645 struct zone
*node_zones
= pgdat
->node_zones
;
648 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
649 if (!populated_zone(zone
))
652 spin_lock_irqsave(&zone
->lock
, flags
);
653 print(m
, pgdat
, zone
);
654 spin_unlock_irqrestore(&zone
->lock
, flags
);
659 #ifdef CONFIG_PROC_FS
660 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
665 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
666 for (order
= 0; order
< MAX_ORDER
; ++order
)
667 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
672 * This walks the free areas for each zone.
674 static int frag_show(struct seq_file
*m
, void *arg
)
676 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
677 walk_zones_in_node(m
, pgdat
, frag_show_print
);
681 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
682 pg_data_t
*pgdat
, struct zone
*zone
)
686 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
687 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
690 migratetype_names
[mtype
]);
691 for (order
= 0; order
< MAX_ORDER
; ++order
) {
692 unsigned long freecount
= 0;
693 struct free_area
*area
;
694 struct list_head
*curr
;
696 area
= &(zone
->free_area
[order
]);
698 list_for_each(curr
, &area
->free_list
[mtype
])
700 seq_printf(m
, "%6lu ", freecount
);
706 /* Print out the free pages at each order for each migatetype */
707 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
710 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
713 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
714 for (order
= 0; order
< MAX_ORDER
; ++order
)
715 seq_printf(m
, "%6d ", order
);
718 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
723 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
724 pg_data_t
*pgdat
, struct zone
*zone
)
728 unsigned long start_pfn
= zone
->zone_start_pfn
;
729 unsigned long end_pfn
= start_pfn
+ zone
->spanned_pages
;
730 unsigned long count
[MIGRATE_TYPES
] = { 0, };
732 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
738 page
= pfn_to_page(pfn
);
740 /* Watch for unexpected holes punched in the memmap */
741 if (!memmap_valid_within(pfn
, page
, zone
))
744 mtype
= get_pageblock_migratetype(page
);
746 if (mtype
< MIGRATE_TYPES
)
751 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
752 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
753 seq_printf(m
, "%12lu ", count
[mtype
]);
757 /* Print out the free pages at each order for each migratetype */
758 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
761 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
763 seq_printf(m
, "\n%-23s", "Number of blocks type ");
764 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
765 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
767 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
773 * This prints out statistics in relation to grouping pages by mobility.
774 * It is expensive to collect so do not constantly read the file.
776 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
778 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
780 /* check memoryless node */
781 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
784 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
785 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
787 pagetypeinfo_showfree(m
, pgdat
);
788 pagetypeinfo_showblockcount(m
, pgdat
);
793 static const struct seq_operations fragmentation_op
= {
800 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
802 return seq_open(file
, &fragmentation_op
);
805 static const struct file_operations fragmentation_file_operations
= {
806 .open
= fragmentation_open
,
809 .release
= seq_release
,
812 static const struct seq_operations pagetypeinfo_op
= {
816 .show
= pagetypeinfo_show
,
819 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
821 return seq_open(file
, &pagetypeinfo_op
);
824 static const struct file_operations pagetypeinfo_file_ops
= {
825 .open
= pagetypeinfo_open
,
828 .release
= seq_release
,
831 #ifdef CONFIG_ZONE_DMA
832 #define TEXT_FOR_DMA(xx) xx "_dma",
834 #define TEXT_FOR_DMA(xx)
837 #ifdef CONFIG_ZONE_DMA32
838 #define TEXT_FOR_DMA32(xx) xx "_dma32",
840 #define TEXT_FOR_DMA32(xx)
843 #ifdef CONFIG_HIGHMEM
844 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
846 #define TEXT_FOR_HIGHMEM(xx)
849 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
850 TEXT_FOR_HIGHMEM(xx) xx "_movable",
852 static const char * const vmstat_text
[] = {
853 /* Zoned VM counters */
866 "nr_slab_reclaimable",
867 "nr_slab_unreclaimable",
868 "nr_page_table_pages",
888 "nr_anon_transparent_hugepages",
889 "nr_dirty_threshold",
890 "nr_dirty_background_threshold",
892 #ifdef CONFIG_VM_EVENT_COUNTERS
898 TEXTS_FOR_ZONES("pgalloc")
907 TEXTS_FOR_ZONES("pgrefill")
908 TEXTS_FOR_ZONES("pgsteal")
909 TEXTS_FOR_ZONES("pgscan_kswapd")
910 TEXTS_FOR_ZONES("pgscan_direct")
913 "zone_reclaim_failed",
919 "kswapd_low_wmark_hit_quickly",
920 "kswapd_high_wmark_hit_quickly",
921 "kswapd_skip_congestion_wait",
927 #ifdef CONFIG_COMPACTION
928 "compact_blocks_moved",
929 "compact_pages_moved",
930 "compact_pagemigrate_failed",
936 #ifdef CONFIG_HUGETLB_PAGE
937 "htlb_buddy_alloc_success",
938 "htlb_buddy_alloc_fail",
940 "unevictable_pgs_culled",
941 "unevictable_pgs_scanned",
942 "unevictable_pgs_rescued",
943 "unevictable_pgs_mlocked",
944 "unevictable_pgs_munlocked",
945 "unevictable_pgs_cleared",
946 "unevictable_pgs_stranded",
947 "unevictable_pgs_mlockfreed",
951 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
955 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
964 zone_page_state(zone
, NR_FREE_PAGES
),
965 min_wmark_pages(zone
),
966 low_wmark_pages(zone
),
967 high_wmark_pages(zone
),
970 zone
->present_pages
);
972 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
973 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
974 zone_page_state(zone
, i
));
977 "\n protection: (%lu",
978 zone
->lowmem_reserve
[0]);
979 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
980 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
984 for_each_online_cpu(i
) {
985 struct per_cpu_pageset
*pageset
;
987 pageset
= per_cpu_ptr(zone
->pageset
, i
);
998 seq_printf(m
, "\n vm stats threshold: %d",
999 pageset
->stat_threshold
);
1003 "\n all_unreclaimable: %u"
1005 "\n inactive_ratio: %u",
1006 zone
->all_unreclaimable
,
1007 zone
->zone_start_pfn
,
1008 zone
->inactive_ratio
);
1013 * Output information about zones in @pgdat.
1015 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1017 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1018 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1022 static const struct seq_operations zoneinfo_op
= {
1023 .start
= frag_start
, /* iterate over all zones. The same as in
1027 .show
= zoneinfo_show
,
1030 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1032 return seq_open(file
, &zoneinfo_op
);
1035 static const struct file_operations proc_zoneinfo_file_operations
= {
1036 .open
= zoneinfo_open
,
1038 .llseek
= seq_lseek
,
1039 .release
= seq_release
,
1042 enum writeback_stat_item
{
1044 NR_DIRTY_BG_THRESHOLD
,
1045 NR_VM_WRITEBACK_STAT_ITEMS
,
1048 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1051 int i
, stat_items_size
;
1053 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1055 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1056 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1058 #ifdef CONFIG_VM_EVENT_COUNTERS
1059 stat_items_size
+= sizeof(struct vm_event_state
);
1062 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1065 return ERR_PTR(-ENOMEM
);
1066 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1067 v
[i
] = global_page_state(i
);
1068 v
+= NR_VM_ZONE_STAT_ITEMS
;
1070 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1071 v
+ NR_DIRTY_THRESHOLD
);
1072 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1074 #ifdef CONFIG_VM_EVENT_COUNTERS
1076 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1079 return (unsigned long *)m
->private + *pos
;
1082 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1085 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1087 return (unsigned long *)m
->private + *pos
;
1090 static int vmstat_show(struct seq_file
*m
, void *arg
)
1092 unsigned long *l
= arg
;
1093 unsigned long off
= l
- (unsigned long *)m
->private;
1095 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1099 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1105 static const struct seq_operations vmstat_op
= {
1106 .start
= vmstat_start
,
1107 .next
= vmstat_next
,
1108 .stop
= vmstat_stop
,
1109 .show
= vmstat_show
,
1112 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1114 return seq_open(file
, &vmstat_op
);
1117 static const struct file_operations proc_vmstat_file_operations
= {
1118 .open
= vmstat_open
,
1120 .llseek
= seq_lseek
,
1121 .release
= seq_release
,
1123 #endif /* CONFIG_PROC_FS */
1126 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1127 int sysctl_stat_interval __read_mostly
= HZ
;
1129 static void vmstat_update(struct work_struct
*w
)
1131 refresh_cpu_vm_stats(smp_processor_id());
1132 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1133 round_jiffies_relative(sysctl_stat_interval
));
1136 static void __cpuinit
start_cpu_timer(int cpu
)
1138 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1140 INIT_DELAYED_WORK_DEFERRABLE(work
, vmstat_update
);
1141 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1145 * Use the cpu notifier to insure that the thresholds are recalculated
1148 static int __cpuinit
vmstat_cpuup_callback(struct notifier_block
*nfb
,
1149 unsigned long action
,
1152 long cpu
= (long)hcpu
;
1156 case CPU_ONLINE_FROZEN
:
1157 refresh_zone_stat_thresholds();
1158 start_cpu_timer(cpu
);
1159 node_set_state(cpu_to_node(cpu
), N_CPU
);
1161 case CPU_DOWN_PREPARE
:
1162 case CPU_DOWN_PREPARE_FROZEN
:
1163 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1164 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1166 case CPU_DOWN_FAILED
:
1167 case CPU_DOWN_FAILED_FROZEN
:
1168 start_cpu_timer(cpu
);
1171 case CPU_DEAD_FROZEN
:
1172 refresh_zone_stat_thresholds();
1180 static struct notifier_block __cpuinitdata vmstat_notifier
=
1181 { &vmstat_cpuup_callback
, NULL
, 0 };
1184 static int __init
setup_vmstat(void)
1189 refresh_zone_stat_thresholds();
1190 register_cpu_notifier(&vmstat_notifier
);
1192 for_each_online_cpu(cpu
)
1193 start_cpu_timer(cpu
);
1195 #ifdef CONFIG_PROC_FS
1196 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1197 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1198 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1199 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1203 module_init(setup_vmstat
)
1205 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1206 #include <linux/debugfs.h>
1208 static struct dentry
*extfrag_debug_root
;
1211 * Return an index indicating how much of the available free memory is
1212 * unusable for an allocation of the requested size.
1214 static int unusable_free_index(unsigned int order
,
1215 struct contig_page_info
*info
)
1217 /* No free memory is interpreted as all free memory is unusable */
1218 if (info
->free_pages
== 0)
1222 * Index should be a value between 0 and 1. Return a value to 3
1225 * 0 => no fragmentation
1226 * 1 => high fragmentation
1228 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1232 static void unusable_show_print(struct seq_file
*m
,
1233 pg_data_t
*pgdat
, struct zone
*zone
)
1237 struct contig_page_info info
;
1239 seq_printf(m
, "Node %d, zone %8s ",
1242 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1243 fill_contig_page_info(zone
, order
, &info
);
1244 index
= unusable_free_index(order
, &info
);
1245 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1252 * Display unusable free space index
1254 * The unusable free space index measures how much of the available free
1255 * memory cannot be used to satisfy an allocation of a given size and is a
1256 * value between 0 and 1. The higher the value, the more of free memory is
1257 * unusable and by implication, the worse the external fragmentation is. This
1258 * can be expressed as a percentage by multiplying by 100.
1260 static int unusable_show(struct seq_file
*m
, void *arg
)
1262 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1264 /* check memoryless node */
1265 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
1268 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1273 static const struct seq_operations unusable_op
= {
1274 .start
= frag_start
,
1277 .show
= unusable_show
,
1280 static int unusable_open(struct inode
*inode
, struct file
*file
)
1282 return seq_open(file
, &unusable_op
);
1285 static const struct file_operations unusable_file_ops
= {
1286 .open
= unusable_open
,
1288 .llseek
= seq_lseek
,
1289 .release
= seq_release
,
1292 static void extfrag_show_print(struct seq_file
*m
,
1293 pg_data_t
*pgdat
, struct zone
*zone
)
1298 /* Alloc on stack as interrupts are disabled for zone walk */
1299 struct contig_page_info info
;
1301 seq_printf(m
, "Node %d, zone %8s ",
1304 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1305 fill_contig_page_info(zone
, order
, &info
);
1306 index
= __fragmentation_index(order
, &info
);
1307 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1314 * Display fragmentation index for orders that allocations would fail for
1316 static int extfrag_show(struct seq_file
*m
, void *arg
)
1318 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1320 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1325 static const struct seq_operations extfrag_op
= {
1326 .start
= frag_start
,
1329 .show
= extfrag_show
,
1332 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1334 return seq_open(file
, &extfrag_op
);
1337 static const struct file_operations extfrag_file_ops
= {
1338 .open
= extfrag_open
,
1340 .llseek
= seq_lseek
,
1341 .release
= seq_release
,
1344 static int __init
extfrag_debug_init(void)
1346 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1347 if (!extfrag_debug_root
)
1350 if (!debugfs_create_file("unusable_index", 0444,
1351 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1354 if (!debugfs_create_file("extfrag_index", 0444,
1355 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1361 module_init(extfrag_debug_init
);